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ON THE SERIES FOR L(l, χ )

MING-GUANG LEU AND WEN-CHΊNG WINNIE LI

1. Introduction

Let A: be a positive integer greater than 1, and let χ(ή) be a real primitive

character modulo k, The series

Ul. x) = Σ ^

can be divided into groups of k consecutive terms. Let v be any nonnegative inte-

ger, j and integer, 0 < j < k — 1, and let

τ(υ j y) = g X(vk + n) = >g χ(n)
n υ ' h χ )

 M=t+1 vk + n n^vk +

Then L(l, χ) = Σ L i 1 ^ - + ΣΓ=0 Άv, j , χ).

In [3] Davenport proved the following theorem:

THEOREM (H. Davenport). Ifχ(— 1) = 1, then T(υ, 0, χ) > 0 for all v and k.

Ifχ(-l) = - I, then Γ(0, 0, χ) > 0 /or α// Λ, and T(v, 0,χ)>0ifv> v(k) ;

but for any r > 1 there exist values of k for which

Γ ( l , 0, χ) < 0, 7X2, 0, χ ) < 0 , . . . , T(r, 0, χ) < 0.

In this paper, we will prove

THEOREM 2. For fixed integers k and j , 0 < i < A: — 1,
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T(v,j,χ)T(v + l,j,χ) > 0

for positive integer υ > v(k, j).

~2 L where [x] denotes the greatest integer < x, we have the

following more refined results.

THEOREM 3. Ifχ(~ 1) = 1, then τ(v, [-^J, χ ) < 0 for all v and k.

THEOREM β. Let χ ( — 1) = — 1.

(1) Ifk^Ί (mod 8), then τ(v, [-%], χ) < 0 for v > Φ.

(2) Ifk = 7 (mod 8), then τ(v, [^], χ) > 0 for υ > 0.

As a consequence of Davenport's theorem [3] and Theorem 3, we have the fol-

lowing inequality for even χ (cf. Corollary 1 (2)):

n=l n n=l "

Furthermore, using a result of Davenport [3], we derive a class number formula

for real quadratic fields, which seems a little more efficient than the class number

formulas mentioned in [4] and page 46 of [5]. Also, we give estimates of the class

numbers of imaginary quadratic fields (cf. Corollary 2).

We remind the reader that a real primitive character (mod A:) exists only

when either A: or — k is a fundamental discriminant, and that the character is

then given by

where d is k or — k, and the symbol is that of Kronecker (see, for example,

Ayoub [1] for the definition of a Kronecker character).
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2. A proof of Theorem 2

PROPOSITION 1. Let χ be a real primitive character modulo a positive odd integer

k. (Ifk = l (mod4), thenχ(- 1) = 1, otherwise χ ( — 1) = — 1.) Then

T(O,j,χ)Φ0 for j = 0,1,2,..., k- 1.

Proof. For any positive odd integer k > 1, there exists a unique positive in-

teger a such that 2a < k < 2a+ . Let γ be the largest power such that 2r < j + k.

Then γ = α or α + 1 depending on / For integers i = 1,2,..., k, we express +

ί = 2 'Mj with m{ an odd integer and ft an integer. Clearly, j + I = 2 for some

integer /, 1 < / < A, and ft < r for i Φ I. Write Π*=1(/ + i) = 2'M, where f = ft

+ * + ft and M = Π z = 1 m? is an odd integer. We have

Write the numerator N as a sum of two parts ΈiΦί xO + ύ 2 f ^ f — + χ(j: + /)

M2 f~ r . Since the modulus A: is odd, we know χ(2) # 0, and

- ^ r = Σχ(j + i)2r~βi^ + χ(2r)M= 1 (mod 2).

A/
This implies that N Φ 0, and therefore Γ(0, , χ) = — — # 0. ^

2M LJ

Remarks. 1. The above argument actually proves a more general fact, name-

ly, given any two positive integers M > m, if there is a positive power of 2

7 (0
between them, then Σ ^ l w — — ^ 0 for any positive integer r.

i
2. The sign of 7X0, j , χ) is known for the following cases: When j = 0, it is

ΓA l
positive for any modulus k (cf. [3]); when j = yw , it is negative for any k such

that χ ( — 1) = 1 (cf. Theorem 3), and it is positive for k = 7 (mod 8) which im-

plies χ ( - 1) = - 1 (cf. Theorem 6).

Instead of proving Theorem 2 directly we shall prove a more general state-

ment first.

For each positive integer d, let fd be a function on the integers such that

fd(j + 1), . . . , fd(j + d) are not all zero for some integer j . Let C(/, , fd) =
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Σ m = 1 / d (/ + m)m , where / is any integer. Then we have the following result:

THEOREM 1. For some integer I, 0 < I < d — 1, one has C(l, j, fd) Φ 0.

Proof. Express the system of equations

C«, /, fd) = Σ fd(j + m)m, I = 0 ,1 , . . . , d - 1,

m=ί

in matrix form:

1 1

1 2

L"-1 2 d -

1

d

fd(J + d)

C(0,

cα,

cω-

j ,

h

1,

Λ) \
Λ) \

Since the Vandermonde matrix is invertible, and fd(j + 1),. . ., fd(j + d) are not

all zero, so C(/, , fd) Φ 0 for some /, 0 < / < d ~ 1.

For integers v > 1 and 0 ^ y ^ k — 1, we have

D

, y ) =,j,χ)

χ(j + m)
-

Σ ( - l ) ' -
/ = 0

(In the above expansion, m = υk + j occurs only when j = 0, υ = 1 and m = k,

in which case χ(j + nt) = 0 and there is no need to consider such a term.) As a

corollary of Theorem 1, we have:

THEOREM 2. For any fixed integers k and j', 0 ^ y ^ /c — 1, one /ιαs
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for positive integer υ > v(k, j).

Proof. Applying Theorem 1 to the case d — k and fd = χ, we have

Σ l = i χ(j: + wOwz — C(/, y, χ) Φ 0 for some integer /, 0 < / < k — 1. Let /0 be

the smallest nonnegative integer such that C(/o, y, χ) Φ 0. Then there exists a

positive integer #(/c, j) such that

/0,i, χ)Γ(ι;,y, χ) > 0

for v> v(A,y). Π

Remark. From the proof of Theorem 2, we know that, for integer v large

enough, the sign of T(v,j, χ) and the sign of (— l) / oC(/o, i , χ) are the same,

where l0 is the smallest nonnegative integer such that C(/o, jf χ) Φ 0. Moreover,

we may choose υ(k, j) in the proof above to be ~r ((k + 1) 0 + — ). In general,

the sign of T(v, j , χ ) , with fixed χ, j and varying v, changes sometimes, but our

computer data never showed these partial sums equal to zero.1

3. The real quadratic fields

From the definition of Kronecker character we know that χ(n) = χ(— n)

sgn(rf), where d is the fundamental discriminant equal to A: or — k (cf. [1, page

292]). If both k and — k are fundamental discriminants (which happens if and

only if k = 8k\ where kr is odd and squarefree) there are two real primitive char-

acters (Kronecker character) (mod A;), otherwise only one. Clearly, we have that

χ ( — 1) = 1 if and only if d > 0. In this section we restrict ourselves to the case

d — k. Fix such an integer k, let χ be a real primitive character attached to the

real quadratic field Q(/ϊc) with χ ( — 1) = 1.

THEOREM 3. For any integer υ > 0, T\υ, Vw , χ) < 0.

Proof Write T(υ,j, χ) = Σn=j+1 υk + % = j Σ,n=j+1 — and keep in

v + T

1 After this paper was written, the first author showed in [7] that the sums T(v, j , χ)

are indeed nonzero for any odd prime k.
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Γ/cl
mind that; is equal to b d in this proof.

For integer v > 0, consider the function

1 1 3

υ + χ defined for j < x < j .

(1 3\
Over the interval \~κ, -K), it has Fourier expansion

where

1
g(x) — Ίy O,Q + Σ (am cos 2πmx + bm sin 2πrnx)>

_ Γ2 cos 2πmx Γΐ sin
am = 2 I ~r ax and b^ = 2 I

m Jλ V -T X m Jλ V. . X
2 2

Using integration by parts, we have, for m > 1,

— 2 cos 2πmx
3/2 , 12cos2πmx

4/ , \4
(2πm) (v + x)

2

48 Γ^ cos 2πmx
(2ττm) 2

Let

12 cos 2πmx 3/2 __ 48 f f cos
and r =

(2πm)\v + xΫ ^ (2πmΫ 4 (^ + Λ:)5

Then I F| < | X\ and Z F < 0. We have

9 ί 1

/ 1

12

(2τr»ί)4 l L + i y („

X + Y
where θm — — y — depending on υ and 0 < βw < 1. Now

1 ; + A I n\
T(v,j, χ) =ηr Σ χ(w)gbr)

1 ί+k Γ °° / W ^ \ 1 / ^+Λ

= TΓ Σ χ(n) \Σ [amcos2πm-r + bmsin2πmη-)\ (since Σ χ(«) = 0
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= -r Σ Iam Σ χ(n) cos 2πmη- + bm Σ χ(n) sin 2πmη-\

1 °°
= j Σ amχ(m))fk.

Here we used the fact that Gauss sum Σ w = 1 χ ( n ) e x p — r — = χ{rn)Jk since

χ ( — 1) = 1. Rigorously speaking, the above expression for T(v, j , χ) is valid for

k odd; when A: is even, we have k = 0 (mod4), hence χ(j + k) = %( ΓoΊ + Aj

= 0 and T(v, j , χ) is really summing over y + l < w < y - h λ ; — 1 so that we

may replace g by its Fourier expansion. After interchanging the sum over m and

n, we may change the limit for n back to j + 1 < n < y + k since χ ( + Λ) = 0.

The final conclusion for T(v, y, x) remains the same. Hence

^ ( -
2

(-1)

rn

We divide the argument into two cases:

Case 1. i; > 1.

Since

~ ( - l ) m χ ( m ) _ _

m

2

4

and ζ(4) = -QTΓ, we have
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(2 + ̂  +~2 + ̂  + 77 h~TW ~ TTW^ζ(4)
v+2) (V + V K (v+2) \υ+2

= ιi_ _ J_\f__! ?
U 2 a/I/ , 1\2 / , 120

3\2ill2 2 ^ 120
• 1 \]

, 3\2/J

For integer υ > 1, we have

(±_ JΛ >_!_ + _!_> L_
\ 2 12/ /3\ 2 /5\2 ~ / , 1

This gives

1 1 , 1 1 1
3\2J2 120 1/ , 1\ / , 3

Hence Tyv, \~n\9 X) < 0 for integer υ > 1.

2. 0 = 0.

We have

18π ι>»=i m 3π

32 f - ( - l)mχ (m) {m - aθm) l / 20
Σ I where a =

f - ( - l)mχ (m) {m - aθm) l / 20 \
Σ I where a = r)

l»>=i m J V 3ττ 2 /18τr2 l»>=i m J V 3ττ2

16

9τr2

m=2 m

16 , „

16

9/

θι + ζ(2)}



To estimate —

- 2 {

1 (2τr)2

We have θι

 = \ —

β

2

β.

—

9/

where

r 48

H2πϊ

81 r

ON THE SERIES

^ τ r 2

+ -«-, write

ι 1 2 Λr1 , I I D
(2TΓ) 4 V

3

2" •£

2 cos 2τz\r r

FOR M l

16\
8 1 >/

] ' f

+

1

(2;

48

(2τr)4

2 Λ (

I1

c
0

cos 2πx

16\1
81 j !

133

320 Λ r s "-•
2 X

By using computing software Mathematica, we have β ^ 0.555924, so jS > 0.555.

20 20
Since ^i = 1 — θ < 0.445 and α = — - < -, we have

3π2 3(3.14)2

θ1 + ^ r < 2 + 2
6 3(3.14)

(0.445) + - ^ 4 ^ " < ~ 0-04.b

Hence r(θ, y , x ) < 0 . D

To give bounds for L( l , χ ) , define, for integer v > 0,

Λ(v) = Σ ^ j . w and β ( t ) = Σ

Then

Γ(z;, 0, χ) = A(υ) + B{υ) and τ(z;, [ | ] , χ) - B{υ) + A(v + 1).

Combining Davenport's theorem [3], Theorem 3 and the fact L( l , χ) > 0, we

obtain the following bounds for L( l , χ ) .

PROPOSITION 2. For any integers rn, n > 0,

n m

Σ (A(v) + B(v)) <L{\, χ) <A(0) + Σ (B(v) + A(v + 1)).

COROLLARY 1. (1) For integer υ > 0, A(v) > 0 and B(v) < 0.
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(2) A(0) +5(0) <L(l,χ) <A(0).

(3) For k > 1000, 0 < A(0) - 2,(1, χ) < 0.12.

Proof. (1) Since B(t ) 4- A(v + 1) = τ(t;, [^], χ) < 0 for integer i; > 0

and 2/(1, χ) > 0, so A(0) > 0. On the other hand, by Proposition 2, we have

Σ (A(v) + B(v)) < Λ(0) + Σ (£(») + A(v + D)

for any integer n > 0, which implies A(n + 1) > 0. Hence B{n) < 0.

(2) The inequalities holds by putting m — n = 0 in Proposition 2 and the

fact 5(0) + A(ΐ) < 0.

(3) The proofs for the case k = 0 (mod 4) and the case k = 1 (mod 4) are

the same, here we consider the case k = 0 (mod 4). By (2), we know that

+5(0)

Since

^ ^A(θ) + B(θ) = Σ ̂ ^ + Σ

4 χ{n) % 1 "-1 1

- ^ i k i

- 0.12 for /c > 1000,

we have 0 < A(0) - L(l, χ) < 0.12 for k > 1000. D

Dirichlet's class number formula asserts that

where h is the class number, and ε (> 1) is the fundamental unit of QO/λϊ). Thus

the estimates on L(l, χ) in Corollary 1 above yields the following results on the

class number of Q(\fk).
\ίk

*lί
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• If - ^ j ( A ( 0 ) + J 5 ( 0 ) ) > 1, t h e n h Φ l .

In fact, the class number h for the real quadratic field Q(\/A0 can be express-

ed explicitly as follows.

THEOREM 4. We have

[z] denotes the greatest integer < .r.

Since ε = iy it + uyfk) > 1 is the fundamental unit of Q ( v D , we

have ε ^ ^ . Due to Davenport [3], we have the following inequality.

(L(l, χ) - 04(0) + 5(0))) yfk < ^

From this inequality and A(0) + B(O) < L( l , χ ) , we obtain

CA(O) + 5(0))
21nε v ~ v w - " v w / ' 120 21n6'

u fc 1 + V 5 11 1
where σ = ^ . Since Toή~~oΐ—ΰ < 1, so we have

Δ lZO ^ln o

(A(0) + 5(0))] + 1 . D

Remarks. 1. By Theorem 4, the following two conjectures are equivalent:

(1) (Gauss conjecture) There exist infinitely many real quadratic fields

QWp) of class number one, where p is a prime congruent to 1 modulo 4.
•h3/2

(2) There exist infinitely many real quadratic fields Q(V^) with -̂ 1

ΓiLl Ύ (ft)

Σ^i i —/, _ — γ < 1, where p is a prime congruent to 1 modulo 4 and ε > 1 is

the fundamental unit of Q(\//0.

2. For an evaluation of the regulator In ε in the class number formula, see, for
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example, Williams and Broere [6].

As a corollary of Theorem 4 and the class number formula of Ono [4], we can

get the following interesting inequality without involving the class number h and

the fundamental unit ε.

THEOREM 5. Let p = 1 (mod 4) be a prime. Then

V , , , dN\ P

3/2ψ χ(n)

where N = P

 4 , d0 = 1 and 2ndn = Σ * β l ( l + ( τ ) v ? ) <*„-«;» I ^ n < N. (Here

(x\
(—) denotes the Legendre symbol.)

Proof. By [4], we have

On the other hand, by Theorem 4, we have

h = Γ^ 3 2 V χ ^ 1 -4- 1

n L21nε n ~ n(p - n)\ 1

which gives
3/2 fAl 3/2 Γi-]

Σ

hence Theorem follows. EH

4. The imaginary quadratic fields

In this section we restrict ourselves to the case d = — k. Fix such an integer

k, let χ be a real primitive character attached to the imaginary quadratic field

Q(V=T) with χ ( - l ) = - l . Let L =

v . χ ( 2 m - l )
2 ' — 1 2 m - 1

2 L(l, χ) and ^ - 2 . ^ - ^ Σm^ 2 m - 1̂ ^ j L U , χ).

Furthermore, we have L — L2~LX— (%(2) — 1)L(1, χ) which gives the follow-

a n d L 2 ~ ^ " - i ^ ^ Γ T h e n
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ing lemma.

LEMMA 1.

L =

0, if- k = 1 (mod 8)

- L ( l , χ) if- /c = 0 ( m o d 4 ) ;

. - 2 L ( 1 , χ) i / - /c Ξ 5 (mod 8).

>

Now we are ready to prove Theorem 6.

THEOREM 6. (1) If k & 7 (mod 8), then T\υ, h d , χ) < 0 for integer υ

(2) Ifk = 7 (mod 8), then Ί\v, \Ί> , χ ) > 0 for integer υ > 0.
\ L /L J /

Proo/. Express T(v,j,χ) = T Σ ;

M = αi and keep in mind that j =

k]
•9- in this proof.

For integer υ > 0, as in the proof of Theorem 3, consider the Fourier expan-

sion of

Proceeding as before and applying Gauss's sum Σ M = ; + 1 χ ( w ) exp(2πimn/k) —

iχ(m)]/k for χ(— 1) = — 1, we have

ΓA, [|],χ)=

Λ Γ2 sin 2πmx 1where 6m = 2 I _, αx. By integration by parts, we obtain

u . 2

where 0 m = φm(v) depending on v and 0 < φm < 1. Now we have

, fτl,χ)= Σχ(m)bm
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(- lΓχ(m)

m

m

L e t / = Σ^=i (~ l)mχ(m)φmm , then, independent of ι;, we have

KI = I Σ ( -
m=2

Σ
m=2

0.21.

On the other hand,

h V
2

— cos
x)

— cos 2ττx

3/2 4 cos

π(υ

(2π)\υ + xΫ

4 cos 2πx

12 rτ cos 2πx

(2πr(t;

i/2 (2π)άJi (υ + x)

01»

which gives

(4.1) <

Let gΛx) = 4 +

< x < j . Then

(4.2) X2 cos 2π χ , Γ4
αx = I gv\x) cos

1 3 /3\
Since gυ'(x) < 0 ίor ^ < x < ~τ and integer z; > 0, also gυ\τ) =

1 3
ίor -y < x < -T- and integer # > 0. Hence, by (4.2),

» s o

1 1

for g
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cos 2πx. _ Γi cos 2πx τ> ό I T ax
J\ (v + x)4

3

>-3£gv(x)dx
2

2 2
I , 3 \ 3 / 5\ 3 / 1\ 3 '

Substituting into (4.1), we obtain

17 5\ 3 / 3 \ 3 J 2 j - ^ βv 3 7 5 \ 3 J
U "I" Ύ\ 4. / \ a. / \ α /

(4.3)

Let

Hi;) = 2 ( 7 - ^ - T Λ T ) / { T - Π ^ " T-H^l

\3

for υ ̂  0.

Then F(v) is increasing as v increases. We have 1.52 > 2 — F(0) > 2

F(t>) > 0,(ι;) > F{v) > F(0) > 0.48 which implies JP(I ) - 2.21 < - φ^υ)

0.21 < / < 0.21 - φSv) ^ 0.21 - F(υ) for integer v > 0. Now we have

8.84 - 4F(t>) f 1
1

1 ]
1\3 / . 3\3J

(4.4) > V

f_J 1 1,
1/ . 1\3 / . 3\3Jy

( ^ (v+2) \v(v+2) \ v + 2

t + 2

4F(υ) - 0.84 1 1 1
1\3 / . 3\3J
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for i n t e g e r v > 0 . F o r s i m p l i c i t y , w r i t e T(υ), a a n d b for T\υ, Yw , % ) ,

1 α - b
and 5- respectively, then dividing each term in (4.4) by — τ = ~ , we obtain

4k ^ ( 8 . 8 4 - AF(v)) . 2 , , , . 2 , . kΠv)
— L Λ : \a + ao + 0 ) > r

π {2πγ a - b
4k 4k(AF(v) - 0.84)

L \
. 4k 4k(AF(v) 0.84) 2 .

> — L -\ (α + ab + b ),
π ( 2 ) 3

(2τr)3

which gives

4k"(8.84 - 4F(p)) , 2 , , , , 2. . kT{v) 4k
^ +"b + b)>( ( ^ ^ ^

~ 0.84) 2

By applying Dirichlet's class number formula for imaginary quadratic fields,

1 *u r . i ^ ^ v V^(8.84 4F(p)) , 2 , . , .2, ,
Lemma 1, the inequality 1 > — - > {a ~r ab + b ) for

v (2τr)3

integer υ> Φ and (4.5), if k * 7 (mod 8), then r(t;, [ -g-J, χ ) < 0 for integer

v > k4 (since the class number h ^ 1 is a positive integer), if /c = 7 (mod 8),

then r(t;, [^], χ j > 0 for integer υ > 0. D

Let 7X#), « and 6 be the ones defined in the proof of Theorem 6, then we

have the following estimates of the class number h of QW~ k).

COROLLARY 2. Suppose k > 4.

Σ*2m h < Σ
( 1 ) h < π4k - 1 2 " " 1 n •

(2) Ifk = O (mod 4), ίfeen

/z = 3~τ— + 1 for any integer υ > k*.
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(3) Ifk = 3 (mod 8), then

h = ΓoT—_ IΛ + 1 for any integer υ > A:4.

(4) Ifk = 7 (mod 8), then

^K[S + 28.08
h > +

* »-i » 27ττ4

T/iβ symbol [x] denotes the greatest integer < x.

Proof. In [3], we have

Applying class number formula for imaginary quadratic fields /& = - — L ( l , χ )

(k > 4), we have statement (1).

The statements (2) and (3) are consequences of (4.5).

For statement (4), we write

L(l,χ)=Σ^+Στf [f],

which implies, by Theorem 6 (2), that

Hence, by taking v — 0 in (4.4), we have

|Άi Y (^

Remark. It is proved in [2] that, for k sufficiently large, one has Σ ^

> 0 for any real character modulo k.
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