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§0. Introduction

A classical, still unsolved problem, is the following: is every connected curve

A cz P a set-theoretic complete intersection? It is clear that if A is a set-

theoretic complete intersection then:

a) The algebraic cohomology groups H (P \A, SF) vanish for every coherent

algebraic sheaf SF on P .

b) The analytic cohomology groups H (P \A, SP) vanish for every coherent

analytic sheaf SF on P \ A

This was one particular motivation for the theory developed by Hartshorne in

[8] and which has proved the following result in the algebraic case: If A c P w is a

closed connected analytic subset (possible singular) of positive dimension then

for every coherent algebraic sheaf SF on P w the algebraic cohomology group

Hn~ (Pw\^4, SF) vanishes. In particular a) has a positive answer.

Barth in [2] considered the analytic analogue of Hartshorne's theorem and

proved the following partial result: If A c P w is a closed connected analytic sub-

set of positive dimension and SF is any coherent analytic sheaf on P \ i then the

topological dual of the analytic cohomology group Hn (J*n\A, SF) vanishes ([2],

Satz 2). Unfortunately this result gives no information on the vanishing of

Hn (P \A, SF) if we do not know that it is separated in the canonical topology.

However, if A is smooth, then by the results in [3] and [1] it follows that

Hn (Pn\A, SF) has finite dimension, hence for connected smooth A the above re-

sult of Barth shows that Hn~ι{Pn\A, &) = 0.

As remarked by Barth in [2] the difficulty for singular A c P is that one

does not know if Hn (Pn\A, SF) has finite dimension and he conjectured that

this would be always true. The aim of this paper is to give a positive answer

to Barth's conjecture (Theorem 4.2). In fact we prove more general results

Received March 10, 1995.

99



100 MIHNEA COLTOIU

(Proposition 3.11, Theorem 4.1) giving criteria of cohomological (n — 1)-

convexity for some Zariski open sets in w-dimensional compact complex spaces and

which in particular imply that ά\mcH
n'ι(Pn\Af 9) < °° if & e Coh(Pw\A).

By the finite dimensionality of Hn~ (Pn\A, 2F) and by the already mentioned

result of Barth ([2], Satz 2) it follows:

MAIN THEOREM. Let A c p " be a closed analytic subset without isolated points,

k ^ 1 the number of connected components of A and $F a coherent analytic sheaf on

Pn \ A. Then we have for the analytic cohomology groups:

c T ^ P ^ A , 9) = (k - l)dimctf°(Pw\A, 3fim(&, X)) < °°

(X is the canonical sheaf of Pw). In particular Hn (Pn \ A, SF) vanishes for connected A.

This result shows that b) has also a positive answer, therefore one cannot

construt a counter-example to the complete intersection problem by finding a con-

nected curve A c P and 9 <Ξ Coh(P \A) with non-zero analytic cohomology

H2(P3\A, &).

Let us remark that for coherent algebraic sheaves the finite dimensionality of

Hn (P w \i4, 9) has been obtained also by M. Peternell [15] proving a compari-

son theorem and using Hartshorne's result. Of course, there are a lot of coherent

analytic sheaves on P W \ A which are not algebraic.

Acknowledgement. The author is grateful to Deutschen Forschungsgemeins-

chaft for financial support and to Humboldt University-Berlin and Bergische

University-Wuppertal for their hospitality during this research.

§1. Preliminaries

We collect in this section some results and definitions which will be needed

throughout this paper. All complex spaces are assumed to be reduced and with

countable topology. If U is an open subset in CΓ, a function φ ^ C°°(U, R) is cal-

led ^-convex iff its Levi form L(φ) has at least in — q + 1) positive ( > 0)

eigenvalues at any point of U. Using local embeddings this notion can be easily ex-

tended to complex spaces [1]. A complex space X is called ^-convex if there exists

a C°° function φ \X~>R which is ^-convex outside a compact subset K c X and

such that φ is an exhaustion function on X, i.e. {φ < c) c: c X for every c ^ R. If

K may be taken to be the empty set then X is called ^-complete.

The most general example of ^-completeness is given by the following result
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[14]:

THEOREM 1.1. Let X be a complex space of pure dimension n without compact

irreducible components. Then X is n-complete.

A complex space is said to be:

a) cohomologically q-convex if dimcϋΓ (X, 2F) < °° for any i ^ q and any

$ €= CohQO

b) cohomologically q-complete if H* (X, 9>) = 0 for any i > q and any & G

CohOO
The main results of Andreotti and Grauert in [1] can be stated as follows:

THEOREM 1.2. Let X be a complex space. Then:

a) X is q-convex ^ X is cohomologically q-convex

b) X is q-complete => X is cohomologically q-complete

It is also shown in [18] that the cohomological ^-convexity and the cohomolo-

gical ^-completeness are invariant under finite surjective morphisms, i.e. one has:

PROPOSITION 1.1. Let Φ:X—>Y be a finite surjective morphism of complex

spaces. Then:

a) X is cohomologically q-convex iff Y is cohomologically q-convex.

b) X is cohomologically q-complete iff Y is cohomologically q-complete.

If $P is an arbitrary coherent sheaf on a complex space X we consider on

H1(X, 50 the canonical topology coming from the topology of compact converg-

ence of cocycles. An open subset D of a complex space X is said to be a #-Runge

in X if for any compact subset K c D there is a ^-convex exhaustion function

φ : X-* R (which may depend on K) such that ί c {x <Ξ X\φ(χ) < 0} c c D.

In [1] the following approximation result is proved:

THEOREM 1.3. If ^ ^ Coh(X) and D ^ X is q-Runge then the restriction map

Hq~\X, 2F)-+Hq~ι(D, 30 has dense image.

One has the following topological property for #-Runge domains [19]:

THEOREM 1.4. If X is an n-dimensional complex space and D ^ X is q-Runge

then the relative homology groups H{(X, D C) vanish for i > n + q.
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In general this topological condition is only necessary and it is not sufficient

to guarantee the analytic approximation but, for n-Runge domains in non-compact

w-dimensional complex spaces, one has the following purely topological character-

ization [5] (which is a generalization of Theorem 1.1):

THEOREM 1.5. Let X be a complex normal space of pure dimension n without com-

pact connected components and D c X an open set. Then the following conditions are

equivalent:

1) D is n-Runge in X

2) For every % G CohQD the restriction map Hn~l{X, $)->Hn~\D, 30 has

dense image

3) The natural map H2n-ι(Dy C) —• H2n-\(X, C) is injective

4) X\D has no compact connected components.

Remark 1.1. a) A similar result holds for non-normal complex spaces but

then one has to replace "compact connected components" by "compact irreducible

components" according to the following definition: a locally closed subset F c X

has no compact irreducible components if F = v (F) has no compact connected

components, where ι> :X—*X is the normalization of X. However in this paper we

shall need the above theorem only for normal complex spaces.

b) The implication 4)=> 2) is also proved in [16] for the sheaves 3" — Ω ,

p ^ 0 of holomorphic differential ^-forms on X.

In the study of the cohomology of Pn\A we shall need the following result

([15], Theorem 1):

LEMMA 1.1. Let A c P M be a closed analytic subset of pure dimension d ^ 1.

Then there exist:

1) an irreducible projective algebraic space X of dimension n together with a finite

surjective holomorphic map Φ : X~•* PM

2) closed analytic subsets 50, Alf. . ., Ar of X and a linear subspace H c P w of

dimension d

3) automorphisms Ψlf..., Ψr of X

such that

a) So = φ-'iH), AλΌ -" U Ar = φ~\A)

b) WfiA,) = So for every i=l,...,r

Remark 1.2. In Lemma 1.1 the sets Alf . . . , Ar are the irreducible compo-

nents of Φ (A), Y— degA and φ {A) is connected if A is connected, but we
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shall not need these facts.

In our proof of the Main theorem some properties of semianalytic sets, or

more generally of subanalytic sets, will play an important role. We recall the fol-

lowing:

DEFINITION 1.1. A subset E of a real-analytic manifold M is said to be semi-

analytic if for any point x ^ M there exist an open neighbourhood U of x and

finitely many real-analytic functions g{j\ ft i = 1,. . ., p j — 1,. . ., q on U such

that E Π U= U t i ( U ' = 1 {g{j > 0} Π {f{ = 0}).

It is known [11] that given a locally finite family {Ea} of semianalytic sets in

a real-analytic manifold M there exists on M a locally finite triangulation com-

patible with {EJ.

The class of semianalytic sets is closed to finite unions and intersections, to

difference and adherence but it is not closed to proper real-analytic projections.

For that reason it was introduced the larger class of subanalytic sets [10].

DEFINITION 1.2. A subset E of a real-analytic manifold M is said to be sub-

analytic if each point of M admits an open neighbourhood U such that E Π U is a

projection of a relatively compact semianalytic set (i.e. there is a real-analytic

manifold N and a relatively compact semianalytic subset A of M x N such that

E Π U = π(A) where π : M x iV~• M is the projection).

It is known [4] that the following conditions are equivalent:

1) E is subanalytic

2) Every point of M has an open neighbourhood U such that

E Π U = Ό P

ΐ = 1 ( f n ( A a ) \ f i 2 ( A i 2 ) ) w h e r e , f o r e a c h i = 1 , . . . , / > a n d j = 1 , 2 A t j i s

a closed analytic subset of a real-analytic manifold Nijf f{j: N^—* U is

real-analytic and f{j \Aj.: Aυ —• [/ is proper.

THE CURVE SELECTION LEMMA [10]. L<?ί M be a real-analytic manifold, A c M α

subanalytic set and x & A\A. Then there exists a fundamental system of open neigh-

bourhoods U of x in M such that for any point y ^ U Π A there is a real-analytic

map φ : ( - 1,1) -» M with φ(0) = x and y e <p((0,D) c [/ Π A

L#ί now J4 be a k- dimensional real-analytic submanifold of the affine space R

(not necessarily closed) which is subanalytic. Consider the tangent map z \A—> Gk(n),

where Gk(ή) is the Grassmannian of k-planes in Rn, given by χ—> TJi, x G A. Then

it is known [6] that τ is a subanalytic map, i.e. its graph is a subanalytic set in R X
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Let Z be a Whitney stratified subset of a smooth manifold M and / : M—> N

a smooth map such that:

a) f\z is proper

b) for each stratum A of Z, the restriction / \A : A —• N is a submersion.

A map with these properties is called a proper stratified submersion. One

has:

THEOREM 1.6 (Thorn's first isotopy lemma [7]). Letf:Z^Rnbea proper stra-

tified submersion. Then there is a stratum preserving homeomorphism h : Z~> R X

(/ (0) Π Z) which is smooth on each stratum and which commutes with the projec-

tion to Rw.

If X is a triangulable space and A c l a closed triangulable subspace then it

is easy to see [17] that the following conditions are equivalent:

i) the inclusion A -̂» X is a weak homotopy equivalence

ii) the inclusion i is a homotopy equivalence

iii) A is a deformation retract of X

iv) A is a strong deformation retract of X.

By this remark and by the triangulation theorem for semianalytic sets [11] it

follows immediately:

LEMMA 1.2. Let A c ( f c J c V be closed semianalytic sets in the

real-analytic manifold M such that W is a strong deformation retract of V and A is a

strong deformation retract of T. Then A is a strong deformation retract of V.

Since the proof of the Main theorem is very long and technical, we give some

general ideas about the steps of the proof. First, by the invariance of cohomologic-

al ^-convexity under finite surjective holomorphic maps (Proposition 1.1) and by

Lemma 1.1 we only have to consider the following situation: a compact complex

space X of dimension n is given together with a closed analytic subset A = Aγ U

• * * U Aγ such that on X\A there is an exhaustion function of the type ψ —

m a x ( ^ , . . . , φr) where φt are (n — 1)-convex on X\A( and exp(— φ{) are

real-analytic on whole X. It is easy to see, by the bumping method of Andreotti

and Grauert [1], that on such a space the relatively compact sublevel sets

{φ < c} have finite dimensional cohomology in degree (n — 1) for every c E R

(Lemma 3.4), but the difficult step is to get an approximation result for
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(n — 2)-cohomology classes, and, in fact, this approximation holds only for c

sufficiently large. To see how large the constant c must be chosen we use essen-

tially the Curve selection lemma and some properties of semianalytic and suban-

alytic sets. This is possible because the functions exp(— φ^) are assumed to be

real-analytic on whole X. We show that for large c some sets BΦ considered in

the proof, have no compact connected components and, in view of Theorem 1.5,

from this topological condition, we get locally an approximation for (n — 1)-

cohomology classes. But, by Mayer-Vietoris sequence, this can be related to an

approximation for (n — 2)-cohomology classes because the functions φ{ are (n — 1)-

convex.

§2. Some real-analytic lemmas

We prove in this section some lemmas about real-analytic functions which

will be needed to have a topological control for the bumping used in the next para-

graph.

LEMMA 2.1. Let X be a real-analytic compact manifold and let Alf A2 c: X be

closed analytic subsets such that A1 = {φ = 0}, A2 = {φ — 0} where φ, φ are real

analytic functions on X and φ ^ 0, φ ^ 0. Then there exists a sufficiently small con-

stant c0 > 0 such that at any point x ^ {φ ^c0, φ ^ c0) \ (Aλ U A2) there is no a

relation of the type dxφ = adxφ with a < 0.

Proof Let P (R) be the real projective space of dimension 1 and let Uo,

λj be the homogeneous coordinates of a point in P (R). We define M= {{xy [λ0,

λj) €= X x P'CR) \χ <Ξ X\ (A, U A2), V i < 0, λQdxφ = λλdxφ). Clearly M is a

semianalytic subset of X X P (R). Assume that the statement of Lemma 2.1 is not

true. Then there exist a sequence of points xv ^ X\ (Aλ U A2) xv~+ x0 ^ Aλ Π

A2 and constants av < 0 such that dxjφ = avdxjφ. Hence (xv, [1, α j ) e M and

we may suppose that (xv, [1, α j ) —» (x0, p0). Then (x0, p0) ^ M\M and by the

Curve selection lemma for semianalytic sets there is a real-analytic map γ : (— 1,

D-+XX P'CR) with γ(0) = (xo,po) and ^((0, D) c M. Let y(r) = (x(τ),

λ(τ)) be the components of γ, hence x(r) e X, λ(τ) = ίλo(τ), λ^τ)] e P ^ R ) ,

x(0) = xo» ^(0) = Po a n d f o r any 0 < τ < 1 Cr(r), /i(r)) G M By the definition

of M it follows that for any 0 < τ < 1 we have: x(τ) e Z \ ( ^ U A2),

W < Oand

λo(τ)dx(τ)φ =
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Since -^(φ'xiτ)) = (dx(τ)φ)(x(τ)) and ^- (φ°x(τ)) = (dxiτ)φ) (x(τ))

applying 1) to x(τ) we get

2) λo(τ) -^ (φ-x(τ)) = Λ(τ) ^ (

But if τ > 0 is sufficiently small then -r- (φ°x(τ)) > 0, -j- (φ°x(τ)) > 0 (this

follows from the following simple remark: if / : (— 1,1) —• R is real-analytic,

/(0) = 0, f(τ) > 0 for τ > 0 then / ' ( r ) > 0 for τ > 0 sufficiently small). This

gives a contradiction in 2) because ^ ( r ) ^ (τ) < 0 and λo(τ), λ^τ) do not vanish

simultaneously. Thus Lemma 2.1 is completely proved.

Taking Ax = A2 and φ = φ in Lemma 2.1 we get:

COROLLARY 2.1. L#t X be a real-analytic compact manifold and A c X α closed

analytic set such that A = {φ = 0} t#/i£f£ φ is a real-analytic function on X and

φ ^ 0. Tfoen ί/iβre msί5 α sufficiently small constant c0 > 0 suc/i ί/iαί rfxφ Φ 0 at

any point x ^ {φ <, c0] \A.

LEMMA 2.2. Let X be a real-analytic compact manifold, A c β c X closed an-

alytic subsets and φ ^ 0 α real-analytic function on X with A = {φ = 0). T/ien

ί/iere eλ ϊste α sufficiently small constant c0 > 0 5wc/ι that A is a strong deformation re-

tract of B Π {φ < c} /or any 0 < c < c0.

Let Σ be a subanalytic Whitney regular stratification of B with

real-analytic strata [10]. From the subanalyticity of the tangent map it follows

that if S G Σ then the set {x e S \ dxφ = 0 on Γ^S} is subanalytic in X. By the

Curve selection lemma there is an open neighbourhood V of A in X such that for

any S G Σ and any i ^ S Π (F\A) dxζί) ^ 0. We choose c0 > 0 sufficiently

small such that {φ ^ c0] c V. By Thorn's first isotopy lemma it follows that for

any 0 < b < c < c0 the set β Π {<p < 6} is a strong deformation retract of B Π

{φ < c) because B Π {<p = ft} is a strong deformation retract of # Π {ft < φ

^ c}. Since ( 5 Π iφ *ζ c), A) is a polyhedral pair [11] and by Lemma 1.2 we get

that A is a strong deformation retract of B Π {φ < c) for any 0 ^ c < c0, as de-

sired.

LEMMA 2.3. L^ί X be a real-analytic compact manifold, Alf A2 ^ X closed an-

alytic subsets and φ> φ C functions on X which are real-analytic in a neighbourhood
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of A, U A2 with A, = {φ = 0}, A2 = {φ = 0} and <p > 0, φ > 0. Let H = {φ

< 1, φ < 1}, Li = Ai Π {0 < 1}, L2 = A2 Π {<p < 1} and αssww^ that:

1) dx<p =£ 0 for every x e {<p < 1} \i4 : and d x 0 =£ 0 /or every .r <Ξ

{ 0 < 1}\A2

2) aί anjy j?oinί x ^ H\ {Lλ U L2) ί/iβre is no a relation of the type dxφ = /ίrfx0

wtf/i /ί < 0

T/iβn each of the sets Lγ and L2 is a strong deformation retract of H.

Proof. We show that Li is a strong deformation retract of H (for L2 the

proof is similar). The real-analyticity of φ and φ near Aλ U A2, the triangulation

theorem for semianalytic sets [11] and Lemma 1.2 show that it is enough to prove

the following: for any 0 < a < b < 1 the set Ha = H Π {φ < a) is a strong de-

formation retract oί Hb = H Π {φ < 6}. We define i / ^ = H 0 {a < φ < b} and

-P«,* = {0 = 1} Π i/flfί. By the condition 2) we know that at any point x e P α 6

there is no a relation of the type dxφ = λdxφ with λ < 0. Using a partition of un-

ity it follows that there exists a metric {gυ} on the cotangent bundle of X such

that (dxφ, dxφ} > 0 if x ^ Pflfft. This metric induces a riemannian metric {#i;.} on

the tangent bundle of X such that (dφ, dφ) — <grad φ9 grad 0> where

grad ^), grad 0 are considered with respect to this riemannian metric (in local

coordinates xv . . . , xn gradf has components Σ g" ^ — ) . Therefore <gradxφ,

grad^0) > 0 at any point x^Pab. Let p:X—^ R be a C°° function which is

equal to in a neighbourhood of {a *ζ φ ^ b} and consider on X the

II d ||vector field Z defined by Zx = p(x)gradxφ. Then Z generates a 1-parameter

group of diffeomorphisms γt :X-^> X, t G R [13]. We set γ(t, x) = yt{x). For fix-

ed x e j ί consider the function £—-• φ(γt(x)). If z/0 = ^ (x) lies in the set {a < φ

< 6} then

= 4- 1

Thus the map t—* φ(γt(x)) is linear with derivative + 1 if a < φ(γt{x)) < ft. It

follows that {φ = a) is a strong deformation retract of {# ^ φ ^ b) by the homo-

topy F Λa<φ<b} x [0,1] -> {β < ^ < W given by F ( x , /) = γ(t(a - φ(x)),

x). Setting

r if
oL 11

Fix, t) if a < <pCr) <
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we get that {φ < a} is a strong deformation retract of {φ < b).

Consider now for a fixed x ^ X the function t—* φ(γt(x)). If y0 = /, (x) lies in

the set P β & then

γt φ(r,ω) (=(o = < ^ ~ imt, g r a d ^ > = <Z,o, gradBo0> > 0

therefore the function t~» ψ(γt(x)) is strictly increasing in a neighbourhood of t0.

It follows that, for a fixed .r €= Ha>bt the trajectory /(£, ,r) a ^ t ^ β lies in i/ α 6

as soon as this trajectory is contained in {a ^ φ ^ b). Hence the homotopy map

R induces also a strong deformation retract of Hb onto Ha, and thus the proof of

the lemma is complete.

LEMMA 2.4. Let X be a compact real-analytic manifold, Av . . ., Ar closed analy-

tic subsets of X, A = Aλ U U Ar, and fv...,fr real-analytic functions on X such

that A{ = {fi = 0} and /• > 0 for every i = 1,. . . , r.

Then there exists a constant c0 > 0 sufficiently small with the following property:

(P) for any τv . . ., τr ^ C ^ G f \ i 4 ) , ^ ^ 0 , . . ., τr 5 s 0, there exists a sufficiently

small constant λ0 = λo(τlf. . ., τ r ) > 0 5wc/ι ί/iαί for any constants 0 < μt ^ λ0 i =

1, . . ., r the set A{ Π Λy is α sfron^ deformation retract of the set C^(τif τJf μif μjf

0 < c' < co

Proo/. Clearly we may assume r = 2. We choose a constant c0 > 0 sufficient-

ly small such that, denoting Hr = {fγ < c0, /2 < c0}, the following conditions are

satisfied:

1) άxf\ ^ 0 for every x e {/χ < c0} \A1 and rfx/2 ^ 0 for every x e {/2

2) at any point x ^ //' \ (i4x U A2) there is no a relation of the type dxfx —

λdj2 with ^ < 0

3) for every 0 < c ^ c0 the set Aλ Π i42 is a strong deformation retract of

A, Π {/2< c}.

The existence of c0 follows from Lemma 2.1, Lemma 2.2 and Corollary 2.1.

We prove that this c0 satisfies our property (P). Let τlf τ2 ^ C™(X\A), τλ > 0,

τ2 > 0 and we have to choose the constant λ0 — λQ(τv τ2) > 0. The constant λ0 is

chosen sufficiently small such that for any 0 < μ1 < λ0, 0 < μ2 < λ0 the func-

tions fι(x)e 1-1

 1f2(x)eti22 satisfy the conditions 1) and 2) on the set Hr Π

{supp τx U suppτ 2 }. By the condition 3) and Lemma 2.3 it follows that the set

Ax Π A2 is a strong deformation retract of C12(τlf r2, μv μ2, c) for any 0 < c
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^ cot 0 Ξ̂ μ1 ^ λ0, 0 < μ2 < Λo, which proves Lemma 2.4.

§3. Some other technical results

Beginning with this paragraph by an analytic subset of a complex space we

mean a complex analytic subset.

LEMMA 3.1. Let X be a compact normal complex space of pure dimension n and

Al9. . . , Ar closed analytic subsets. We set A = Ax U U Ar and Y{ = X\A{ i =

1, . . ., r. We suppose that on each Y{ an (n — 1)-convex exhaustion function φt: Yt

->R is given. We define Dt = {φt < 0}, Y= X\A = Yx Π Π Yr, D = ^ Π

• Π Z)r, Bo- = Ff U F, \ (D^ U D ; ) αnrf we assume that for every I *ζ i, j *ζ r the

set Btj has no compact connected components.

Then it follows:

a) the natural map H2n^ι(D9 C) —• H2n_ι(Y, C) is bijective

b) the natural map H2n_2(D, C) —* H2n_2{Y', C) is injective.

Proof We first remark that by our hypothesis "Z?^ has no compact connected

components" it follows that the map # 2 w - i ( A u Dj> C ) - * i ϊ 2 f l _ 1 ( Γ f U Fy, C) is

injective and the map H2n(Di U Z); , C) —> H2n(Yt U F ; , C) is bijective for any i, j

e {1, . . . , r) (e.g. by Theorem 1.5).

Let us prove a). We show by induction on k that for any i v . . ., ik €= {1,. . .,

r) the map H^-i^ Π Π A v

 C > ^ ^ - i C ^ , Γl Π Fljk, C) is bijective.

If k = 1 this is clear because H^^iD^ C) = H2n^(Yt9 C) = 0 by Theorem 1.4.

If /c = 2 we consider the following commutative diagram with exact lines given by

the Mayer-Vietoris sequence:

0 0 0 0

II II II II
• - H2n(Dv C) θ H2n(D, C) - HM U Dμ 0 - ^ ( Z ) , n D,t 0 - H ^ ( D l t 0 θ H ^ φ , , 0 -

II II II II
0 0 0 0

Since a is an isomorphism it follows that β is an isomorphism too.

Suppose now that k > 3. To simplify the notation we put i1 = 1,. . ., ik = A:. To

apply the induction hypothesis we write:
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D , n n Όk_x n f l t = ( ΰ , n n Dk_d n (D2 n n Dk)

Yi n • n Yk-i n Yt = (Γi n n y*-i) n ( F 2 n n F t)

and

(o,n n /),_!> u (z>2 n n z g = (D2 n π D ^ ) n ( ^ u Dk)

(Fi n n r ^ ) u (r2 n n γk) = (r2 n n γk_x) n (Y, U yp.

By the Mayer-Vietoris sequence we get the commutative diagram with exact lines:

0
II

•••^HJ(D2f) ••• Π l ) w ) Π ( D j U Z y . Q - ^ M Π ••• Γ\Dk,C)-*

I I'
• • -^H2tt((Y2 n n γkj n (γι u γk), o - ^ ^ ( F ; n • n γt, o -

II
o

£ ^ . , 0 ) , n n β M ) c ) θ ^ - J ( U 2 n n D t , o - » ^ ( t f ) , n n D ^ ) n φ , u ΰ t),©-»•••

I* 1'
fffc-itfin •••n I ' w . O Θ W P n F 4 , c ) ^ i/ 2 B .,((F 2n ••• n F M ) n ( F , U F ^ . O - * - - -

By induction h is an isomorphism therefore g is injective. To prove that g is

surjective it suffices to show that ; is injective. To see this we consider the follow-

ing commutative diagram given by the Mayer-Vietoris sequence:

0
II

• -^HJD2 n n Dk_υ 0 Φ / y A u Dk, o -*H2n((D2 n n z)M) u (D, U Dk), o-»

I* l»
• — / / J F , n n F ^ , 0 θ i M u F, ,0 ^HJ(Y2 n n F W ) U (^ u γk),o-

II
0

/ 4 , - M n n 2)M) n φ1 u D,), O - / / ^ ( D J n n β M 1 o θiί2B.,(A u Z)t) ©—• •

^ - I ( ( F , n n F W ) n (Ft u rt), o - ^ / ^ . ^ F , n n Ft. lt o ΘH^JY, u Ft) O — •

Clearly m is an isomorphism and n is injective. On the other hand the map

#2«-i(A Π Π Dk_u C) -» # 2 B _ i ( F 2 n Π F t _ 1 ( C) is bijectίve by induc-

tion and the map H2n_1(Dι U D t , O^^H2n_1{Yι U F λ, C) is injective as re-

marked at the beginning of the proof. It follows that p is injective, and from the
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commutativity of the diagram, / is injective too. Thus a) is completely proved.

We now verify b) proving by induction on k that the map H2n_2(Dfj Π Π

Dh, C) -> H2n_2(Yfι (Ί Π Yit, C) is injective for any i, ik <= {1,. . ., r}.

If k — 1 the injectivity is clear because Z), is (n — 1)-Runge in F( and we can ap-

ply Theorem 1.4.

If k = 2 we consider the diagram given by the Mayer-Vietoris sequence:

0 0

I! II
• •-» ff^U),, 0 θH^Wi, 0 - H*®, U Dfi 0 - ff^U), Π D,, 0 -#„_,(/)„ 0 θH^JD,, 0 -

••-V,(7i,C)θ//!l.1(F jrC)- H2nJYi U F;,C)-iί28.2(F, ίl F;,C) - / k Λ O Θ f k Λ C H

II II
0 0

Note that H^Wt, C) = H2n_,Φ,, C) - ^ . , ( 1 ^ , C) = H^SY,, 0 = 0 by

Theorem 1.4 because Djt Dp Yit Yj are (n — 1)-complete. Also by Theorem 1.4

the maps H2n_2(Dit C) -> H2n_2(Yh C) and H2n_2(Dit C) ^ H2n_2(Yμ C) are in-

jective, therefore c is injective too. The map a is injective by the remark at the be-

ginning of the proof. If follows that b is injective.

Suppose now that k > 3 and to simplify the notations we put «Ί = 1,. . ., ik = k.

As in a), in order to apply the induction hypothesis, we write:

fl,n n D^ n β t = (0, n n Dk_j n (D2 n n Dk)

Yγ n n γk_, n γk = (Y, n n γk_j n (γ2 n • n γk)

and

( β , n n Dk.j) u ( ΰ 2 n n ΰ t ) - ( ΰ 2 n - n z ^ ) n (Dy u z)»)

(r x n • n γk_j u (γ2 n n γk) - (γ2 n n r ^ ) n (F X U γk).

Consider the following diagram given by the Mayer-Vietoris sequence:

n ••• n z u o θ f f ^ n ••• n ΰ t,c) -»/?„.,((/), n ••• n /),.,) n (D, U flt),c)

( F . n ••• n r ^ . o θ i W ^ n ••• n r t , o - f f 2 s . , ( ( F 2 n ••• n r M ) n (F,u r t ) ,

(A n • • n Dk, Q^H2n_2{D, n • n Dk_v o Φiί 2 B _ 2 ( i) 2 n n Dk, c)

I" i
Ji n n rtI c) - H^Y, n n ^ . ^ o φ HU_2{Y2 n n γk, o
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The map u is bijective by a) and w is injective by induction. On the other hand at

a) it was shown that the map j is injective. It follows that v is injective and thus

the proof of Lemma 3.1 is complete.

Before stating the next lemma we introduce some notations. Let °U =

be a countable Stein open covering of a complex space X such that °U is a base of

open sets for the topology of X. If 9 e CohGO we denote by CP(°U, SF) the

Frechet space of Cech cochains, δ = δP: CP(% 9) -* Cp+1(% 90 the coboundary

operator, ZP{% 90 = ker δP the Frechet space of cocycles, Bp(% 90 = im δ*'1

the space of cobords, HP(X, 30 = HP(°U, 90 = ZP(ύU, &)/BP(°U, 30 the coho-

mology of X with values in SF, with the quotient topology, which clearly does not

depend o n ΐ . I f f l c J Ϊ is an open set we define °ίί \D = {£/. <Ξ <U | JJt ̂  D).

It is easy to verify that the following conditions are equivalent:

i) The restriction map HP(X, SF) —• HP{Dy 2F) has dense image

ii) The restriction map ZP(°U, 30 ~* ZP(°U \Df 3?) has dense image for every

covering °li as above

iii) The restriction map Z (°U, SF) —> Z (°U \D, SF) has dense image for one

covering °ίl as above.

LEMMA 3.2. Let X be a complex space such that X = Dx U D2 where Dv D2 c

X are open sets and let SF ^ CohQD. Consider the Mayer- Vietoris sequence:

Hi(Dι Π D2, 90 ^ Hι^{Dx U D2y 90 -+ Ht+1(DV 90 θ Hi+ι(D2t 90

and assume that for some iHi+1(Dlf 9) = Hi+1(D2, 9) = 0.

Then the map H\ΏX Π D29 9) -* H (D1 U D2, &) is open.

Proof. Let °U = {U^)i&1 be a countable Stein open covering of X such that °U

is a base of open sets for the topology of X and such that the following condition

is satisfied:

c) ^ n n ( / B i # ^ ί / B o u u [ / > ( c ΰ l θ r [ / % u u unqcD2

This condition can be written also as follows:

ner f °U = ner f °U \Di U ner f °U |z>2

We show that the map u* : H* (M 1 ^ ^ , &)-^Ht+1(% 90 is induced by a con-

tinuous linear map u : Z%(fU b nzv ^ ~^ ̂  ^» ^ between cocycles. Let y ^

Z'W l^n^f ^ ) a n d l e t ϊi e C ' ^ IDX» ^ ) b e t h e extension of γ to Dγ by zero, i.e.
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0 otherwise

Then δγι e Zt+ (°ίί \D , SF) and we define u(γ) to be the extension of δγ1 to X by

zero, i.e.

u(γ) (w0,..., ni+ι) = .
[ 0 otherwise

Clearly u(y) £= C* (°U, ?F) but, by condition C), it follows easily that in fact

u(γ) G Zt+1(°ίί, ZF). From the definition of u it is obvious that u is induced

(modulo a sign) by u, hence we have the commutative diagram

1 1

By our hypothesis u is surjective. Therefore the linear continuous map s :

Z'm | D i n i V ^ ) Θ C'(1ί, ^ ) - Z1 + 1Ctt, ^ ) defined by s(γ®β) - «( r ) - δ'(j8)

is surjective. By the open mapping theorem 5 is open, hence u is also open. The

proof of Lemma 3.2 is complete.

LEMMA 3.3. Let U be a Stein normal space of pure dimension n, φlf . . . , φr

(n — 1)-convex functions on U and define D = {φλ < 0,. . ., φr < 0). Let also φγ

^ φ1 be an (n — 1)-convex function on U and put V = {φx < 0, φ2 < 0, . . . , φr

< 0). Assume that the following topological condition is satisfied:

the map H2n_2(D, C) —• H2n_2(V, C) is injective.

Then for every & e Cθh(ίT) the restriction map Hn~2(V", ^ ) -^ Hn~2(D, &) has de-

nse image.

Proof We define A = {φ1 < 0>, ^ = {0! < 0), B = {φ2 < 0,. . ., φr < 0},

hence D = A f) B, V = A' f) B. Then A, A' are (n — 1)-Runge domains in U

since U is Stein and φl9 ψι are in — 1)-convex functions on U. In particular

H2n_x(Ay C) = H2n^(A\ C) = 0 by Theorem 1.4. Also it follows easily by induc-

tion, using the Mayer-Vietoris sequence and Theorem 1.4, that H2n-ι(B, C) = 0.

We consider now the following commutative diagram given by the Mayer-Vietoris

sequence for homology:
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Θ H^CB, C) - Hto-M U B , O - H2n_2(D, C)

> i ϊ ^ G i ' , C) Θ H^.^B, C) -> ff^W U B, C) -> #2 w_2(7, C) —
II II
0 0

By hypothesis v is injective, hence u is injective too. From Theorem 1.5 it follows

that the restriction map pz: Hn~\A U B, &)^Hn~ι(A U Bf30 has dense im-

age. Note also that by Theorem 1.3 the restriction map p1:H (A',2F)—*

Hn~ 04, 2F) has dense image because A is a (n — 1)-Runge domain in U^> A'.

On the other hand Hn~ι(A', &) = Hn~ι(A, 30 = 0 since A, A are (n ~ 1)-

complete and, by induction, using the Mayer-Vietoris sequence and Theorem 1.1,

it follows that Hn~ι(B, 30 = 0.

We write now the Mayer-Vietoris sequence for cohomology in the following com-

mutative diagram:

0 0

3,9)^> Hn~2(D,^)^Hn~ι(AϋB^) ^Hn~ι(A,$)

II II
o o

In this diagram p 1 0 i d and p3 have dense images and u is open by Lemma 3.2. It

follows that p2 has also dense image, which proves our Lemma.

Remark 3.1. The condition of normality is not necessary in the above lemma

because, as remarked in §1, the first 3 conditions in Theorem 1.5 are equivalent

also for non-normal complex spaces.

LEMMA 3.4. Let Y be a complex space of dimension n and φt: F—• R i = 1 , . . . ,

r (n — 1)-convex functions. Assume that φ = max(φv . . . , φr) is an exhaustion

function on Y and define Yc— {φ < c}c ^ R. Then for every SF G Coh(F) the restric-

tion map Hn~\Yf^)-^Hn~\Ycf^) is surjective. In paricular ύimcH
n~ι{Ycf 30

< oo.

Proof. We make first the following remark: Let U be a Stein space of dimen-
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sion n> φίf. . ., φr: U~* R (n — 1)-convex functions, ψ = rmx(φiy. . ., φr) and

define V= {φ < 0}. Then V is a finite intersection of (^ — 1)-complete domains

and it follows by induction, using the Mayer-Vietoris sequence, that Hn~ (V, SF)

= 0 for every & e Coh(CT).

We come back now to the proof of Lemma 3.4. It is enough to show, by ([1],

Lemme p. 241), that for any a ^ R there exists β > a such that the restriction

map Hn~ι(Yβ, 9) -* Hn~\Yγy 30 is surjective for every a < γ < β. To see this

we use the "bumping method" of Andreotti-Grauert in [1]. We consider Stein open

subsets Ut i = 1 , . . . , m, U{ c c F, such that {<p = α} c C/χ U U t/w and we

choose 6>, e C"(i7f., R ) , 6>, > 0 i = 1, . . . , m with Σ ~ i 0,(#) > 0 at any point

,r e {<p = α}. Let also εx > 0, . . . , εm > 0 be sufficiently small constants such

that all the functions φιΛ — ψ{ — εβ^ . . . — εtθt i — 1,. . ., r t = 1,.. ., m are

(^ — 1)-convex on F.

W e define D0(c) = Xc, Dx{c) = i φ - ε^ <c},..., Dm{c) = {φ - ε ^ - . . . -

εmθm < c} for c e R. Since Dt+ι(c) \Z)f (c) c: ί/.+1, the Mayer-Vietoris sequence

and the remark at the beginning of the proof, show that the restriction maps
n~Hn~\Di+ι{c), 9) -> H^Φiίc), 9) are surjective for / = 1,. . ., m - 1. There-

fore H (Dm(c), 9)-+ H (Yc, SF) is surjective too. Suppose now that c — a.

In this case {φ < a) c Dm(a), hence there is β > α with F^ c Dm(a). If α < 7

< β then we have the inclusions Fr c F̂  c Dm(a) c Z)m(7) and it follows that

resi

lemma.

the restriction map // (F^, 3?) ~^> Hn (F r , $0 is surjective, which proves our

LEMMA 3.5. Let X be a compact normal complex space of pure dimension n, Alf.. .,

Aγ closed analytic subsets, A = Ax U U A r W^ assume that on each X\A{ an (n

— 1)-convex exhaustion function φ^: X\Ai—^^R is given and define φ:X\A—••

R by = maxί^j,. . ., < r̂). Wβ suppose that the following hypothesis (H) is satisfied:

There exists a constant a0 > 0 sufficiently large with the following property. (P') /or

any r x , . . . , r r ^ C~CX"\-A), τ x ^ 0 , . . . , τr ^ 0 there is a sufficiently small constant

λo(τlf . . . , τr) > 0 such that for all constants 0 < μt < >ί0 ί = 1, . . . , r the set

Btj(τif Tj, μt, μjy c) = (X\At) U CY\ A,) \ ( te e Z \ A t \ φ{(x) - μtτt(x) < c) U

{x ^ X\Aj I Φ ; (J:) ~ μjTjix) < c}) ^as no compact connected components for every

c > a0. 77ι#n, under these assumptions, it follows that for every SF ̂  Cdh{X\A) and

any c > a0 the restriction map H (X\ A, 2F) —* H ({φ < c), ZF) is bijective. In

particular X\ A is cohomologically (n — 1)-convex.

Remark 3.2. We shall see later (Lemma 3.10) that the hypothesis (H) is al-

ways satisfied if the functions exp(— φ{) are real-analytic on whole X. This will
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follow from our results in §2.

Proof of Lemma 3.5. In view of Lemma 3.4 and by the approximation result

in ([1], p. 250) it is enough to show that for any a > a0 there is β > a such that:

1) For any γ with a < γ < β the restriction map Hn~2(Xβ, &) -> Hn~\Xv &)

has dense image

2) The restriction map Hn~ι(Xβ9 SO -• Hn~ι(Xa, SF) is bijective

where Xc = {x ^ X\A \ φ(x) < c).

So let a > a0 be fixed and we have to choose β.

We choose a Stein open covering {[/,} j = 1,. . ., m of {φ — a), Uj c: c X\A,

Uj Π {φ < a0} = φ.

Let also θ, e C0°°([/y), fi^0;=l w be such that Σf=1 ^ t e ) > 0 at any

point x G {̂  = α}.

From the (w — 1)-convexity of the functions φtt i — 1,. . ., r there is an kQ > 0

sufficiently small such that for any εjt 0 < ε; < kQ j — 1,. . ., m all the functions

Φi,t ~ Ψi ~ εi^i~~ ~~ εfit i = 1,. . ., r t = 1,. . ., m are (n — 1)-convex on

X\Ai i = 1 , . . . , r Let € = (ε[,..., ε'm) be fixed 0 < ε] < k0 i = l,...,m.

For every A ^ R w e define the open sets Djtk(ε\ h) c: X\A j = 1,. . ., m k =

0,..., r as follows:

For j = 1 Dlt0(ε', h) = {<px < hy . . . , φr < h)y D1Λ(e', h) = {φx - ε\θx < h, φ2

< h,..., φr < h) - - Dhr(ε\ h) = {φι — ε[θ1 < h, φ2 — ε[θι < h,..., φr — ε[θ1

<h).

In general for arbitrary j and k we define

Dhk(ε', h) = {Ψl - ε Ά - . . . - ε'jθj <h ψk- έfo - . . . - έfi, < h, ψk+1

- ε'A - . . . e ; . ^ <h,...,ψr- ε'A - . . . - ε^θ^ < A}.

Hence we have the equalities:

Dh0(ε', h) = {φ < h) - Xh,

Dhr(ε\ h) - DiΛW, h) = {φ- ε'A <h},..., Di<r(ε\ h)

- D i + l Λ ( ε ' , h) = { φ - ε'γe, ~ ... - ε ' f i , < h ) , . . . ,

Dn,r{ε', h) = {ψ~ ε'A - . . . ~ t'Jm < h)

and the sequence of inclusions:

{φ < h) = Dh0(ε', h) c c Dhr(ε', h) = D2Λ(ε', h) c c D2 ,.(ε', A)

= JD 3,o(ε'^) c c-0»,,(ε/,«

Since all the functions ε[θι + . . . + ε ^ belong to C~(X\A) it follows by our
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hypothesis (H) and by Lemma 3.1 that there is some 0 < τ < 1 sufficiently small

such that:

a') H2n_x(J)jtk{τε\ h), C) -> H^iXXA, C) is bijective

b') H2n_2(Dj>k(τε\ h), C) — H2n_2(X\A, C) is injective

if h > a0 j = 1 , . . . , m /c = 0 , . . . , r

We fix this τ > 0 and we put ε = τε' and Djtk(ε, h) = Djtk(h) (from now on ε will

remain fixed). Clearly all the functions φu = φ{ — ε1θι — . . . — εtθt i = 1, . . . ,

r t = 1, . . . , rn are (w — 1)-convex on X\At and the conditions a'), b') can be

written:

a) Hto-iίDuih), C) ^H^iXXA, C) is bijective

b) H2n_2(Djtk(h), C) ~^H2n_2(X\A, C) is injective

if h > a0 j = 1 , . . . , m k = 0 , . . . , r.

We have {φ < α} c Dmr(ά) because Σ ^ i ^ ; (^) > 0 at any point x e {̂  =

α}, therefore there is some β > a with JQ = {φ < β} a Dmr(ά). We shall prove

that this /3 satisfies our conditions 1) and 2) stated at the beginning of the proof.

Step 1. We show the density of the image of the restriction map

(*) Hn~2(Dm>r(h), 9) -> Hn~\Xhy 9) for every h > α0.

By the conditions a) and b) we get:

ax) H^iD^ih), O^H^iD^h), C) is bijective

b j H2n_2(Dj>k(h), C ) ^ i / 2 W _ 2 ( D M + 1 ( « , C) is injective

if /z > α0.

Since supp θj c C/; = 1,. . . , m it follows that Djtk+1(h) \Djtk(h) c f/; therefore

^* + i (A) = A.*(« u «>M+i(A) Π C/;).
We consider the Mayer-Vietoris sequence for homology:

0

II
• — H^iD^ih), C) Θ H^Wj^ih) n C/;, C) - H^Wj^ih), C) -

H2n-2(Dj>k(h) Π t/,, C)^H2n_2(Djtk(h), C) ® H2n_2(DLk+1(h) Π C/;, C) -

It is easy to see (by induction and by Mayer-Vietoris sequence) that

^2n-i(Djjk+1(h) Π f/,, C) = 0 because Djk+1(h) Π C/; is a finite intersection of (n

— 1)-Runge domains in the Stein space Ur

From the exactness of the above sequence and by the conditions ax) and b:) it fol-

lows that the map H2n_2(Dj>k(h) Π Uj9 C) -> H2n_2(Djtk+ί(h) Π C/y, C) is injec-

tive.

In view of Lemma 3.3 the restriction map Hn~2(Dj k+1(h) Π Ujf 2F)—+
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Hn~2(Djtk(h) Π Ujf 9) has dense image.

We consider now the Mayer-Vietoris sequence for cohomology:

• — Hn~2(Djyk+ι(h), &) - Hn-2(DLk(h), &) Θ Hn-2(DjΛ+ι(h) Π Ujt9) -

Hn~2(Dj>k(h) Π UJ9 &)-» H^iD^ih), #)->•••

Since the map Hn~2(Dj>k(h), 9) Θ Hn~2(Dj>lc+1(h) Π U,,2F) -> Hn~2(Dj>k(h) Π

£/,, ^ ) comes from a map of cocycles and has finite dimensional cokernel (by Lem-

ma 3.4 dimcH
n~ι(Djk+1(h), 2F) < oo) it follows that this map is quasi-open (i.e.

open onto its image). Since we have shown that the restriction Hn~ (Djk+1(h) Π

Uj9 &)->Hn~2(Djk(h) Π Ujf 9) has dense image it follows that Hn~2(Dj>k+ι(h),

2F) —* Hn~ (Djk(h), SO has also dense image which proves Step 1.

Step 2. We verify the condition 1) stated at the beginning of the proof.

Let y be such that a ^ y ^ β. By the definition of β we have Xβ c Dmr(a), hence

the inclusions Xr c Xβ c Dmr(a) c Z)W;r(r) and by Step 1 Hn~2(Dmr(γ), 2F) -*

H (Xγ, SF) has dense image because γ > aQ. Therefore the restriction map

Hn'2(Xβy &)->Hn~2(Xr, 9) has dense image too.

Step 3. We verify the condition 2) stated at the beginning of the proof.

By Lemma 3.4 (the surjectivity assertion) it is enough to show that the restriction

map Hn~1(Dmr(a)f 2F) —> Hn~1(Xa, 2F) is injective. Exactly as in Step 1 we have

only to verify the injectivity of the maps Hn~λ (D) k+1(a), 9) -* Hn~ι(J>jtk(a), &).

To see this we consider the Mayer-Vietoris sequence:

• •-* Hn-2φJιk(a), 9) Θ Hn-2(Djtk+1(ά) Π Ui9 9) ^ Hn~2(DJtk(a) Π Ujf 9) -

n \ n 1 n 1 ) Π Uj9 &)->--

0

One has Hn~ι(Dj>k+ι(°ύ n Uj9 9) = 0 because Djtk+1(a) Π U} is a finite intersec-

tion of (n — 1)-Runge domains in the Stein space ί/; . Also by Step 1 we know

that u has dense image. On the other hand Hn~ (Djk+1(ά), 2F) is finite dimension-

al by Lemma 3.4, therefore u must be surjective. It follows that the restriction

map H (Djk+1(a), 3?) —* H (Djk(a), 2F) is injective, which proves the asser-

tion of Step 3. Thus the proof of Lemma 3.5 is complete.

LEMMA 3.6. Let A c: Pn be a closed analytic subset without isolated points. Then

there exist:

1) a projective algebraic space X of pure dimension n together with a finite surjec-

tive holomorphic map φ : X~* P w

2) closed analytic subsets Av ..., Ar of X
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3) ample line bundles Lv . . ., Lr on X and for each bundle Lt sections sitlf. . .,

such that:

a) φ~ι(A) =A1 U ••• U Ar

b) Ai = ί s u = . . . = s U / = 0} i = 1 , . . . , r

Remark 3.3. By taking the normalization of X we always may assume in the

above lemma that X is normal.

Proof of Lemma 3.6.

Step 1. We assume that A has pure dimension d ^ 1. We can apply Lemma

1.1 and we take Lt = (φ*φt)*(epn(D).

Step 2. We prove the following statement:

Let A = Ax U A2 with Al9 A^losed analytic subsets of P w without isolated points.

Assume that for each Av j = 1,2, there exists (Xjf φjf A[, Lv sift) with the prop-

erties stated in Lemma 3.6. Then there exists (X, φ, Ait Liy sίt) associated to A

and which satisfies the conditions of Lemma 3.6.

To see this we consider the commutative diagram:

X

Xι X2

where X = X1 xpnX2 is the reduced fiber product, i.e. X = {x — (xlf x2)
 e Xi x

X21 0 ! ^ ) = φ2(^2^ ^ nd Φ = 0i°pΓi = 0 2°P r2 Clearly X has pure dimension n

(

and 0, pΓj, pr2 are finite surjective morphisms. If we write 0~1(A) = 0~1(A1) U

φ~\A2) = prΓ1(0Γ1(A1)) U pr2"
1(02"

1(A2)) = p r ^ ( U f A)) U p r ^ ί U {A]) then ev-

erything is clear because pr l t pr2 are finite surjective morphisms, hence prL

r (Lpr2 (L{) are ample line bundles on X. This ends the proof of Step 2. Obviously

Lemma 3.6 follows from Step 1 and Step 2 by an induction argument.

LEMMA 3.7. Let flcC" be defined by D = {z = (zl9. . . , zn) e Cn | \ zx Γ +

' ' ' " ^ 1 ^ 1 ^ 0 } tί ̂ erβ 1 ^ ^ ^ n is a fixed positive integer, and let ψ : D —* R fre

by φ(z) = log(| ^ | + . . . + | zq \ ) . Then for every z ^ D there is a complexzq

linear subspace Mz c TZD = C with άimMz = n — (q — 1) swcΛ ί/̂ αί the Levi form

L(φ)z(w) = 0 for any w e M2.
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Proof. We put s = | z11
2 + . . . + | zq |

2. By a direct computation it follows

that:

L(φ)2(w) = — ( Σ I ZfWj — ZjWt |
2)

Let z = (zv . . ., zn) ^ D be fixed and let 1 < i < q be such that zt Φ 0. We de-

fine Mz by the following (q — 1) equations in TZD — C :

ziwι - z1wi = 0 , . . . , ^tt/^i - V Λ = 0, z{wi+1 - zi+1w{ = 0 , . . . , *,«/, - zqw{ = 0.

Clearly Mz satisfies the required conditions.

LEMMA 3.8. Let X be a complex space, U c X an open subset, flf . . . , fq ^

0(LO tt^ίΛ {x e ί/| /x(χ) = . . . = fq{χ) = 0} = 0 (mpfy seί) and 0 a 1-convex

function on U. Then φ — log(| fγ\ + . . . + | fq \ ) is q-convex on U.

Proof. Obviously we may assume that U is an open subset of C™. Let t19...,

tm be the coordinates on C™. If we consider the embedding U c_> C x f / c C n

= q + m given by t = (tv..., tm) —• (f^f),.. ., / 9 (0, ^ , . . . , tm) then Lemma 3.8

follows immediately from Lemma 3.7;

LEMMA 3.9. Let X, Y be locally compact Hausdorff spaces and π : X—• F α con-

tinuous map which is proper and surjective. Let A ^ Y be a locally closed subset and A

Then the following statements hold:

1) If A has no compact connected components then A has no compact connected

components

2) Assume additionally that π has connected fibers. Then the condition "A has no

compact connected components1 implies "A has no compact connected compo-

nents1.

The proof of this lemma is a simple exercise of topology and so it is omitted

(see e.g. [5]).

LEMMA 3.10. Let X be a compact complex space of pure dimension n, Av . . ., Ar

closed analytic subsets, A = Aι U Ό Ar and for each i = 1,. . ., r let φi\X\Ai

—* R be an exhaustion function such that exp(~ φ{) is real-analytic on X. Then

there exists a sufficiently large constant aQ > 0 with the following property:

(?') for any τv. . ., τr G C"(X\A), τι > 0,. . ., τr > 0 there is a sufficiently small
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constant λ0 = λo(τlf. . ., τr) > 0 such that for all constants 0 ^ ft ^ λQ i: = 1,. . .,

i}(τh τjy ft, ft, c) = (X\At) U ( Z \ ^ ) \ (bo

U {x

/ιαs no compact connected components if c > a0.

Proof If we set ft = e"^ then /• are real-analytic on Z , f{ > 0, Af = if{ = 0}

and ^ . ( r , , r,, ^ t , ft, c) = ίx G Z | /,0C) ^ ' t e ) < e'\ f ^ e ^ < Γ c } \ (Λ Π A)

With the notation in Lemma 2.4 B^ίr,-, r ; , ^^ ft, c) = C ί ; (r^, r ; , ^^ ft, £ c) \ (Af

Π Aj). Let 7Γ : X—» X be a resolution of singularities [9] and define At — π~ (A{),

4̂ = U Ao f i = fi°π> fi — τ{°π and the corresponding sets Bίjt C{j. By Lemma

2.4 there is a constant c0 > 0 sufficiently small with the property (P). Since A{ Π

A ; is a strong deformation retract of C^iz^ tjy μif ft, e c ) , c > — log c0 = α0, it

follows in particular the surjectivity of the map HQ(At Π i4; , C) —*• HQ(Cij(fv τv

μif ft, e c), C) which implies that the set Btj(ft, τjf ft, ft, c) = C/;(ff , τ ; , ft, ft,

^~ c )\( i4 z Π i4 ;) has no compact connected components. By Lemma 3.9 the set

BijiTj, τJf μt, ft, c) also has no compact connected components. Therefore the con-

stant a0 = — log c0 satisfies the conditions required in our lemma.

Remark 3.4. It follows by our proof that the sets Btj(τt, r ;, ft, ft, c) c > a0

have no compact irreducible components.

PROPOSITION 3.1 Let X be a compact normal complex space of pure dimension n,

Av . . . , Aγ closed analytic subsets, A = Aγ U U Ar, and assume that for each

i = 1,.. ., r there exists an (n — 1)-convex exhaustion function φι: X \A{ —* R such

that exp(— ψj) is real-analytic onX. Then X\A is cohomologically (n — 1)-convex.

Proof It is a direct consequence of Lemma 3.5 and Lemma 3.10.

Remark 3.5. In fact the condition of normality is not necessary in the above

proposition as one can easily see by replacing in the previous lemmas "compact

connected components" by "compact irreducible components" and dropping the

normality assumption on X.

§4. Proof of the main results

THEOREM 4.1. Let X be a compact projective algebraic space of pure dimension n.
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Alf. . ., Ar closed analytic subsets, A = Aι U U Ar. Assume that there exist am-

ple line bundles Lv . . . , Lr on X and for each bundle L{ sections s u , . . . , sifk{ G

Γ(X, Li), k{< n — 1, such that A{ = {siΛ= ...= siιkf = 0} i = 1 , . . . , r.

Then X\A is cohomologically (n — 1)-convex.

Proof By Proposition 1.1 and the invariance of ampleness under finite

surjective morphisms we may assume that X is normal. Also, replacing L{ by a

sufficiently large power of it, we may assume that L{ is very ample. Hence there is

an embedding X c_i P such that L{ = μ{ (ΘΓN(1)) and thus we have on L{ a

real-analytic metric induced by the standard metric of positive curvature on

ΘpN(l). Let h{ be this metric on L f. Let (Ua)a be an open covering of X such that

all the line bundles L{ are trivial when restricted to Ua and let ht = (hia)a be the

local representation of the metric hit hence — \oghia are 1-convex functions on

Ua. If (glta$) are the transition functions for Lx then hia = \ gUa \ hiβ. Let also

(sija) be the local representations for the sections s{ί j — 1 , . . . , k{ corresponding

to (Ua). Hence siJ>a = giιaβsUιβ.

If we set fi = hia Σ/=1 I sija | then f{ is well-defined, is real-analytic on X, f{ >

0, A{ = ift = 0}. On the other hand by Lemma 3.8 the function φ{ = — log/J is

(n — 1)-convex on X\A{. Now Theorem 4.1 is a direct consequence of Proposi-

tion 3.1.

THEOREM 4.2. Let A c p " be a closed analytic subset without isolated points.

Then P \A is cohomologically (n — 1)-convex.

Proof This follows directly by Theorem 4.1, Lemma 3.6 and Proposition 1.1.

We recall the main result in [2]:

THEOREM 4.3 ([2], Satz 2). Let 4 c P be a closed analytic subset without iso-

lated points, & €= Coh(Pw \ i4), ${ the canonical sheaf of Pw, k ^ 1 the number of

connected components of A. Then one has:

= (k - DdimH°(Pn\A, 3%m(9f X)) < oo.

By Theorem 4.2, Theorem 4.3 and Serre duality it follws:

MAIN THEOREM. Let A c Pn be a closed analytic, subset without isolated points, k

1 the number of connected components of A and 2? ^ Coh(Pw \ i4).
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Then we have for the analytic cohomology groups:

άimcH
n~ι{Pn\Ay SO = (k - 1) dimcH°(Pn\A, Λ m ( ? , X)) < oo

( # is the canonical sheaf ofPn). In particular Hn (Pn \A, 3") vanishes for connected A.
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