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CLASSIFICATION OF NON-GORENSTEIN Q-FANO
d-FOLDS OF FANO INDEX GREATER THAN d — 2

TAKESHI SANO

Introduction -

First of all we recall some definitions.

DeriviTION 0.1. A d-dimensional normal projective variety X is called a
Q-Fano d-fold if it has only terminal singularities and if the anti-~canonical Weil
divisor — Ky is ample. The singularity index I = I(X) of X is defined to be the
smallest positive integer such that — IK, is Cartier. Then there is a positive inte-
ger 7 and a Cartier divisor H such that — IK, ~ vH. Taking the largest number
of such #, we call /1 the Fano index of X.

Since x (zH) is a polynomial of degree d, the vanishing theorem 1.1 implies
that #/I < d + 1. In the Gorenstein case (i.e. — Ky is Cartier), it is well known
that if its Fano index is d, then (X, H) = (quadric, 6(1)), and if its Fano index
isd+ 1, then (X, H) = (P’, 6(1)).

DerINITION 0.2. A Gorenstein Q-Fano d-fold is called Del Pezzo variety if its
Fano index is d — 1.

There are remarkable works for Del Pezzo varieties by T. Fuyjita [Ful, 2].
In this paper we shall prove the following

THEOREM. Let X be a Q-Fano d-fold (d = 3), I the singularity index of X and
v an integer such that — IKy ~ vH for a Cartier divisor H. Assume that 1 < I and
d— 2 < v/l Then (X, H) has one of the following expressions as weighted hypersur-
faces or weighted projective spaces.

(1] 6 <P1,1,2,3,1,...,1),0U)) I1=2345,6, d=3
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21 (4 cpPQ,1,1,2,1,...,1), 0)) I1=23, d=3

B8] (3 cPA,1,1,1,2,...,2,02) I=2 d=>3

4] (2 cPQ,1,1,1,1,2,..., 2), 0(2)) the defining equation does not con-
taim the coordinate of weight 2,

I=2,d>4
5] PQ,1,1,2,...,2),0(2) I=2 d=>=3
6] (PQ,1,1,2,4,...,4), 0(4) I=4, d=>4
71 PQ,1,1,1,3,...,3), 6(3) I=3, d>4
8] P(1,1,1,1,1,2,..., 2), 6(2) =2, d=5

In particular, Pic X = Z. Cownversely, general varieties having above expressions are
Q- Fawo varieties, and their Fawno indices are

d— 2+ 1/1 except type [5]
d—1+1/1 type[5].

Smooth Fano 3-folds are classified by Fano, Iskovskih, Shokurov, Mori,
Mukai, et. al. (cf. [Is1,2], [Sh1,2], [MM], [Mu]). According to the minimal model prog-
ram (cf. [KMM]), we have to extend this to the case of the varieties with
Q-factorial terminal singularities. In this case, Ky is not Cartier. This is just the
point of difficulties and of interests. Y. Kawamata proved in [KaZ] that singularity
indices I and the degree (— KX)3 are bounded for all the Q-Fano 3-folds whose
Picard number o(X) = 1. Thanks to this we have a hope to classify Q-Fano
3-folds.

In the case of Q-Fano d-folds with 1 <71 and d — 2 < /I, the main
methods of classification are (1) to bound the numerical invariants by Riemann-
Roch formula, (2) ladder argument, and (3) a criterion for terminal singularity. For
(2), we have the next theorem.

TueoREM 0.1 (V. Alexeev [Al]). Let (X, 4) be a d-dimensional (d = 2) log
Famo variety (i.e. normal projective variety with only log terminal singulavities with |A]
=0 and — (Ky + A) is ample) with the property that theve exists an ¥ € Q,, (r >
d — 2) and an ample Cartier divisor H such that

— (Ky+ 4) ~g7H.

Then a general member of | H | is a normal vaviety with only log terminal singularities.

In Section 1, we obtain a Q-Fano version of above Theorem 0.2 as its corol-



NON-GORENSTEIN Q-FANO d-FOLDS 135

lary, and construct a ladder of subvarieties. We can reduce our problem to the
3-dimensional case by using this ladder. In Section 2, we classify the invariants
in 3~dimensional case by the Riemann-Roch formula for singular varieties and the
ladder argument. Then we can find a very good member in |H' which is a non-
singular Del Pezzo surface and a weighted hypersurface. In Section 3, we show
that X can also be written as weighted hypersurface. Using a criterion for termin-
al singularities, the proof is completed in Section 4.

Acknowledgement. 1 would like to express his heartly gratitude to Professor
Y. Kawamata for encouraging the author, giving hints and pointing out some mis-
takes of the first version, and to Professors K. Oguiso, N. Nakayama, M.
Kobayashi and K. Ohno who encouraged me and gave me some helpful advice. I
also want to thank the referee for many advices.

Notation. In this paper we always assume that the ground field k is algeb-
raically closed of characteristic 0, and we will follow the notation and the termi-
nology of [KMM]. The following symbols will be used.

~ : linear equivalence

~ q: Q-linear equivalence

= : numerical equivalence

K, : the canonical divisor of X
0(X) : the Picard number of X
h'(D) := dim, H' (D)

x(D) =X, (= D'h'(X, D)
¢;(X) : the i-th Chern class of X

1. Ladder

Recall here some definitions about ladder (cf. [Ful]). Let V be a variety and L
an ample line bundle on V. A sequence (V, L) = (V,, L) > (V,_,, L,_) > -+
> (V, L)) is called a ladder if each V,_; j =2,3,..., d) is an irreducible and
reduced member of | L, |, where L, is the restriction of L to V,. A ladder is called
regular if each restriction map #: H'(V,, L) — H(V,_;, L,_)) is surjective.

The next theorem is fundamental.

THeorEM 1.1 (Vanishing Theorem [KMMY]). Let X be a normal projective varie-
ty with only log terminal singularities, and D a Q-Cartier Weil divisor on X. If D —



136 TAKESHI SANO

K, is ample, then
H' (X, 0,(D) =0 Vi>O0.

As a corollary of Theorem 0.1, the next proposition holds.

ProrosiTioN 1.2.  With the same hypotheses of Theorem 0.1, | H| has at most
isolated base points, which are vegular points of X and their multiplicities are one. In
particular if X is a Q-Fano d-fold (d = 3), then the general member of | H| is also
Q- Fano.

Proof. By Theorem 0.1, we have a ladder,
(X, H) = (Xd’ Hd) > (Xd—I’ Hd—l) > > (XZ’ HZ)’

where X; (2 <7 < d) is an i-dimensional log Fano variety. Note that this ladder
is regular since HI(X,», @x,) = 0 by the Vanishing Theorem. So it is sufficient to
prove the assertion only in the case dimX = 2.

In the proof of Theorem 0.1, Alexeev showed the following claim.

CLAIM. Let Y be a nonsingular projective variety, f : Y— X a proper bivational
morphism, | L| a free linear system on Y and > F ; a normal crossing divisor on ¥
such that

(1) Ky NQf*KX + 20 a,F;, with a; € Q, a, > — 1 whenever F; is exceptional

for f.
QI f*HI =1L+ Z#F, with r,€Z, 7,20 and r,#0 iff f(F) €
Bs | H|, then

a, —r;> — 1.
Hence if 7; # 0, then a@; > 0. Since dimX = 2, this means that f(F)) is a
smooth point of X and #; = 1 if @; = 1. [
LemMa 1.3, Let X be a Q-Fano d-fold (d = 3). Assume that 1 < I and d — 2

7
< T then I and v are coprime.

Proof. Assume the opposite, then I and # have a common divisor ¢ > 1; put
I=cI’" and » = c¢7’. Then we have a non-trivial torsion Weil divisor D := I'K,
+ »’H. Now take a ladder,
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(X, H) = (X, H) > (X,.,,H,_.) > > (X,, H)
where X; (1 <1< d) is a Q-Fano i-fold. We have the next exact sequence.
0—0x(D — H) = 04(D)— 0y, (DN X,_)) =0
Since —Ky+D—H=—Ky,—H is ample H(X,D—H) =0 by the

Vanishing Theorem. Therefore the restriction map is surjective;

H'(X,D)— H'(X,_,, DN X,_).

Note that H'(X, D) = 0. So if D N X,_, is trivial, then W(X,,DNX,_)=1
and this is absurd. Hence D N X,_; is a non-trivial torsion Weil divisor. By re-
peating this procedure and so on, we see that D N X, is a non-trivial torsion Weil
divisor. But X, is a nonsingular Del Pezzo surface. This is a contradiction. O

2. Riemann-Roch

In this section we restrict the possible values of (— KXZ)Z by using a ladder
and the Riemann-Roch formula for singular varieties.

THeEOREM 2.1 (Y. Kawamata [Kal], [Re]). Let X be a 3-fold with only terminal
singularities. Then,

1 1 . 1
X0 =55 (— KD - o0 + 57 = (i, — )

) 2
where
(= Ky * ¢,(X) :=f (= Ky + ¢,(V)

for a vesolution f : ¥ — X, i, is the singularity index of p € X and the summation is
taken for all singular points on X counted with multiplicities.

LEmMA 2.2.  Let I’ be the singularity index of X,_, and put I = ml’. Then there
exists a Cartier divisor L of X;_, such that mL ~ H,_, and

~I'K,, ~(r=DL @—-3m<"7L,

Proof. By the adjunction formula,

—ml'Ky, ~ (r—DH,_,.
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Since m is coprime to # — I and the Picard group of a Q-Fano variety has no tor-
sion part (Indeed, if 7 ; Y— X is a #-sheeted etale map of Q-Fano varieties, then
x(0y) = nx(0y)), there is a Cartier divisor L of X,_, with mL ~ H,_,. The next
inequality follows fromd — 2 < »/1I L

LemMA 2.3. Let X be a Q-Fano 3-fold, and assume that 1 < I and 1 < r/1.
Take a general member S € | H| which is a nonsingular Del Pezzo surface. If the
Fano index of S is 1, then (— Kg)* < 3.

Proof. By the preceding lemma,
—K,~@—DL

where L is a Cartier divisor with IL ~ Hj. Since the Fano index of Sis 1, »r — I
= 1. Hence (— Ko)? = H’/I"
Next, by Theorem 2.1 and the ordinary Riemann-Roch formula, we have

v == (1) ) - gy Ko
SRR A SERS[CERS R AR !
where we put
N:=1§(ip—i1—p).

Since — Ky — H is ample, the Vanishing Theorem implies that 0 = hW(— H) =
x (— H). Therefore

N=QI-n12—(—K»r— D) =T—- 112 — (— KJ*T+ D).
Note that N > 0, so (— Ko)® < 3. O

3. Weighted complete intersection

Recall some definitions about weighted complete intersections (cf. [Do], [Mo]).
Let a,, ..., a, be positive integers and T = k[X,,..., X,] a graded polynomial
ring with deg X; = a;. Let {f;},_,, be a regular sequence of homogeneous ele-
ments with degf; = b, and J the homogeneous ideal generated by the {f;}, 1, .
In this situation, P(a,, ..., @) := Proj T is called a weighted projective space of
type (ay,. .., a), and ((b,..., b) € Play,...,a)):= (ProjT/] S ProjT) a
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weighted complete intersection of type (by,. .., by). Especially in the case s = 1, we
call it a weighted hypersurface.

We saw in Lemma 2.3 that the general member S of | H| is a nonsingular Del
Pezzo surface of (— Ks)2 < 3, quadric or P’. It is well known that these S can be
written as weighted hypersurfaces (cf. [HW]).

THEOREM 3.1. Let S be nonsingular Del Pezzo surface of (— K9)* =1,2 or 3.
Then (S, Os(— Ky)) is expressed as follows.

(— Ky)?
1 ((6) € P(1,1,2,3), 6,Q))
2 (@ cP3ai,1,2),0,Q)
3 (3 cP@1,1,1), 6,Q))

We shall prove that X can also be written as weighted hypersurface by using
this fact and the next lemma.

LemMMA 3.2. Let X be a Q-Fano variety of dimX = 3, I the singularity index of
X and H a Cartier divisor of X such that — IKy ~ vH for a positive v. Assume that
(X, H) satisfies the following conditions.

(1) I and 7 are coprime.

(2) There exists a member Y in | H| which can be expressed as

(Y, Hy) = ((b,,..., b) € Pla,...,a), 0,U)).
Then (X, H) can be expressed as
((by,..., b) € Pla,,...,a, D, O,)).

Proof. Since I and 7 are coprime, there exist integers p and ¢q such that pr +

ql = 1. We define the Weil divisor D as
D:= —pK, +qH.
Then
ID~H, 6,(DNY =6,01).

And obviously, the next exact sequences hold.

0—0x((n — DD) — OxnD) — Oy(n) >0 (Vne<Z)
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H'(X, (t — DD) =0 by the Theorem 1.1 and Serre’s duality. Then we have
next exact sequences;

0—H'(X, n — DD) > H"X, nD) = H'(Y, 6,(n)) =0 (YVn€EZ)

where ¢ € H'(X, ID) is a section corresponding to Y. The rest of proof is shown
by standard argument, so we omit it (cf. [Mo] Theorem 3.6). ]

4. Classification

In this section we complete the proof of the theorem stated in the introduc-
tion. The next criterion of terminal singularities for weighted hypersurfaces is a
direct consequence of [Re] Theorem 4.6.

LemMa 4.1. Let X = (b)) C P(a,,..., a) be a weighted hypersurface with the
assumption that its defining polynomial does ot contain the t-th coordinate. If X has
only terminal singularities, then

b<a,+ - +a_ —a,

We also use the next theorem frequently.

TueoREM 4.2. ([Re] Theorem 4.11). A quotient singularity X = A"/, of type
1

7(a1,..., a,) is terminal if and only if
n
0< 2 ka,modr—17r fork=1,...,7r— 1.
i=1

We note here the next fact.
If the defining equation f of a weighted hypersurface X = (b) < Pla,,.. ., a,)
can be written as f = X; + g, then X is isomorphic to Pla,,. .., @,..., a,).

Proof of the theovem. First we consider the case in which X,_, is a Gorenstein
Q-Fano variety, i.e., I’ =1 and m = I with the notation in Lemma 2.2. Since the
Fano index of X,_, is greater than (d — 1) — 2, (X,_,, H,_,) is (Del Pezzo, IL),
(Quadric, 6(I)) or (P, O(I)).

1. Case (X,_,, H,_,) = (Del Pezzo, IL).
In this case » —I =d — 2, hence d = 3 by Lemma 2.2. Then by Lemmas
2.3, 3.2 and Theorem 3.1, (X, H) has the one of the following expressions.
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(1] ((6) < P(1,1,2,3,1), 6())
(2] (4 < P@Q,1,1,2,]), 6))
3] (3 < P@,1,1,1,1), 60U))

If (X, H) is type [1], ] is not more than 6. Indeed, if I is more than 6, then
its defining equation does not contain the weight I's coordinate. Hence we can use
Lemma 4.1 and lead a contradiction. By the same reason, if (X, H) is type [2] (or
type [3]), then I is not more than 4 (resp. 3). We claim that the case type [2] and
I =4, and type [3] and I = 3 does not occur. In this case, if its defining equation
contains the homogeneous coordinate X, then its singular index is not I. So we
can apply Lemma 4.1 and lead a contradiction.

2. Case (X,;_,, H;_y) = (Quadric, 0(I)).
In this case # — I =d — 1, hence (d, I) = (3, *) or (4,2) by Lemma 2.2. If
d = 3, by Lemma 3.1, X can be written as

X=2) cP1,1,1,1,D).

The case d = 3 cannot occur. Indeed, if the defining equation f is written as f= g
+ X,, then X is isomorphic to P’ and if f does not contain X, we get a contradic-
tion by Lemma 4.1. In the case d = 4, we get type [4].

3. Case (X,_,, H,_) = (P, 04, (D).

In this case # — I=d, hence (d,I) = (3, *), 4,2), (4,3) or (5,2) by
Lemma 2.2. Since I and 7 are coprime, the case (d, I) = (4,2) cannot occur. In
the case d = 3, by Lemma 3.2, (X, H) can be written as

(P(1,1,1,D), 0x(D)).

By Theorem 4.2, I must be 2 and we get type [5]. In the case (4,3) (or (5,2)), we
get type [7] (resp. [8]) by Lemma 3.2.

Next we consider the case in which the general member X, , € | H| is not
Gorenstein. It is enough to show that if (X,_,, H,_;) has an expression of type [1]
~[8], then (X, H) can also be expressed as [1]~[8]. If ] = I’, then by Lemma
3.2, (X, H) has an expression of type [1]~[8]. So we may assume that 1 < [’
< I. Note that the Fano index of X,_, is smaller than d — 1. Therefore by Lemma
2.2,

2d—3) <md—3) <d—1.

Hence



142 TAKESHI SANO

I
d=4,m=2 and 2< 7’1/ = Fano index of X,_,.

Thus we conclude that X, = P(1,1,1,2,4) and I = ml’ = 4 since this is the
only type for which the dimension is 3 and the Fano index is greater than 2. Then

X, H) = (P(1,1,1,2,4), 04)),

this is of type [6].

Let X be a Q-Fano of type [1]~[8]. The Weil divisor class group Div X is
isomorphic to Z, and Ox(1) generates PicX. This follows from the same argument
of [Mo] Theorem 3.7. Next we take X generally from [1]~ (8], then X is quasi-
smooth and the adjunction formula of quasismooth weighted complete intersections
(cf. [Do] 3.3.4) and Theorem 4.2 implies that X is a Q-Fano whose Fano-index is
as written in the last part of the theorem. O

Remark 4.1. We can see by the next well known lemma (cf. [H] IV. 3.2) that
| H| is free for all type [1]~[8] and very ample except the type [1] and 1 = 2:

Let C be a nonsingular curve of genus g(C) and D a divisor, then

deg D = 2g(0) = | D| free
deg D = 2g(C) +1 =| D] very ample.
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