A SEPARATION THEOREM IN DIMENSION 3

F. ACQUISTAPACE, F. BROGLIA AND E. FORTUNA*

Introduction

Let M be a compact non-singular real affine algebraic variety and let A, B be open disjoint semialgebraic subsets of M. Define $Z=\overline{\bar{A} \cap \bar{B}^{Z}}$ (where ${ }^{Z}$ denotes the Zariski closure).

The sets A, B are said generically separated if there exists a proper algebraic subset $X \subset M$ and a polynomial function $p \in \mathscr{P}(M)$ (or equivalently a regular function $p \in \mathscr{R}(M)$) such that $p(A-X)>0$ and $p(B-X)<0$.

The sets A, B are said separated if there exists $p \in \mathscr{P}(M)$ such that $p(A-Z)>0$ and $p(B-Z)<0$.

Very general results on the problem of polynomial separation for semialgebraic sets are known, for instance Bröcker (cf. [Br 1$],[\mathrm{Br} 2]$) solves the problem of the separation of constructible sets in a space of orderings. A detailed exposition of this subject can be found in [AnBrRz], where, in particular, general criterions for the separation of closed semialgebraic sets are given, by applying powerful tools of real algebra and quadratic forms theory.

We are interested in finding a finite number of geometric conditions equivalent to the separation of two open semialgebraic sets going towards an algorithmic solution of the problem. In this article we consider the case of a compact non-singular algebraic variety M of dimension 3 .

The paper is structured as follows. Section 1 contains some general separation results for compact semialgebraic subsets of \mathbf{R}^{n}. Geometric obstructions to separation are found in Section 2, but the proof that this finite set of conditions is equivalent to the separation is postponed to Section 4. In Section 3 we discuss the relations between separation and generic separation in dimension 3: if A and B can be separated outside X, then they can be separated outside a set W which is

[^0]"the best possible", in the sense that any polynomial function generically separating A from B must vanish on W. Finally in Section 5 we give a criterion of separation working essentially when the Zariski boundaries of the sets A and B have only non-singular normal crossings components. So, up to desingularization, this criterion reduces the separation problem in dimension 3 to a separation problem on the Zariski boundaries of the sets, hence to a finite number of tests, It is a first step to prove the "decidability" of this problem.

1. A separation tool

Recall the following result which makes it possible to pass from local to global separation; it can be found in $[F]$.

Proposition 1.1. Let F, G be compact semialgebraic subsets of \mathbf{R}^{n} such that $F \cap G=\{O\}$. Assume there exist a neighbourhood U of O and a polynomial function p such that

$$
p(F \cap U-\{O\})>0 \text { and } p(G \cap U-\{O\})<0 .
$$

Then F and G can be separated.

As a consequence we have:
Proposition 1.2. Let F, G be compact semialgebraic subsets of $\mathbf{R}^{n}, \stackrel{\circ}{F} \cap \stackrel{\circ}{G}=$ \emptyset and let X be an algebraic subset of \mathbf{R}^{n} such that $F \cap G \subseteq X$. Assume there exist a neighbourhood U of X and a polynomial function p such that

$$
p(F \cap U-X)>0 \quad \text { and } \quad p(G \cap U-X)<0
$$

Then there exists a polynomial function q such that

$$
q(F-X)>0 \quad \text { and } \quad q(G-X)<0
$$

Proof. Let $\pi: \mathbf{R}^{n} \rightarrow N$ be the topological contraction of X to a point, say O. It is known (see [BoCRy]) that N admits an affine algebraic structure such that π becomes a regular function and $\left.\pi\right|_{\mathbf{R}^{n}-X}: \mathbf{R}^{n}-X \rightarrow N-\{O\}$ a biregular isomorphism. The sets $\pi(F)$ and $\pi(G)$ are compact semialgebraic sets and $\pi(F) \cap \pi(G)=$ $\{O\}$, since $F \cap G \subseteq X$. The function $p \circ\left(\left.\pi\right|_{\mathbf{R}^{n}-X}\right)^{-1}: N-\{O\} \rightarrow \mathbf{R}$ is regular, so it can be written as $\frac{\varphi}{\psi}$, with $\varphi, \psi \in \mathscr{P}(N), \psi$ never vanishing on $N-\{O\}$.

Then $\varphi \cdot \psi$ is a polynomial function on N which separates $\pi(F)$ from $\pi(G)$ in the neighbourhood $\pi(U)$ of O.
N is affine, say $N \subset \mathbf{R}^{m} ; \varphi \cdot \psi$ is the restriction of a polynomial function q which verifies the hypothesis of Proposition 1.1. Hence there exists $f \in \mathscr{P}(N)$ such that

$$
f(\pi(F)-\{O\})>0 \text { and } f(\pi(G)-\{O\})<0
$$

Then $f \circ \pi$ is a regular function separating F from G outside X. If $f \circ \pi=\frac{q_{1}}{q_{2}}$, with $q_{1}, q_{2} \in \mathscr{P}\left(\mathbf{R}^{n}\right)$, then $q_{1} \cdot q_{2}$ is the polynomial function we looked for.

Proposition 1.3. Let F, G be compact semialgebraic subsets of $\mathbf{R}^{n}, \stackrel{\circ}{F} \cap \stackrel{\circ}{G}=$ \emptyset and let $X \subset \mathbf{R}^{n}$ be an algebraic set such that $F \cap G \subseteq X$. Denote by X_{1}, \ldots, X_{r} the irreducible components of X and assume that, for each $i \in\{1, \ldots, r\}$, there exist a neighbourhood U_{i} of X_{i} and a polynomial function p_{1} such that

$$
p_{1}\left(F \cap U_{i}-X\right)>0 \quad \text { and } \quad p_{1}\left(G \cap U_{1}-X\right)<0
$$

Then there exists $q \in \mathscr{P}\left(\mathbf{R}^{n}\right)$ that X-separates F from G, meaning by this that

$$
q(F-X)>0 \quad \text { and } \quad q(G-X)<0
$$

Proof. By Proposition 1.2, it is enough to prove that there exist a neighbourhood U of X and $p \in \mathscr{P}\left(\mathbf{R}^{n}\right)$ such that $p(F \cap U-X)>0$ and $p(G \cap U-X)$ <0.

This result will be achieved in some steps.
Define $X^{1}=U_{i \neq j}\left(X_{i} \cap X_{j}\right)$.
Step 1. Construction of a polynomial function X-separating F from G in a neighbourhood W of $X-X^{1}$.

For each $i \in\{1, \ldots, r\}$, let f_{l} be a positive equation of X_{i} (i.e. $f_{i} \geq 0$ on \mathbf{R}^{n}, $\left.V\left(f_{i}\right)=X_{i}\right)$. Up to shrink it, we can assume that U_{i} is a closed semialgebraic set. For each i, on $(F \cup G) \cap U_{i}$ the zero-set $V\left(p_{i}\right)$ is contained in X, which is the zero-set of $f_{1} \cdot \ldots \cdot f_{r}$. By Lojasiewicz inequality there exists an integer n_{i} such that the rational function $\frac{\left(f_{1} \cdot \ldots \cdot f_{r}\right)^{n_{i}}}{p_{i}}$, extended to 0 on $V\left(p_{t}\right) \cap(F \cup G) \cap U_{t}$, is continuous on $(F \cup G) \cap U_{i}$. Take $m>n_{t}$, for each $i \in\{1, \ldots, r\}$. Then the function $\frac{\left(f_{1} \cdot \ldots \cdot f_{r}\right)^{m}}{p_{i}}$ is continuous and vanishes on $X \cap U_{i}$. We want to prove
that the polynomial function

$$
P_{m}=f_{1}^{m} \cdot \ldots \cdot f_{r}^{m} \cdot\left(\sum_{t=1}^{r} \frac{p_{2}}{f_{t}^{m}}\right)
$$

X-separates F from G in a suitable neighbourhood W of $X-X^{1}$.
In fact, take $x_{0} \in X_{i}-X^{1}$. Since $\frac{\left(f_{1} \cdot \ldots \cdot f_{r}\right)^{m}}{p_{i}}\left(x_{0}\right)=0$ and for all $j \neq i$ $f_{i}\left(x_{0}\right) \neq 0$, then $\lim _{x \rightarrow x_{0}} \frac{\left|p_{i}(x)\right|}{f_{i}^{m}(x)}=+\infty$. On the contrary $\sum_{j \neq i} \frac{p_{j}}{f_{j}^{m}}$ is bounded locally at x_{0}. So there exists a neighbourhood $U\left(x_{0}\right)$ of x_{0} such that, on $U\left(x_{0}\right), P_{m}$ has the same sign as p_{i}. If we take $W_{t}=U_{x_{0} \in X_{i}-X^{1}} U\left(x_{0}\right)$, which is a neighbourhood of $X_{i}-X^{1}$, we have that P_{m} has the same sign as p_{i} on W_{i}; so $P_{m} X$-separates F from G in W_{i}. It is then enough to take $W=\cup_{i=1}^{r} W_{i}$.

Step 2. Proof of the statement in the case $\operatorname{dim} X^{1}=0$.
In this case X^{1} is a finite set of points $\left\{Q_{1}, \ldots, Q_{r(1)}\right\}$ and, for each $j=1, \ldots$, $r(1)$, there exist a bounded neighbourhood V_{j} of Q_{j} and a polynomial function $q_{j} X$-separating $F \cap V_{j}$ from $G \cap V_{j}$; of course, we can suppose the neighbourhoods V_{j} pairwise disjoint. Moreover, by Step 1, we have a neighbourhood W of X $-\left\{Q_{1}, \ldots, Q_{r(1)}\right\}$ and $p \in \mathscr{P}\left(\mathbf{R}^{n}\right)$ that X-separates $F \cap W$ from $G \cap W$.

By suitable manipulations of p and q_{j} 's, we will iteratively find a neighbourhood W_{j} of $X-\left\{Q_{j+1}, \ldots, Q_{r(1)}\right\}$ and $p^{j} \in \mathscr{P}\left(\mathbf{R}^{n}\right) X$-separating $F \cap W_{j}$ from $G \cap W_{ر}$. Then $p^{\gamma(1)}$ will X-separate F from G in a neighbourhood of X.

Take $j=1$; let f be a positive equation of X and r_{1} a positive equation of Q_{1} such that $\left\{r_{1} \leq 1\right\} \subseteq V_{1}$. Define $\bar{q}_{1}=\sup _{(F \cup G) \cap\left(\bar{W}-V_{1}\right)}\left|q_{1}\right|$. Up to shrink W a little, we have that on $(F \cup G) \cap\left(\bar{W}-V_{1}\right)$

$$
V\left(\frac{p r_{1}}{\bar{q}_{1}}\right) \subseteq V(f)
$$

So by Lojasiewicz inequality there exists an integer n such that, by taking a sufficiently small neighbourhood W_{0} of $X-\left\{Q_{1}, \ldots, Q_{r(1)}\right\}$ one has

$$
f^{n} \leq \frac{r_{1}}{\bar{q}_{1}}|p| \quad \text { on } \quad(F \cup G) \cap\left(\bar{W}_{0}-V_{1}\right),
$$

and therefore, for any $m \in \mathbf{N}$,

$$
\left|q_{1}\right| f^{n} \leq r_{1}|p| \leq r_{1}^{m}|p| \quad \text { on } \quad(F \cup G) \cap\left(\bar{W}_{0}-V_{1}\right)
$$

Then, for any positive integer m, the polynomial function $r_{1}^{m} p+f^{n} q_{1}$ has the same
sign as p on $(F \cup G) \cap\left(\bar{W}_{0}-V_{1}\right)$.
Now consider the set $(F \cup G) \cap\left(\bar{V}_{1}-W_{0}\right)$, on which $V\left(\frac{f^{n} q_{1}}{\bar{p}}\right) \subseteq V\left(r_{1}\right)$, where $\bar{p}=\sup _{(F \cup G) \cap\left(\overline{V_{1}}-W_{0}\right)}|p|$. So there exists $m \in \mathbf{N}$ (depending on n) such that, by taking a sufficiently small neighbourhood V_{1}^{\prime} of Q_{1}, on $(F \cup G) \cap\left(\overline{V_{1}^{\prime}}-W_{0}\right)$ we have $r_{1}^{m} \leq \frac{f^{n}}{\bar{p}}\left|q_{1}\right|$, and therefore $r_{1}^{m}|p| \leq f^{n}\left|q_{1}\right|$. Hence $p^{1}=r_{1}^{m} p+f^{n} q_{1}$ has the same sign as q_{1} on $\overline{V_{1}^{\prime}}-W_{0}$. Since p^{1} clearly X-separates F and G on $V_{1} \cap W$, then it X-separates F and G in $\left(\bar{W}_{0}-V_{1}\right) \cup\left(\overline{V_{1}^{\prime}}-W_{0}\right) \cup\left(V_{1} \cap W\right)$, which is a neighbourhood of $X-\left\{Q_{2}, \ldots, Q_{r}\right\}$.

By the same argument we can find the polynomials $p^{2}, \ldots, p^{\gamma(1)}$ as planned above.

Step 3. Proof of the Proposition in the general case.
Consider the decreasing sequence of algebraic sets

$$
X \supset X^{1} \supset X^{2} \supset \cdots \supset X^{s}
$$

where $X=X_{1} \cup X_{2} \cup \cdots \cup X_{r}, X^{1}=\cup_{i \neq j}\left(X_{i} \cap X_{j}\right)$ and recursively if $X_{1}^{\beta} \cup$ $\cdots \cup X_{\gamma(\beta)}^{\beta}$ is the decomposition into irreducible components of $X^{\beta}, X^{\beta+1}=\cup_{i \neq j}$ $\left(X_{i}^{\beta} \cap X_{j}^{\beta}\right)$.

Clearly $\operatorname{dim} X^{\beta}<\operatorname{dim} X^{\alpha}$ if $\beta>\alpha$, so we can assume $X^{s} \neq \varnothing$ and $X^{s+1}=$ \emptyset. We will recursively find neighbourhoods W^{β} of $X-X^{\beta+1}$ and polynomial functions p_{β} such that $p_{\beta}\left(F \cap W^{\beta}-X\right)>0$ and $p_{\beta}\left(F \cap W^{\beta}-X\right)<0$. Clearly p_{s} will X-separate F from G in a neighbourhood of X and the thesis will be a consequence of Proposition 1.2.

By Step 1 , we know that F and G are X-separated by $p \in \mathscr{P}\left(\mathbf{R}^{n}\right)$ in a neighbourhood W of $X-X^{1}$.

From the hypothesis, it follows that for each $j \in\{1, \ldots, r(1)\}$ there exist a neighbourhood V_{j} of X_{j}^{1} and $q_{j} \in \mathscr{P}\left(\mathbf{R}^{n}\right)$ such that $q_{j}(F \cap V,-X)>0$ and $q_{j}\left(G \cap V_{j}-X\right)<0$. Let f be a positive equation of X and r_{1} a positive equation of X_{1}^{1} such that $\left\{r_{1} \leq 1\right\} \subseteq V_{1}$.

Define $\bar{q}_{1}=\sup _{(F \cup G) \cap\left(\bar{W}-V_{1}\right)}\left|q_{1}\right|$. By the same argument used in Step 2, there exists $n \in \mathbf{N}$ such that, for any $m \in \mathbf{N}, f^{n} q_{1}+r_{1}^{m} p$ has the same sign as p on $(F \cup G) \cap\left(\bar{W}_{0}-V_{1}\right)$, where W_{0} is a sufficiently small neighbourhood of $X-$ X^{1}.

Consider now a neighbourhood V_{1}^{\prime} of $X_{1}^{1}-X^{2}, V_{1}^{\prime} \subset V_{1}$ and such that $V_{1}^{\prime} \cap$ $X_{j}^{1}=\emptyset$ for each $j \neq 1$. On $(F \cup G) \cap\left(\overline{V_{1}^{\prime}}-W_{0}\right)$ we have that $V\left(\frac{f^{n} q_{1}}{\bar{p}}\right) \subseteq$
$V\left(r_{1}\right)$, where $\overline{\bar{p}}=\sup _{(F \cup G) \cap\left(\overline{V_{1}^{\prime}}-W_{0}\right)}|p|$.
So there exists m (depending on n) such that, possibly after shrinking V_{1}^{\prime}, on $(F \cup G) \cap\left(\overline{V_{1}^{\prime}}-W_{0}\right)$ we have $r_{1}^{m} \leq \frac{f^{n}\left|q_{1}\right|}{\bar{p}}$, and therefore $r_{1}^{m}|p| \leq f^{n}\left|q_{1}\right|$.

So $p^{1}=r_{1}^{m} p+f^{n} q_{1} X$-separates F from G in $\overline{V_{1}^{\prime}}-W_{0}$. Since p and q_{1} have the same sign on $(F \cup G) \cap\left(W_{0}-V_{1}\right)$, we get that $p^{1} X$-separates F from G in a neighbourhood W_{1} of $\left(X-X^{1}\right) \cup\left(X_{1}^{1}-X^{2}\right)$.

We can repeat the above argument replacing W by W_{1}, X_{1}^{1} by X_{2}^{1}, V_{1} by V_{2} and q_{1} by q_{2}. So we find a neighbourhood W_{2} of $\left(X-X^{1}\right) \cup\left(X_{1}^{1} \cup X_{2}^{1}-X^{2}\right)$ and a polynomial function p^{2} which X-separates $F \cap W_{2}$ from $G \cap W_{2}$.

Repeating this procedure, eventually we find a neighbourhood W^{1} of $X-X^{2}$ and $p_{1} \in \mathscr{P}\left(\mathbf{R}^{n}\right)$ such that $p_{1}\left(F \cap W^{1}-X\right)>0$ and $p_{1}\left(G \cap W^{1}-X\right)<0$.

By iterating this argument, we construct successively the polynomials p_{2}, \ldots, p_{s} as described above.

2. Obstructions

Let M be a compact, non-singular, real affine algebraic variety, $\operatorname{dim} M=3$, and let A, B be open disjoint semialgebraic subsets of M.

We will denote by Y the algebraic set $\overline{\partial A}^{Z} \cup \overline{\partial B}^{Z}$, by Y_{1}, \ldots, Y_{k} the irreducible components of Y of dimension 2 and by Z the set $\overline{\bar{A} \cap \bar{B}^{Z}}$.

Definition 2.1.
a) We say that $p \in \mathscr{R}(M)$ changes its sign at $x \in M$ if, for every neighbourhood V of x, there exist $y_{1}, y_{2} \in V$ such that $p\left(y_{1}\right) p\left(y_{2}\right)<0$.
b) Let $X \subset M$ be a 2-dimensional algebraic set and let $p \in \mathscr{R}(M)$. We say that p changes its sign across X if it changes its sign at any point $x \in X$ such that $\operatorname{dim} X_{x}=2$.

Definition 2.2. We say that an irreducible component Y_{\imath} of $Y, i \in\{1, \ldots, k\}$, is odd (resp. even) if there exists an open set $\Omega \subseteq M$ such that $\operatorname{dim}\left(Y_{\imath} \cap \Omega\right)=2$, $A \cap \Omega$ and $B \cap \Omega$ can be generically separated and every $p \in \mathscr{R}(M)$ generically separating them changes (resp. does not change) its sign across Y_{i}. An irreducible component Y_{i} of Y will be called a 2-obstruction if it is both odd and even.

Fig. 1. An example of a 2 -obstruction
Remark 2.3. In Definition 2.2 we can suppose that $\mathcal{G}\left(Y_{i}\right) \mathscr{R}(\Omega)$ is a principal ideal, since this is true on a suitable Zariski open set $M-X$. Let g be a generator. Then if Y_{\imath} is odd (resp. even), any regular function p generically separating $A \cap \Omega$ from $B \cap \Omega$ can be written as $p=g^{m} q$, with $q \notin \mathscr{g}\left(Y_{i}\right) \mathscr{R}(\Omega)$, and m odd (resp. even, possibly zero). It is also clear that the parity of m does not depend on the choice of the Zariski open set and of the generator.

Notation 2.4. Let A and B be open semialgebraic sets and g be a regular function on M. Denote by A_{g} and B_{g} the sets

$$
\begin{aligned}
& A_{g}=(A \cap\{g>0\}) \cup(B \cap\{g<0\}) \\
& B_{g}=(A \cap\{g<0\}) \cup(B \cap\{g>0\})
\end{aligned}
$$

Lemma 2.5. Let g be a regular function on M such that

- for any $\alpha \in\{1, \ldots, r\}, g \in \mathscr{G}\left(Y_{\alpha}\right)$ and g changes its sign across Y_{α}
- for any $\alpha \in\{r+1, \ldots, k\}, g \notin \mathscr{G}\left(Y_{\alpha}\right)$.

Then

- for any $\alpha \in\{1, \ldots, r\}, Y_{\alpha}$ is odd (resp. even) with respect to $A, B \Leftrightarrow Y_{\alpha}$ is even (resp. odd) with respect to A_{g}, B_{g}
- for any $\alpha \in\{r+1, \ldots, k\}, Y_{\alpha}$ is odd (resp. even) with respect to $A, B \Leftrightarrow Y_{\alpha}$ is odd (resp. even) with respect to A_{g}, B_{g}.

Proof. If $p \in \mathscr{R}(M)$ generically separates $A \cap \Omega$ from $B \cap \Omega$, that is

$$
p(A \cap \Omega-X)>0 \quad \text { and } \quad p(B \cap \Omega-X)<0
$$

then

$$
p g\left(A_{g} \cap \Omega-X\right)>0 \quad \text { and } \quad p g\left(B_{g} \cap \Omega-X\right)<0,
$$

i.e. $p g$ generically separates $A_{g} \cap \Omega$ from $B_{g} \cap \Omega$.

Moreover, for any p^{\prime} generically separating $A_{g} \cap \Omega$ from $B_{g} \cap \Omega$, we have

$$
p^{\prime}\left(A_{g} \cap \Omega-X\right)>0 \quad \text { and } \quad p^{\prime}\left(B_{g} \cap \Omega-X\right)<0
$$

then

$$
p^{\prime} g(A \cap \Omega-(X \cup V(g)))>0 \quad \text { and } \quad p^{\prime} g(B \cap \Omega-(X \cup V(g)))<0
$$

Hence $p^{\prime} g$ generically separates $A \cap \Omega$ from $B \cap \Omega$.
Assume, for instance, Y_{\imath} is odd with respect to A, B. Then, for any p^{\prime} generically separating $A_{g} \cap \Omega$ from $B_{g} \cap \Omega, p^{\prime} g$ changes its sign across Y_{i}.

Since by hypothesis g changes its sign across Y_{1}, \ldots, Y_{r} and does not change it across Y_{r+1}, \ldots, Y_{k}, then:
if $i \in\{1, \ldots, r\}, p^{\prime}$ does not change its sign across Y_{\imath}, i.e. Y_{\imath} is even with respect to A_{g}, B_{g}.
if $i \in\{r+1, \ldots, k\}, p^{\prime}$ changes its sign across Y_{i}, i.e. Y_{i} is even with respect to A_{g}, B_{g}. Arguing in the same way, one easily complete the proof.

Notation 2.6. We will denote by Y^{c} the union of the odd components of Y (with respect to A, B).

Since any regular function separating A from B must vanish on Y^{c}, if $Y^{\mathrm{c}} \cap$ ($A \cup B$) is not contained in Z, evidently A and B cannot be separated in the sense of the classical definition.

Now we can state a result which will be proved in Section 4.

Theorem 2.7. Let M be a compact, non-singular, real affine algebraic variety, $\operatorname{dim}^{Z} M=3$, and let A, B be open disjoint semialgebraic subsets of M. Define $Y=$
$\overline{\partial B}^{Z}$ and $Z=\overline{\bar{A} \cap \bar{B}^{Z}}$.

Then A and B can be separated if and only if the following conditions hold:

1) No 2-dimensional irreducible component Y_{\imath} of $Y, i \in\{1, \ldots, k\}$, is a 2-obstruction.
2) For every $T_{\jmath}, j \in\{1, \ldots, s\}$, irreducible component of Sing Y, there exists an open semialgebraic neighbourhood U_{j} of T, such that $A \cap U_{j}$ and $B \cap U_{\text {, can }}$ be separated.
3) $Y^{c} \cap(A \cup B) \subseteq Z$.

Examples 2.8. In the example in Fig. 2 condition 2) fails; in the example in Fig. 3 (taken from $[\operatorname{Br} 1]$) neither condition 1) nor condition 2) are verified.

Fig. 2

Fig. 3

Fig. 4

In the example in Fig. 4 condition 3) fails, because Y^{c} is the whole Whitney umbrella while Z is a 1 -dimensional algebraic subset of Y^{c} not containing the stick of the umbrella.

Remark 2.9. If there are no 2-obstructions, then $\operatorname{dim} Y^{c} \cap(A \cup B) \leq 1$, therefore Y^{c} can intersect $A \cup B$ only with its "tails". For instance, if Y is a union of non-singular irreducible components and condition 1) holds, then $Y^{c} \cap$ $(A \cup B)=\emptyset$.

3. Separation and generic separation in dimension 3

First, let us recall two results we shall use later on.

Theorem 3.1 (Bröcker-Lojasiewicz, [BoCRy] 7.7.10). Let S be a closed semialgebraic subset of a real algebraic variety V and let f, g be regular functions on V. Then there exists a non-negative regular function ε such that:
$-(f+\varepsilon g)(x)$ has the same sign as $f(x)$, for any $x \in S$
$-V(\varepsilon) \subseteq{\overline{V(f)} \cap S^{z}}^{z}$
Theorem 3.2 (Ruiz, $[\mathrm{Rz}]$). Let U be a 1-dimensional open semialgebraic subset of a real algebraic variety V. Then there exists $h \in \mathscr{P}(V)$ such that:

$$
U=\{x \in V \mid h(x)>0\} \text { and } \bar{U}=\{x \in V \mid h(x) \geq 0\}
$$

It is well known that generic separation and separation are equivalent in dimension 2 (as one can prove using Theorems 3.1 and 3.2): Fig. 4 shows this is not true in dimension 3.

As we remarked before, any regular function generically separating A from B must vanish on $Y^{c} \cup Z$. In this section we will prove that this "lower bound" for $V(f) \cap(\bar{A} \cup \bar{B})$ can always be attained:

Theorem 3.3. If A and B can be generically separated, then there exists $f \in$ $\mathscr{R}(M)$ such that

$$
\begin{gathered}
f\left(A-\left(Z \cup Y^{c}\right)\right)>0, f\left(B-\left(Z \cup Y^{c}\right)\right)<0 \text { and } \\
V(f) \cap(\bar{A} \cup \bar{B})=\left(Z \cup Y^{c}\right) \cap(\bar{A} \cup \bar{B}) .
\end{gathered}
$$

Proof. By hypothesis, there exist an algebraic subset X of $M, \operatorname{dim} X \leq 2$, and $p \in \mathscr{R}(M)$ such that $p(A-X)>0$ and $p(B-X)<0$. Clearly we can assume $X=\overline{X \cap(A \cup B)}{ }^{z}$; in particular no irreducible 2-dimensional component of X lies in Y^{c}.

Let X^{\prime} denote the union of the irreducible components of X of dimension 2. Since p does not change its sign across any component of $X^{\prime}, p \in \mathscr{g}\left(X^{\prime}\right)^{2}$ (for a proof see $[\mathrm{AcBg}]$). So we can write $p=g^{k} p^{\prime}$, where g is a generator of $\mathscr{g}\left(X^{\prime}\right)^{2}, p^{\prime}$ $\in \mathscr{R}(M)$ and $p^{\prime} \notin \mathscr{G}\left(X^{\prime}\right)^{2}$. The function p^{\prime} does not change its sign across X^{\prime}, so $p^{\prime} \notin \mathscr{G}\left(X^{\prime}\right)$, i.e. $\left.p^{\prime}\right|_{X^{\prime}} \not \equiv 0$. Then, up to replace p by p^{\prime}, we can suppose $\operatorname{dim} X \leq 1$.

Consider now all the 2-dimensional irreducible components of Y, say Y_{1}, \ldots, Y_{l}, which do not lie in Y^{c} and on which p identically vanishes (after the first reduction we have made, such components can intersect $A \cup B$ only in dimension 1). For any $\alpha \in\{1, \ldots, l\}$, since A and B can be generically separated and Y_{α} is not odd, there exists $q_{\alpha} \in \mathscr{R}(M)$ generically separating A from B which does not change its sign across Y_{α}. We can suppose that q_{α} does not vanish on Y_{α}; in fact
if $q_{\alpha \mid Y_{\alpha}} \equiv 0$, then $q_{\alpha} \in \mathscr{G}\left(Y_{\alpha}\right)^{2}$, which enables us to use the same factorization argument as above.

Then the regular function $\sum_{\alpha=1}^{l} q_{\alpha}$ separates $A-\cap_{\alpha=1}^{l} V\left(q_{\alpha}\right)$ from $B-\cap_{\alpha=1}^{l} V\left(q_{\alpha}\right)$ and does not vanish identically on $Y_{1} \cup \cdots \cup Y_{l}$. Hence $p+$ $\sum_{\alpha=1}^{l} q_{\alpha}$ separates $A-X$ from $B-X$ and does not vanish identically on $Y_{1} \cup \cdots \cup$ Y_{l}. Therefore, up to replace p by $p+\sum_{\alpha=1}^{l} q_{\alpha}$, we can assume that $V(p) \cap$ $(\bar{A} \cup \bar{B})-\left(Z \cup Y^{c}\right) \leq 1$.

Consider now the semialgebraic set

$$
L=V(p) \cap \bar{A}-\left(Z \cup Y^{c}\right)
$$

We know that $\operatorname{dim} L \leq 1$, so assume first that $\operatorname{dim} L=1$. Then there exists a finite set $\Gamma \subset L$ such that $L-\Gamma$ is open in \bar{L}^{Z}. By Theorem 3.2, we can find $h \in$ $\mathscr{P}(M)$ such that

$$
L-\Gamma=\left\{x \in \bar{L}^{Z} \mid h(x)>0\right\} \quad \text { and } \quad \overline{L-\Gamma}=\left\{x \in \bar{L}^{Z} \mid h(x) \geq 0\right\}
$$

In particular, h is strictly negative on $V(p) \cap \bar{B}-\left(Z \cup Y^{c}\right)$, because $\overline{L-\Gamma} \subset$ \bar{A} and $\bar{A} \cap \bar{B} \subseteq Z$.

Consider the closed semialgebraic set

$$
S=(\bar{A} \cap\{h \leq 0\}) \cup(\bar{B} \cap\{h \geq 0\})
$$

and apply Theorem 3.1 to p, h and S. We get $\varepsilon \in \mathscr{R}(M), \varepsilon \geq 0$, such that $\varphi=p$ $+\varepsilon h$ has the same sign as p on S and $V(\varepsilon) \subseteq \overline{V(p) \cap S}^{2}$. In particular $\varphi(\bar{A}) \geq 0$ and $\varphi(\bar{B}) \leq 0$. Moreover,

$$
V(\varphi) \cap(\bar{A} \cup \bar{B})=(V(\varphi) \cap S) \cup(V(\varphi) \cap(\bar{A} \cup \bar{B})-S) ;
$$

but

$$
\begin{gathered}
V(\varphi) \cap S=V(p) \cap S=(V(p) \cap \bar{A} \cup\{h \leq 0\}) \cup(V(p) \cap \bar{B} \cap\{h \geq 0\}) \\
\subseteq \Gamma \cup Z \cup Y^{c}
\end{gathered}
$$

and

$$
V(\varphi) \cap(\bar{A} \cup \bar{B})-S \subseteq V(\varepsilon) \subseteq \overline{V(p) \cap S}^{Z} \subseteq \Gamma \cup Z \cup Y^{c}
$$

So

$$
V(\varphi) \cap(\bar{A} \cup \bar{B}) \subseteq \Gamma \cup Z \cup Y^{c}
$$

In order to remove the 0 -dimensional set Γ, it is enough to apply two more times Theorem 3.1: the first time to the functions φ and 1 with respect to \bar{B} to obtain a function ψ which does not vanish any more on the points of $\Gamma \cap(\bar{A}-\bar{B})$; the
second time to ψ and -1 with respect to \bar{A} to obtain a function f such that

$$
V(f) \cap(\bar{A} \cup \bar{B}) \subseteq Z \cup Y^{c}
$$

The last argument can be used also when $\operatorname{dim} L=0$.

Remark 3.4. The irreducible components of Y of dimension ≤ 1 have no influence on the possibility of separating A from B. To see this, denote their union by H and consider the sets $A^{\prime}=\widehat{A \cup H}$ and $B^{\prime}=\widehat{B \cup H}$. We easily see that $Z^{\prime}=Z, Y=Y^{\prime} \cup H$ and all the irreducible components of Y^{\prime} have dimension 2. Remark that A and B can be separated if and only if A^{\prime} and B^{\prime} can be separated. In fact one implication is obvious since $A \subseteq A^{\prime}$ and $B \subseteq B^{\prime}$; conversely if A and B are separated by p, then p separates $A^{\prime}-H$ from $B^{\prime}-H$, so by Theorem 3.3 A^{\prime} and B^{\prime} can be separated outside $Z \cup Y^{c}$. This is the reason why in Theorem 2.7, in order to obtain the separation of A from B, it is enough to impose some conditions only on Sing Y and the 2 -dimensional components of Y, without assuming anything on the lower dimensional ones.

Corollary 3.5. If A and B can be generically separated and $Y^{c} \cap(A \cup B) \subseteq$ Z, then A and B can be separated. Moreover there exists f separating A from B and such that $V(f) \cap(\bar{A} \cup \bar{B})=\left(Z \cup Y^{c}\right) \cap(\bar{A} \cup \bar{B})$.

Proof. It follows immediately from Theorem 3.3.

Theorem 3.3 assures that A and B can be generically separated if and only if the sets $\hat{A}=A-Y^{c}$ and $\hat{B}=B-Y^{c}$ can be separated. If we consider the sets \hat{Y} and \hat{Z} defined in an evident way with respect to \bar{A} and \hat{B}, it is easy to see that $\hat{Y}=Y$ and $\hat{Z}=Z$. If we use Theorems 2.7 and 3.3 as a consequence we get:

Corollary 3.6. A and B can be generically separated if and only if the following conditions hold:

1) No 2-dimensional irreducible component Y_{\imath} of $Y, i \in\{1, \ldots, k\}$, is a 2-obstruction.
2) For every $T_{,}, j \in\{1, \ldots, s\}$, irreducible component of Sing Y, there exists an open semialgebraic neighbourhood U, of T, such that $A \cap U$, and $B \cap U_{j}$ can be generically separated.

4. Proof of Theorem 2.7

If A and B can be separated, then obviously conditions 1), 2), 3) hold.
Conversely, assume that conditions 1), 2), 3) hold; the proof that A and B can be separated will be achieved in some steps.

Step 1. We can assume that Y has only non-singular, normal crossings irreducible components.

Let $\pi: \tilde{M} \rightarrow M$ be a desingularization of $Y \subset M$. This means that, if we denote by $Y_{1}^{\prime}, \ldots, Y_{l}^{\prime}$ the strict transforms of all the irreducible components Y_{1}, \ldots, Y_{l} of Y, we have that:
a) $Y_{1}^{\prime}, \ldots, Y_{l}^{\prime}$ are non-singular and pairwise disjoint,
b) $E=\pi^{-1}$ (Sing Y) has non-singular irreducible components and $E \cup Y_{1}^{\prime} \cup$ $\ldots \cup Y_{l}^{\prime}$ has only normal crossings,
c) π is surjective and induces a biregular isomorphism between $\tilde{M}-E$ and $M-$ Sing Y.
Define $\tilde{A}=\pi^{-1}(A), \tilde{B}=\pi^{-1}(B)$ and $\tilde{Y}=\overline{\partial \tilde{A}}^{Z} \cup \overline{\partial \tilde{B}}^{Z}$. It is clear that $\tilde{Y} \subseteq$ $\pi^{-1}(Y)=E \cup Y_{1}^{\prime} \cup \ldots \cup Y_{l}^{\prime}$.

Let us see that \tilde{A} and \tilde{B} verify conditions 1), 2), 3).
In fact, the algebraic set \tilde{Y} is contained in $E \cup Y^{\prime}$, where Y^{\prime} is the strict transform of Y. So an irreducible component X of \tilde{Y} is either the strict transform of a component Y_{\imath} of Y, or a component of the exceptional divisor.

In the first case, if X has dimension 2, it cannot be a 2 -obstruction for the separation of \tilde{A} and \tilde{B} since Y_{\imath} is not a 2 -obstruction and π is a biregular isomorphism outside E.

In the second one, $\pi(X) \subseteq$ Sing Y has dimension 1 or 0 . So, by condition 2), there exists a polynomial function p separating A and B in a neighbourhood of $\pi(X)$. Hence $p \circ \pi$ separates \tilde{A} and \tilde{B} in a neighbourhood of X.

For the same reason no irreducible component of Sing \tilde{Y} can be an obstruc. tion, because it lies in at least one component of E. So \tilde{A} and \tilde{B} verify 1) and 2).

Moreover, since \tilde{Y} has non-singular irreducible components, 3) is automatically verified (see Remark 2.9).

Now suppose \tilde{A} and \tilde{B} can be separated: then, by composition with π^{-1} (where defined), we get that A and B are generically separated, so applying Corollary 3.5 they can be separated.

Let X^{\prime} be an algebraic subset of M such that $\left[Y^{c} \cup X^{\prime}\right]=0$ in $H_{2}\left(M, \mathbf{Z}_{2}\right)$. Being Y^{c} a union of non-singular components, we can assume that X^{\prime} is
transversal to each irreducible component of Y^{c} and of Sing Y (see for instance [BoCRy], chap. 12).

Since $\overline{(\operatorname{Sing} Y)-Y^{c}}{ }^{Z} \cap Y^{c}$ is a discrete set of points, we can further choose X^{\prime} not passing through such points. So, if we denote $\Gamma=Y^{c} \cap X^{\prime}$, we can assume that $\operatorname{dim} \Gamma \leq 1, \operatorname{dim}(\Gamma \cap \operatorname{Sing} Y) \leq 0$ and $\Gamma \cap \overline{(\operatorname{Sing} Y)-Y^{c}}=\emptyset$.

Similarily there exists an algebraic subset $X^{\prime \prime}$ of M such that $\left[Y^{c} \cup X^{\prime \prime}\right]=$ 0 , transversal to each irreducible component of Y^{c} and of Sing Y, and "avoiding" the points of $\Gamma \cap \operatorname{Sing} Y$. More precisely we can assume $\operatorname{dim}\left(\Gamma \cap X^{\prime \prime}\right) \leq 0$ and $\Gamma \cap X^{\prime \prime} \cap$ Sing $Y=\emptyset$. So the set $\Gamma \cap X^{\prime \prime}$ consists of a finite number of points Q_{1}, \ldots, Q_{s} lying in Y^{c} and each of them is a non-singular point for Y. We can suppose that each Q, is non-singular for $X^{\prime \prime}$ too.

Now let $g^{\prime \prime}$ be a generator of the ideal $\mathscr{G}\left(Y^{c} \cup X^{\prime \prime}\right)$ which exists since [$Y^{c} \cup$ $\left.X^{\prime \prime}\right]=0$.

Consider the sets $A_{g^{\prime \prime}}$ and $B_{g^{\prime \prime}}$, which for simplicity we will denote respective-
 that $Y^{\prime \prime} \subseteq Y \cup X^{\prime \prime}$. Moreover we claim that

$$
\begin{equation*}
Z^{\prime \prime} \cap\left(A^{\prime \prime} \cup B^{\prime \prime}\right)=Z \cap\left(A^{\prime \prime} \cup B^{\prime \prime}\right) \tag{*}
\end{equation*}
$$

In fact, since $\overline{A^{\prime \prime}} \cap \overline{B^{\prime \prime}} \subseteq(\bar{A} \cap \bar{B}) \cup V\left(g^{\prime \prime}\right)$, we get $Z^{\prime \prime} \subseteq Z \cup V\left(g^{\prime \prime}\right)$; in particular $Z^{\prime \prime} \cap\left(A^{\prime \prime} \cup B^{\prime \prime}\right) \subseteq Z \cap\left(A^{\prime \prime} \cup B^{\prime \prime}\right)$.

Conversely, let $x \in Z \cap\left(A^{\prime \prime} \cup B^{\prime \prime}\right)$ and assume H is an irreducible component of Z passing through x. H contains an open subset U of $\bar{A} \cap \bar{B}$ of maximal dimension such that $H=\bar{U}^{Z}$. Since $g(x) \neq 0, g_{H} \not \equiv 0$ and also $g_{\mid \bar{U}} \not \equiv 0$; so $U \subseteq$ $\overline{A^{\prime \prime}} \cap \overline{B^{\prime \prime}}$ and therefore $H \subseteq Z^{\prime \prime}$. Then $x \in Z^{\prime \prime} \cap\left(A^{\prime \prime} \cup B^{\prime \prime}\right)$.

Assume $Y^{c}=Y_{1} \cup \ldots \cup Y_{r}$. By Lemma 2.5, the components Y_{1}, \ldots, Y_{r} are even w.r.t. $A^{\prime \prime}, B^{\prime \prime}$, while Y_{r+1}, \ldots, Y_{k} are not odd w.r.t. $A^{\prime \prime}, B^{\prime \prime}$, because they were not odd w.r.t. A, B. This means that no 2-dimensional irreducible component of Y is odd w.r.t. $A^{\prime \prime}, B^{\prime \prime}$ and therefore that $\left(\overline{A^{\prime \prime}} \cap \overline{B^{\prime \prime}}\right)-X^{\prime \prime} \subseteq \operatorname{Sing} Y$; in other words $Z^{\prime \prime} \subseteq(\operatorname{Sing} Y) \cup X^{\prime \prime}$.

Step 2. $A^{\prime \prime}$ and $B^{\prime \prime}$ can be separated in a neighbourhood of $X^{\prime \prime} \cap \Gamma$.
For each $j \in\{1, \ldots, s\}, Q, \notin \operatorname{Sing} Y$, so there exists a neighbourhood V_{j} of Q_{j} such that $Y \cap V$, is contained in exactly one irreducible component of Y (more precisely, of Y^{c}). We can assume the V,'s pairwise disjoint. Let $V=V_{1} \cup \cdots \cup$ V_{s}.

Since $\overline{A^{\prime \prime}} \cap \overline{B^{\prime \prime}} \subseteq($ Sing $Y) \cup X^{\prime \prime}$, we have that $\overline{A^{\prime \prime}} \cap \overline{B^{\prime \prime}} \cap V \subseteq X^{\prime \prime}$. If the V_{j}^{\prime} 's are small enough, also $X^{\prime \prime} \cap V$ consists of non-singular points for $X^{\prime \prime}$. Let q
be a regular function in $\mathscr{G}\left(X^{\prime \prime}\right)$ such that $V(q) \cap V=X^{\prime \prime} \cap V$ and q changes its sign at any point of $X^{\prime \prime} \cap V$.

For each $j \in\{1, \ldots, s\}, A^{\prime \prime} \cap V_{j}$ and $B^{\prime \prime} \cap V$, are separated by q or $-q$. Then we can suppose that q separates $A^{\prime \prime} \cap V$ from $B^{\prime \prime} \cap V$ (up to multiplying q by the equation of a sphere centered in Q_{i} and containing V_{i}, for each i such that $A^{\prime \prime} \cap V_{i}$ and $B^{\prime \prime} \cap V_{i}$ are separated by $-q$).

Step 3. $A^{\prime \prime}$ and $B^{\prime \prime}$ can be separated in a neighbourhood of Γ.
It is possible to choose a semialgebraic neighbourhood T of Γ such that $X^{\prime \prime} \cap$ $\bar{T} \subseteq X^{\prime \prime} \cap V$. We want to prove that $A^{\prime \prime}$ and $B^{\prime \prime}$ can be separated in T by applying Proposition 1.3 to the compact sets $\overline{A^{\prime \prime} \cap T}$ and $\overline{B^{\prime \prime} \cap T}$.

Since $\overline{A^{\prime \prime}} \cap \overline{B^{\prime \prime}} \subseteq($ Sing $Y) \cup X^{\prime \prime}$, also $\overline{A^{\prime \prime} \cap T} \cap \overline{B^{\prime \prime} \cap T} \subseteq($ Sing $Y) \cup X^{\prime \prime}$.
As for $X^{\prime \prime}$, let $U^{\prime \prime}$ be a neighbourhood of $X^{\prime \prime}$ such that $U^{\prime \prime} \cap \bar{T} \subseteq V$. By Step 2, we have

$$
q\left(\overline{A^{\prime \prime} \cap T} \cap U^{\prime \prime}-X^{\prime \prime}\right)>0 \quad \text { and } \quad q\left(\overline{B^{\prime \prime} \cap T} \cap U^{\prime \prime}-X^{\prime \prime}\right)<0
$$

For each irreducible component T_{j} of $\operatorname{Sing} Y$, by condition 2), there exists a regular function p_{j} separating $A \cap U_{j}$ from $B \cap U_{j}$, i.e.

$$
p_{j}\left(A \cap U_{j}-Z\right)>0 \quad p_{j}\left(B \cap U_{j}-Z\right)<0
$$

Then

$$
p_{j} g^{\prime \prime}\left(A^{\prime \prime} \cap U_{j}-Z\right)>0 \quad p, g^{\prime \prime}\left(B^{\prime \prime} \cap U_{j}-Z\right)<0
$$

From (*) we get that $p_{j} g^{\prime \prime}$ separates $A^{\prime \prime} \cap U$, from $B^{\prime \prime} \cap U_{\text {, }}$. Recall that no irreducible component of Y is odd w.r.t. $A^{\prime \prime}, B^{\prime \prime}$, so $\left(Y^{\prime \prime}\right)^{c} \subseteq X^{\prime \prime}$. So, if we apply Corollary 3.5 to $A^{\prime \prime} \cap T \cap U_{j}$ and $B^{\prime \prime} \cap T \cap U_{j}$, we get that, for each j, there exists a regular function $p^{\prime \prime}$ separating $A^{\prime \prime} \cap T \cap U_{j}$ from $B^{\prime \prime} \cap T \cap U_{j}$ and such that

$$
\begin{gathered}
p_{j}^{\prime \prime}\left(\overline{A^{\prime \prime} \cap T} \cap U_{j}-\left((\text { Sing } Y) \cup X^{\prime \prime}\right)\right)>0 \\
p_{j}^{\prime \prime}\left(\overline{B^{\prime \prime} \cap T} \cap U_{j}-\left((\text { Sing } Y) \cup X^{\prime \prime}\right)\right)<0
\end{gathered}
$$

This allows us to apply Proposition 1.3 to the compact sets $\overline{A^{\prime \prime} \cap T}$ and $\overline{B^{\prime \prime} \cap T}$ relatively to the algebraic set ($\operatorname{Sing} Y) \cup X^{\prime \prime}$: we get a function φ which separates $A^{\prime \prime}$ from $B^{\prime \prime}$ in the neighbourhood T.

Step 4. A and B can be separated in a neighbourhood of Γ.
Coming back to A and B, it follows from Step 3 that

$$
\begin{aligned}
& \varphi g^{\prime \prime}\left(A \cap T-\left((\text { Sing } Y) \cup X^{\prime \prime} \cup V\left(g^{\prime \prime}\right)\right)\right)>0 \\
& \varphi g^{\prime \prime}\left(B \cap T-\left((\operatorname{Sing} Y) \cup X^{\prime \prime} \cup V\left(g^{\prime \prime}\right)\right)\right)<0
\end{aligned}
$$

that is $A \cap T$ and $B \cap T$ can be generically separated. Because of condition 3), Corollary 3.5 implies that $A \cap T$ and $B \cap T$ can be separated by a regular function, we will denote p_{T}.

Let g^{\prime} be a generator of the ideal $\mathscr{G}\left(Y^{c} \cup X^{\prime}\right)$ and consider the sets $A^{\prime}=A_{g^{\prime}}$ and $B^{\prime}=B_{g^{\prime}}$. Arguing as above, we can see that
(**)
$Z^{\prime} \cap\left(A^{\prime} \cup B^{\prime}\right)=Z \cap\left(A^{\prime} \cup B^{\prime}\right)$.
Step 5. A^{\prime} and B^{\prime} can be separated in a neighbourhood of Y^{c}.
Let Ω be a semialgebraic neighbourhood of Y^{c} such that $\bar{\Omega} \cap X^{\prime} \subseteq T \cap X^{\prime}$. We want to prove that A^{\prime} and B^{\prime} can be separated in Ω by applying Proposition 1.3 to the compact sets $\overline{A^{\prime} \cap \Omega}$ and $\overline{B^{\prime} \cap \Omega}$.

Since $\overline{A^{\prime}} \cap \overline{B^{\prime}} \subseteq($ Sing $Y) \cup X^{\prime}$, we have also $\overline{A^{\prime} \cap \Omega} \cap \overline{B^{\prime} \cap T} \subseteq(\operatorname{Sing} Y)$ $\cup X^{\prime}$.

As for X^{\prime}, let U^{\prime} be a neighbourhood of X^{\prime} such that $U^{\prime} \cap \bar{\Omega} \subseteq T$. By Step 4, p_{T} separates $A \cap T$ from $B \cap T$; hence

$$
p_{T} g^{\prime}\left(\left(A^{\prime} \cap T\right)-Z\right)>0 \quad p_{T} g^{\prime}\left(\left(B^{\prime} \cap T\right)-Z\right)<0
$$

From (**), we get that $p_{T} g^{\prime}$ separates $A^{\prime} \cap T$ from $B^{\prime} \cap T$.
As before, we see that $\left(Y^{\prime}\right)^{c} \subseteq X^{\prime}$. So, if we apply Corollary 3.5 to $A^{\prime} \cap T$ and $B^{\prime} \cap T$, we get that there exists a regular function p^{\prime} separating $A^{\prime} \cap T$ from $B^{\prime} \cap T$ and such that

$$
p^{\prime}\left(\overline{A^{\prime} \cap T}-\left(\text { Sing } Y \cup X^{\prime}\right)\right)>0 \quad p^{\prime}\left(\overline{B^{\prime} \cap T}-\left(\text { Sing } Y \cup X^{\prime}\right)\right)<0
$$

Now, since $U^{\prime} \cap \bar{\Omega} \subseteq T$, we have
$p^{\prime}\left(\overline{A^{\prime} \cap \Omega} \cap U^{\prime}-\left(\right.\right.$ Sing $\left.\left.Y \cup X^{\prime}\right)\right)>0 \quad p^{\prime}\left(\overline{B^{\prime} \cap \Omega} \cap U^{\prime}-\left(\right.\right.$ Sing $\left.\left.Y \cup X^{\prime}\right)\right)<0$, that is the hypothesis of Proposition 1.3 is fulfilled in the neighbourhood U^{\prime} of X^{\prime} with respect to the algebraic set (Sing Y) $\cup X^{\prime}$.

We have to prove that the hypothesis is satisfied also around each irreducible component T, of Sing Y.

Arguing as in Step 3, from condition 2) we get that p, g^{\prime} separates $A^{\prime} \cap U_{j}$ from $B^{\prime} \cap U_{j}$. Since $\left(Y^{\prime}\right)^{c} \subseteq X^{\prime}$, if we apply Corollary 3.5 to $A^{\prime} \cap \Omega \cap U_{j}$ and $B^{\prime} \cap \Omega \cap U_{j}$, we get that there exists a regular function p^{\prime}, separating $A^{\prime} \cap \Omega \cap$ U_{j} from $B^{\prime} \cap \Omega \cap U_{j}$ and such that
$p^{\prime}\left(\overline{A^{\prime} \cap \Omega} \cap U,-\left(\right.\right.$ Sing $\left.\left.Y \cup X^{\prime}\right)\right)>0 \quad p^{\prime}\left(\overline{B^{\prime} \cap \Omega} \cap U_{j}-\left(\right.\right.$ Sing $\left.\left.Y \cup X^{\prime}\right)\right)<0$.
We can therefore apply Proposition 1.3 to the compact sets $\overline{A^{\prime} \cap \Omega}$ and $\overline{B^{\prime} \cap \Omega}$ relatively to the algebraic set (Sing $Y) \cup X^{\prime}$: we get a function ψ which separates A^{\prime} from B^{\prime} in the neighbourhood Ω.

Step 6. A and B can be separated in a neighbourhood of Y^{c}.
Coming back again to A and B, from Step 5 it follows that

$$
\begin{aligned}
& \psi g^{\prime}\left(\overline{A \cap \Omega}-\left(\text { Sing } Y \cup X^{\prime} \cup V\left(g^{\prime}\right)\right)\right)>0 \\
& \psi g^{\prime}\left(\overline{B \cap \Omega}-\left(\operatorname{Sing} Y \cup X^{\prime} \cup V\left(g^{\prime}\right)\right)\right)<0
\end{aligned}
$$

that is $A \cap \Omega$ and $B \cap \Omega$ can be generically separated. Because of condition 3), Corollary 3.5 assures that $A \cap \Omega$ and $B \cap \Omega$ can be separated by a regular function, say p_{Ω}.

Step 7. A and B can be separated.
We want to apply Proposition 1.3 to \bar{A} and \bar{B} relatively to $Y^{c} \cup Z$. In the neighbourhood Ω of Y^{c}, by Corollary 3.5 we may assume that

$$
p_{\Omega}\left(\bar{A} \cap \Omega-\left(Y^{c} \cup Z\right)\right)>0 \quad p_{\Omega}\left(\bar{B} \cap \Omega-\left(Y^{c} \cup Z\right)\right)<0 .
$$

As for Z, it is enough to consider its irreducible components T_{j} not contained in Y^{c} and therefore contained in Sing Y. Using condition 2) and again Corollary 3.5, we get that the hypothesis of Proposition 1.3 is verified also around T_{p}, and so we get a function p such that

$$
p\left(\bar{A}-\left(Y^{c} \cup Z\right)\right)>0 \quad \text { and } \quad p\left(\bar{B}-\left(Y^{c} \cup Z\right)\right)<0
$$

Then, by condition 3),

$$
p(A-Z)>0 \quad \text { and } \quad p(B-Z)<0 .
$$

Remark 4.1. In the proof of Theorem 2.7, we actually separate \bar{A} and \bar{B} up to $W=Z \cup Y^{\text {c }}$, which is "minimal" in the sense of Theorem 3.3 and Corollary 3.5. So if F, G are closed semialgebraic sets such that $F=\overline{\bar{F}}, G=\overline{\bar{G}}$ and verify. ing conditions 1), 2), 3), then there exists $p \in \mathscr{R}(M)$ such that

$$
p(F-W)>0 \quad p(G-W)<0
$$

5. A separation criterion

In this section we look for a criterion that makes it easier to decide whether A and B can be separated.

Consider, at first, the case in which the algebraic set Y is a union of non-singular normal crossings components Y_{1}, \ldots, Y_{k}, each one of dimension 2. Assume also that $Y_{\alpha} \cap Y_{\beta}$ is irreducible for any $\alpha \neq \beta$.

The test we are going to describe relates the separation of A and B with the separation or their two-dimensional "traces" on each irreducible component Y_{α} of Y, that is the sets

$$
\operatorname{tr}_{\alpha} A=\widehat{\overline{\bar{A} \cap Y_{\alpha}}} \quad \operatorname{tr}_{\alpha} B=\widehat{\overline{\bar{B} \cap Y_{\alpha}}},
$$

where the interior part is taken in Y_{α}.
If $f \in \mathscr{G}\left(Y_{\alpha}\right)$ changes its sign across Y_{α}, we have to consider also the traces of the sets A_{f} and B_{f}.

Definition 5.1. Let C, D be open semialgebraic subsets of M. We will say that the triple $\left(C, D, Y_{\alpha}\right)$ satisfies the property (P) if the sets $\operatorname{tr}_{\alpha} C$ and $\operatorname{tr}_{\alpha} D$ are disjoint and can be separated in Y_{α}. We will say that it satisfies the property $\left(\mathrm{P}^{\prime}\right)$ if (C_{f}, D_{f}, Y_{α}) verifies (P), where f is an element in $\mathscr{g}\left(Y_{\alpha}\right)$ that changes its sign across Y_{α}.

It is easy to verify that the property (P^{\prime}) does not depend on the choice of f : suppose that both f and g change their sign across Y_{α}; if q separates $\operatorname{tr}_{\alpha} C_{f}$ from $\operatorname{tr}_{\alpha} D_{f}$, then $q f g$, reduced modulo $\mathscr{G}\left(Y_{\alpha}\right)^{2}$, generically separates $\operatorname{tr}_{\alpha} C_{g}$ from $\operatorname{tr}_{\alpha} D_{g}$, so (being in dimension 2) they can be separated.

We begin by proving the following

Lemma 5.2. The statements:
i) " Y_{α} is odd (resp. even)"
ii) " $\left(A, B, Y_{\alpha}\right)$ verifies $(\mathrm{P})\left(\right.$ resp. $\left.\left(\mathrm{P}^{\prime}\right)\right)$ "
cannot hold simultaneously.

Proof. Suppose, by contradiction, Y_{α} is odd and $\operatorname{tr}_{\alpha} A, \operatorname{tr}_{\alpha} B$ are disjoint and can be separated by a regular function q.

Then there exists an open semialgebraic subset Ω of M such that $\operatorname{dim}\left(Y_{\alpha} \cap \Omega\right)$
$=2$ and $A \cap \Omega$ and $B \cap \Omega$ can be generically separated, say by $f \in \mathscr{R}(M)$, that is

$$
f(A \cap \Omega-X)>0 \quad \text { and } \quad f(B \cap \Omega-X)<0
$$

By the same argument already used in the proof of Theorem 3.3, we can assume $\operatorname{dim} X \leq 1$.

The functions f and q have the same sign on $U-Y_{\alpha}$, where $U \subseteq \Omega$ is a suitable semialgebraic neighbourhood of $\left(\operatorname{tr}_{\alpha} A \cup \operatorname{tr}_{\alpha} B\right) \cap \Omega-X$.

Define

$$
S=(\bar{A} \cup \bar{B}) \cap \bar{\Omega}-U
$$

it is a closed semialgebraic set and $\operatorname{dim}\left(S \cap Y_{\alpha}\right) \leq 1$.
Applying Theorem 3.1 to f, q and S, we get a regular function $p=f+\varepsilon q$ which separates $A \cap \Omega-X$ from $B \cap \Omega-X$ and does not vanish on Y_{α}. In fact:

- on $((A \cup B)-X) \cap \Omega \cap S, p$ and f have the same sign,
- on $((A \cup B)-X) \cap \Omega-S$, which is contained in U, f and q have the same sign, so again p and f have the same sign.
Therefore p separates $A \cap \Omega-X$ from $B \cap \Omega-X$.
Moreover $p \notin \mathscr{g}\left(Y_{\alpha}\right)$; in fact, otherwise, ε should identically vanish on Y_{α}, which is impossible since $V(\varepsilon) \subseteq \overline{V(f) \cap S}^{z}$ and $\operatorname{dim}\left(S \cap Y_{\alpha}\right) \leq 1$.

So p does not change its sign across Y_{α} and Y_{α} is not odd. Contradiction.
To complete the proof, let $f \in \mathscr{g}\left(Y_{\alpha}\right)$ be a regular function that changes its sign across Y_{α}. Then it is enough to remark that Y_{α} is even w.r.t. A, B if and only if Y_{α} is odd w. r. t. A_{f}, B_{f} (Lemma 2.5) and that $\left(A, B, Y_{\alpha}\right.$) verifies (P^{\prime}) if and only if $\left(A_{f}, B_{f}, Y_{\alpha}\right)$ verifies (P). The first part of the proof yields the thesis.
$\underset{z}{\text { Theorem 5.3. }} \underset{z}{\text {. }}$ Let A and B be open disjoint semialgebraic sets. Assume that $Y=\frac{\partial}{\partial A}^{Z} \cup \frac{\partial}{\partial B}_{z}$ is a union of non-singular irreducible components Y_{1}, \ldots, Y_{k} of dimention 2, simultaneously normal crossings and such that $Y_{\alpha} \cap Y_{\beta}$ is irreducible for $\alpha \neq \beta$. Then A and B can be separated if and only if for each $\alpha \in\{1, \ldots, k\}(A, B$, $\left.Y_{\alpha}\right)$ verifies at least one between the property (P) and the property $\left(\mathrm{P}^{\prime}\right)$.

Proof. (\Rightarrow) Assume that A and B can be separated and suppose, by contradiction, there exists α such that (A, B, Y_{α}) verifies neither (P) nor (P^{\prime}).

We want to see that, since $\left(A, B, Y_{\alpha}\right)$ does not verify (P), then Y_{α} is odd. This is clear if $\operatorname{tr}_{\alpha} A$ and $\operatorname{tr}_{\alpha} B$ are not disjoint. In the case they are disjoint, but not separated, let g be a generator of $g\left(Y_{\alpha}\right)^{2}$; for any regular function p gener. ically separating A from B, we can write $p=g^{h} \cdot q$, with $q \notin \mathcal{G}\left(Y_{\alpha}\right)^{2}$. Nevertheless
$q \in \mathscr{G}\left(Y_{\alpha}\right)$, otherwise it would generically separate $\operatorname{tr}_{\alpha} A$ from $\operatorname{tr}_{\alpha} B$, which is impossible since in dimension 2 generic separation is equivalent to separation. The functions p and q have the same sign, so p changes its sign across Y_{α} and hence Y_{α} is odd.

Arguing as before, we see that, since $\left(A, B, Y_{\alpha}\right.$) does not verify (P^{\prime}), then Y_{α} is even. Contradiction.
(\Leftarrow) Assume that, for each $\alpha \in\{1, \ldots, k\},\left(A, B, Y_{\alpha}\right)$ verifies (P) or (P^{\prime}). Then by Lemma 5.2 there are no 2 -obstructions. Since $Y^{c} \cap(A \cup B)=\emptyset$ (see Remark 2.9), in order to apply Theorem 2.7 we have only to show that A and B can be separated in a neighbourhood U, of each irreducible component T, of Sing Y.

This can be done by modifying a little the proof of Theorem 2.7; let us give a sketch of it.

Let Y_{α} be an irreducible component of Y containing T_{j} and assume, for instance, that $\left(A, B, Y_{\alpha}\right)$ verifies (P). The curve $H={\overline{\partial \operatorname{tr}_{\alpha} A}}^{Z} \cup{\overline{\partial \operatorname{tr}_{\alpha} B}}^{Z}$ has non-singular, normal crossing, irreducible components, say H_{1}, \ldots, H_{q} and for each $i=1, \ldots, q$ there exists by hypothesis an irreducible component Y_{i} such that $Y_{i} \cap Y_{\alpha}=H_{i}$.
 We can find an algebraic subset X of M such that $\left[Y_{1} \cup \ldots \cup Y_{s} \cup X\right]=0$ in $H_{2}\left(M, \mathbf{Z}_{2}\right)$ and such that X is transversal to each irreducible component of Y and of Sing Y.

Take a generator g of $g\left(Y_{1} \cup \ldots \cup Y_{s} \cup X\right)$ and consider the sets A_{g} and B_{g} and their traces on Y_{α}.
 would be an obstruction to the separation of $\operatorname{tr}_{\alpha} A$ and $\operatorname{tr}_{\alpha} B$. So the set

$$
\left(\overline{\operatorname{tr}_{\alpha} A_{g}} \cap \overline{\operatorname{tr}_{\alpha} B_{g}}\right)-\left(X \cap Y_{\alpha}\right)
$$

is a finite set of points $\left\{Q_{1}, \ldots, Q_{h}\right\}$ with $Q_{i}=Y_{\alpha} \cap Y_{m(i)} \cap Y_{l(i)}$.
If we denote by Γ_{i} the curve $Y_{m(\imath)} \cap Y_{l(2)}$ and if the neighbourhood U_{j} is small enough, we have

$$
\overline{A_{g} \cap U_{j}} \cap \overline{B_{g} \cap U}, \subseteq \bigcup_{i=1}^{h} \Gamma_{i} \cup X
$$

We want to apply Proposition 1.3 to the sets $\overline{A_{g} \cap U}$, and $\overline{B_{g} \cap U_{j}}$ and the algebraic set $\cup_{i=1}^{h} \Gamma_{\imath} \cup X$. Arguing as in Step 3 of the proof of Theorem 2.7 we get that $\overline{A_{g} \cap U}$, and $\overline{B_{g} \cap U}$, can be separated in a neighbourhood of X.

In a small neighbourhood V_{i} of $\Gamma_{t} \cap U_{j}$ take local equations $f_{m(t)}, f_{l(i)}$ for $Y_{m(i)}$ and $Y_{l(i)}$. If U, is sufficiently small, in U_{j} the Γ_{i} 's are pairwise disjoint, so the function $p_{i}=f_{m(i)}+f_{l(i)}\left(\right.$ or $\left.-p_{i}\right)$ verifies

$$
p_{i}\left(\overline{A_{g} \cap U_{j}} \cap V_{i}-\Gamma_{i}\right)>0 \quad \text { and } \quad p_{i}\left({\left.\overline{B_{g} \cap U_{j}} \cap V_{i}-\Gamma_{i}\right)<0 . ~}_{\text {. }}\right.
$$

Since all the hypothesis of the Proposition 1.3 are fulfilled, we get that $A_{g} \cap U$, and $B_{g} \cap U_{j}$ can be separated by a regular function $p_{U_{j}}$. Then $p_{U_{j}} \cdot g$ generically separates $A \cap U_{j}$ from $B \cap U_{j}$ and therefore, as in Step 4, there exists a regular function separating them too. So also condition 2) of Theorem 2.7 is verified and therefore A and B can be separated.

Remark 5.4. It is easy to see that the "only if" part of Theorem 5.3 holds even if Y is not normal crossings. Fig. 5 shows that the converse is not true in general.

Fig. 5

Remark 5.5. If we now come back to the general situation (without the supplementary hypothesis on Y considered before), we can make use of Theorem 5.3 as follows.

First of all consider a resolution of the singularities of Y, say : $\tilde{M} \rightarrow M$. Let $\tilde{Y}=\pi^{-1}(Y)$. By performing, if necessary, some further blowing-ups, we can suppose that $\tilde{Y}_{\alpha} \cap \tilde{Y}_{\beta}$ is irreducible, for any irreducible components $\tilde{Y}_{\alpha}, \tilde{Y}_{\beta}$ of \tilde{Y}, $\alpha \neq \beta$. We can also assume that \tilde{Y} satisfies the hypothesis of Theorem 5.3, because the 1 -dimensional components of \tilde{Y} can be "removed", as pointed out in Remark 3.4.

Of course if A and B can be separated, then $\pi^{-1}(A)$ and $\pi^{-1}(B)$ can be separated too. Conversely we know (see Step 1 in the proof of Theorem 2.7) that if $\pi^{-1}(A)$ and $\pi^{-1}(B)$ can be separated, then A and B can be generically separated; if moreover $Y^{c} \cap(A \cup B) \subseteq Z$, they can be separated.

Now we can test if $\pi^{-1}(A)$ and $\pi^{-1}(B)$ can be separated by means of Theorem 5.3, which therefore becomes a criterion of generic separation for A and B. So Theorem 5.3 reduces the problem to a finite number of 2 -dimensional tests: the separation of the traces of $\pi^{-1}(A)$ and $\pi^{-1}(B)$. For that one can make use of the following result, analogous to Theorem 2.7:

Theorem 5.6. Let M be a non-singular compact surface and A and B be open semialgebraic subsets of M. Then A and B can be separated if and only if:
a) No irreducible component of $Y=\overline{\partial A}^{Z} \cup \overline{\partial B}^{Z}$ is both odd and even
b) A and B can be locally separated at any singular point of Y

In $[\mathrm{AcBgF}]$ one can find a proof of this result under a supplementary condition, which can be removed arguing as in Section 4; a direct and geometric proof that such condition is not necessary can be found in [P].

It is important to remark that, when applying Theorem 5.5 , one has to verify only condition a) of the theorem, because it is clear that in a normal crossings situation condition a) implies condition b).

REFERENCES

[AcBg] F. Acquistapace, F. Broglia, More about signatures and approximation, Geometriae Dedicata, 50 (1994), 107-116.
$[\mathrm{AcBgF}] \quad \mathrm{F}$. Acquistapace, F. Broglia, E. Fortuna, When is a distribution of signs locally completable?, Canad. J. Math., 46 (1994), 449-473.
[AnBrRz] C. Andradas, L. Bröcker, J. M. Ruiz, Constructible sets in real geometry, (1996), Erg. Math. 33, Springer-Verlag.
[BoCRy] J. Bocknak, M. Coste, M. F. Roy, Géométrie algébrique réelle, (1987), Springer-Verlag, Berlin-Heidelberg-New York.
[Br1] L. Bröcker, On the separation of basic semialgebraic sets by polynomials, Manuscripta Math., 60 (1988), 497-508.
[Br2] L. Bröcker, On basic semialgebraic sets, Exp. Math., 9 (1991), 289-334.
[F] E. Fortuna, Distribution de signes, Mathematika, 38 (1991), 50-62.
[P] L. Pernazza, Decidability of the separation problem in dim 2, to appear.
[Rz] J. M. Ruiz, A note on a separation problem, Arch. Math., 43 (1984), 422-426.

Dipartimento di Matematica
Università di Pisa
Via F. Buonarroti 2
56127 Pisa, Italy
E-mail:acquistf@dm.unipi.it broglia@dm.unipi.it fortuna@dm.unipi.it

[^0]: Received July 11, 1995.

 * Members of G. N. S. A. G. A. of C. N. R.

 The authors are partially supported by M. U. R. S. T. and Eurocontract ERBCHRXCT 940506.

