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ON COMPACTNESS OF ISOSPECTRAL

CONFORMAL METRICS OF 4-MANIFOLDS

XINGWANG XU

§1. Introduction

In this paper, we are interested in the compactness of isospectral conformal

metrics in dimension 4.

Let us recall the definition of the isospectral metrics. Two Riemannian met-

rics g, gr on a compact manifold are said to be isospectral if their associated La-

place operators on functions have identical spectrum. There are now numeruos ex-

amples of compact Riemannian manifolds which admit more than two metrics such

that they are isospectral but not isometric. That is to say that the eigenvalues of

the Laplace operator Δ on the functions do not necessarily determine the isometry

class of (M, g). If we further require the metrics stay in the same conformal

class, the spectrum of Laplace operator still does not determine the metric unique-

ly ([BG], [BPY]).

Thus the problem is to know how much we can say about the metric from its

spectrum.

In dimension 2, Osgood, Phillips and Sarnak [OPS] proved that the set of isos-

pectral metrics on a compact surface form a compact family in the C topology.

Remember that in dimension 2, all metrics on a compact Riemann surface are con-

formally equivalent.

In dimension 3, Brooks, Perry and Yang [BPY] had showed that if (Λf, g0)

has negative constant scalar curvature, an isospectral set of metrics g — u g0

which are pointwise conformal to g0 is compact in the C°° topology. Later Chang

and Yang [CY1, CY2] had showed that this is true for general compact 3-manifold

without boundary. Recently, M. Anderson [An] and Brooks, Perry and Petersen

[BPP], independently, show that this is still true for general metrics which are not

necessary conformal to g0 provided the Sobolev constants have uniform lower

bound. Therefore for dimension 3, the compactness of isospectral metrics is re-

duced to how to estimate the Sobolev constant from the spectrum.
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When the dimension gets higher (i.e., n > 4), the problem becomes much more

difficult. The reason is that at this moment we do not know how to compute all

spectral invariants. For the first few computable heat invariants, when dimension

is getting bigger, they tells us less information and so do Sobolev inequalities.

Hence we can not expect get any cheap results without further assumption. What

we can do in this paper is to show the following:

THEOREM 1. Let M be a compact A-manifold and {gQ} a negative conformal class

on M. Then for gx ^ {g0}, the set of the metrics g in {g0} which are iso spectral to g1

is compact in the C°° topology if and only if I sgdvg ^ Co for some constant Co and

where sg is the scalar curvature of the metric g.

For standard 4-sphere, the conformal group G complicates the analysis. Since

G is not compact, we can not expect to have same conclusion as Theorem 1 above.

DEFINITION. For a positive function u on S and φ a conformal transformation,

define

| τ ll/n

uφ = u ° φ I dφ \

where \ dφ\ is the linear stretch of dφ measured with respect to the standard metric g0.
~. 4/01-2) * / 4/(w-2) \ ΛΊίT

Thus uφ g0 = φ (u g0). We set

[u] — {uφ I φ ^ G, the conformal group of S }.

We also will show the following

THEOREM 2. For (S , £0), if {g{ = Uigς) is a sequence of isospectral metrics,

then there exist conformal transformations φ{ for g{ such that {φ g) is compact in the

C°° topology provided there exists a constant Cx > 0 such that I sgdvgi < Cv

The condition we provided here is motivated by Chang and Yang's paper

[CY2]. At the end of their paper, it was pointed out that if the condition I sgdvg

•ΛS3

< Co is replaced by I sg

/2+δdυg < Co for some δ > 0 and n > 4 in their

Theorem 1', then their Theorem 1' still holds. We follow from their argument to
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get pointwise estimates on conformal factors. Therefore our argument gives slight-

ly more general results than what we have stated in above. It was informed by

Paul Yang that Gursky [Gu] has gotten some estimates for higher dimensional man-

ifolds in terms of L integrals of the whole curvature tensor for p > n/2.

The proof given here is similar to the proof given by Chang and Yang for

three dimensional case ([CY1]). Since we restrict ourselves to the same conformal

class, in order to get control on curvature tensors, we have to get estimates on

conformal factors. Our starting point is to get pointwise lower bounds of confor-

mal factors which will be given in next section. Once we have lower bounds of

conformal factors at hand, we can employ them to get upper bounds too. Detail of

this argument will provide in our section three. Section 4 will simply contribute to

L integral bound of full curvature tensors. With all those estimates done, we can

apply Cheeger-Gromov's Compactness theorem ([C], [G]), reduce our compactness

to get pointwise control on our curvature tensors and their higher derivatives.

That will follow from higher order heat invariants whose leading coefficients have

been computed by P. Gilkey [G2]. This is our main content in section five.

§2. Lower bounds of conformal factors

Notation first. Let M be a compact manifold of dimension n with metric g0.

dv0 will be used to denote the volume element of g0 and s0 the scalar curvature of

{My g0). Let p — —•—* and g — u g0 for some positive function u. Then it

is standard calculation that the volume element and the scalar curvature of g are

given by

(1) dυ — uP+1dv0

and

(2) sg = u~P(sou — cnΔu)

where cn = 4(n ~ l)/(n — 2) and Δ is understood to take with respect to the

metric g0.

First of all, we consider the negative conformal class. Without loss of general-

ity, we can assume that gQ is a negative constant.

LEMMA 1. If s0 < 0 and I sedvβ < Co, then there exists a constant Ca > 0
JM

such that u > Ca where g = u g0.
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Proof. Using (2), we can get

Co * f/gdve

= I [u~3(s0u — c4Δu)Yu4dv0

= I SQU~4CIVQ — 24SQ I Δuu~5dv0 + 216sl I (Δu)2u~6dυ0
JM JM JM

(3) - 864s0 f (ΔuΫu~7dv0 + 1296 f (ΔuΫu'8dv0

= fu~4SodvQ -• 2450

3 Γ u~5(Δu)dv0

- 216 Γ (4M) 2 «" 8 [S 0 - 2ΔuΫdυ0 + 432 Γ u'\ΔuΫdv0.

Since s0 < 0, s0 < 0. Also

Γ u~*Δu = 5 Γ M"β I Vu |2 > 0.

Thus in (3), each term on the right hand side is positive. In particular, we get

(4)

and

(5) Γ u~\Δuγdυ,< Co.

Now from the identity,

Δ(u~ι) = - w"24w + 2u~31 F M I2,

it is easy to see that for any point p ^ M,

(6) u~\p) - ( Γ dι;0) Γ w " 1 ^ = - f G(p,q)[- u~2Δu + 2*Γ31 Vu \2]dv0,

where G{p> q) is the Green's function on M which can be assumed to be positive

everywhere on M. The well known fact is that the Green's function on a

4-dimensional manifold is L integrable for p < 2. Thus combining (4), (5) and

Holder inequality, the equation (6) simply implies that there is a constant Ca > 0

which does not depend on u such that u(p) > Ca > 0. We have thus finished the



ISOSPECTRAL CONFORMAL METRICS 8 1

proof of Lemma 1.

Now we consider the sphere (S , g0) case.

LEMMA 2. On (S , g0), if g — u g0 is a conformal metric satisfying

a o = f u 4 d v 0 , f \ s β \ 2 + δ ° u * d v 0 < a 2 , λ , ( g ) > Λ > 0

where 0 < δ0 < 2 and A > 0 are two constants, then there are a constant C12 —

C12(cx0, α2, δ0, Λ) > 0 and a conformal transformation φ such that v — uφ satisfies v

> cu.

Proof Applying Lemma 1 of [CY2], we have a υ ^ [u] such that

X v4Xjdv0 = 0

for j = 1,2,. . . , 5 where Xj are the ambient coordinates of S . The key point is
2 2

that u g0 is isometric to υ g0. Thus they have same geometry, for example, the
2

same volume and the same first eigenvalues. Thus if we denote v g0 by g again, we

have

tv'xfdv, < ίλ.ig)]'1 f \Vxs \ydυ0

Remember x\ + x\ + + x\ = 1 and | Vxι f + + | Vx51
2 = 4(= ^ ( S 4 ,

^ 0 ) ) . Summary the inequality (7) from j = 1 to j ==;.5 to get

a0 —. I u4dv0 — I v4dv0 < (A)'1.1 iv2dv0.

That is,

(8) Γ v2dv0 > 4~1α0τl = C3 > 0.

Let 77 = (C3/(2vol(^0))]1/2 > 0 a n d β = { χ e S 4 | v{x) > η). Then we have esti-

mate

JΓ 4 Γ 2 Γ 2

' v dv0 = j f df 0 + I v dv0
S 4 *>Ω ' Js4\Ω
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α v 1/2

v'dvo) (vol(β))1/2 + r?2vol(S4 \ Ω)

** 1/2 i / /̂ -|\ 1/2 I 3

< α0 vol(£?) 4- -ij-.

Therefore we have

C2

(9) vol(β) > 7 7 - ^ τ > 0 .

Now let 0 < δ < /r> i <? N be chosen later, multiply the equation (2) with n = 4

by v and apply integration by parts to get

V v-' IX = - T Γ ^ y £ s/Λfoβ + j ^ I v-dv..

Now let λ^go) = λι denote the first eigenvalue of Δ acting on functions, i.e., λι =

4 then by the Rayleigh-Ritz characterization for λh we get

Γ v~2δdv0 < (voKS 4 ))"^ Γ υ'δdv0)
2 + (1 /λx) f | Vυ~δ \2dv0.

(10)

6^(1 + 2δ)

From the equation (9), we should have

I t; αz;0 = I t; αt;0 + I υ dv0

/ /. . \l/2

< rf δvol(β)

Hence, by taking the square in equation (11) and being divided by the volume and

using Holder, we have

V Q Γ v-δdv0)
2 < (1 + 1 /f) [η^voKΩΫ] + (1 + γ)

vol{S*\Ω)

for all positive r. Now as vol(fl) > C3 > 0, vol(S4\β) = (1 - 2(9)vol(S4) for

some θ = ^(vol(β)) > 0. Therefore we can take γ small enough such that

(1 + 7 )(1 - 2Θ) < (1 - θ). Now combining the equations (10) and (11), we

obtain
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r /^2c r
— 25 τ ^ SΛ ί-\ /\\ I —2δ T i 0 I -2<5 τ

v dv0 < G 4 u — #) I ^ αz;0 + /^ •> /-. , o^\y I ^ wf0

(12) w " l V i '

< C4 + (1 -

^ dv0].

Now make the choice of arbitrary constant δ. Choose δ < /^ ι_ g \ such that

..

2 ( 1 + 2δ) < ^ θ

And also by Holder inequality and the assumption we know that

2(δn-δ(2 + δ()

can be bounded by some constant C5 > 0. Thus the equation (12) tells us that

θ 6^(

12 C s

Let G(p, q) denote the Green's function for Δ with singularity at p. We may

add a constant and assume G(p, q) is positive. Then we have

-a 1 Γ -a Γ -a

vol(54) J5 4 Js*

1 Γ -a 1 Γ 2-α -α

— 4— J v dv0 — -£ J G(p, q) [asgv — soav

+ 6α(l + a)v~a~2\Vv\2]dv0(q)

< —— Γ v~adv0 j ^ - Γ v~aG(p, q)dv0
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Now by Holder inequality, we have

X r /* -i (r-l)/rr /• -i 1/r

t v~aG(p, q)dv0 < [J 4 ^ " α r / ( r l ) ^ o J [J 4 G
r(P> ?)^oj

If we choose 1 < r < 2 and α < where 5 > 0 is determined in the

equation (13), then equation (15) says that the second term in the right hand side

of the equation (14) is bounded. Also, using Holder inequality, we get

G(p, q)sgv
2-adv0

s
{ ' r r Λl/r\ Γ "I 1/(2+5)

Γ r (y(2-α)(2+go)-4) 1

. \J vir(2+δ0)-(2+δ0+r)) foA

Now we first choose r such that

(r(2+δo)-(2+δo+r)

r(2+δQ)

2>r>
1 > r > (1 + δ0) •

We then choose a sufficiently small for a fixed r so that

0) - (2 + 50)) + 2g0r] [2g(r - 1)])
( K 2 + δ0)) r ) '(17) 0 < a < min(2δ,

Finally by Holder inequality, the first term and the third term in the right hand

side of the equation (14) are bounded in terms of something which does not de-

pend on the point p. Thus there is a constant C1 2 > 0 such that u > C12. Thus

this proves Lemma 2.

§3. Upper bounds of conformal factors

The main purpose of this section is to show the following

LEMMA 3. Suppose that λΛΔe) > A > 0, I s2

e

+δ°dv0 < Co and I u4dv0 = α 0 .
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Denote the Sobolev constant by C1 and the geometry by the constant C2. If the function

u > C > 0 for some constant C, then there are a constant ε0 = εo(Λ, a0, Co, Clf C2,

C) > 0 and a constant C7 = C7(Λ, Co, α0, Clf C2, C) > 0 such that

(18) Γ u4 +\fo0 < C7.

Remark. It will be used to get the pointwise upper bound of function u.

Proof Let w = u ε. From the Sobolev inequality for w ([Au]), we have

(19) ( Γ w*dv)j <Cλ f I Vw |2 <fo0 + C2 Γ w2dv0

where C2 and C2 depend only on the geometry of M, C1 is called the Sobolev con-

stant.

On the other hand, multiply (2) by u for n = 4, to obtain,

(20)

And now integrating (20) and using integration by parts, we get

(1 + 2ε) Γ i ι2 Γ 2 2 Γ 2
(21) 6 / I Fw I dz;0 = I sgu w dv0- s0 I w Λ o .

(1 + ε) JM JM J Λ /

Notice that for ε < 1, I w2dv0 is bounded by some constant multiplying

J' M4rff0. We conclude that
M

O Γ \ 1 / 2 (1 + ε)2 Γ

\M w*dυ0) £ C, ( 6 ( 1 + 2 e ) ) J ^ s,«2u;2ίίi;0 + C2(e).

For any η > 0, let £ = ix e M | | s, | > (Co??"1)1'50}. Then

Co ^ Γ I sg \M'u*dυ0

v. / * I |2+δ 0 4 j

> J I 5^ I °u dv0

> CQη~ι \ s2

gu
4dv0.

Therefore we have
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(23)

and

(24) \sg\<

This implies that

2w2dv0U' sgu
2

M

(25) < I | s | w2u2dv0

J
r r r 11/2

I 2 2 J i 1 / 2 I 4 J1 w w<foo + η \ w dυλ .

To estimate I u2w2dvQr we apply the Rayleigh-Ritz characterization of λx(A J

(26)

or equivalently,

( 2 6 ' ) Γ 02M4rfz;o < ( v o l ( M ) ) " 1 ( Γ 0 w 4 ^ o ) + Λ~ι [ u \ V φ \2dv0
JM \JM I JM

to φ = u to obtain

J uw2< \ u4dv0\ I u^εdvΛ + Λ~ι \ u2\Vuε\2 dv0

= [ x uidvi a u^dA+(Λa+ε)) x i r w |2 *•
Γ Γ I " 1 Γ Γ I 2 ε2 Γ Γ

= UL "dv«\ IX w 4 Ή + (6Λ(l+26» IX ^ V ^ o
- 50 I w2dvQ\,

where we have used the equation (21) to obtain the second equality.

To estimate I u*+εdv0, first of all, by assumption we have C > 0 with u — C

> 0. Apply this to get
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X u4+εdυ0 = I (u4 — C4)uεdv0 + C 4 / uεdv0

U
s* 1 1/2 r Λ -] 1/2 /»

I {u - C^u'dυλ I U - C^dυλ + C4 I udv0,
where inequality comes from Cauchy-Schwartz inequality and the positivity of

u — C . Thus we have

[/ u^dv0]
2 < (l + r) [/ (u - CVA/O] [/ (u - c4)dv0]

(28) M U M

where 7 will be chosen later. But

J' (u4 — C4)dv0 — oc \ u4dv0
M JM

Λ (CVol(ikO) . . . u Λ J

where a — 1 7* is a positive constant less than 1 and we conclude

I udυQ

that

< (1 + r)a[f in4 - C4)u2εdv0] + (l + \)c*
( 2 9 ) < (1 + r)a[f

/- r/ 1 \ / M d v o r i

M

4+2ε^0 + 1 + 7 c 8 lr7 4

 J-. - c 4 α + r)α Γ Λ J .
IJM J

Since we assume ε < 1 and a0 = I u dv0 > 0, we get the conclusion that the

second term in the right hand side of the inequality (29) is bounded by some con-

stant. Choosing γ so that (1 + γ)a = (1 — β) < 1, from (27) we then have

22

J u2w2dvQ < (1 - β) j uw2dv0 + C8 + (6ΛQ +2ε))J V

It is equivalent to

J Γ 1 ρ2 Γ *?

^ u2w2dv0 < j ( 6 Λ a + 2ε))JM sgu
2w2dv0 + -β C8.
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Combine (30) and (25) to obtain

X seu
2w2dvQ

< Cpη' u2w2dυ0+η I w*dυA

Therefore

(C1/<5°77~1/<5°ε2)

\ V^Λ / / \*S Q/

where C9 = 75 . From the equation (22), if we set μ =

(CVM
\-2ε))

( 6 ( 1 + 2 ε ) ) „ , ΓΓ 4, 1 1 / 2

(C,(l + ε)z)

*- ΓΓ ^ 1 1 / 2 ^ M χ ^ / x 6 ( 1 + 2 e ) , o17 U M

 w dv°\ ( 1 ~ A ) C 2 ( ε ) c (1 + ) 2

Now we choose η = τ=r where Cj is a Sobolev constant given in (19). Then choose

ε > 0 small enough such that

2-

Finally we have reached the following

( 6 0 + 26)) , . .
— (1 - μ) - η

(QO + ε)2)

> (6(1 + 2ε)) 1 1 = 1 [(2 - e2) + 4ε]

~ ( Q O + ε)2) 2 C i C i (1 + ε) 2

because 0 < ε < 1. Hence from equation (31).
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U r Ί 1 / 2

' w4dv0\
M J

^ [((1 - μ)C2(ε) + C9)((2 - ε2) + 4ε)]
1 (0,(1 + ε)2)

= ( C 7 ) *

This completes the proof of Lemma 3.

Now we can state our main conclusion at this section as

PROPOSITION 1. Let ao= I uAdv0, a0 = I s2

g

+δ°u*dv0 and λx(Δg) > A > 0,

u > C > 0. Then there exists a constant C 1 0 = C 1 0 (α 0 , a0, A> C) > 0 such that

(32) u < C l o .

Proof. Applying Green's function to equation (2), we have

u(p) - vol(M)"1 f udv0 = f ( - Δu)(q)G(p, q)dυo(q)

( 3 3 ) 1 Γ a= ~a I (seu ~ sou) Gdv0.Ό JM

Since vol(M)" 1 J udv0 and J uGdv0 are a priori bounded, to bound u(p), it

suffices to bound J sgu Gdv0.

It is well known that | G(p, q) \ < — for some constant K [Au, p. 108].
d (p, q)

Recall the following estimate [Au, p.37]: for h(y) = j dx, we have

(34) \\h\\r<C(r')

1 1 , 1 , 1 1
where — = -p- H—7 — 1 = —7 — y with r > 1.

We will iterate this estimate with a sequence of suitable choice of r ; and

r/. Start with r0' = 9 1. Q * •! v , r0 = 4 + 4ε for 4ε < 4ε0, we have

Δ T" O θ 0 "Γ Γo

Γ I 3 irή , ^ \ \ \ \2+δ0 4 , 2 + δ o Γ 0+ϋ - r
1 I 5̂ w I °dυ0 < \ I sg\ °u dvΛ I w 2 + 5 o Ό
M UM J LJM J

( 3 5 ) r: 1+
J I I l 2 + δ o 4 ,
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Thus applying (34), we get

f u[dv^ < C(ro0 ί Γ I sgu f°dvoY° + Cuj M uM )

where C1 4 is a constant and — = — ~ y , i.e.,

' (2rQ_
r i1 9 — r'

δo)ro

4 + 2δ0 - 0

>r0.

Note that if we can choose ε such that 4 + 2δ0 — 4εδ0 < 0, then 4 + 4ε > 6

4
+ -*-. Thus rr

0 > 2, we are done already from estimate (35) and Holder inequality.
°o

If 4 + 2δ0 — 4ε<50 = 0, then we can replace ε by ε' < ε. So we have 4 + 2δ0 —

4ε'<50 = 4δo(ε - ε') > 0. Thus we can assume that 4 + 2δ0 - 4εδ0 > 0.

Continue this process with

2 ( 2 + 5 0 ) - 4 ε δ 0 ' Ί 2 + 3 3 0 + r j '

r* 2 - rU

2 + 3<5O

Notice that

r " Y =rk+1 Yk = 4 + 2 δ 0 - 4ε<50

 rfc ^̂  °*

4 4
Thus there will be a A:o with rfco > 6 + -*- and r0 < rx < < rfto_1 < 6 + ~τ-

< r, with

2 + 3δ0

So at the end of the iteration, we can find a bound for \\u\\r , 2 < r'k(j < 2 4- <50
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This, together with Holder inequality, implies that u e L°°,

II u L ̂  II u I + II sgu \\/to || G I ,

where —7—I 7 — 1 with #' < 2. This finishes the proof of Proposition 1.
r Q

§4. L bounds of full curvature tensors

What we are going to prove in this section is the following

PROPOSITION 2. Suppose g = u g0 on a 4 dimensional Riemannian manifold M

without boundary. If 0 < Ca < u < Cβ and \ sA

gu
AdvQ < Co, then I R4dv =

X I R I u dv0 < C1 5 where R is the full curvature tensor of metric g and C1 5 is a

constant depending only on Ca, Cβ, Co and the geometry of metric g0.

Proof It is well known that the curvature tensor Rijkι can be decomposited

to

(36) Rmι = Wmι + - ^ ^ (gtkB,t - gilBjk

+ Bikgtl - Bugjk)

where Wijkl, Bih s, gu are called the Weyl conformal curvature tensor, the trace-

less Ricci curvature scalar curvature and metric tensor respectively. On a four

dimensional manifold, if g = u g0, then

(37) Wim = u(W0)mι,

(38) Bϋ = Boij —

See [B].

First of all, from (2)

/ [ΔuΫdv0 = — - / (sou — sgu
3Ϋdv0

M 3 6 2 JM

2 Γ Γ 4 4 j , Γ 4 12,
- sou dv0 + J sgu dv0362 IJM JM

36

<
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9 JM 9

< a0s
4

0

°4J ^ o + - f j s4

gu
4dv0JM 9 JM

= C17.

Then by elliptic theory, there exists a constant β0 such that

(39) Γ I V2u \*dυ0 = Γ ( Σ M ' ; ) 2 ^ 0 < ft Γ (^«)Vί;0 < C17.

From (38), Sobolev inequality and Holder inequality, we have

f f \Vu\*dv}2 < C, f \V\Vu\2\2 + C2 [\Vu\'dv0

IJM J JM JM

<ACX f I Vu | 21 V2u |2 \2dv0 + C2 f I Vu \4dv0

< C2(cϊ f I V2u \2dv0 + C2 f \Vu I2)

< AC, \ci f I V2u \4dv0 + C2 f \Vu \2dv0] Cj7

+ 2C 2[cf( f I V2u \2dv0) + C\ (J I Vu \2dv0) ]

where we have used the fact that

X \Vu\2dv0= — I (Δu)udv0 < I (Δu)2dv0\ I udvλ

is bounded. Thus we obtain

(40) f\Vu\8dv0<C2

6.

Now since

Σ By = Σ B2

W - 4 Σ BWAM + 4 Σ hi,

where
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utl 2uiUj 1 (Δu \Vu\ \
nu u 2 4 \ M

 z .2 J8w'

from (37) and (38), it is easy to see that

Γ I B |2 dυ = Γ (Σ Bl)Vdv0 ^ Cv

for some constant C19.

But

f |w|V<foo<c;4 f\wo\Vdυ0

(41) ^ ^,-4^,4 Γ i - |4 4 ,

— ^ 2 0 -

Therefore we have obtained

Γ i ? V ώ 0 < C Γ (I ίf01
4 + I B |4 + I sg \4)udυ0

< C(C20 +• C 1 9 + Co)

This finishes the proof of Proposition 2.

§5. Proof of Main Theorem

In this section we will prove the theorems stated in Section 1. To get C°° com-

pactness, the very common means is to use Gromov's compactness theorem. Let M

denote the space of smooth Riemannian metrics on a fixed smooth manifold M,

modulo the action of the diffeomorphism group. We define the C , or C >a, topolo-

gy on M via convergence of the sequences. Thus a sequence {gt) converges in the

C topology on M if and only if there are diffeomorphisms fi\M~^ M, such that

the metrics /,- git when expressed as metrics in a smooth atlas for M, converge in

the C topology on functions on domains in Rn. In the same way, we define the

Holder Ck'a topology.

The C version of the Cheeger-Gromov compactness theorem then states that

the space of n dimensional Riemannian manifolds satisfying the bounds

(42) |F y t f | c o
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(43) vol(M, g) > V> 0,

(44) diamM(g) < D

is (pre)compact in the C topology on M. More precisely, given any a < 1

sequence of metrics {g{} on M satisfying bounds (42), (43) and (44) has a sub-

sequence converging in the C + 'a topology, for ar < α, to a limit C Rieman-

nian metric g on M.

Thus one would like to use the specreum to control the quantities in (42),

(43) and (44). To this end, the main tool one could use is the heat invariant, i.e.,

the coefficients a{ in the asymptotic expansion of the trace of the heat kernel

Z(# - Σ e~λit - — ^ Σ a/

as t—•> 0. The coefficients at are spectral invariants with the first few given by

LEMMA 5.

flote) = voKM, g)

6 ~ n

/. It is well known.

From Lemma 5 and Proposition 1, it can be easily seen that (43) and (44)

hold.

Now our theorems stated in Section 1 have been reduced to the following

main result in this section:

PROPOSITION 3. Suppose (M, g0) is a compact 4-dimensional Riemannian

manifold without boundary. If I \ R \4dve < C21 and

\ak\< bk, A = 3 , 4 , . . .

and there is a constant λ > 0 such that 0 < λ g0 < g < λg0. Then

f I VkR \2dv < C(k)
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for some constant C(k) depending k, bk, C 2 1 , λ and geometry of g0.

Proof The exact form for a3 is also know ([Gl], [S], [T]), but we do not need

it, we will not copy it here. The higher coefficients at{g) become rapid increasing-

ly complex and difficult to compute. However, the exact forms of the heat in-

variants a{ are not so important for our purpose. What is important is that they

have the general leading coefficients [G2]

(45) ak(g) = ( - 1)* f (ck I Vk~2R \2 + dk\ Vk~3sg \
2)dυg + f Qkdυ8

where ck and dk are positive constants and Qk is a lower order term involving

covariant derivatives of R and its contractions of order at most k — 3. More pre-

cisely, Qk is a polynomial of weight 2k in contractions of RijkU with | / | < k — 3,

with coefficients depending only on the metric g. Each monomial in Qk is a pro-

duct of contraction of RijkltI of weight 2k, where the weight of R^kij * s defined to

be I /1 + 2 and the weight of the monomial is the sum of the weights of the fac-

tors.

First of all, since the coefficients ckt dk in (45) are positive, the bound on a3

gives a bound

(46) f \VR\2dv< h33 + h23 f \R \3dv.

By Holder inequality, one sees that I | R \3dve < ( I \ R \Adve) vol(M)%, i.e.,
JM * \JM */

f I VR \2dvg < C(3)

where C(3) = h33 + Λ23(Cj)vol(M)t

Next, bound on α4 gives a bound

(47) f IV 2 R \2dvg < h 2 4 f \R \4dυg + h34 [ \ VR | 2 | R \ dυg + h 4 4 .
JM JM JM

By assumption, the first term on the right hand side of (47) is bounded. To bound

the second term, choose η = 2(C21)
JCsh34 > 0 where Cs is Sobolev constant with

respect to metric g which can be chosen only depend on the metric g0 and λ since

g is equivalent to £0. Now let Ω = {x e M, \ R \(x) > η} and βs Ά constant. Then

we have
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hu f\VR\2\R\dvg = hM f\VR\2\R\dυg + hu f \VR\2\R\dvg
JM JΩ JM\Ω

<h3i[js\R\2\dvg)
2[js\ VR Γ dvβ)' + h3iη jf I VR \2dvg

< h3i (jf \R |21 dυg)
2 [Cs jf IV2R Γ A,, + ft jΓ IFi? | 2 */J

+ h34η f\VR\2dvg

<>ψ(f\R\>dfflV>Rfd
η \JΩ I JM

+ h3βs (jf I R \2dvgf (jΓ I Fi? \2dvg) + huη jf I VR |2 rf».

which implies, by combining (47),

(48) f \V2R\2dvg< C(4).

Now apply (48) to get

( j [ R*dυg)
2 < Cs j f IF/?2 |2rf^ + ft jf i ? 4 ^

< 4CS Γ i?21 Fi? |2Λ_ + ft Γ i ? 4 ^

< 4C.(l R*dvg)^ ( I I VR Uυg)
Ί + ft I R*dvg

< 4Cs(jΓ R*dvgf (C. £ I F2/? I X + ft jf I VR \2) + ft JΓ Jrtfo,
Ξ C22.

Next we bound I | V R \ dve and I | VR \ dve in essentially the same way.

Namely, as above, the bound on a5 gives a bound

f I V3R \2dυg < h15 + h25 f I V2R \2\R\ dυg

(49)

+ h 3 5 f\V2R\\VR \2dvg + h κ f | VR f \ R \2dvg + h5S f \ R \5dvg.
JM JM JM

The last three terms on the right side of (49) are bounded from above estimates,
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Holder inequality and Sobolev inequality. The second term can be bounded as

above. Repeat above argument to have

(50) Γ I V2R Uvg < C23

and

(51) f\VR\*dvg<Cu.

The proof is now completed by induction in a similar fashion. Thus suppose

we have bounded

(52) Γ I VιR |2 dυ < C(l + 2), / < k - 1,

with k > 4. We claim that

(53) ( \VkR\2 dυ< C(/c + 2 ) .

To see this, note first by Sobolev embedding that (52) implies the bounds:

(54) f\Vk-3R\sdvg<C25,

(55) I VmR |Co < C 2 6 for m < k - 4,

and

(56) [\Vk-2R\4dυg<C27.

Since the heat invariant ak+2 is bounded, the bounds (54) follows from the ex-

pression (45) and a bound on the terms containing Qk+2 in terms of (55), (56), (54)

and (52). Now recall that Qk+2 is a polynomial of weight 2k + 4, each monomial

being a product of terms which are contractions of RijkιtI with | / | < k — 1, the

weight of Rijkιj being | /1 + 2 . Thus modulo terms of the form RiίkιfI with

I / | < k — 4, which are bounded by (55), Qk+2 at most contains terms of the form:

(i) I Vk~ιR \ 2 \ R \

(ii) I Vk~ιR I I Vk~2 \\VR\

(Hi) l ^ " 1 / ? ! ! ^ - 3 / ? ! ! / ? ! 2
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( iv ) I Vk~2R I I F * " 3 ; ? I (I VR I I R I + I V3R | ) o r | Vk~2R \2\R\2

(v) \Vk~3R\2iίk = 4

(vi) I V R I . (some terms with derivatives of order < A: — 4) with >̂ < 3.

Then it is not hard to see that terms (iii)-(vi) are easy to bound in terms of (52),

(54), (55) and (56). For (ii), we have

f I Vk~ιR I I Vk~2R \\VR\
JM

dvσ

f\Vk~1R\2dvg+ Γ |F*~ 2 i ? | 4 + f I VR \*dvg

which is bounded by (52), (54) and (56). Now for term (i), it follows from (52),

(54) and (55) since | R |co < C26.
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