A NOTE ON CHARACTERISTIC EQUATION OF TOEPLITZ OPERATORS ON THE SPACES A_k

GUANGFU CAO

1. Preliminaries

Let k be any integer, $k \ge 0$. The k-th Bergman measure on unit ball B of C^n , μ_k , is given by

$$d\mu_{k} = \frac{\Gamma(n+k+1)}{\Gamma(n+1)\Gamma(k+1)} (1 - |w|^{2})^{k} dv(w).$$

Note that μ_0 is simply normalized Lebesque measure on B. The k-th Bergman space, A_k , is defined as the space of analytic functions on B which are square integrable with respect to the measure μ_k . Note that $A_k = H^2(\mu_k)$, where $H^2(\mu_k)$ be the $L^2(\mu_k)$ -closure of the ball algebra A, and that $A_j \subset A_k$ for $j \leq k$. The standard orthonormal base for A_k is given by

$$e_{\alpha}^{k} = c(a, k, n)z^{\alpha} = c(a, k, n)r_{1}^{\alpha_{1}}e^{i\alpha_{1}\theta_{1}}\cdots r_{n}^{\alpha_{n}}e^{i\alpha_{n}\theta_{n}}$$

where $c(\alpha, k, n)$ is a constant number such that $c(\alpha, k, n) \| z^{\alpha} \| = 1$. Let P_k denote the projection of $L^2(\mu_k)$ onto A_k . Note that $L^{\infty}(\mu_k) = L^{\infty}(B) = \{f: f \text{ is essentially bounded on } B \text{ with respect to Lebesque measure on } B\}$. Also $H^{\infty}(\mu_k)$, the $weak^*$ -closure of the polynomials in z in $L^{\infty}(B)$, is the set $\{f: f \in L^{\infty}(B) \text{ and } fA_k \subseteq A_k\} = H^{\infty}$, the set of bounded analytic functions on B. For $f \in L^{\infty}(B)$, $\|f\|_{\infty}$ denotes the essential supremum of f on B. For any $\varphi \in L^{\infty}(B)$ and for any $k \geq 0$, we define a Toeplitz operator $T_{\varphi}^{(k)}: A_k \to A_k$ as follows:

$$T_{\varphi}^{(k)}f = P_k(\varphi f) \quad (f \in A_k).$$

It can be seen easily that

$$T_{\varphi}^{(k)}f(z) = \int_{B} \frac{\varphi(\zeta)f(\zeta)}{(1-\langle z,w\rangle)^{k+n+1}} d\mu_{k}(\zeta)$$

Received November 8, 1994.

172 GUANGFU CAO

(consult Rudin [1]). The set of all bounded linear operator on A_k is written as $L(A_k)$, clearly, $T_{\varphi}^{(k)} \in L(A_k)$. It is well-known that equation $T_{\overline{z}}TT_z = T$ characterize the Toeplitz operators on Hardy space in one complex variable. A. M. Davie and N. P. Jewell [2] proved that $\sum_{i=1}^n T_{\overline{z}_i}TT_{z_i} = T$ characterizes Toeplitz operators on Hardy space of several complex variables. D. H. Yu and Sh. H. Sun [3] proved that $T \in L(H^2)$ is a Toeplitz operator iff equation $T_{\eta}^*TT_{\eta} = T$ is hold for each inner function η . In [4], for n = 1, N. P. Jewell raised the following.

PROBLEM. Is there a set of operator equations which characterize Toeplitz operators on the weighted Bergman spaces of one complex variable?

In next section, we answer negatively the problem.

2. Theorems

THEOREM 1. Let B be a set of operator equations and A be the set of bounded linear operators on the k-th weighted Bergman space A_k which satisfy B. If A contains all Toeplitz operators on A_k , then A is weak*-dense in $L(A_k)$.

Proof. If A is not weak *-dense in $L(A_k)$, there exists a nonzero trace class operator S such that $\operatorname{tr}(ST)=0$ for any $T\in A$. Then there exist $\{f_t\}$ in A_k such that $S=\sum_{t=1}^{\infty}f_t\otimes e_t$, where $\{e_t\}$ is the orthonormal basis of A_k and $f_t\otimes e_t$ is a 1-rank operator on A_k . Without loss of generality, one can assume that $\{e_t\}_{t=1}^{\infty}=\{e_{\alpha}^k\}_{\alpha\in\mathbb{Z}^{+n}}$, where $e_{\alpha}^k=c(n,k,\alpha)z^{\alpha}$. For convenience, we replace f_t by f_{α} . Note $S^*=\sum_{\alpha}e_{\alpha}^k\otimes f_{\alpha}$, so

$$S^*S = (\sum_{\alpha} e_{\alpha}^k \otimes f_{\alpha}) (\sum_{\alpha} f_{\alpha} \otimes e_{\alpha}^k) = \sum_{\alpha} \|f_{\alpha}\|_2^2 e_{\alpha} \otimes e_{\alpha}^k.$$

Furthermore, $\|S\|_{C_1}=\operatorname{tr}((S^*S)^{\frac{1}{2}})=\sum_{\alpha}\|f_{\alpha}\|_2$. Hence, $\sum_{\alpha}\|f_{\alpha}\|_2\leq\infty$, consequently, $\sum_{\alpha}f_{\alpha}e_{\alpha}^k\in L^1$. If A contains all Toeplitz operators on A_k , then for any $\varphi\in L^\infty(B)$, we have $T_{\varphi}^{(k)}\in A$. Thus

$$\operatorname{tr}(T_{\varphi}^{(k)}S) = \sum_{\alpha \in Z^{+n}} \langle T_{\varphi}^{(k)} S e_{\alpha}^{k}, e_{\alpha}^{k} \rangle$$

$$= \sum_{\alpha \in Z^{+n}} \langle \varphi(\sum_{\beta \in Z^{+n}} f_{\beta} \otimes e_{\beta}^{k}) e_{\alpha}^{k}, e_{\alpha}^{k} \rangle$$

$$= \sum_{\alpha \in Z^{+n}} \langle \varphi f_{\alpha}, e_{\alpha}^{k} \rangle$$

$$= \sum_{\alpha \in Z^{+n}} \int_{B} \varphi f_{\alpha} e_{\alpha}^{\bar{k}} d\mu_{k}$$

$$= \int_{B} \varphi(\sum_{\alpha \in \mathbb{Z}^{+n}} f_{\alpha} e_{a}^{\overline{k}}) d\mu_{k} = 0.$$

Since φ is arbitrary, we easily see that $\sum f_{\alpha}(z)e_{a}^{\overline{k}}(z)=0$ for any $z \in B$. Suppose f_{α} has series expansion $f_{\alpha}=\sum_{\beta\in Z^{+n}}a_{\alpha\beta}e_{\beta}^{k}$, then

$$\begin{split} \sum_{\alpha} f_{\alpha}(z) e_{a}^{\overline{k}}(z) &= \sum_{\alpha} \sum_{\beta} a_{\alpha\beta} e_{\alpha}^{\overline{k}} e_{\beta}^{k}(z) \\ &= \sum_{\alpha} \sum_{\beta} a_{\alpha\beta} c(n, \alpha, k) c(n, \beta, k) z^{\overline{\alpha}} z^{\beta} \\ &= \sum_{\alpha\beta} a_{\alpha\beta} c(n, \alpha, k) c(n, \beta, k) r^{\alpha+\beta} e^{i(\beta-\alpha)\theta} \\ &= \sum_{\alpha\beta} \sum_{\alpha\beta} \sum_{\alpha+\beta=t} a_{\alpha\beta} c(n, \alpha, k) c(n, \beta, k) e^{i(\beta-\alpha)\theta}] r^{t} = 0, \end{split}$$

where

$$\theta = (\theta_1, \dots, \theta_n), \ 0 \le \theta_i \le 2\pi, \ (\beta - \alpha)\theta = \sum (\beta_i - \alpha_i)\theta_i,$$
$$r = (r_1, \dots, r_n), \ 0 \le ||r|| < 1.$$

So for each $t \in \mathbb{Z}^{+n}$,

$$\sum_{\alpha+\beta-t} a_{\alpha\beta} c(n, \alpha, k) c(n, \beta, k) e^{i(\beta-\alpha)\theta} = 0$$

i.e.

$$\sum_{\alpha+\beta=t} a_{\alpha\beta}c(n, \alpha, k)c(n, \beta, k)e^{i(t-2\alpha)\theta} = 0.$$

Clearly, $\{e^{i(t-2\alpha)\theta}\}$ is linear independent, so $a_{\alpha\beta}=0$ for $\alpha+\beta=t$. Hence, for any $\alpha\in Z^{+n}$, $\beta\in Z^{+n}$, we have $a_{\alpha\beta}=0$ and so S=0. It contradicts that $S\neq 0$. This completes the proof.

Frankfurt [5] proved that no bounded operator T on A_0 satisfies the operator equation $B_0^*TB_0=T$, where B_0 is the Bergman shift on $A_0(D)$ and D is the unit disc. We can extend this result to the case $A_k(B)$. In fact, we have the following.

Theorem 2. There isn't nonzero bounded operator T on $A_k(B)$ such that $\sum_{i=1}^n T_{\overline{z}_i}^{(k)} TT_{Z_i}^{(k)} = T$.

To prove Theorem 2, we need some lemmas. The proof of Lemma 1 is related to that of Proposition 2.4 in [4].

174 GUANGFU CAO

LEMMA 1. Let $M_{z_1} \cdot \cdot \cdot M_{z_n}$ be multiplication by the coordinate functions on $L^2(B, d\mu_k)$. If there exists $T \in L(L^2)$ such that $\sum_{i=1}^n M_{z_i}^* T M_{z_i} = T$, then T commutes with M_{z_i} , $M_{z_i}^*$ $(i=1,\ldots,n)$.

Proof. For any positive integer m and f, $g \in L^2$, we have

$$\langle Tf, g \rangle = \sum_{\sum_{i=1}^{n} k_i = m} \frac{m!}{k_1! \cdots k_n!} \langle TM_{z_1}^{k_1} \cdots M_{z_n}^{k_n} f, M_{z_1}^{k_1} \cdots M_{z_n}^{k_n} g \rangle$$

by $\sum_{i=1}^{n} M_{\overline{z}_i} T M_{z_i} = T$. Hence

$$\langle (TM_{z_{1}} - M_{z_{1}}T)f, g \rangle$$

$$= \sum_{\sum_{l=1}^{n} k_{l}=m} \frac{m!}{k_{1}! \cdots k_{n}!} \langle TM_{z_{1}}^{k_{1}+1} \cdots M_{z_{n}}^{k_{n}}f, M_{z_{1}}^{k_{1}} \cdots M_{z_{n}}^{k_{n}}g \rangle$$

$$- \sum_{\sum_{l=1}^{n} k_{l}=m} \frac{(m+1)!}{(k_{1}+1)!k_{2}! \cdots k_{n}!} \langle TM_{z_{1}}^{k_{1}+1} \cdots M_{z_{n}}^{k_{n}}f, M_{z_{1}}^{*}M_{z_{1}}^{k_{1}+1} \cdots M_{z_{n}}^{k_{n}}g \rangle$$

$$- \sum_{\sum_{l=2}^{n} k_{l}=m+1} \frac{(m+1)!}{k_{2}! \cdots k_{n}!} \langle TM_{z_{2}}^{k_{2}} \cdots M_{z_{n}}^{k_{n}}f, M_{z_{1}}^{*}M_{z_{2}}^{k_{2}} \cdots M_{z_{n}}^{k_{n}}g \rangle$$

$$= \sum_{\sum_{l=1}^{n} k_{l}=m} \frac{m!}{k_{1}! \cdots k_{n}!} \langle TM_{z_{1}}^{k_{1}+1} \cdots M_{z_{n}}^{k_{n}}f, \left(1 - \frac{m+1}{k_{1}+1} M_{z_{1}}^{*}M_{z_{1}}\right) M_{z_{1}}^{k_{1}} \cdots M_{z_{n}}^{k_{n}}g \rangle$$

$$- \sum_{\sum_{l=n}^{n} k_{l}=m+1} \frac{(m+1)!}{k_{2}! \cdots k_{n}!} \langle TM_{z_{2}}^{k_{2}} \cdots M_{z_{n}}^{k_{n}}f, M_{z_{1}}^{*}M_{z_{2}}^{k_{2}} \cdots M_{z_{n}}^{k_{n}}g \rangle .$$

Furthermore

$$\begin{split} & \quad \|T\|^{-1} \langle (TM_{z_1} - M_{z_1}T)f, g \rangle \\ \leq & \sum\limits_{\sum_{l=1}^n k_l = m} \frac{m!}{k_1! \cdots k_n!} \|M_{z_1}^{k_1+1} \cdots M_{z_n}^{k_n} f \|\| \left(1 - \frac{m+1}{k_1+1} M_{\overline{z}_1} M_{z_1}\right) M_{z_1}^{k_1} \cdots M_{z_n}^{k_n} g \| \\ & \quad + \sum\limits_{\sum_{l=2}^n k_l = m+1} \frac{(m+1)!}{k_2! \cdots k_n!} \|M_{z_2}^{k_2} \cdots M_{z_n}^{k_n} f, \|\|M_{\overline{z}_1} M_{z_2}^{k_2} \cdots M_{z_n}^{k_n} g \|. \end{split}$$

Note for any $f \in L^2(B, d\mu_k)$

$$\| (M_{\overline{z}_1} M_{z_1} + \dots + M_{\overline{z}_n} M_{z_n})^m f \|$$

$$= \| (\sum_{\sum_{i=1}^n |z_i|^2})^m f \| \to 0 \ (m \to \infty)$$

and

$$\sum_{\sum_{i=1}^{n} p_i = m} \frac{m!}{p_1! \cdots p_n!} \| M_{z_1}^{p_1} \cdots M_{z_n}^{p_n} f \|^2$$

$$= \sum_{\sum_{l=1}^{n} p_{l}=m} \frac{m!}{p_{1}! \cdots p_{n}!} \langle (M_{\overline{z}_{1}} M_{z_{1}})^{p_{1}} \cdots (M_{\overline{z}_{n}} M_{z_{n}})^{p_{n}} f, f \rangle$$

$$= \langle (M_{\overline{z}_{1}} M_{z_{1}} + \cdots + M_{\overline{z}_{n}} M_{z_{n}})^{m} f, f \rangle$$

$$\leq \| (\sum_{\sum_{l=1}^{n} |z_{l}|^{2}})^{m} f \| \| f \|.$$

Ву

$$\sum_{\sum_{i=1}^{n} k_{i}=m} \frac{m!}{k_{1}! \cdots k_{n}!} \| M_{z_{1}}^{k_{1}+1} \cdots M_{z_{n}}^{k_{n}} f \| \| \left(1 - \frac{m+1}{k_{1}+1} M_{\overline{z}_{1}} M_{z_{1}}\right) M_{z_{1}}^{k_{1}} \cdots M_{z_{n}}^{k_{n}} g \|$$

$$\leq \left[\sum_{\sum_{i=1}^{n} k_{i}=m} \frac{m!}{k_{1}! \cdots k_{n}!} \frac{m+1}{k_{1}+1} \| M_{z_{1}}^{k_{1}+1} \cdots M_{z_{n}}^{k_{n}} f \|^{2} \right]^{\frac{1}{2}}$$

$$\left[\sum_{\sum_{i=1}^{n} k_{i}=m} \frac{m!}{k_{1}! \cdots k_{n}!} \frac{k_{1}+1}{m+1} \| \left(1 - \frac{m+1}{k_{1}+1} M_{\overline{z}_{1}} M_{z_{1}}\right) M_{z_{1}}^{k_{1}} \cdots M_{z_{n}}^{k_{n}} g \|^{2} \right]^{\frac{1}{2}}$$

and

$$\begin{split} &\sum_{\sum_{i=1}^{n} k_{i}=m} \frac{m!}{k_{1}! \cdots k_{n}!} \frac{k_{1}+1}{m+1} \| \left(1 - \frac{m+1}{k_{1}+1} M_{\overline{z}_{1}} M_{z_{1}}\right) M_{z_{1}}^{k_{1}} \cdots M_{z_{n}}^{k_{n}} g \|^{2} \\ &= \sum_{\sum_{i=1}^{n} k_{i}=m} \frac{m!}{k_{1}! \cdots k_{n}!} \frac{k_{1}+1}{m+1} \left[\| M_{z_{1}}^{k_{1}} \cdots M_{z_{n}}^{k_{n}} g \|^{2} \\ &- 2 \frac{m+1}{k_{1}+1} Re \left\langle M_{z_{1}}^{k_{1}} \cdots M_{z_{n}}^{k_{n}} g, M_{\overline{z}_{1}} M_{z_{1}} M_{z_{1}}^{k_{1}} \cdots M_{z_{n}}^{k_{n}} g \right\rangle \\ &+ \left(\frac{m+1}{k_{1}+1} \right)^{2} \| M_{\overline{z}_{1}}^{-} M_{z_{1}} M_{z_{1}}^{k_{1}} \cdots M_{z_{n}}^{k_{n}} g \|^{2} \right] \\ &\leq \sum_{\sum_{i=1}^{n} k_{i}=m} \frac{m!}{k_{1}! \cdots k_{n}!} \left[\| M_{z_{1}}^{k_{1}} \cdots M_{z_{n}}^{k_{n}} g \|^{2} + 2 \| M_{z_{1}}^{k_{1}} \cdots M_{z_{n}}^{k_{n}} g \|^{2} \right. \\ &+ \frac{m+1}{k_{1}+1} \| M_{z_{1}}^{k_{1}+1} M_{z_{2}}^{k_{2}} \cdots M_{z_{n}}^{k_{n}} g \|^{2} \right] \\ &\leq 3 \left\langle \sum_{i=1}^{n} M_{\overline{z}_{i}} M_{z_{i}} \right\rangle^{m} g, g \right\rangle + \left\langle \left(\sum_{i=1}^{n} M_{\overline{z}_{i}} M_{z_{i}} \right)^{m+1} g, g \right\rangle \\ &\leq 3 \| \left(\sum_{i=1}^{n} M_{\overline{z}_{i}} M_{z_{i}} \right)^{m} g \| . \| g \| + \| \sum_{i=1}^{n} M_{\overline{z}_{i}} M_{z_{i}} \right)^{m+1} g \| . \| g \|, \end{split}$$

we have

$$TM_{z_1}-M_{z_1}T=0,$$

i.e.

$$TM_{z_1} = M_{z_1}T$$
.

176 GUANGFU CAO

Similarly, $TM_{z_i} = M_{z_i}T$, for $i = 1, 2, \dots$, n. It shows the lemma.

Lemma 2. If $T \in L(A_k)$ satisfy $\sum_{i=1}^n T_{\overline{z}_i} TT_{z_i} = T$. Then there is $S \in L(L^2)$ with $\|S\| = \|T\|$, $\sum_{i=1}^n M_{\overline{z}_i} SM_{z_i} = S$ and such that T is the compression of S to A_k .

Proof. It is similar to the proof of Lemma 2.5 in [2]. In fact, we can define ψ : $L(L^2) \to L(L^2)$ by

$$\phi(S) = \sum_{i=1}^{n} M_{\overline{z}_i} S M_{z_i}$$

then $\| \phi(S) \| \le \| S \|$. Let T^{\sim} be any operator on L^2 whose compression is T, with $\| T^{\sim} \| = \| T \|$, let $S_m = \frac{1}{m} \sum_{i=1}^m \phi^i(T^{\sim})$, and let S be a weak operator topology limit point of $\{S_m\}$, then S has the required properties.

LEMMA 3. If $T \in L(A_k)$ satisfies $\sum_{i=1}^n T_{\overline{z}_i}^k T T_{z_k}^k = T$, then T is a Toeplitz operator.

Proof. If T satisfies the equation, and S is the operator given by Lemma 2, then Lemma 1 shows that S commutes with M_{z_k} and $M_{\overline{z}_k}$ $\{k=1,\ldots,n\}$, so there is $\varphi\in L^\infty$ such that $S=M_\varphi$, consequently, $T=T_\varphi^{(k)}$.

Proof of Theorem 2. If there is $T \in L(A_k)$ such that $\sum_{i=1}^n T_{\overline{z}_i}^k T T_{z_i}^{(k)} = T$, then T is a Toeplitz operator on A_k , i.e., there is L^{∞} , such that $T = T_{\varphi}^{(k)}$. Note

$$\sum_{i=1}^{n} T_{\overline{z}_{i}}^{(k)} T_{\varphi}^{(k)} T_{\overline{z}_{i}}^{(k)} = T_{(\sum_{i=1}^{n} |z_{i}|^{2})\varphi}^{(k)},$$

so $T_{(\Sigma_{l-1}^n|z_l|^2)\varphi}^{(k)}=T_{\varphi}^{(k)}$, and hence, $T_{(1-\Sigma_{l-1}^n|z_l|^2)\varphi}^{(k)}=0$. Hence, $\varphi=0$, consequently, T=0. We complete the proof of Theorem 2.

The author is indebted to the referee for his many suggestions.

REFERENCES

- [1] W. Rudin, Function Theory in the Unit Ball of C^n , Springer-verlag, New York Heidelberg Berlin, 1980.
- [2] A. M. Davie and N. P. Jewell, Toeplitz operators in several complex variables., J. Funct. Anal., 26 (1977), 356-368.

- [3] D. H. Yu and Sh. S. Sun, The w^* -closure of operator space, Acta Math. of China (to appear).
- [4] N. P. Jewell, Toeplitz operators on the Bergman spaces and in several complex Variables, Proc. London Math. Soc., 41 (1980), 193–216.
- [5] R. Frankfurt, Operator equations and weighed shifts, J. Funct. Anal., $\bf 62$ (1978) 610-619.

Department of Mathematics Sichuan University Chengdu 610064, China