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ALGEBRAIC BARTH-LEFSCHETZ THEOREMS

LUCIAN BADESCU

0. Introduction

We shall work over a fixed algebraically closed field k of arbitrary charac-

teristic. By an algebraic variety over k we shall mean a reduced algebraic scheme

over k. Fix a positive integer n and e = (e0, elt..., en) a system of n + 1 weights

(i.e. n + 1 positive integers e0, elf. . ., en). If k[T0, Tly. . ., Tn] is the polynomial

/c-algebra in n + 1 variables, graded by the conditions deg(Γj) = eif i = 0,1,. . . ,

w, denote by Pw(#) = ProjίA tΓo, 7\,. . ., Tn]) the w-dimensional weighted projec-

tive space over k of weights e. We refer the reader to [3] for the basic properties

of weighted projective spaces. According to Zariski ([22], see also [16], [15]), if Y

is a closed subscheme of an algebraic variety X, one can define the ring K{X/Y) of

formal rational functions of X along Y. Then K(X/Y) is a /c-algebra, and there is a

canonical map of /c-algebras K(X) —> K(X/Y), where K(X) is the usual ring of

rational functions of X (K(X) is a field if X is irreducible). According to [16], Y

is said to be G 3 in X if this map is an isomorphism. Let X be an arbitrary algeb-

raic scheme over k, and let d > 0 be a non-negative integer. Then X is said to be

rf-connected if every irreducible component of X is of dimension > d + 1 and if

-XΛ W is connected for every closed subscheme W oί X of dimension < d. For ex-

ample, X is 0-connected if X is connected and of dimension >: 1 an irreducible

algebraic variety X of dimension n > 1 is always (w — l)-connected.

Then the main result of this paper is the following.

THEOREM (0.1). Let f:X^>Pn(e) x Pn(e) be a finite morphism from a

d-connected algebraic variety X such that d ^ n. Then f (Δ) is (d — n)-connected,

where Δ is the diagonal ofPn(e) X Pn(e). Moreover, / " (Δ)\ W is G 3 in X\ W for

every closed subscheme W of f (Δ) of dimension^ d — n.

In the case of ordinary projective spaces (i.e. when et — 1 for every i = 0,

1,. . ., n) the first statement of Theorem (0.1) is well known in the literature as
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the Fulton-Hansen connectedness theorem (see [5], or also [6], or [12]). As far as I

know the last part of Theorem (0.1) is new even for ordinary projective spaces.

This latter fact has some interesting consequences, namely the following two

theorems.

THEOREM (0.2). Let Y be a closed irreducible subvariety of Pn(e) of dimension

> -K. Then Δγ \ W is G 3 in F X Y\ W for every closed subscheme W of the diagonal

Δγ of F X Y such that dim (WO < 2dim( Y) - n - 1. If moreover Y has {locally) the

S2 property of Serre (e.g. if Y is normal), then for every vector bundle E on Y X Y the

natural map

H°(Y x F, E) -> H°(Y^Ύ, E)

is an isomorphism, where E is the formal completion of E along Δγ, and Y x Y =

Y X Y/Δ . In other words, the weak Grothendieck-Lefschetz condition Lef(F X F , Δγ)

holds (see [9]).

An immediate consequence of Theorem (0.2) via a result of Speiser (see [21],

or also Theorem (1.11) below) is the following.

THEOREM (0.3). Let Y be a closed irreducible subvariety of P (e) of dimension

> ~κ which is (locally) S 2 . Then every stratified vector bundle on Y is trivial.

For the definition of stratified vector bundles see [10], or also [20]. This de-

finition and the basic properties of stratified vector bundles will also be briefly

recalled in the first section. In some special cases Theorem (0.3) and the last part

of Theorem (0.2) were known before. Specifically, if F i s a local complete intersec-

tion in Pn over a field k of characteristic zero, Theorem (0.3) and the last part of

Theorem (0.2) were proved by Ogus in [18]. Note that when char(λ) = 0 the con-

cept of stratified vector bundle is the same as the one of vector bundle with in-

tegrable connection (see [18]). If char (A;) > 0 and F is an irreducible locally

Cohen-Macaulay of Pn these results were proved by Speiser in [21]. Note that the

methods of Ogus (in characteristic 0) or those of Speiser (in positive characteris-

tic) are completely different from the methods used in this paper. Our approach

(which is based on results of Hironaka-Matsumura [16] and of Faltings [4] involv-

ing formal rational functions) offer therefore not only characteristic free proofs

but also more general results.

A first version of this paper was written during my visit at the Universities
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of Pisa (December 1993) and Ferrara (January 1994). I am grateful to Fabrizio

Catanese and Alexandru Lascu for their kind invitation and excellent atmosphere I

found there. I also want to thank G. Chiriacescu who read some parts of the paper

and made useful remarks and suggestions.

1. Background material

In this section we gather together some known results we are going to use in

this paper. Let X be an algebraic variety, and let Xv . . ., Xm be the irreducible

components of X. Fix rf>0a non-negative integer.

DEFINITION (1.1) ([13], [12]). A sequence Zo, Zl9 . . . , Zn of (not necessarily

mutually distinct) irreducible components of X is called a d-]o'm within X if

> d + 1 for every i = 0, 1,. . ., n and if d imίZ^ Π Z ; ) > d for every

The following elementary fact will be useful.

PROPOSITION (1.2) (Hartshorne [13], or also [12]). An algebraic variety X is

d-connected if and only if X — Zo U Zx U . . . U Zn for some d-join Zo, Zv . . ., Zn

within X.

THEOREM (1.3) (Grothendieck). Let X be a d-connected algebraic variety over k,

and let f : X~* Proj(S) be a finite morphism, where S is a finitely generated graded

k-algebra. Let tv . . ., tr G S+ be homogeneous elements of positive degrees. If d > r

then f (V+(tv . . . , tr)) is (d — r) - connected. Moreover, if X is irreducible and

dim(Z) > r thenf~ (V+(tlf..., tr)) is non-empty.

Remark. Theorem (1.3) can be found (in a slightly different formulation) in

[9] expose XIII. In the appendix another proof based on the so-called Hartshorne-

Lichtenbaum theorem can be found.

THEOREM (1.4) (Hironaka-Matsumura [16]). Let f : Xf"—• X be a proper surjec-

tive morphism of algebraic varieties, with X irreducible and such that every irreducible

component of Xr dominates X. Let Y be a closed subscheme of X and set Yr '- —

f (Y). Then there is a canonical isomorphism of k-algebras

K(X'/r) = [K(X/Y) ®κυc) K(X')]0,
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where K(Xf) is the ring of rational functions of X\ K(X/γr) is the ring of formal

rational functions of Xf along Y'', and [A]o denotes the total ring of fractions of a

commutative ring A.

The next result will play a crucial role in the proof of Theorem (0.1).

THEOREM (1.5) (Faltings [4]). Let X be an irreducible closed subvariety of P ,

and let L be a linear subspace of P of codimension r such that r < dimQO. Then

X Π L\ W is G 3 in X\ W for every closed subvariety W of X Π L such that

dim(W0 < dim CO - r - 1 (dim(HO = - 1 ifW = 0 ) .

Remark. Theorem (1.5) is a special case of a result of Faltings [4]. In the

case when X and L have a proper intersection, this result was proved earlier by

Hironaka and Matsumura [16] (in which case the proof is much more elementary).

PROPOSITION (1.6) ([16]). Let X be an irreducible algebraic variety, and let Y be a

closed subscheme of X. Let u : Xf —• X be the normalization morphism. Then

K(X/Y) is afield if and only if u (Y) is connected.

The next proposition is well known for the rings of usual rational functions,

and should be known in general, but we have no reference for it (therefore we in-

clude a proof).

PROPOSITION (1.7). Let X be a quasi-pro jective variety having the irreducible com-

ponents Xv. .-., Xm (with the reduced structure), and let Y be a closed subscheme of X,

such that Yf:= Y Π Xt Φ 0 for every i — 1,. . ., m. Then there is a canonical iso-

morphism of k-algebras

K(X/Y) = K(X/Y) x X K(Xm/Yn).

Proof. We shall first prove Proposition (1.7) in the case when X =

Spec (A) is affine, with A a reduced finitely generated /c-algebra. Set Ass (A) =

{pi> > Pn)'» where every p{ is a minimal prime ideal of A such that Xi = V(pt),

i = 1 , . . . , m and

(1-.7.1) ftΠ ••• θpm= (0).

Then Y= 7(7), with I an ideal of A. The hypotheses imply that 7, •= KA/p) Φ

A/pi for every i = 1, . . . , m. Let A be the 7-adic completion of A. Then X/γ —
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Spf(i), and by [16], (1.1) we have

(1.7.2) K(X/Y) = [A]o,

where, as above, [A]o denotes the total ring of fractions of A. Set qt = pjA, i —

1,. . . , m. Taking into account that the homomorphism A~* A is flat, (1.7.1) yields

ϊi Π Π qm = 0,

which implies

(1.7.3) q.LAlo Π ••• Π ϊ m [ A ] 0 = (0).

If we denote by 5 (resp. by S) the multiplicative system of all non-zero divizors

of A (resp. of A), then p(S~ A + pjS~ A = S~ A for every i Φ j, which implies

ptS'ιA + pjS~ιA = 5~'i for every i Φ j, or else, qβ^A + ^ S " 1 ^ = S~'A for

every ί Φ j. Since S c 5 (because A—* A is flat), we therefore get:

(1.7.4) 0,[A]O + ήfy[A]0 = [A]o for i Φ j.

Then (1.7.2), (1.7.3) and (1.7.4) together with the Chinese Remainder Theorem im-

ply

(1.7.5) K(X/Y) = [ A V f c t A l o x ••• x [A]Q/qm[A]0.

To prove the proposition in case X is affine it will be sufficient to show that

(1.7.6) [A]0/qt[A]0 = K(Xi/γ) for every i=l,...,m.

Since K(Xi/γ) = LA/qi\0 ([16], (1.1)), then (1.7.6) is equivalent to

(1.7.7) S~\A/q) = [i/tfJo for every i = 1, . . . , m.

To prove (1.7.7), we first show that for every fixed i the ring A/qt is re-

duced. To see this, observe that A/qt is the /-adic completion of A/p{. So, we

have to prove that if B is a reduced, finitely generated /c-algebra, and / Φ B is an

ideal of B then the /-adic completion B of B is also reduced. To show this, it

will be sufficient to check that for every maximal ideal m of B , the localization

B m* is reduced. Since B is JB -adically complete, JB c m . Since β / / w β

= B/Jn, it follows that for every n > 1, B*m*/JnB*m* = Bm/JnBm,

where m'-= m Π B. From the latter isomorphism we infer that for every n > 1,

B m*/rn nB m* = Bm/mnBm. Passing to the inverse limits, we get B m* = J5W

(the completions with respect to the maximal ideals m and m respectively). Now,

use a theorem of Chevalley (see [19], IV-4) to show that the latter ring is reduced.

Finally, since B m* is reduced, B m* is also reduced, and we are through.
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So, we have seen that A/ qi is reduced. In particular, we get

ί, = Pa n n p i H ι ,

where AssiA/q) = {pil9..., pin).

Then by [19], IV-4, AssGΪ) - 1 ^ ^ . . ., /> lΛ i,. . ., pml9. . ., A ^ } . Moreover,

all the p^'s are minimal prime ideals of A.

The inclusion S (A/q) c LA/^-]0 being clear, it will be sufficient to show

that every non-zero divisor a'-— a (mod qt) of A/ q{ is the class (modulo q{) of an

element of S (i.e. ά—b with ft a non-zero divisor of A, or else, b ^Pij for all

i and 7). Take for example i = 1. Since flis a non-zero divisor in A / ^ , a & {pn

U * U pιn). Set A •= {(ί, y)/α ^ /) ί ; }. If Λ. is empty we have nothing to prove.

Suppose therefore A Φ 0 . Then set / •= Π a^&Λpn and / ' •= Π aj)GΛptj. Since all

the ideals ^ ; are prime, by elementary general facts about prime ideals (see e.g.

[19], 1-2), there is an element u e / \ / ' . In other words, u e ^. ; if and only if α ^

^ ί ; . This shows that a Λ- u &p{j for every i = 1, . . . , m, j = 1, . . . , wr On the

other hand, since α ^ ^ i ; for every j = 1,. . ., nv whence u ^ pn Γ) - - - Π pln =

qλ: Therefore a = b, with b = a + u, and b not a zero divisor in A. Therefore

Proposition (1.7) is proved if X is affine.

If X is not affine, fix a finite set A of closed points of Y such that A Π Yi Φ

0 for every i — 1,. . ., m. Since f̂ is quasi-projective, we can find an affine cov-

er iUa}a of X such that for every α, A c C/α. Since for every α and j8, ί/αjg

 : =

Π ί/5 is also affine and contains A, we know the proposition for Ua and for Uaβ.

Then everything follows from the statement in the affine case (already proved) and

from the exact diagram (see [16] for details):

κϋc/r) - naκ(ϋa/γnUa) =* n j
which reduces the verification to the affine case. Q.E.D.

COROLLARY (1.8). In the hypotheses of Proposition (1.7), if Yt is G 3 in X{ for

every i = 1 , . . . , m, then Y is also G 3 in X.

Proof Direct consequence of Proposition (1.7) and of the well known iso-

morphism

K(X) = K ( X 1 ) x ••• x K(Xm).

Q.E.D.
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Corollary (1.8) allows one to generalize the result of Faltings stated above

(Theorem (1.5)):

COROLLARY (1.9). Let X be a d-connected closed subvariety ofPn, and let L be

a linear subspace of P w of codimension r such that r < d. Then X Π L \ W is G 3 in

X\W for every closed subscheme W of X Π L such that dim (WO < d — r.

Proof Let Xlf . . . , Xm be the irreducible components of X. Since X is

d-connected, dimQQ > d + 1, and in particular, r < dimOQ for every i =

1, . . . , m. By Theorem (1,5), X{ Π L\W is G 3 in Xt\Wt i.e. KiX{\W)) =

K(Xj\W/χiΓ)L\w) for every i = 1, . . . , m and for every closed subscheme W of

X f) L such that dim(FF) < d — r. On the other hand, since the irreducible com-

ponents of X\ W are ^ \ W,i = 1, . . . , m everything follows from Corollary

(1.8). Q.E.D.

(1.10) Now we recall briefly some definitions and basic facts from Grothen-

dieck's theory of stratified vector bundles and the descent theory of faithfully flat

morphisms (see [10], [8], or also [21]). Let Y be an algebraic variety over k. Con-

sider the products and projections:

and

Y X Y^— Y X Y X Y-^> F x Y

1 ^ 3 2

Fx Y

Denote by Δ = Δγ the diagonal of Y x Y, and let Δ' be the diagonal sub-

scheme of Y X Y X Y. For every r > 0 denote by Δr (resp. Δr

r) the r-th in-

finitesimal neighbourhood of Δ in F x F(resp. of Δ'). Then from the previous dia-

grams we get projections

and

Let F be a vector bundle on Y. By descent data on F we mean an isomorph-
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ism

over Y X Fsuch that the cocycle condition

holds over Y x Y x Y.

From Grothendieck's faithfully flat descent theory (see [8], VIII) applied to the

structural morphism p : Γ—• Spec(/c) we know that descent data hold for F if and

only if F is the pull-back via p of a vector bundle over Spec (A:), i.e. if and only if

F is a trivial vector bundle. This result is a very useful general criterion for a

vector bundle to be trivial.

A stratification on F is a compatible system of isomorphisms

φr-Aql)*(F)->(qr

2)*{F)

over Δr for all r > 0 such that <p0 — id and the cocycle condition

holds on Δ'r.

A stratified vector bundle on Y is a vector bundle F with a stratification on

it. In other words, giving a stratification on F is the same as giving "formal des-

cent data" on F. That is to say, if X is the formal completion of Y x Y along Δ,

and if X/ is the formal completion of Y X Y x Y along Δ\ then we get projections

and

u 2
x

and "formal descent data" on F consist of an isomorphism

on X together with the cocycle condition

on X r. In characteristic zero giving a stratification on F is the same as giving an

integrable connection on F (see [10], [18]). The approach of vector bundles en-
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dowed with integrable connections and the De Rham cohomology associated to

them was taken up by Ogus to give algebraic proofs of Barth's theorems (see [18]).

On the other hand, Gieseker and Speiser provided further methods to study strati-

fications in positive characteristic (see [7], [21]). The relationship between strati-

fied vector bundles and descent data is given by the following result of Speiser:

THEOREM (1.11) (Speiser). Let Y be an irreducible algebraic variety over k for

which the diagonal Δ of Y X Y satisfies the weak Grothendieck-Lefschetz condition

Leί(Y x F , A). Then giving a stratification on a vector bundle F on Y is equivalent

to giving descent data on F. In particular, ifheί{Y X Y, Δ) holds, then every strati-

fied vector bundle on Y is trivial

In fact Speiser proved in [21] the first part of Theorem (1.11); the last part

follows from the first one and from Grothendieck's faithfully flat descent theory

[8], VIII.

2. Proof of Theorem (0.1)

To prove the connectivity part of Theorem (0.1) we use the same main ideas

of the proof of Fulton-Hansen connectivity theorem given in [3] or in [6]. First we

shall need the following more general version of Theorem (1.3) of Grothendieck.

PROPOSITION (2.1). Let S be a finitely generated graded k-algebra, tly. . ., tr ^

S+ homogeneous elements of positive degrees, and U a Zariski open subset of

Proj(S) containing L '-= V+(tlf. . ., tr). Let f : X—* U be a finite morphism, with X

a d-connected algebraic variety over k. If d > r thenf (L) is (d — r)-connected.

Proof First we shall prove the proposition in the case when X is irreducible.

Then X is (dim GO — 1)-connected. Therefore in this case the hypothesis reads

dimQD > r. By passing to the normalization we may assume that X is normal. Let

Z' be the closure of X' '-= fOO in P : = Proj(S), and let g:Z-+Z' be the nor-

malization of Zf in the field K(X) of rational function of X (which makes sense

because the dominant morphism X—> Z' yields the finite field extension K{Zr) —

K{Xr) —* K(Z)). Then we get a commutative diagram of the form

x — •

/I
X' *

z
I.
Z'
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in which i and i' are open immersions (i is an open immersion because X is nor-

mal), and ^ is a finite morphism. Since L c [ / and Xf c U, then X' Π L =

Z ' Π L, whence/ (L) = g" (L). Then Proposition (2.1) follows (in case when X

is irreducible) from Theorem (1.3) applied to the composition of the finite morph-

ism g :Z~* Zf followed by the closed immersion Z ' c P.

Assume now X reducible. In this case we shall first prove the proposition in

the special case d—r. Then we simply have to show that Y '- = f (L) is con-

nected and non-empty. Let Xl9. . ., Xm be the irreducible components of X (all of

dimension > d + l = r + l since X is d-connected). If we set f{'-— f/X{ then by

what we have proved so far we know that Y{'- = f{ (L) is connected and non-

empty for every i — 1,. . ., m. Clearly, Y= Yx U . . . U Ym. To prove that Y is

connected it will be then sufficient to show that we can reorder the components

Xlf..., Xm (possibly with repetitions, by increasing m if necessary) in such a way

that Yt_x Π Yt•, Φ 0 for every i = 2,. . ., m. To do that we use Proposition (1.2)

to get a reordering (possibly with repetitions) Xίt. . ., Xm such that dim(-X'( _1 Π

Xt) > d for every i — 2, . . . , m. Therefore for every i = 2,. . . , m there is an

irreducible component Z{ of X^x Π X{ such that dimiZ^ > d. Since d ^ r, then

apply the last part of Theorem (1.3) to the wt ' = //Z {\ Z ^ P to deduce that

U~\D Φ 0 for every i = 2, . . . , m. Since u~ι(L) c y^j Π F f, it follows that

yi_! Π Y{ Φ 0 for every i — 2,..., m, as desired.

Therefore Proposition (2.1) is proved in case d = r. The case d > r can be

reduced to the case d = r as follows. Let FT be a closed subscheme of F of dimen-

sion < d — r. Then f(W) is a closed subscheme of Fof dimension < d — r. Pick

a sufficiently large integer α > 0 such that ΘP{a) is a very ample line bundle on

P such that Sa = H (P, ΘP(a)). The existence of such an a comes from the fact

that S" is a finitely generated graded /c~algebra. Let tr+v . . . , td G Sa = H (P,

Θp(a)) be d—r general homogeneous elements of degree a of 5. Since

dim(/(W0) < d — Y and fr+1,. . . , td are general, we infer that /(WO Π V+(ίr+1,

. . . , * , ) = 0 , whence W Π F ' = 0 , where F ' : = / ^ ( ^ ( ί , . . ., ^ ) ) . By what

we have already seen before, Yr is connected and non-empty. Moreover, let Z be

an arbitrary irreducible component of F Since X is d-connected and Y =

f~1(V+(tv. . ., tr)), dim(Z) > d — r, and hence dim(/(Z)) > d — r because / is

finite. In particular,/(Z) meets V+(tr+ι,.. ., td), or else, Z meets Y'. Suppose that

F \ W is disconnected; then F ' is also disconnected because Yr meets every irre-

ducible component of Fand Yr Π W— 0 , a contradiction. Q.E.D.

(2.2) We shall show that a construction used by Deligne (see [3], or also [6])

to simplify the proof of Fulton-Hansen connectedness theorem can easily be gener-
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alized to weighted projective spaces. Having the system e = (e0, ev . . . , en) of

weights fixed, consider the weighted projective space

P2n+\e,e) = P r o j ( & [ Γ 0 , . . . , Tn;UQ9..., f/J),

where To, . . . , Tn, Uo, . . . , Un are 2^ + 2 indeterminates over k such that

deg(Tt) — deg(Ut) = e{ for every ί = 0, 1, . . . , n. Consider the closed sub-

schemes

L1=V+(TO9...9Tn) and L2 = V+(U0,..., Un)

of P : = P 2 w " % , e). Then Lγ Π Z,2 = 0 . Set U : = P X ί ^ U L2). Since Γ, - Ut

is a homogeneous element of degree eit it makes sense to consider also the closed

subscheme H -= V+(T0 ~ Uo,..., Tn - Un) of P. Clearly, H c [/. The two natu-

ral inclusions k[T09. . ., Tn] c /c[Γ0,. . ., Γn ί/0,. . . , f/J and /c[f/0,. . ., f/J c

k[T09. . ., Tn f/0,. . ., f/J yield two rational maps ^ : P 2 * " 1 ^ , e) -~+ Pn(e), i =

1, 2, which give rise to rational map

g\P (e, e) —•*• P (e) x P (^).

Then ^ is defined precisely in the open subset U of P n+ (e, e). Alternatively, if

we interpret Pn(e) as the geometric quotient (kn \ {0})/Gw (where the action of

the multiplicative group Gm — /c\{0} on kn+ \ {0} is given by λ(t0, . . . , tn) • =

(λe%,..., λentn), with λ e G m and (f0,..., ίn) e Γ + 1 \{0», then the map g is de-

fined by

g ( l t 0 , . . . , t n ; u O 9 . . . 9 u n ] ) = ( [ t Q 9 . . . , tn]9 [ u Q , . . . , u n ] ) .

It is clear that g/H defines an isomorphism H = Δ. Consider the commutative di-

agram

u
t

— p"ω
I
X

ί
P"(e)

where the top square is cartesian, the vertical arrows of the bottom square are the

canonical closed immersions, and the bottom horizontal arrow is an isomorphism.

We shall need the following fact:

(2.3) In the hypotheses of Theorem (0.1), the variety X' = X x p » W x p » w U is

(d + 1)-connected.

Indeed, since X is rf-connected, by Proposition (1.2) we can reorder the irre-
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ducible components Xv. . ., Xm of X (possibly with repetitions, by increaing m if

necessary) so that dimQf^ Π X{) > d for every i = 2, . . . , m. Set X['- —

gr~ (Xt), i = 1, . . . , m. Observe that every closed fibre of g (and hence also of g')

is irreducible. Indeed, every closed fibre of g is in fact isomorphic to Gm. It fol-

lows that X- is irreducible for every i — 1,. . ., m, and in particular, X[>. . ., X'm
are the irreducible components of X\ Moreover, since dimQί^ Π Xt) > d we get

that dimCX/^ Π Xf) > d + 1 for every i = 1,. . . , m. This proves the claim of

(2.3) via Proposition (1.2).

(2.4) Now we can easily prove the first part of Theorem (0.1). By (2.3) and

Proposition (2.1) (applied to the finite morphism /'' :X'—> ί / c p ^ (e, e) and

L>= H, with r=n+l<d+lwe infer that / ' " (H) is (d — n) -connected. On

the other hand, since/ (Δ) = fr (H) we get the first part of Theorem (0.1).

(2.5) Now we proceed to prove the second part of Theorem (0.1). I claim that

one can reduce oneself to the case when X is irreducible of dimension d + 1 such

that d > n. Indeed, if Xlf . . . , Xm are the irreducible components of X then

Xx \ W,. . ., -X"m\ W are the irreducible components of X\ W. Then the claim fol-

lows easily from Corollary (1.8).

So, from now on assume X irreducible of dimension d + 1. Set X''-— f(X). I

claim that it is sufficient to prove the second part of Theorem (0.1) for X', i.e. we

may assume that/ is a closed embedding.

Indeed, let W be a closed subscheme of Y • = / (Δ), of dimension < d — r

and set W':=f(W). Then clearly dim(W) = dim(W) = dimif'HW'))

(because / is finite), and Wdf~ι(Wr). Assuming that Xr Π Δ \ Wf is G3 in

X'\ W, by Theorem (1.4) we infer that Y\f~ι(W) is G3 in X\f~\W').

On the other hand, since We: f (WO we have a commutative diagram

K(X\W) > K(X\W/γχw)

1 1
K(X\f-\W')) ^ ^ ( Z \ / ^ ( P f O / r V - i ( ^ )

in which the vertical arrows are the restriction maps. The first vertical map is

clearly an isomorphism, while the bottom horizontal map is an isomorphism be-

cause Y\f~\W') is G3 in X\f~ι(W). If we prove claim (2.6) below it will fol-

low that the second vertical map is injective, and hence bijective because we just

saw that the composition of it with the top horizontal map of the above commuta-

tive diagram is an isomorphism.

(2.6) The ring K(X\W/Y\W) is a field.

To prove this we use Proposition (1.6). So, if u :Z—+ X is the normalization

morphism it is sufficient to check that u (Y\ W) is connected. This follows from



tween h (Ux) and U:

ALGEBRAIC BARTH—LEFSCHETZ THEOREMS 2 9

the first (i.e. the connectivity) part of Theorem (0.1) applied to the finite morphism

/ ° u : Z—* Pn(e) x Pn(e) and the subscheme u~ (W) of Z, because

u~\Y\W) = (f°uy\A)\vΓ\W).

(2.7) Summing up, to prove the second part of Theorem (0.1), we may assume

that / i s a closed embedding and that X is irreducible. In other words, from now

on X is an irreducible closed subscheme of Pn(e) X Pn(e).

According to the construction and notation of (2.2), set Ux'- — g (X) c: U,

and denote by Z the closure of Ux in Pn(e, e). Denote by g': Ux —> X the restric-

tion of g to Ux. Then g' can be also considered as a rational map g'': Z—+X

which is defined precisely in the open subset Ux of Z.

Let h : Xγ —+ Z be a proper morphism with the following properties:

h is birational and the restriction h/h (Ux) defines an isomorphism be-

x *
- the composition / •= gf ° h : Xγ —• X is a proper morphism (in particular, /

is everywhere defined).

The existence of (Xv h) is obvious because one can take as Xλ the closure of

the graph.Γg, ^ Ux x X in Z X X, and as /? the restriction to Xx of the projection

Z x X—• Z. Then the restriction to Xx of the projection Z X X~^ X is a proper

surjective morphism / ( = g' ° h), so that it makes sense to speak about the field

extension/*: K(X) = K(X\W) -> KiX^f'iW)).

Applying Theorem (1.4) to the morphism f : X1\f (W) —+ X\W, we get

th2,tK(X1\r1(m/rHxnΔχw)) = lK(X\W/XnΔχw) Θ ^ X ^ U 1 \ / " 1 ( W O ) ] 0 . Then

the key point of the proof of the second part of Theorem (0.1) is the following

claim:

(2.8) The canonical map K(X1\f~l(W))-^K(X1\prϊ(W)/rιυ[nΔ\m) is an

isomorphism.

Accepting the claim (2.8) for the moment, we see that via the above isomorph-

ism, the claim obviously implies the following fact:

(2.9) The canonical map K(X\ W) —• K(X1 \ W/XnΔ\w) is an isomorphism, i.e.

X Π Δ \ W is G 3 in X\ W. Therefore, in view of the reduction made at (2.5) we

proved the last part of Theorem (0.1) modulo the claim (2.8).

(2.10) Now we proceed to the proof the claim of (2.8). Since by (2.2) g/H de-

fines an isomorphism H = Δ then gr / Ux Π H defines an isomorphism Z Π H =

Ux Π H= X Π Δ. By the construction of h the subvariety Y '= h~l(Z Π H) is

isomorphic to Z Π H = X Π Δ via f/Y. Since Y\f'\W) c:f~ι{X n Δ \ W) we

get the canonical morphisms
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r - 1Xλf Λm/rV-Hm)^Xι\f ~1(m,r>txnA\m-*Xι\f (WO,
which yield the homomorphisms of λ -algebras

Now, claim (2.8) follows from the following two claims:

(2.8.1) The composition b ° a is an isomorphism.

(2.8.2) TO XT^W/z-i^nA*)) i s a f i e l d

Indeed, by (2.8.2) the map b is injective, and whence by (2.8.1), an isomorph-

ism. By (2.8.1) again the map a is an isomorphism.

It remains therefore to prove (2.8.1) and (2.8.2).

To prove (2.8.1) observe that since H c U and h/h~ι(Ux) :h~ι(Ux)-^ Ux

— Z Π U is an isomorphism, we get

=K(Z\h(f-\W) n iUand

So, we are reduced to prove that the canonical map

(is an isomorphism, where V : = h(f (W) Π Y) is a closed subscheme oί Z Γ\ H

such that dim(V) = dim(W0 < dimQO - w - 1 = dim(Z) - (n + 1) - 1, and

codimP^ie e)(H) = n + 1. (Recall that # = 7 + (Γ 0 ~ U09 . . . , Tn - Un).) This

will follow from the following more general assertion:

(2.10.1) For every closed irreducible subvariety Z of Pm(e) = Proj(/c[T0,. . . ,

Tm]) (with άeg(Tt) = ei9 i = 0,1, . , w), for every subscheme H of the form

H — V+(Tiit . . . , Tif), and for every closed subscheme V of Z Π H such that

dim(V) < dim(2) - r - 1 , then Z Π # \ F i s G 3 in Z \ V.

To do this, consider the usual projective space P = Proj(A:[ί70,. . . , Um]),

deg(£/z) = 1, / = 0 , 1 , . . . , m. Consider the homomorphism of graded /c-algebras

φ:k[T0,..., TM]-+k[U0,..., Um]

defined by φ(Tt) = C/f', i = 0, 1 , . . . , m. Then the morphism

u : = Proj(φ) : P ' : = Pn-+P : = P W W

is finite and surjective.

(2.10.2) I claim that for every closed subvariety Z of P, then w~ (Z) r e d is
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d-connected.

Indeed, consider the morphism / •= u x i \Pr x Z—• P x P, where z :Z—•

P is the embedding of Z in P. Since Z is d-connected, P' x Z is (w + (/)-

connected (as is easy to see). Then by the first part of Theorem (0.1) (already

proved), / (Δ) = u (Z) is ^-connected, as claimed.

In particular, coming back to (2.10.1), since Z is irreducible, by (2.10.2),

Z' := u~\Z) is (dim(Z) - 1)-connected. If we set H' := u~~\H)ΐeά then W is

the linear subspace of Pn given by Uiχ = = £/,v = 0. Thus, if A •'= Z Π i/

then w " 1 ^ ! ) ^ = Z' p •#'. By the result of Faltings in the form of Corollary (1.9)

we infer that the natural map

K(Z'\u~\V)) - #(Z'\V(V)/U-HΛV))

is an isomorphism. On the other hand, the latter ring is by Theorem (1.4) (which

can be applied because the fact that Zf is (dim(Z) — 1)-connected implies that

every irreducible component of Zr dominates Z) canonically isomorphic to

[K(Z\V/Aχv)

These two isomorphisms imply (2.10.1). In this way (2.8.1) is proved.

(2.11) Now we shall prove (2.8.2). Let υ \X[—^Xι be the normalization of Xlf

and set f ^ / ^ I ^ I c P ^ ) x Pn(e). Using Proposition (1.6), all we

have to check is that υ~\f~\X Π Δ \ WO) = f'~l(Δ \ W) is connected. Let X[

-^ T^Xc: Pn(e) x Pn(e) be the Stein factorization off, i.e. / = υ" ° υ\ where

υ' has connected fibres, and v" is a finite morphism. By the first part of Theorem

(0.1) (already proved), v"~ι(Δ\W) is connected because dimίt/'" (WO) =

dim(W0 < dim(^0 — n — 1, by hypotheses, and hence υ'~x(υ"~ι(Δ\ W)) =

fr (Δ\W) is also connected because v' has connected fibres. Thus (2.8.2) is

proved.

In this way the proof of Theorem (0.1) is complete.

Remark. It is well known that at least in characteristic zero, Pn(e) appears

as the quotient of Pn by a finite group G (which is the product of the cyclic

groups of order eif i — 0, . . . , n (see [3])). Then one may ask whether Theorem

(0.1) holds true for every quotient P' '•= P /G of P by a finite group G of auto-

morphisms of Pn. The answer is no in general. Indeed, consider the action of the

group G of roots of order n + 2 of k, such that n > 3, n + 2 is prime and diffe-

rent from char (A;), on Pn given by g(t0, tl9 . . . , tn) = (ί0, gtl9 g2t2> . . . , gntn).

Then the Fermat's hypersurface F of Pn given by t"+ + ff+ + * + fn = 0 is

G-invariant and G acts freely on F. If we take X -= F x F, and as / : X-^> Pr x
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P' the composition
uxuF x F a Pn x Pn > P' x p\

(with u :Pn —* Pf the canonical morphism), then / (ΔP,) has n + 2 connected

components, although X is (2w — 3)-connected {X is irreducible of dimension

2n - 2) and dim(P') = n < 2n - 3, if n > 3 (see the proof of Theorem (3.5) be-

low and the example following it, for details).

3. Proofs of Theorems (0.2) and (0.3) and other consequences

First we mention the following direct consequence of Theorem (0.1).

COROLLARY (3.1). Let Y and Z be two irreducible subvarieties ofP (e) such that

dim(10 + dim(2) > n + I. Then Y Π Z\ W is G 3 in Y x Z\W for every closed

subscheme WofYΓ\Z=(YxZ)OΔ such that dim(W) < dim(K) + dim(Z)

— n — 1. In particular, if Y is a closed irreducible subvariety ofPn(e) of dimension

> -ό", then Δγ\ W is G 3 w F X Y\ W for every closed subscheme W of the diagonal

ΔγofYx Ysuch thatdim(W) < 2dim(y) - n - 1.

/Y00/ Apply Theorem (0.1) to the inclusion of X : = F x Z in Pn(^) X

Pw(^). Q.E.D.

(3.2) The last part of Corollary (3.1) is just the first part of Theorem (0.2). In

particular, Δγ is G 3 in F x Y for every irreducible subvariety F of P (e) of

n
dimension > y . This latter statement implies the second part of Theorem (0.2).

The argument to do that is essentially due to Speiser (see [20], or also [15], pp.

200-201), at least in the case when F is smooth. Below I shall only indicate the

necessary steps in order to make Speiser's proof of the implication "Δγ G 3 in F x

Fimplies Lef(F x F , Δγ)" work in this more general situation.

First, exactly as in Speiser's proof (loc. cit), we can reduce ourselves to the

case when the vector bundle E is of rank one, i.e. a line bundle. In this case, using

the irreducibility of F, we may assume that E is a subsheaf of the constant sheaf

K(Y x F) (see e.g. [14], II, Prop. 6.15). Then all we have to check are the follow-

ing two claims;

(3.2.1) For every x ' = (y, y) e Δγ we have

Y) = Ύχγ,x>
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where the intersection is taken in the total ring of fractions of t

Using (3.2.1), the G 3 property of (Y x Y, Δγ), and the arguments given in

[15], pp. 200-201, we infer that every section of H°(Yχ Y', E) comes from a

section of E defined in a suitable open neighbourhood U of Δγ in X x Y. This lat-

ter section of E extends to the whole Y X Y by using the S2 property of Y (which

implies the S2 property of Y X Y) and the following:

(3.2.2) C o d i m r x r ( 7 x Y\ U) > 2.

We first prove (3.2.1). In the case when Y is normal a proof can be found in

[20], pp, 16-17 (see also [15], p. 209, Ex. 4.12). However, as G. Chiriacescu

pointed out, (3.2.1) comes from the following general statement. If A~+B is a flat

homomorphism of local rings, then A = B Π D4]o, where the intersection is taken

u
in the total ring of fractions [B]o of B. To prove this statement, let b = ~ ^ B,

with uy v e A, and υ a non-zero divisor of A. If υ is invertible there is nothing to

prove. If υ belongs to the maximal ideal of A then u — bv ^ Bv Π A = Av (the

latter equality holds because the map A-+B is faithfully flat). It follows that

b ^ A, as desired.

Now we prove (3.2.2). Set X = Y x Y. Since dim(10 > -R then X is a closed

sub variety of Pn(e) X Pw(#) of dimension > ft. Then the claim, follows from the

construction of the proof of Theorem (0.1), because if D were a hypersurface of X

which does not intersect Δγ = Δ OX then (in the notations of the proof of

Theorem (0.1)) g'~ (D) would be a hypersurface of Ux which does not intersect

Ux Π H(Uxf] # c g'~ι(Δγ)), where g' = g/Ux: Ux-+X is a morphism whose

closed fibres are all isomorphic to Gm. Taking the closure Z of Ux in P n (e, e),

and the closure Dr of g'~ (D) we would get a hypersurface of Z which does not

intersect Z Π H. But recalling that Z is a closed irreducible subvariety of

P2n+\e, e) of dimension > n + 2 and H = V+(T0 - Uo,. . ., Tn - £/„), this fact

is impossible. Thus (3.2.2) is proved.

This finishes the proof of Theorem (0.2). Q.E.D.

(3.3) Theorem (0.3) is a direct consequence of Theorems (0.2) and (1.11).

(3.4) Now consider the following situation:

- F a smooth projective subvariety of Pn(e) of dimension > -w.

- G a finite abelian group of order d acting freely on Y such that d > 2, and

if char(/c) > 0, then d is prime to char(A ).
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- Denote by X the quotient Y/G.

Then we prove:

THEOREM (3.5). In the situation o/(3.4) we have

[K0Γx~~X) : K(X x X)] = d,

where K(X X X) is the field of formal rational functions of X X X along the diagonal

Δx. In particular, Δx is G2 (but not G3) in X x X (in the terminology of [16], or also

[15]).

Proof. Denote by u : Y—* X the canonical etale morphism. Then

(u X u)'\Ax) = (G X

where G X G acts on F X Fin the canonical way.

A simple computation shows that if g, g\ h, h! e G then

Π (g\ g'W)Aγ Φ 0 iff h = h' iff (*, ^A)^ y = (g'9 g'hOΔy.

This shows that

(3.5.1) (u X M ) " 1 ^ ) = ^ U [J Δd,

where 4 t = (e, ht)Δγ, i = 1,..., d, with {/z1 = e,..., hd} is a full system of rep-

resentatives for the quotient group (G x G)/ΔG and e the unity of G (and in par-

ticular, Δ1 — Aγ). It follows that Δ{ f) Δj = 0 if i Φ j , and that for any i and j

there is an element (e, hiβ) ^ G x G such that (0, λ^M, = Δj. From (3.5.1) it

follows

(3.5.2) K(Y^Y/luxuΓi(ΔJ = Π, K(fTγ/Δ) s Π ΛΓθ^ΓTMy).

(The last product of (3.5.2) has d factors). On the other hand, by Theorem (1.4) we

have

(3.5.3) κ(YTτ/{uxurHΔγ)) s [κθΠrχ/Δχ) ®κ{xxx) κ(Y x y)]0.

By Corollary (3.1) we have A ' ( ί r x Ύ / 4 r ) = K(Y * Y), and therefore (3.5.2)

and (3.5.3) yield:

(3.5.4) K(X^X/Δχ) ®κ(XxX) K(Y x Y) = ΐlK(Y x Y) (d times).

Here we have used the fact that the total ring of fractions of a product of fields

coincides to that product itself. Finally, by Proposition (1.6), K(X x X/Δχ) is a

field, and hence by (3.5.4) one concludes the proof of Theorem (3.5). Q.E.D.
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EXAMPLE. If in Theorem (3.5) we take as F t h e Fermat's surface of equation

TQ + 7\ + T2 + T3 = 0 with the action of the multiplicative group G of roots of

1 order 5 (char(Λ) Φ 5) acting by

g(t0, tlf t2, t3) = (t0, gtu g2t2, g3t3), g e G,

then we get that the Godeaux surface X = X/G has the property that K(XX X)

is a field extension of degree 5 of K(X x X). In particular, Δx is G 2 (but not G3)

i n l X l

Appendix

In this appendix we give a proof of Theorem (1.3) of Grothendieck. Assume

first that X is irreducible of dimension n > r, and set P •= Proj(S) and Y '- =

f ~ \ V + ( t 1 9 . . . , t y ) ) . S i n c e P \ V + ( t l f . . . , t r ) = D + i t J U ••• U D + ( t r ) , f i s f i n i t e

and D+(tt) is affine, it follows that Jf\ F is the union of the affine open subsets

/ (D+(ti)), i' = 1, . . . , r. If Z is an algebraic variety, consider Hartshorne's

cohomological dimension cd(Z) of Z defined by cd(Z) '.= maxim > 0/Hm(Z, F)

Φ 0 for some coherent sheaf F G Coh(Z)}. It follows that cd(X\Y) <r~\

< n — 1 (resp. cd(X\ Y) < n — 2 if r < n — 1). Now, we have the following:

PROPOSITION (Hartshorne-Lichtenbaum). In the above situation, the inequqlity

cd(X\ Y) < n - 1 {resp. cd(X\ Y) < n - 2) implies YΦ 0 {resp. Y connected).

Proof. The variety X is projective because / is a finite morphism and P is

projective. The first assertion follows from the so-called Hartshorne-Lichtenbaum

theorem (see [11], [17], or [15]), asserting in this case that cά(X\ Y) = n if and

only if F = 0 . Assume therefore {X irreducible and) cd(X\ F) < n — 2, and F

disconnected, with Y = Yλ U F2, Fx, F2 non-empty closed subsets of F such that

Yγ Π F2 = 0 . Because Jf is projective of dimension n, there is an invertible sheaf

L on X such that Hn(X, L) Φ 0 (just take any sufficiently negative power of an

ample line bundle on X).

In the exact sequence

Hn

γμ, L) -+ H\X, L) - Hn(X\ Ylt L)

the last space is zero by Hartshorne-Lichtenbaum theorem because Y{ Φ 0 for

i = 1,2. It follows that hn

Yl(X, L) > hn(X, L) for i = 1,2. Moreover, Hγ(X, L)

= HγXXf L) ®Hγ2(Xt L), and hence, hn

γ(X, L) > 2hn(X, L).

On the other hand, in the exact sequence
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Hn~\X\ Y, L) — Hy(X9 L) — Hn(X\L) — Hn(X\ Y9 L)

the extreme spaces are zero by cdCXΛ Y) < n — 2 whence hn

γ(X, L) = hn(X, L),

contradicting the previous inequality because hn(X, L) > 1. Q.E.D.

Remark. Consider the Serre map of P = Proj(S)

a:S-+ Θ H°(P,ΘP(a))f

a>0

and for t{ e Sa., i = 1,. . ., r, set sf : = ait) e H°iP9 OPia)). Then for a point

p e P the following statement holds (even if S is not generated by S) : p ^

D+it) if and only if s ^ ) =£ 0. (Recall that s^/)) Φ 0 means that (s f)j ^

mp0Piat)p, where m̂ , is the maximal ideal of Θp). With this observation, the proof

of the above lemma yields in fact the following more general assertion. Assume

that for every i = 1, . . ., r we are given a finitely generated graded λ -algebra 5 ,

a homogeneous element t{ e (S ' ) + and a finite morphism f{: X—* Proj(S*). Set

si-=fi ia{itt)) (where a{ is the Serre map of Pt •= Proj(S*)). Then the zero

locus of the section ( s ^ . . . ^ ) of ®ιH (X,ft Wpidegit))) is (d — r)~

connected if X is d-connected and d ^ r.

Let us proceed now to the proof of Theorem (1.3). Let Xv..., Xm be the irre-

ducible components of X. Since X is d-connected, dimQQ > d 4- 1 for every i =

1, . . . , m. But by what we have proved before Y{ '-= Y Π X{ is connected (and

non-empty) for every i = 1, . . . , m, where, as above, Y •= / (F+ί^, . . . , ί r).

Since X is d-connected, by Proposition (1.2), we can reorder the components

Xl9. . ., Xm (possibly with repetitions) so that for every i = 2,. . ., m there is an

irreducible component Z{ of X^i Π X{ of dimension > d. Applying the first part

of the above lemma to Z{ we infer that Y{_x Π Z{ — Y{ Π Z{ = Y Π Z, is not emp-

ty. This implies that Y{_x Π Y{ Φ 0 for every i = 2, . . . , m. In particular, Y is

connected.

We prove now that Y is (d — r) -connected if X is d-connected. Let X c P

be an arbitrary projective embedding of X, and let A be a general linear subspace

of P of dimension N+ r — d. Because every irreducible of X is of dimension

> d + 1 and because Y is locally given by r equations in X, every irreducible

component Z of Y is of dimension > d + 1 — r. It follows that dim(Z Π A) =

dim(Z) + dim (A) ~ ΛΓ > (d + 1 - r) + C/V 4- r - d) - N = 1, and in particu-

lar, A meets every irreducible component of Y.

Set Y':= Y Π A. If A is defined by linear equations tr+ι = . . . td = 0 in P *

then F ' is just the zero locus of the section itr+1/X,. . ., td/X, slt.. ., sr) of the

sheaf (d - r ) ^ ( l ) ®f*WP(ar)) Θ ®f*WP(ar)), where for f = 1,. . . , r,



ALGEBRAIC BARTH—LEFSCHETZ THEOREMS 3 7

tt e Sat, s{ : = f*(a(ti))t and α : S — Θ , H°(P, ΘP(j)) is the Serre map of P =

Proj(S). By the above lemma and the remark following it, Yr is connected.

Now, assume that F i s not {d — r) -connected, i.e. there is a closed subscheme

W oί Y of dimension < d — r such that Y\ W is disconnected. Since A is general,

dimiW Π A) = dim(W) + dim (A) - N < (d - r) + (N + r - d) - N = 0, or

else, A does not meet W. Moreover, since A meets every irreducible component of

Y, from the fact that Y\ Wis disconnected, it follows that Yr = Y Π A = (Y\W)

Π A is also disconnected, a contradiction. Q.E.D.
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