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CLASSIFICATION OF NON-GORENSTEIN Q-FANO

d-FOLDS OF FANO INDEX GREATER THAN d — 2

TAKESHI SANO

Introduction

First of all we recall some definitions.

DEFINITION 0.1. A d-dimensional normal projective variety X is called a

Q-Fano d-fold if it has only terminal singularities and if the anti-canonical Weil

divisor — Kx is ample. The singularity index I = I(X) of X is defined to be the

smallest positive integer such that — IKX is Cartier. Then there is a positive inte-

ger r and a Cartier divisor H such that — IKX ~ rH. Taking the largest number

of such r, we call r/I the Fano index of X

Since χ(xH) is a polynomial of degree d, the vanishing theorem 1.1 implies

that r/I < d + 1. In the Gorenstein case (i.e. — Kx is Cartier), it is well known

that if its Fano index is d, then (X, H) = (quadric, Θ(l)), and if its Fano index

is d + 1, then (X, H) = (P d , Θ(l)).

DEFINITION 0.2. A Gorenstein Q-Fano d-fold is called Del Pezzo variety if its

Fano index is d — 1.

There are remarkable works for Del Pezzo varieties by T. Fujita [Ful, 2j.

In this paper we shall prove the following

THEOREM. Let X be a Q-Fano d-fold (d > 3), / the singularity index of X and

r an integer such that — IKX ~ rH for a Cartier divisor H. Assume that 1 < / and

d — 2 < r/I. Then (X, H) has one of the following expressions as weighted hyper sur-

faces or weighted projective spaces.

[1] ( ( 6 ) c p ( l , 1 , 2 , 3 , / , . . . , / ) , Θ(D) 7 = 2 , 3 , 4 , 5 , 6 , d>3
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[2] ( ( 4 ) c P Q , 1 , 1 , 2 , 7 , . . . , / ) , Θ ( I ) ) 1 = 2 , 3 , d > 3

[3] ( ( 3 ) c P ( l , l , U , 2 , . . . , 2 ) , 0 ( 2 ) ) 1 = 2 , d > 3

[4] ((2) c P(l ,1,1,1,1,2, . . . , 2), Θ{2)) the defining equation does not con-

tain the coordinate of weight 2,

1=2, d> A

[5] (P( l ,1 ,1 ,2 , . . . , 2), 0(2)) 1=2, d>3

[6] ( P ( l , 1 , 1 , 2 , 4 , . . . , 4 ) , 0(4)) 7 = 4 , d > 4

[7] ( P ( l , l , l , l , 3 , . . . , 3 ) , 0 ( 3 ) ) 7 = 3 , d>4

[8] ( P ( l , l , l , l , l , 2 , . . . , 2 ) , 0 ( 2 ) ) 7 = 2 , d>5

In particular, Pic X = Z. Conversely, general varieties having above expressions are

Q-Fano varieties, and their Fano indices are

d — 2 + 1 / / except type [5]

d- 1 + 1/7 type [5],

Smooth Fano 3-folds are classified by Fano, Iskovskih, Shokurov, Mori,

Mukai, et. al. (cf. [Isl,2], [Shl,2], [MM], [Mu]). According to the minimal model prog-

ram (cf. [KMM]), we have to extend this to the case of the varieties with

Q-factorial terminal singularities. In this case, Kx is not Cartier. This is just the

point of difficulties and of interests. Y. Kawamata proved in [Ka2] that singularity

indices 7 and the degree (— Kx) are bounded for all the Q-Fano 3-folds whose

Picard number p(X) = 1. Thanks to this we have a hope to classify Q-Fano

3-folds.

In the case of Q-Fano rf-folds with 1 < 7 and d — 2 < r/I, the main

methods of classification are (1) to bound the numerical invariants by Riemann-

Roch formula, (2) ladder argument, and (3) a criterion for terminal singularity. For

(2), we have the next theorem.

THEOREM 0.1 (V. Alexeev [Al]). Let (X, Δ) be a d-dimensional (d > 2) log

Fano variety (i.e. normal projective variety with only log terminal singularities with [Δ\

= 0 and — (Kx + Δ) is ample) with the property that there exists an r €Ξ Q > 0 (r >

d — 2) and an ample Cartier divisor H such that

-(Kx + Δ) ~QrH.

Then a general member of\H\ is a normal variety with only log terminal singularities.

In Section 1, we obtain a Q-Fano version of above Theorem 0.2 as its corol-
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lary, and construct a ladder of subvarieties. We can reduce our problem to the

3-dimensional case by using this ladder. In Section 2, we classify the invariants

in 3-dimensional case by the Riemann-Roch formula for singular varieties and the

ladder argument. Then we can find a very good member in | H\ which is a non-

singular Del Pezzo surface and a weighted hypersurface. In Section 3, we show

that X can also be written as weighted hypersurface. Using a criterion for termin-

al singularities, the proof is completed in Section 4.
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also want to thank the referee for many advices.

Notation. In this paper we always assume that the ground field k is algeb-

raically closed of characteristic 0, and we will follow the notation and the termi-

nology of [KMM]. The following symbols will be used.

~ : linear equivalence

~ Q : Q-linear equivalence

= : numerical equivalence

Kx: the canonical divisor of X

p(X) : the Picard number of X

hi(D) =dimkK
i(D)

χΦ) = Σ , ( - 1)VCY, D)
c{(X) : the i-th Chern class of X

1. Ladder

Recall here some definitions about ladder (cf. [Ful]). Let V be a variety and L

an ample line bundle on V. A sequence (V, L) = (Vd, Ld) > (Vd_v Ld_^) > •

> (Vlf LJ is called a ladder if each Vj_ί (J = 2,3,. . . , d) is an irreducible and

reduced member of | L ; |, where L ; is the restriction of L to Vj. A ladder is called

regular if each restriction map r : H (Vj, Lj) —• H (Vj_lf Lj_λ) is surjective.

The next theorem is fundamental.

THEOREM 1.1 (Vanishing Theorem [KMM]). Let X be a normal projective varie-

ty with only log terminal singularities, and D a Q-Cartier Weil divisor on X. If D —
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Kx is ample, then

H ' U , ΘX(D)) =0 Vί > 0 .

As a corollary of Theorem 0.1, the next proposition holds.

PROPOSITION 1.2. Wϊf/i f/w same hypotheses of Theorem 0.1, I//"I /ιαs αί

isolated base points, which are regular points of X and their multiplicities are one. In

particular if X is a Q-Fano d-fold (d > 3), then the general member of\H\ is also

Q-Fano.

Proof By Theorem 0.1, we have a ladder,

ac, m = (χd, Hd) > (xd_v H^) > - > α 2 , H2),

where X{ (2 < i < d) is an /-dimensional log Fano variety. Note that this ladder

is regular since H (Xif Θx) = 0 by the Vanishing Theorem. So it is sufficient to

prove the assertion only in the case dimJf = 2.

In the proof of Theorem 0.1, Alexeev showed the following claim.

CLAIM. Let Y be a nonsingular projective variety, f : Y—> X a proper birational

morphism, | L \ a free linear system on Y and Σ Fj a normal crossing divisor on Y

such that

(1) Kγ ~ Q / KX + Σ cijFj, with aj-^ Q, # ; > ~ 1 whenever Fj is exceptional

forf
(2) I / *H I = I L I + Σ ηFj with η e Z, η > 0 and η Φ 0 i// / ( F ; ) e

B s I

Hence if r ; ^ 0, then ay > 0. Since dimZ = 2, this means that f(Fj) is a

smooth point of X and r, = 1 if α ; = 1. \Z\

LEMMA 1.3. Let X be a Q-Fano d-fold (d > 3). Assume that 1 < / and d — 2

Y

< -y, ί/ιβn / and r are coprime.

Proof. Assume the opposite, then / and r have a common divisor c > 1 put

/ = cΓ and r = cr7. Then we have a non-trivial torsion Weil divisor D -= ΓKX

+ r77. Now take a ladder,
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(X,H) = Uίd, Hd) > (Xd_v Hd_λ) > > (X2, H2)

where X{ (1 < i < d) is a Q-Fano /-fold. We have the next exact sequence.

0 -> 0X(D - # ) -> UX{D) -> Θx^iD Π Xd_J -> 0

Since - Kx + D - H = - Kx - H is ample, H ^ Z , D - H) = 0 by the

Vanishing Theorem. Therefore the restriction map is surjective;

H ° U , D) -++ H°(Xd_v D Π Xd_x).

Note that H°(Z, D) = 0. So if D Π Z^.j is trivial, then h 0 ^ ^ , i) Π Xd_λ) = 1

and this is absurd. Hence D Π Xd_x is a non-trivial torsion Weil divisor. By re-

peating this procedure and so on, we see that D Π X2 is a non-trivial torsion Weil

divisor. But X2 is a nonsingular Del Pezzo surface. This is a contradiction. •

2. Riemann-Roch

In this section we restrict the possible values of (— Kx^) by using a ladder

and the Riemann-Roch formula for singular varieties.

THEOREM 2.1 (Y. Kawamata [Kal], [Re]). Let X be a 3-fold with only terminal

singularities. Then,

where

for a resolution f : Y~* X, ip is the singularity index of p ^ X and the summation is

taken for all singular points on X counted with multiplicities.

LEMMA 2.2. Let Γ be the singularity index of Xd_1 and put I = mΓ. Then there

exists a Cartier divisor L of Xd_x such that mL ~ Hd_ι and

- ΓKXiί ~ (r - I)L, (d - 3)m

Proof. By the adjunction formula,
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Since m is coprime to r — I and the Picard group of a Q-Fano variety has no tor-

sion part (Indeed, if π F—• X is a ^-sheeted etale map of Q-Fano varieties, then

χ(Θγ) = nχ(Ox)), there is a Cartier divisor L of Xd_1 with mL ~ Hd_v The next

inequality follows from d — 2 < r/I. LJ

LEMMA 2.3. L<?ί X be a Q-Fano 3-fold, and assume that 1 < / and 1 < r/I.

Take a general member S ^ | H\ which is a nonsingular Del Pezzo surface. If the

Fano index of S is 1, then (— Ks) < 3.

Proof. By the preceding lemma,

- Ks~ (r- I)L

where L is a Cartier divisor with /Z, ~ Hs. Since the Fano index of S is 1, r — I

= 1. Hence ( - KSΫ = H3/I2.

Next, by Theorem 2.1 and the ordinary Riemann-Roch formula, we have

- /ί) = 1 - ^ (- 1 + γj(- 2 + j) - ~\ (-

where we put

Since — i£ z — H is ample, the Vanishing Theorem implies that 0 = h (— H) =

χ{- H). Therefore

N=(2I- r) (12 - (- KsΫr(r - I)) = (/ - 1) (12 - (- Ks)\l + 1)).

Note that N > 0, so ( - ϋ Q 2 < 3. D

3. Weighted complete intersection

Recall some definitions about weighted complete intersections (cf. [Do], [Mo]).

Let a0, . . . , at be positive integers and T— Jc[X0,. . . , Xt] a graded polynomial

ring with degXt

 = a{. Let {/, }j=if2,.. ,s

 D e a regular sequence of homogeneous ele-

ments with degfi = &, and / the homogeneous ideal generated by the {/f }ί=12 s.

In this situation, P(aQ, . . . , at) '-— Proj T is called a weighted projective space of

type (a0, ...,at), and ((6X,. . ., bs) c P ( α 0 , . . ., α,)) : = (Proj 7 7 / c Proj Γ) a
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weighted complete intersection of type (bv . . ., bs). Especially in the case 5 = 1, we

call it a weighted hypersurface.

We saw in Lemma 2.3 that the general member 5 of | H | is a nonsingular Del

Pezzo surface of (— Ks) < 3, quadric or P . It is well known that these S can be

written as weighted hypersurfaces (cf. [HW]).

THEOREM 3.1. Let S be nonsingular Del Pezzo surface of (— Ks) = 1,2 or 3.

Then (5 , 0S(~~ ^s)) ^s expressed as follows.

( - KSΫ
1 ((6) c P Q , 1,2,3), Θs{\))

2 ((4) c P ( l , l , l , 2 ) , 0 s ( Ό )

3 ((3) c P ( l , 1,1,1), Θs(\))

We shall prove that X can also be written as weighted hypersurface by using

this fact and the next lemma.

LEMMA 3.2. Let X be a Q-Fano variety of dimX > 3> I the singularity index of

X and H a Cartier divisor of X such that — IKX ~ rH for a positive r. Assume that

(X, H) satisfies the following conditions.

(1) / and r are coprime.

(2) There exists a member Y in \ H \ which can be expressed as

(Y,Hy) s ((&„. . . , bs)

Then (X, H) can be expressed as

((&!,..., 6,) c p ( ί ( a

Proof Since / and r are coprime, there exist integers p and q such that pr

ql = 1. We define the Weil divisor D as

D' = -pKx + qH.

Then

ID~H, UY(D Π Γ) =6γ(l).

And obviously, the next exact sequences hold.

0 -> Θx((n - DD)-* Θx(nD) -> Θγ(n) — 0 ( V W E Z )



140 TAKESHI SANO

H 1 ^ , (n — I)D) = 0 by the Theorem 1.1 and Serre's duality. Then we have

next exact sequences;

, (n- I)D)^E°(Xf nD)-^E°(Y, 0Y(n))-*O (Vn^Z)

where φ ̂  H (X, ID) is a section corresponding to Y. The rest of proof is shown

by standard argument, so we omit it (cf. [Mo] Theorem 3.6). O

4. Classification

In this section we complete the proof of the theorem stated in the introduc-

tion. The next criterion of terminal singularities for weighted hypersurfaces is a

direct consequence of [Re] Theorem 4.6.

LEMMA 4.1. Let X = (b) c: P ( # o , . . ., at) be a weighted hypersurface with the

assumption that its defining polynomial does not contain the t- th coordinate. If X has

only terminal singularities, then

b < a0 + - - - + at_λ — at.

We also use the next theorem frequently.

THEOREM 4.2. ([Re] Theorem 4.11). A quotient singularity X = An/μr of type

— ( # ! , . . . , an) is terminal if and only if

n

0 < Σ kdi mod r — r for k = 1, . . . , r — 1.
ί = l

We note here the next fact.

// the defining equation f of a weighted hypersurface Z = (ί) C P(fl 0,. . ., at)

can be written as f — X{ + g, then X is isomorphic to P(a0,..., άi9.. ., at).

Proof of the theorem. First we consider the case in which Xd_ι is a Gorenstein

Q-Fano variety, i.e., / ' = 1 and m = I with the notation in Lemma 2.2. Since the

Fano index of Xd_ι is greater than (d — 1) — 2, (Xd.lf Hd_1) is (Del Pezzo, IV),

(Quadric, Θ{I)) or (P*~\ 0(1)).

1. Case (Xd_v Hd_λ) = (Del Pezzo, IL\

In this case r — I = d ~ 2, hence d = 3 by Lemma 2.2. Then by Lemmas

2.3, 3.2 and Theorem 3.1, (X, H) has the one of the following expressions.
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[1] ((6) cPQ,1,2,3,/),

[2] ((4) CP(1,1,1,2,/), 0(1))

[31 ((3) c P ( l , l , l , l , / ) , f t ( / ) )

If (X, H) is type [1], / is not more than 6. Indeed, if / is more than 6, then

its defining equation does not contain the weight Γs coordinate. Hence we can use

Lemma 4.1 and lead a contradiction. By the same reason, if (X, H) is type [2] (or

type [3]), then / is not more than 4 (resp. 3). We claim that the case type [2] and

/ = 4, and type [3] and 1—3 does not occur. In this case, if its defining equation

contains the homogeneous coordinate X4, then its singular index is not /. So we

can apply Lemma 4.1 and lead a contradiction.

2. Case (Xd_lf Hd^) = (Quadric, 6(1)).

In this case r - I = d - 1, hence (rf, /) = (3, *) or (4,2) by Lemma 2.2. If

d = 3, by Lemma 3.1, X can be written as

X= (2) cp(l,1,1,1,/).

The case d = 3 cannot occur. Indeed, if the defining equation/ is written a s / = g

+ X4, then X is isomorphic to P , and if/ does not contain X4, we get a contradic-

tion by Lemma 4.1. In the case d — 4, we get type [4].

3. Case (Xd_lf Hd_λ) = (P'" 1 , 6XdJI)).

In this case r - I = d, hence (d, I) = (3, * ) , (4,2), (4,3) or (5,2) by

Lemma 2.2. Since / and r are coprime, the case (d> I) = (4,2) cannot occur. In

the case d = 3, by Lemma 3.2, (X, H) can be written as

By Theorem 4.2, / must be 2 and we get type [5]. In the case (4,3) (or (5,2)), we

get type [7] (resp. [8]) by Lemma 3.2.

Next we consider the case in which the general member Xd_ι €=• \ H\ is not
Gorenstein. It is enough to show that if (Xd-lf Hd_^) has an expression of type [1]
~ [8], then (X, H) can also be expressed as [1]~[8]. If / = Γ, then by Lemma

3.2, (X, H) has an expression of type [1]~[8]. So we may assume that 1 < Γ

< I. Note that the Fano index of Xd_λ is smaller than d — 1. Therefore by Lemma

2.2,

2W-3) <m(d-3) < d- 1.

Hence



142 TAKESHI SANO

r~ I
d — 4, m — 2 and 2 < —-p— = Fano index of Xd-χ.

Thus we conclude that Xd^1 = P(l,l,l,2,4) and / = ml' — 4 since this is the

only type for which the dimension is 3 and the Fano index is greater than 2. Then

(X.IΪ) = (P(l,1,1,2,4), 0(4)),

this is of type [6].

Let X be a Q-Fano of type [1] — [8]. The Weil divisor class group Div X is

isomorphic to Z, and θx(l) generates PicX This follows from the same argument

of [Mo] Theorem 3.7. Next we take X generally from [1]~[8], then X is quasi-

smooth and the adjunction formula of quasismooth weighted complete intersections

(cf. [Do] 3.3.4) and Theorem 4.2 implies that X is a Q-Fano whose Fano-index is

as written in the last part of the theorem. •

Remark 4.1. We can see by the next well known lemma (cf. [H] IV. 3.2) that

I HI is free for all type [1]~[8] and very ample except the type [1] and 1—2.

Let C be a nonsingular curve of genus g(C) and D a divisor, then

deg D > 2g(C) =^\D\ free

deg D > 2g(C) + 1 => I D | very ample.
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