EVEN CANONICAL SURFACES WITH SMALL K^{2}, III

KAZUHIRO KONNO

Introduction

This is a continuation of [5]. In the present part, we study irregular even surfaces of general type with $K^{2}<4 \chi$, where K and χ denote respectively a canonical divisor and the holomorphic Euler-Poincaré characteristic. As the first main theorem, we show the following:

Theorem 1. For any irregular even surface of general type with $K^{2}<4 \chi$, the image of the Albanese map is a curve.

Therefore, Severi's conjecture is true for even surfaces. The proof uses the unramified covering trick and rests heavily on Xiao's theorem: We take a finite unramified covering of an even surface, which is again even, and show that the semi-canonical map induces a pencil. Then we apply [10, Theorem 3] and [11, Theorem 1] to see that the genus of the base of the pencil equals the irregularity.

We next turn our attention to canonical surfaces and give the genus bound on the Albanese pencil. As in [5, I, §5], we employ an argument modeled on [9] (see also [7]) to show the following:

Theorem 2. For any irregular even canonical surface with $K^{2}<4 \chi$, the Albanese pencil is a trigonal pencil of genus $g \leq 6$. Furthermore,

$$
K^{2} \geq \begin{cases}3 \chi+10(q-1) & \text { if } g=3 \\ \frac{8 g(g-1)}{g^{2}+7 g-16}\left(\chi+8\left(1-\frac{2}{g}\right)(g-1)\right) & \text { if } 4 \leq g \leq 6\end{cases}
$$

As we noticed in [5, I, §8], the existence of a trigonal pencil on a canonical surface implies that the canonical image cannot be cut out by hyperquadrics. Thus Theorem 2 and [5, I, Lemma 8.2 and Theorem 8.3] give us

Received October 8, 1993.

Theorem 3. The canonical image of an irregular even canonical surface with $K^{2}<4 \chi$ is not cut out by hyperquadrics. If the numerical characters further satisfy $K^{2} \leq 4 p_{g}+q-12$, then the quadric hull of the surface is of dimension 3. In particular, Reid's conjecture [8, p.541] is true for irregular even surfaces with $q \leq 4$.

1. Inequality

In this section, we shall show some inequalities generalizing one in [5, I, §5] by using a method modeled on [9]. See also [7].

Let S be an even surface of general type. Note that it is automatically minimal, and we have a line bundle L on S satisfying $K=2 L$. Such a line bundle L is called a semi-canonical bundle of S. Suppose that we have a fibration $f: S \rightarrow B$ over a non-singular projective curve B of genus b. Let g be the genus of a general fibre D of f. Since B is a curve, $f_{*} L$ is a locally free sheaf [2, Corollary 1.7].

Lemma 1.1. $h^{0}(L)=h^{0}\left(f_{*} L\right)$ and $\chi(L)=2 \chi\left(f_{*} L\right)-$ length $\left(R^{1} f_{*} L\right)_{\text {tor }}$.
Proof. By the relative duality theorem, the dual of $R^{1} f_{*} L$ is isomorphic to $f_{*} L \otimes \omega_{B}^{\otimes(-1)}$ since $K=2 L$. Then, using the Leray spectral sequence $E_{2}^{p, q}=$ $H^{p}\left(R^{q} f_{*} L\right) \Rightarrow H^{p+q}(L)$, we get the assertion.
Q.E.D.

Let \mathscr{E} be the subbundle of $f_{*} L$ generically generated by global sections. Then $h^{0}(B, \mathscr{E})=h^{0}(L)$. Let

$$
0=\mathscr{E}_{0} \subset \mathscr{E}_{1} \subset \cdots \subset \mathscr{E}_{l}=\mathscr{E}
$$

be the Harder-Narashimhan filtration of $\mathscr{E}[1]$, that is, the unique filtration of \mathscr{E} by subbundles \mathscr{E}_{i} which satisfies
(i) $\mathscr{E}_{i} / \mathscr{E}_{t-1}$ is semi-stable,
(ii) $\mu_{i}>\mu_{i+1}$, where $\mu_{i}:=\mu\left(\mathscr{E}_{i} / \mathscr{E}_{i-1}\right)=\operatorname{deg}\left(\mathscr{E}_{i} / \mathscr{E}_{i-1}\right) / \operatorname{rk}\left(\mathscr{E}_{i} / \mathscr{E}_{i-1}\right)$.

Let $\phi_{i}: \mathbf{P}\left(\mathscr{E}_{i}\right) \rightarrow B$ be the associated projective bundle. We denote by H_{i} and F a (relatively ample) tautological divisor and a fibre of ϕ_{i}, respectively. By [4, Lemma 4.6], the \mathbf{Q}-divisors $H_{i}-\mu_{i} F$ and $H_{\imath}-\mu_{1} F$ are respectively nef and pseudo-effective.

The natural sheaf homomorphism $f_{\mathscr{E}}^{{ }_{\mathscr{E}}} \rightarrow f^{*} f_{*} L \rightarrow L$ induces a rational map $\psi_{i}: S \rightarrow \mathbf{P}\left(\mathscr{E}_{i}\right)$ such that $f=\phi_{i} \circ \psi_{i}$. Let $\rho_{i}: X_{i} \rightarrow S$ be a composite of blowing-ups which eliminates the indeterminacy of ψ_{i}, and let $\tilde{\psi}_{i}: X_{i} \rightarrow \mathbf{P}\left(\mathscr{E}_{i}\right)$ be the induced holomorphic map. We denote by \tilde{M}_{i} the pull-back to X_{t} of H_{i} via $\tilde{\phi}_{i}$.

Then $\tilde{M}_{i}-\mu_{i} \rho_{i}^{*} D$ is nef, since so is $H_{i}-\mu_{i} F$. Put $M_{i}=\left(\rho_{i}\right)_{*} \tilde{M}_{i}$. Then $M_{i}-\mu_{i} D$ is also nef. Note that we have $L \equiv M_{i}+Z_{i}$ with an effective divisor Z_{i}, where the symbol \equiv means the numerical equivalence. Put $d_{i}=M_{i} D$. When $i=l$, we drop the subscript l and write d, M, Z, instead of d_{l}, M_{l}, Z_{l} for the sake of simplicity.

Put $a_{i}=g-1-d_{i}=D Z_{i}$. Then the multiplicity of any irreducible component of Z_{i} having positive intersection with D is at most a_{i}. Using this and the nefness of $K_{S / B}$, we can show that $a_{i} K_{S / B}+M_{i}-\mu_{i} D+Z_{i}$ is a nef \mathbf{Q}-divisor as in [9, Lemma 4 and Corollary 1] (see also [7, Lemma 2.1]). Since $K=2 L$, we get the following:

Lemma 1.2. For each $i,\left(2 a_{i}+1\right) L-\left(\mu_{i}+2 a_{i}(b-1)\right) D$ is nef.
Lemma 1.3. Let the notation and assumption be as above.
(1) If $\operatorname{rk}(\mathscr{E})=1$, then

$$
L^{2} \geq \frac{2(g-1)}{2 g-1}\{g \operatorname{deg}(\mathscr{E})+(g-1)(b-1)\}
$$

(2) If $\mathrm{rk}(\mathscr{E})=2$, then

$$
L^{2} \geq \frac{g-1}{2 g-d-1}\{g \operatorname{deg}(\mathscr{E})+2(g-d-1)(b-1)\}
$$

Proof. Since $L-\mu_{1} D$ is pseudo-effective, we have $\left(\left(2 a_{i}+1\right) L-\left(\mu_{i}+\right.\right.$ $\left.\left.2 a_{i}(b-1)\right) D\right)\left(L-\mu_{1} D\right) \geq 0$ which is equivalent to

$$
\begin{equation*}
\left(2 a_{i}+1\right) L^{2} \geq(g-1)\left(\left(2 a_{i}+1\right) \mu_{1}+\mu_{i}+2 a_{i}(b-1)\right) . \tag{1.1}
\end{equation*}
$$

If \mathscr{E} is a line bundle, then (1.1) for $i=1$ gives (1) since $d=0$ in this case.
Assume that \mathscr{E} is of rank 2 . When \mathscr{E} is semi-stable, we put $\mu_{1}=\mu_{2}=\mu(\mathscr{E})$ in the following calculation. If $d=g-1$, then we get (2) using(1.1) for $i=2$. Hence we assume that $a:=g-1-d>0$. We have

$$
\begin{aligned}
L^{2} & =L\left(M-\mu_{2} D\right)+(g-1) \mu_{2}+L Z \\
& =\left(M-\mu_{1} D+Z_{1}\right)\left(M-\mu_{2} D\right)+d \mu_{1}+(g-1) \mu_{2}+L Z \\
& =(g-1-a) \mu_{1}+(g-1) \mu_{2}+L Z .
\end{aligned}
$$

Since $(2 a+1) L-\left(\mu_{2}+2 a(b-1)\right) D$ is nef, we have $(2 a+1) L Z \geq a\left(\mu_{2}+\right.$ $2 a(b-1))$.
Hence
(1.2) $(2 a+1) L^{2} \geq(2 a+1)(g-1-a) \mu_{1}+((2 a+1)(g-1)+a) \mu_{2}+2 a^{2}(b-1)$
from which we get (2) if $(2 g-1) \mu_{2} \geq(2 a+1) \mu_{1}+2 d(b-1)$. Otherwise, (1.1) for $i=2$ is sufficient to imply (2), since $\operatorname{deg}(\mathscr{C})=\mu_{1}+\mu_{2}$.
Q.E.D.

In order to estimate $\operatorname{deg}(\mathscr{E})$, we introduce a quotient bundle \mathscr{F} of \mathscr{E} according to [9]: Let \mathscr{F}^{\prime} be the subbundle of $\mathscr{E}^{*}:=\operatorname{Hom}\left(\mathscr{E}, \omega_{B}\right)$ generically generated by $H^{0}\left(\mathscr{E}^{*}\right)$, and put $\mathscr{F}=\left(\mathscr{F}^{\prime}\right)^{*}$. Then \mathscr{F} and \mathscr{F}^{*} are both nef, and we have $h^{1}(\mathscr{E})=$ $h^{1}(\mathscr{F})=h^{0}\left(\mathscr{F}^{*}\right)$. Hence Clifford's theorem [9] gives us

$$
h^{1}(\mathscr{E}) \leq \frac{1}{2} \operatorname{deg}\left(\mathscr{F}^{*}\right)+\operatorname{rk}\left(\mathscr{F}^{*}\right)=b \operatorname{rk}(\mathscr{F})-\frac{1}{2} \operatorname{deg}(\mathscr{F}) .
$$

Since $h^{0}(\mathscr{E})=h^{0}(L)$, the Riemann-Roch theorem gives us the following:

Lemma 1.4. If $\operatorname{rk}(\mathscr{F})=\operatorname{rk}(\mathscr{E})$, then $\operatorname{deg}(\mathscr{E}) \geq 2\left(h^{0}(L)-\operatorname{rk}(\mathscr{E})\right)$. If $\operatorname{rk}(\mathscr{F})$ $<\operatorname{rk}(\mathscr{E})$, then $\operatorname{deg}(\mathscr{E}) \geq h^{0}(L)-\operatorname{rk}(\mathscr{E})+b(\operatorname{rk}(\mathscr{E})-\operatorname{rk}(\mathscr{F}))+\operatorname{deg}(\mathscr{F}) / 2$.

2. Proof of Theorem 1

In what follows, let S be an irregular even surface of general type satisfying $K^{2}<4 \chi\left(\mathscr{O}_{S}\right)$, and let L be a semi-canonical bundle. In this section, we show Theorem 1.

Since S is an irregular surface, we can find an m-torsion element $\eta \in$ $\operatorname{Pic}^{0}(S)$ for any positive integer m. Let $\pi_{m}: S_{m} \rightarrow S$ be the cyclic m-sheeted unramified covering associated with η. If K_{m} denotes the canonical bundle of S_{m}, then $K_{m}=\pi_{m}^{*} K$. Therefore, S_{m} is also an even surface of general type with a semi-canonical bundle $L_{m}=\pi_{m}^{*} L$. By the universality of the Albanese map, we have a commutative diagram

$$
\begin{aligned}
S_{m} & \rightarrow \operatorname{Alb}\left(S_{m}\right) \\
\pi_{m} \downarrow & \downarrow \\
S & \rightarrow \operatorname{Alb}(S),
\end{aligned}
$$

where the horizontal maps are the Albanese maps. Hence, in order to prove Theorem 1, it suffices to show that the Albanese image of S_{m} is a curve for some m.

By the Riemann-Roch theorem, we have

$$
\begin{equation*}
\chi\left(L_{m}\right)=2 h^{0}\left(L_{m}\right)-h^{1}\left(L_{m}\right)=-\frac{L_{m}^{2}}{2}+\chi_{m} \tag{2.1}
\end{equation*}
$$

where we put $\chi_{m}=\chi\left(\mathscr{O}_{S_{m}}\right)$. Since $K^{2}=4 L^{2}$, we have $K^{2} \leq 4 \chi-4$. Hence

$$
\begin{equation*}
K_{m}^{2}=m K^{2} \leq 4 m(\chi-1)=4 \chi_{m}-4 m . \tag{2.2}
\end{equation*}
$$

Put $n=n(m)=h^{0}\left(L_{m}\right)-1$. Since S_{m} is an even surface of general type. L_{m}^{2} is a positive even integer. Hence there is an integer k satisfying $L_{m}^{2}=4 n-2 k$. By (2.2), we have $\chi_{m} \geq L_{m}^{2}+m=4 n-2 k+m$. Then it follows from (2.1) that $k \geq m-2+h^{1}\left(L_{m}\right) \geq m-2$. Thus

$$
\begin{equation*}
L_{m}^{2} \leq 4 n+4-2 m \tag{2.3}
\end{equation*}
$$

Since L_{m}^{2} is a positive even integer, we have $n>0$ when $m \geq 2$. Assuming that m is sufficiently large, we consider the semi-canonical map, that is, the rational map $\Phi_{m}: S_{m} \rightarrow \mathbf{P}^{n}$ associated with $\left|L_{m}\right|$.

Case 1. Assume that $\left|L_{m}\right|$ is composed of a pencil for some $m \geq 4$. We have $L_{m} \equiv \nu D_{m}+G_{m}$, where $\left\{D_{m}\right\}$ is a pencil of irreducible curves, G_{m} is the fixed part of $\left|L_{m}\right|$ and ν is a positive integer with $\nu \geq n$.

We show that $\left\{D_{m}\right\}$ is a non-linear pencil. Since $L_{m}^{2} \geq 2$, we have $n>1$ by (2.3). We have

$$
4 n+4-2 m \geq L_{m}^{2}=\nu L_{m} D_{m}+L_{m} G_{m} \geq n L_{m} D_{m}
$$

Hence $L_{m} D_{m} \leq 3$. Since S_{m} is an even surface, D_{m}^{2} is a non-negative even integer. From

$$
3 \geq L_{m} D_{m}=\nu D_{m}^{2}+D_{m} G_{m} \geq n D_{m}^{2} \geq 2 D_{m}^{2}
$$

it follows $D_{m}^{2}=0$. Therefore, $\left\{D_{m}\right\}$ is a pencil of curves of genus $g_{m} \leq 4$. If it were a linear pencil, then the numerical characters must satisfy

$$
\begin{equation*}
K_{m}^{2} \geq 4 \chi_{m}-4\left(g_{m}-1\right) \tag{2.4}
\end{equation*}
$$

by a result of Xiao [11]. Since $m \geq 4$ and $g_{m} \leq 4$, this is impossible by (2.2).
Hence $\left\{D_{m}\right\}$ defines a holomorphic map $f_{m}: S_{m} \rightarrow B_{m}$ onto a non-singular projective curve B_{m} of positive genus. Then, by [11] again, we know that B_{m} is a curve of genus $q_{m}:=q\left(S_{m}\right)$. It follows that the Albanese image of S_{m} is a curve, since we have a commutative diagram

$$
\begin{array}{ccc}
S_{m} & \rightarrow \operatorname{Alb}\left(S_{m}\right) \tag{2.5}\\
f_{m} \downarrow & & \downarrow \\
B_{m} & \rightarrow \mathrm{Jac}\left(B_{m}\right),
\end{array}
$$

where $\operatorname{Jac}\left(B_{m}\right)$ denotes the Jacobian of B_{m}.

Case 2. Suppose that $\left|L_{m}\right|$ is not composed of a pencil and $m \geq 8$. Since we have $L_{m}^{2}<4 n-6$ by (2.3), it follows from [5, I, Lemma 2.1] that the semicanonical map Φ_{m} is not birational onto its image. Let V_{m} be the image of Φ_{m}. Since $\operatorname{deg} V_{m} \geq n-1$, we have $L_{m}^{2} \geq\left(\operatorname{deg} \Phi_{m}\right)\left(\operatorname{deg} V_{m}\right) \geq\left(\operatorname{deg} \Phi_{m}\right)(n-1)$. It follows from (2.3) that $\operatorname{deg} \Phi_{m}=2$, 3 . Furthermore, since

$$
\operatorname{deg} V_{m} \leq \frac{1}{2} L_{m}^{2} \leq 2 n+2-m<2 n-2
$$

V_{m} is birationally equivalent to a ruled surface as is well-known (see e.g., $[3$, Theorem 1.1]).

Assume that $\operatorname{deg} \Phi_{m}=2$. Since V_{m} is a ruled surface, Φ_{m} induces on S_{m} a pencil of hyperelliptic curves. Since we have $K_{m}^{2}<4 \chi_{m}-28$ by (2.2), [10, Theorem 3] shows that the Albanese image of S_{m} is a curve.

Assume that $\operatorname{deg} \Phi_{m}=3$. We claim that V_{m} is not a rational surface. Assume the contrary. We can show that V_{m} is not isomorphic to \mathbf{P}^{2} as in [5, I, Lemma 4.3]. Since we have $\operatorname{deg} V_{m}<(4 / 3)(n-2)$, it follows from [9, Lemma 1] that V_{m} is ruled by straight lines. Then, as in [5, I, Theorem 5.1], one can show that a ruling of V_{m} induces on S_{m} a linear pencil of curves of genus $g_{m} \leq 6$ without base points. On the other hand, it follows from [11] that the numerical characters of S_{m} must satisfy the inequality (2.4), which is impossible by (2.2). Thus we have shown that V_{m} is birationally equivalent to an irrational ruled surface.

We consider the unique ruling $V_{m} \rightarrow B_{m}$, and let f_{m} be the composite $S_{m} \rightarrow$ $V_{m} \rightarrow B_{m}$. Since B_{m} is not \mathbf{P}^{1}, f_{m} is a holomorphic map. It follows from [11] that B_{m} is of genus q_{m}, and we can identify f_{m} with the Albanese map of S_{m}.

In sum, Theorem 1 has been established.

3. Proof of Theorem 2

In this section, we shall prove Theorem 2. For this purpose, we freely use the notation in the previous sections. Recall that a minimal surface is called a canonical surface if its canonical map is a birational map onto the image. We remark the following:

Lemma 3.1. Let \tilde{X} be any finite unramified covering of a canonical surface X. Then \tilde{X} has no pencils of hyperelliptic curves.

Proof. If \tilde{X} has a hyperelliptic pencil, then its canonical image is a ruled surface or a curve. This is impossible, since it dominates the canonical image
of X.
Q.E.D.

Now, let S be an irregular even canonical surface with $K^{2}<4 \chi$. As we saw in Section 2, for a sufficiently large integer m, the semi-canonical map induces a fibration $f_{m}: S_{m} \rightarrow B_{m}$ of genus g_{m}, where B_{m} is of genus $q_{m}>0$. Lemma 3.1 in particular implies that deg $\Phi_{m}=3$ in Case 2 of Section 2.

Lemma 3.2. Assume that $m \geq 4$ and the semi-canonical map of S_{m} is composed of a pencil. Then $g_{m}=3$ or 4 , and

$$
L_{m}^{2} \geq \frac{2 g_{m}\left(g_{m}-1\right)}{2 g_{m}-1} h^{0}\left(L_{m}\right)+2\left(g_{m}-1\right)\left(q_{m}-1\right)
$$

Assume that $m \geq 7$ and the semi-canonical map of S_{m} is of degree 3 onto its image. Then $4 \leq g_{m} \leq 6$ and

$$
L_{m}^{2} \geq \begin{cases}3\left(\chi\left(L_{m}\right) / 2+2\left(q_{m}-1\right)\right) & \text { if } g_{m}=4 \\ \left.\frac{g_{m}\left(g_{m}-1\right)}{2\left(g_{m}-2\right)} h^{0}\left(L_{m}\right)+2\left(g_{m}-1\right)\left(q_{m}-1\right)\right) & \text { if } g_{m}=5,6\end{cases}
$$

Proof. As in Section 1, let $\widetilde{\mathscr{E}}$ be the subbundle of $\left(f_{m}\right)_{*} L_{m}$ generically generated by $H^{0}\left(B_{m},\left(f_{m}\right)_{*} L_{m}\right)$.

Assume that the semi-canonical map of S_{m} is composed of a pencil. Then $\tilde{\mathscr{E}}$ is a line bundle. If it is special, then $\operatorname{deg}(\widetilde{\mathscr{E}}) \geq 2 h^{0}\left(L_{m}\right)-2=2 n$ by Clifford's theorem, and Lemma 1.3, (1) shows

$$
L_{m}^{2} \geq \frac{2\left(g_{m}-1\right)}{2 g_{m}-1}\left(2 g_{m} n+\left(g_{m}-1\right)\left(q_{m}-1\right)\right)>4 n
$$

which is impossible by (2.3). Hence $\tilde{\mathscr{E}}$ is non-special and $\operatorname{deg}(\tilde{\mathscr{E}})=h^{0}\left(L_{m}\right)+q_{m}$ -1 . We get the disired inequality from Lemma 1.3 . Since f_{m} must be a non-hyperelliptic fibration, we have $g_{m} \geq 3$.

Assume that the semi-canonical map of S_{m} is degree 3 onto the image V_{m}. If $m \geq 7$, then $\operatorname{deg} V_{m}<(4 / 3)(n-2)$. From [9. Lemma 1] it follows that V_{m} is ruled by straight lines. This means that Φ_{m} maps D_{m} onto a straight line, and the restriction map $H^{0}\left(L_{m}\right) \rightarrow H^{0}\left(\left.L_{m}\right|_{D_{m}}\right)$ is of rank 2. It follows that $\tilde{\mathscr{E}}$ is of rank 2 and, putting $d=3$, Lemma 1.3 gives us

$$
\begin{equation*}
L_{m}^{2} \geq \frac{g_{m}-1}{2\left(g_{m}-2\right)}\left(g_{m} \operatorname{deg}(\tilde{\mathscr{E}})+2\left(g_{m}-4\right)\left(q_{m}-1\right)\right) \tag{3.1}
\end{equation*}
$$

We remark that $g_{m}-1 \geq d=3$.
Assume that $g_{m}=4$. Since D_{m} is non-hyperelliptic and $L_{m} D_{m}=3$, Clifford's theorem shows $h^{0}\left(\left.L_{m}\right|_{D_{m}}\right) \leq 2$. Therefore, the restriction map $H^{0}\left(L_{m}\right) \rightarrow H^{0}\left(\left.L_{m}\right|_{D_{m}}\right)$ is surjective. It follows that $\tilde{\mathscr{E}} \simeq\left(f_{m}\right)_{*} L_{m}$. Hence $\operatorname{deg}(\tilde{\mathscr{E}})=\operatorname{deg}\left(\left(f_{m}\right)_{*} L_{m}\right) \xrightarrow{\geq}$ $\chi\left(L_{m}\right) / 2+2\left(q_{m}-1\right)$ by Lemma 1.1. The desired inequality follows from Lemma 1.3.

Assume that $g_{m}>4$. Let \mathscr{F} be the quotient bundle of $\tilde{\mathscr{E}}$ defined as in Section 1. If $\operatorname{rk}(\mathscr{F})=2$, then $\operatorname{deg}(\tilde{\mathscr{E}}) \geq 2\left(h^{0}\left(L_{m}\right)-2\right)$ by Lemma 1.4. It follows from (3.1) that $L_{m}^{2} \geq 6(n-1)$ which is impossible by (2.3). If $\mathrm{rk}(\mathscr{F})=1$, then it follows from Lamma 1.4 that $\operatorname{deg}(\tilde{\mathscr{E}}) \geq h^{0}\left(L_{m}\right)-2+q_{m}+\operatorname{deg}(\mathscr{F}) / 2$. Let \mathscr{G} be the kernel of $\widetilde{\mathscr{E}} \rightarrow \mathscr{F}$. Since \mathscr{F} is special, we have $\operatorname{deg}(\mathscr{F}) \leq 2 q_{m}-2$. Hence

$$
\mu_{1}(\widetilde{\mathscr{E}}) \geq \operatorname{deg}(\mathscr{G}) \geq h^{0}\left(L_{m}\right)-2+q_{m}-\operatorname{deg}(\mathscr{F}) / 2 \geq n
$$

Using (1.1) for $i=1$, we get

$$
L_{m}^{2} \geq \frac{2\left(g_{m}-1\right)}{2 g_{m}-1}\left(g_{m} n+\left(g_{m}-1\right)\left(q_{m}-1\right)\right)
$$

which is impossible for $g_{m}>4$. If $\mathscr{F}=0$, then $\operatorname{deg}(\widetilde{\mathscr{E}})=h^{0}\left(L_{m}\right)+2\left(q_{m}-1\right)$ by the Riemann-Roch theorem. Hence we get the desired inequality from Lemma 1.3. Then, by (2.3), we get $g_{m} \leq 6$.
Q.E.D.

Let $f: S \rightarrow B$ be the fibration induced by the Albanese map. Since we can assume that f_{m} is induced by the Albanese map, we get a commutative diagram

The Galois group $\operatorname{Gal}\left(S_{m} / S\right)$ of $\pi_{m}: S_{m} \rightarrow S$ acts naturally on B_{m}, and we can identify B with the quotient $B_{m} / \operatorname{Gal}\left(S_{m} / S\right)$. We assume that m is a prime number with $m \geq 7$. Then $\varpi: B_{m} \rightarrow B$ is an m-sheeted cyclic covering.

Lemma 3.3. The covering $\bar{\omega}$ is unramified.
Proof. Assume that $\operatorname{Gal}\left(S_{m} / S\right)$ has a fixed point $t \in B_{m}$. Then the induced $\operatorname{map} f_{m}^{-1}(t) \rightarrow f^{-1}(\varpi(t))$ is m-sheeted. Since $g_{m} \leq 6$, we have

$$
10 \geq K_{m} f_{m}^{-1}(t)=m K f^{-1}(\varpi(t)) \geq 4 m
$$

which is impossible.
Q.E.D.

Since S_{m} is obtained by the base change $\varpi: B_{m} \rightarrow B$, we have $g_{m}=g$, where g denotes the genus of a general fibre D of $f: S \rightarrow B$. We remark that D is trigonal, since so is D_{m}. Therefore, f is a trigonal fibration of genus $g \leq 6$.

We finish the proof of Theorem 2 with the following:

Lemma 3.4. Let S be an irregular even canonical surface with $K^{2}<4 \chi$, and let g denote the genus of the Albanese pencil. Then $3 \leq g \leq 6$ and the following inequalities hold.

$$
K^{2} \geq \begin{cases}3 \chi+10(q-1) & \text { if } g=3 \\ \frac{8 g(g-1)}{g^{2}+7 g-16}\left(\chi+8\left(1-\frac{2}{g}\right)(q-1)\right) & \text { if } 4 \leq g \leq 6\end{cases}
$$

In other words, the slope of the Albanese pencil is not less than 3, 24/7, 40/11 or $120 / 31$ according to $g=3,4,5$ or 6 , respectively.

Proof. Since $\boldsymbol{\omega}: B_{m} \rightarrow B$ is an m-sheeted unramified covering, we have $q_{m}-$ $1=m(q-1)$ by Riemann-Hurwitz's formula.

Assume that Φ_{m} is composed of a pencil. It follows from (2.1) that $2 h^{0}\left(L_{m}\right) \geq$ $-L_{m}^{2} / 2+\chi_{m}$. From this and Lemma 3.2, (1), we get

$$
4 L_{m}^{2} \geq \frac{2 g(g-1)}{2 g-1}\left(-L_{m}^{2}+2 \chi_{m}\right)+8(g-1)\left(q_{m}-1\right) .
$$

Since $L_{m}^{2}=m L^{2}, X_{m}=m \chi$ and $q_{m}-1=m(q-1)$, we can drop the subscript m from the above inequality. Then, since $K^{2}=4 L^{2}$, we get

$$
\begin{equation*}
K^{2} \geq \frac{8 g(g-1)}{g^{2}+3 g-2}\left(\chi+2\left(2-\frac{1}{g}\right)(q-1)\right) \tag{3.2}
\end{equation*}
$$

Assume that $\operatorname{deg} \Phi_{m}=3$. Then, similarly as above, we get

$$
\begin{equation*}
K^{2} \geq \frac{8 g(g-1)}{g^{2}+7 g-16}\left(\chi+8\left(1-\frac{2}{g}\right)(q-1)\right) \tag{3.3}
\end{equation*}
$$

by using (2.1) and Lemma 3.2. Note that (3.2) is stronger than (3.3) when $g=4$.

> Q.E.D.

Remark 3.5. When $3 \leq g \leq 5$, the assertion on the slope in Lemma 3.4 holds for any (relatively minimal, non-isotrivial) non-hyperelliptic fibrations, as we have shown in [6].

The lower bound on K^{2} in Lemma 3.4 is sharp for $g=3,4$. Indeed, for
$g \leq 4$, even canonical surfaces which attain the lower bound can be constructed as in [5, I, §8]. The following example shows that the bound is also sharp for $g=6$.

Example 1. For simplicity, we denote the pull-back of objects by the same symbol. Let B be a non-singular projective curve of genus q and let L_{0} be a line bundle of degree $e>0$ on B. We consider a ruled surface $R=\mathbf{P}\left(\mathscr{O}_{B}\left(6 L_{0}\right) \oplus \mathscr{O}_{B}\right)$ and a \mathbf{P}^{1}-bundle $P=\mathbf{P}\left(\mathscr{O}_{R}\left(2 \Delta_{0}+14 L_{0}\right) \oplus \mathscr{O}_{R}\right)$ over R, where Δ_{0} is the minimal section of R. Let H be a tautological divisor on P, and take a general member $S \in$ $\left|3 H+\Delta_{0}\right|$. We choose sections X_{0} and X_{1} of [H] and [$H-2 \Delta_{0}-14 L_{0}$] respectively so that $\left(X_{0}, X_{1}\right)$ forms a system of homogeneous coordinates on fibres of $P \rightarrow R$. Then S is defined in P by

$$
\zeta\left(X_{0}^{3}+\phi_{1} X_{0}^{2} X_{1}+\phi_{2} X_{0} X_{1}^{2}\right)=\phi_{3} X_{1}^{3}
$$

where $\zeta, \phi_{1}, \phi_{2}$ and ϕ_{3} are respectively general sections of [Δ_{0}], $\left[2 \Delta_{0}+14 L_{0}\right]$, $\left[4 \Delta_{0}+28 L_{0}\right]$ and $7\left[\Delta_{0}+6 L_{0}\right]$ on R. Hence we can assume that S is irreducible and non-singular. Furthermore, it has a natural trigonal fibration $f: S \rightarrow B$ of genus 6 . We remark that ϕ_{3} is a non-zero constant on Δ_{0}. From the above equation, we know that f has a section B_{0} defined in P by $\zeta=X_{1}=0$, and Δ_{0} is linearly equivalent to $3\left(X_{1}\right)$ on S. By the adjunction formula, the canonical bundle of S is induced by $H+\Delta_{0}+8 L_{0}+K_{B}$ which is equivalent to $10\left(X_{1}\right)+22 L_{0}+$ K_{B} on S. If B is a hyperelliptic curve and if we choose $q-1$ distinct Weierstrass points p_{1}, \ldots, p_{q-1}, then $K_{B}=2 \sum p_{i}$ and S is an even surface with a semicanonical bundle $\left[5\left(X_{1}\right)+11 L_{0}+\sum p_{i}\right]$. By a standard calculation, we have $p_{g}(S)=62 e+6(q-1), q(S)=q \quad$ and $\quad K_{s}^{2}=240 e+40(q-1)$. Therefore, when e is sufficiently large, S is an even canonical surface with a trigonal fibration $f: S \rightarrow B$ whose slope is $120 / 31$.

The next example shows that we cannot weaken the asumption $K^{2}<4 \chi$ in Theorems 1 and 2.

Example 2. Let A be a principally polarized abelian surface, and let Θ be a theta divisor on A. For $k \geq 2$, choose a general member $C \in|4 k \Theta|$, and let S be the double covering of A with branch locus C. Then S is an even surface, since the canonical bundle is induced by $2 k \Theta$. Furthermore, the numerical characters satisfy $K_{S}^{2}=16 k^{2}, p_{g}=4 k^{2}+1$ and $q=2$ (hence $K_{S}^{2}=4 \chi\left(\mathscr{O}_{S}\right)$). The Albanese map of S is clearly surjective. It is easy to see that the canonical image of S is cut out by hyperquadrics.

REFERENCES

[1] G. Harder and M. S. Narashimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann., 212 (1975), 215-248.
[2] R. Hartshorne, Stable reflexive sheaves, Math. Ann., 254 (1980), 121-176.
[3] E. Horikawa, Algebraic surfaces of general type with small $c_{1}^{2} V$, J. Fac. Sci. Univ. Tokyo Sect. A, 28 (1981), 745-755.
[4] N. Nakayama, Zariski-decomposition problem for pseudo-effective divisors, In: Proceedings of the Meeting and the workshop "Algebraic Geometry and Hodge Theory", vol. I, Hokkaido Univ. Technical Report Series in Math., no. 16 (1990), 189-217.
[5] K. Konno, Even canonical surfaces with small K^{2} I , II, Nagoya Math. J., 129 (1993), 115-146; Rend. Sem. Mat. Univ. Padova, 93 (1995), 199-241.
[6] K. Konno, Non-hyperelliptic fibrations of small genus and certain irregular canonical surfaces, Ann. Sc. Norm. Pisa Sup. Ser. IV, vol. X X (1993), 575-595.
$[7]$ K. Konno, On the irregularity of special non-canonical surfaces, Publ. RIMS Kyoto Univ., 30 (1994), 671-688.
[8] M. Reid, π_{1} for surfaces with small K^{2}, Lec. Notes in Math., 732 (1979), Springer, 534-544.
[9] G. Xiao, Algebraic surfaces with high canonical degree, Math. Ann., 274 (1986), 473-483.
[10] G. Xiao, Hyperelliptic surfaces of general type with $K^{2}<4 \chi$, Manuscripta math., 57 (1987), 125-148.
[11] G. Xiao, Fibered algebraic surfaces with low slope, Math, Ann., 276 (1987), 449-466.

Department of Mathematics
Graduate School of Science
Osaka University
1-16 Machikaneyama
Toyonaka, Osaka 560
Japan
e-mail address: konno@math.wani.osaka-u.ac.jp

