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DISCRETE SPECTRUM OF MANY BODY

SCHRODINGER OPERATORS

WITH NON-CONSTANT MAGNETIC FIELDS I

TETSUYA HATTORI

1. Introduction

In this paper we discuss the discrete spectrum of the Schrόdinger operator

HNZ(b), defined as below, for an atomic system in a magnetic field. Let x — (x ,

. . ., χN) ^ R3iV, where x1 is a point in R 3 ( l < j < N), and Vj be the gradient in

R with respect to x1 (1 < j < N). Then we consider the following operator:

(1.1) HN>z(b) = Σ ( r ; (W
2 - - 4 τ ) +

;=1 x \ x \

4)
\x\ l<i<J<N I χι — x I

defined on C0°°(R3iV), where Z > 0, N <Ξ N, b <Ξ C ^ R 3 ) 3 being real-valued and

(1.2) Tj = T,(b) = ~ iVj - b{xJ) (1 < < ΛO.

For a vector potential b e C^R 3 ) 3 , the vector field ϊ?(z/) = V x i(ί/) (z/ ^ R3) is

called the magnetic field. By [11] (p 190) or [12] (Chap. 9), the operator HNZ(b) is

essentially self-adjoint in L (R ), so we denote its self-adjoint extension by the

same notation HNZ(b), which we study in this paper. This operator HNZ(b) is the

atomic Hamiltonian with a nucleus, that is assumed to be infinitely heavy, of

charge Z and N electrons of charge — 1 and mass 1 /2, and with the magnetic

vector potential b. The eigenvalues and the eigenfunctions of Schrόdinger oper-

ators are often called energy levels and bound states, respectively.

The problem is the finiteness or the infiniteness of the discrete spectrum of

HNZ(b), which is one of the characteristic spectral properties. This problem in the

case that b = 0 was studied by Zhislin [17], [18], Jafaev [10], Uchiyama [15] and

others. Zhislin treated the case Z Φ N — 1 in [17] and [18], and thereafter Jafaev

[10] treated the delicate case Z—N— 1. The following theorem, which is

obtained by combining [17], [18] with [10], gives the necessary and sufficient
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condition for the finiteness of the discrete spectrum of HNz(0).

THEOREM 0.1 ([10], [17], [18]). The number of the discrete spectrum of

HN z(0) is finite if and only ifZ^ N ~ 1.

On the other hand, in the case of constant magnetic fields, Avron-

Herbst-Simon [4] gave a necessary condition for the finiteness of the discrete

spectrum of the atomic Hamiltonians, and VugaΓter-Zhislin [16] proved that it is

also sufficient. In fact, Avron-Herbst-Simon [4] only proved that once negatively

charged ion has infinitely many bound states. It seems to be natural that any neut-

ral atom and any positively charged ion also have infinitely many bound states.

This is not trivial but easily seen.

THEOREM 0.2 ([4],[16]). The number of the discrete spectrum ofHNZ(bc) is finite

if and only if Z < N — 1.

Here bc(y) = (0,0, B/2) x y(y e R3, B is a positive constant). This gives

the constant magnetic field V x bc — (0,0, B), which we have only to consider by

the change of coordinates. We remark that, comparing Theorem 0.2 with Theorem

0.1, the difference between the presence and the absence of constant magnetic

fields appears only in the delicate case Z = N — 1.

Then our concern is the case of non-constant magnetic fields. There are not

many works about this problem both for atomic Hamiltonians and for many-body

Schrόdinger operators with short-range scalar potentials (for example Zhislin

[19]). Some different phenomena are expected to occur in non-constant magnetic

fields. This is true. In fact, we have the following theorems, which are our main

results of this paper.

THEOREM 1.1. For any positive number ε, there exists a vector potential bε ^

C (R ) , which gives a perturbed constant magnetic field and which is independent of

N and Z, such that the number of the discrete spectrum of HNZ{bε) is finite for N >

2 andZ> ε.

In other words, any atomic system has only finitely many bound states, cor-

responding to the discrete spectrum, in a suitable magnetic field. Also the finite-

ness or the infiniteness of the number of bound states generically depends on

magnetic fields.

As stated as above we construct the vector potential bε in Theorem 1.1 as a
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perturbation of constant magnetic fields. Not adhering to it, we can extend the re-

sult to the case N = 1.

THEOREM 1.2. For any positive number ε, there exists a vector potential bε ^

C (R ) , which is independent of N and Z, such that the number of the discrete spec-

trum ofHNZ{bB) is finite for N > 1 and Z > ε.

For studying the above problem, geometric methods, that make explicit use of

the geometry of the phase space, have been used effectively. Agmon [2] developed

geometric methods for studying the exponential decay of eigenfunctions of

Schrodinger operators with non-isotropic potentials. In the lecture note [2] (see

also [1]) he characterized the infimum of the essential spectrum and constructed

Agmon's if-function which is useful to show the HVZ theorem. In §2 by using this

function we prove the HVZ theorem for many-body Schrodinger operators with

perturbed constant magnetic fields. In relation to Agmon's works, Evans-

Lewis-Saitό [7] gave a sufficient condition, which are represented by Agmon's

function, for the finiteness and the infiniteness of the discrete spectrum of those

operators. In addition, they also reprove Theorem 0.1 except the case

Z — N — 1 by using this result ([8]). In §3 we extend Evans-Lewis-Saitό's result

to the general magnetic case. We do it in the same but slightly simplified way as

in [7]. In §4 we introduce some magnetic vector potentials, which are used in the

proof of Theorem 1.1, and study the essential spectrum of the atomic Hamiltonians

with these vector potentials. At the end, in §5 we prove our main results

Theorems 1.1 and 1.2.

2. Preliminaries

In this section we prepare the IMS-localization formula, the HVZ theorem and

related facts, which play a basic role in the proof of Theorems 1.1 and 1.2.

We consider the following operator:

(2.1) H = HN=Σ (Tjib)2 + Voj(xJ)) 4- Σ Vi,{x' - x)

in L (R ), where we assume

Vϋ e Lioc(R3), Vϋ(y) -» 0 as | y H °° (0 < i < j < N)

VOJ(y) < 0 ( 1 < < JV), Vtj(y) >0(l<i<j<N).

The operator HNZ(b) in §1 is defined by (2.1) with
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(2.3) Voi(y) = - JJJ (1 < j < N), Vti(ϋ) = j^y (1 < i < j < N).

We denote the spectrum, the discrete spectrum, the essential spectrum of H by

σ(H), σd(H), σe(ϋ0, respectively, and the cardinal number of a set Fby # Y.

At first we define the quadratic form

qH[φ, φ] = Σ f Tjφ-Ί)φfc+ ί Vφφdx,
j=\ JR3N JR3N

3 Λ Γ )for φ, φ e C0°°(R3ΛΓ), where

(2.4) V(x) = Σ Voj{χj) + Σ

Let

(2.5)

(2.6) Σ(H)

Λ(H) = inί{qH[φ]

— sup inf{^[
^.compact

Φ

Φi Φ e C(R3W\

1),

> L> = 1}.

We remark that under the assumption (2.2) the scalar potential V(x) (especially

the negative part V_(x) = max{— V(x), 0}) is Σ^=1 Γ/-form bounded with the

bound zero. In fact, V(x) is in the Kato class (see §3) and the functions in the

Kato class have the above property (Lemma 3.1 in §3, [5] (Chap. 1) and [12]

(Chap. 9)). Also we remark that each Voj(x!) is Tj -form bounded with the bound

zero. So Λ(H) > — oo follows. Then we can show the following lemma in the

same way as in [1] (Theorem 1.6) or [2] (Chap. 3).

LEMMA 2.1.

Λ(H) = inίσ(H) and Σ(H) = inίσe(H).

The following formula holds as in the case without magnetic fields.

LEMMA 2.2 (IMS-localization formula). For a smooth partition of unity {Jβ}β

such that Σβjβ (x) = 1, the following equality holds:

H = Σ (JβHJρ — I VJβ I ) in the form sense,
β

that is,

qHίφ] = Σ (qHUeφ] ~ (I VJβ \
2φ, φ)Lϋ jσrφ^ C0~(R3ΛΓ).
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Furthermore, let Ω be an open subset in R . Then

=Σ f {Σ\TJβφ\2+V\jβφ\2}dχ-Σ f\VJβ\
2\φ\2dx

β JΩ j=l β JΩ

One can show the above lemma in the same way as in the case that b — 0 ([5]

(p.28), [7], [13]) because of the fact that the commutator

[T,, φ] - - f(F,0), for 0 e C'CR3),

is independent of b.

Next we define Agmon's if-function to derive the HVZ theorem for some

cases. We note that the HVZ theorem for the case of constant magnetic fields is

shown in [14J.

DEFINITION (Agmon's if-function). Let

O3N-1 r /I Λ\
R \ ω

For a subset U c S (U Φ 0 ) and for positive numbers i? and δ, we put

/ 4 = ( ω e S^^ distiω, U) < δ},

ΠUδ, R) = {χ^Rm;x/\x <Ξ Us, x\>R},

( 2 . 7 ) • K(Uδ,R;H) = int{qH[φ] φ e C0"(Γ(t/β, Λ)), || φ h = 1),

K(U H) = lim lim K(Uδ, R H),
δ i 0 R t °°

f = M(Λ0 = {ω e 5 3 Λ ί ^ ϋΓ(α> H) = inf K{ω;H)),

where X(ω JS) = K({ω) H).

Here the set function K( H) and the set Af are called A^mon'5 K-function

and the minimizing set for H, respectively. The following properties of K can be

shown in the same way as in the case that b = 0 ([1] (§5,6), [2] (Chap. 2) and [7]).

LEMMA 2.3. The function K has the following properties.

(i) The value ofK(U H) is the same regardless of the order of the limits.

(ii) The function K(cΰ H) is lower semi-continuous on S

(iii) Σ (H) = mmωeS3*-i K(ω # ) .

(iv) K(U H) = K(U H) = mίωGΌ K(ω H) for U c 5 3 i v "\
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As is clear from the proof in [1], [2], [7], Lemmas 2.1, 2.2, 2.3 hold also for

the operator

(2.8) H=Σfj + V,

where t} = - iVβ - bj(χj)y b, e C'CR3)3 which is real-valued (1 < j < N).

For the statement of the HVZ theorem we usually use the subsystem of H.

= (ω\...,ωN) e S3N~\let

(2.9) Hω = Σ T}(bΫ + Vω in L 2(R 3") and

F ω ω = Σ Voj(x3) + Σ K7(x;

This operator Hω is called the subsystem of H with respect to α) ^ S . Letting
o o Λx -co — U, we can write

Now we shall show the HVZ theorem only in the case that

(2.10)

b(y) = bM(y) + bp(y),

bM(y)=f(βH-y2,y190),

. bp(y), divbp(y) —> 0 as | y | —• °°,

where 2/ = (yl9 y2, y3)
 e R , p = (yu y2) and /(p) ^ C (R ). We notice that

(2.10) includes both the case without magnetic fields and the case of constant

magnetic fields. Also we remark that

\2\
(2.11) Σ ( Γ ; α>M)2) = ΛiTjibu)2) (1 < j < N).

In this case we have to modify the subsystem of H as follows.

DEFINITION. For ω = ( ω , . . . , ω ) ^ S , let

(2.12) Hω = Σ Tj(b)2 + Σ Tβu)2 + Vω(x) in L2(R^).

Note that in the case that bp = 0 the modified subsystem Hω is equal to the

usual subsystem Hω. Then the HVZ theorem for the case of (2.10) is stated as fol-

lows.

THEOREM 2.4 (HVZ theorem). For the case of (2.10) , we have
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(2.13) Σ(H) = min Λ(Hω).

Before going into the proof of Theorem 2.4, we prepare several lemmas.

LEMMA 2.5. Let Hω and Hω be as in (2.9) and (2.12), respectively. Then

K(ω;H)= K(ω Hω) = K(ω Hω) for ω ^ S3N~\

Proof of Lemma 2.5. Let ω=(ω,...,ω)^S ~ and x = ω = 0. Then

H-Hω= Σ V^x'-x*).

Let ωδ be the neighbourhood of {α>}. If x ^ Γ(ωδ, R), then | x /\ x \ — ω \ < δ

for 1 < j < N, which implies

\χj - x I > (I ω - ω\-2δ)\x\ if ω Φ ωj.

Let

1 \ i i\

aλ = -j min \ ω — ω \.

Then for δ < av it follows that | xJ — x% \ > 2aλR if ω Φ ω . This implies that

Vtj(xJ - χι) -+ 0 as R-* oo if ω

ι Φ ωj.

Hence for any ε0 > 0 there exists i?0 > 0 such that

QH [ 0 ] — ε o IIΦIL 2 — QH^Φ^ — QH 1-0] ~^~ ε o I I 0 I L 2

for δ < alf R > Ro and φ e C0°°(Γ(α)5, i?)), which implies

ϋΓ(ω fl) = K(ω;Hω).

Next we show the second equality. By a simple calculation,

Hω-Hω= Σ (T ;(6M)2 - Tj(b)2) = Σ (26, Tj(bM) - i &vbp{xj) - \ bp{xj) | 2 ) .
ω'ΦO ω'ΦO

Letting

β(x) = ~ Σ (f div^(x ;) + I ̂ 0c ;) | 2 ),

we have

I fe*[0] - foω[0ϊ I ̂  Σ (β! II T; (δM)0 & + ^ ' II bp(x')φ |£«) + (/30, 0 ) l 2
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~ Σ (|| T Wφt + (Voj(x')φ, φ)L,

[l Σ \bp{xi)\2+β)φ,φ)l}
ω'>0

for any εx > 0 and φ ^ C0°°(R ). Here we have used the positivity of Vtj. By us-

ing the fact that Voj is Γ ; -form bounded with the bound zero (stated as before in

this section, see also §3), we have

( - VwCr')0, 0)L. < || T,(b)φ |£, + C,

for some positive constant Cr So,

I qHω[φ] - qHω[φ\ I ^ εtfxΛφ] + ε^ || 0 ||̂ 2 + (βei(x)φ, φ)L2,

where

i 8 ε i ω = ^ Σ | bp(χj) \2 + β(x) and Co = Σ Cr

Now let x ^ Γ(ω 5 , R) and δ < min^# 01 ω> | /4 = a2. Then | x ; | > 2a2R if α>; ^

0, which implies β{x) —• 0, j8£iCr) -* 0 as R—• oo by (2.10). Hence we obtain

(1 - ελ)K{ω i T ) - £ i C 0 < K(ω i / J < (1 + ε,)K{ω //ω) + e^o,

which implies

K(ω;Hω) = Kiω Hj. D

LEMMA 2.6. For ω = (ω1,. . ., ωN) e S3^"1 5wĉ  ίλαί α/ = (0,0, / ) (1 <

< ΛO, f/ιβ following equalities hold.

Kiω H) =K(ω;Hω) = Σ(Hω) =Λ(Hω).

Proof of Lemma 2.6. For the above ω ^ S it is easy to see by (2.10) that

Vjx+tω) = Vω(x),

b(xi + t(J) = b(x') if ω' = 0,

bM(x' + taJ) = bM(x>) if (J Φ 0 (t e R, x = {χ\ ...,xN) <Ξ R3 Λ Γ).

Hence, for any φ e C"(R ), letting φt(x) = φ(x + to) (ί e R), we have

qHΛφ] = qHΛφt] (f e R),

which implies

Hω) = Σ(Hω)=Λ(Hω)
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by the same method as in [1] (§6) or [2] (Chap. 4). Here we use Lemmas 2.1 and

2.3. G

T o n τ~y / - ci3JV-l , . /I Ns _ C.3JV-1 ,

LEMMA 2.7. For any ω & o there exists ωr — \ωr1. . ., 0)r) ^ o such

that

ωj

r = (0,0, zj

r) (1 < < ΛO and Hω = i Γ r .

Proof of Lemma 2.7. Letting ω = (ω , . . . , ω ) , we define

z1 = 0 if ω1 = 0.

Picking up ^ e {1, . . . , M \ {ί ω' = 0} (^ 0 ) , we define

z = 1 if ω = ω .

If we can pick up i2 ^ {1,.. ., M \ U α>z = 0 or ω = ωι), we define

z = 2 if ω = a) .

If it is not the case, this operation ends. Continue this operation till the end, and

let

ώ = ( ώ 1 , . . . , ώN) e R3^, ώj = (0, 0, £0 (1 < ; < ΛO

and

ωr = ω/\ ω \ ^ 6

This ω r satisfies i T = //ω r. G

LEMMA 2.8. Recall (2.7). J/ω G M, then

Σ(H) = K(ω H) = K(ω Hω) = Σ(i/ω) =Λ(/Γ).

Proof of Lemma 2.8 By Lemmas 2.1, 2.3 and 2.5 it is easy to see that

(2.14) K(ω;H) =K(ω;Hω) > min K(ω';Hω) = Σ(Hω) >Λ(Hω).

For ω ^ M, picking up ωr in Lemma 2.7, we have

K(ω H) = Σ(H) = minω6Ss*-iϋΓ(ω H)

< K(ωr;H) = K(ωr;H
ωr) =
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Here we have used Lemmas 2.3 and 2.6. Summing up, we have desired equalities.

D

Combining these lemmas, we prove the HVZ theorem.

Proof of Theorem 2.4. By (2.14) and Lemma 2.3,

ΣCH) > min Λ(Hω).

Now we define the set M by

(2.15) M=M(N) = {ω^S3N~1;Λ(Hω) = min Λ(Hω)}.

For ω e M, pick up ω r e M in Lemma 2.7. Then

min ΛCfΓ) = Λ(HωO = K(ωr;H) > Σ(W
ωeS 3 "" 1

by Lemmas 2.3 and 2.6. Summing up we obtain

Σ(H) = min Λ(Hω). D

Next we study the minimizing set M. We remark that M is a closed set in

S because of the lower semi-continuity of K(ω H). The following lemma

asserts the relation between M and M.

LEMMA 2.9. M c M.

Proof of Lemma 2.9. For ω e M, it follows from (2.14) that

Σ.(fl) =K(ω;H) >Λ(Hω).

Hence by using the HVZ theorem we have α> €= M. Q

From now on we consider HN defined by (2.1), where Voj and Viβ are assumed

that

VQj(y) = V0(y) ( 1 < j < N ) , Vif(y) = V.iy) (l<i<j<N),

and to satisfy the condition (2.2). We note that (2.3) satisfies this assumption. In

this case we have the following proposition, roughly characterizing M (and M).
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PROPOSITION 2.10. Let N > k 4- 1 > 2 and σd(HN_k) Φ 0 . Then

(2.16) M(N)ciM(N)cz U Miv_ik,

where

^iv...,ik — ι<^ = w , . . . , ω ^ o ω = υ ί/j e u x , . . . , *A/)

/or {^,..., ίA} c {1, . . . , N}.

Proof of Proposition 2.10. Let ω = (ω\ . . . , ωN) e S 3 ^ " ^ U <lf...,ίt Af<if...fί4.

Then # {i ω Φ 0} > /c + 1. Therefore we can assume without loss of generality

that

ωp Φ0(p = 1 , . . . , /), ωp = 0(p= 1+ 1 , . . . , Λ O , / > k + 1.

Then

in the form sense, where B = Λ(Tj(bM)2) which is independent of/, and we have

dropped V1(xJ — x ) for 1 < i < p or 1 < j < p. From the above inequality it

follows that

Λ(Hω) > IB N)

= (/- DB + ΛiTM2®! + l®HN_t).

Since 7\(ύc) ® 1 + 1 ® HN_t acting on R is one of the modified subsys-

tem of HN_ι+1, we have by HVZ theorem

IB + Λ(HN_t) > (/ - Ϊ)B + Σ(HN_ι+1)

Now, if σd(HN_k) Φ 0, that is Λ(HN_k) < Σ(HN_k), then

Λ(Hω) > kB + Λ(HN_k) > . . .

> B + iKfliv-!) = AiT^MΫ ® 1 + 1 <g> ff^),

where / is a suitable number. Since Tj(bM) ® 1 + 1 0 ^ is one of the mod-

ified subsystem of HN with respect to ω €= U ί = 1 Mt, it follows that
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Λ(Hω)

which implies, by the HVZ theorem, ω £ M. Thus we obtain (2.16).

Remark 2.11. From the proof of Proposition 2.10, it follows that

(2.17) NB> (N- ΌB + ΛiHJ > . . . ^B + ΛUί^.

for ω G S ~ , there exists a number / e {1, . . . , N} such that

Here let # 0 ( # n with n = 0) = 0. Hence, by (2.17) and HVZ theorem,

Σ(HN) = min ΛUO ^ B + Λ O ^ ) .
ωeS 3 "" 1

Since β 4- A{HN_X) = Λ(H^) for α/ e uf=1 M | f we have

(2.18) UI(cΐ,
ί = l

in other words,

(2.19) Σ(HN) =B

3. Finiteness of discrete spectrum

In [7] Evans-Lewis-Saitό give a sufficient condition for the finiteness of the

discrete spectrum of Schrόdinger operators with non-isotropic scalar potentials

and without magnetic fields. In this section we extend their result to the case that

b Φ 0, that is useful to derive the finiteness of the discrete spectrum in the proof

of Theorems 1.1 and 1.2.

To state the theorem we make some preparations. Let

T) = {/ e L\0C(Rn) l i m s u p / , I / O r ) \ \ x ~ x 0 Γ " d x = 0 ) ( n > 3 ) ,

which is called the Kato class (see [2](Chap. 0), [5] (Chap. 1), [7], [8]). We remark

that V(x) in (2.4) and V{J(y) in (2.2) belong to tt(Έt3N) and # ( R 3 ) , respectively.

Only in this section we consider the operator:

(3.1) H= Σ Tjib)2 + F i n L2(JR3N),
3 = 1

including (1.1) and (2.1), where Γ,(δ) is defined by (1.2) for b e C'CR3)3 and
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(3.2)
1 VΛx) = m a χ { - V(x), 0} e # ( R 3 J V ) .

DEFINITION. We recall (2.7). For given <5 > 0 and R > 0, let

R)= ΠMδt R) \ΠMδ/2, 2R)

and χΔ be a characteristic function of J , where M is the minimizing set of H de-

fined by (2.7) and Mδ is Uδ in (2.7) with U = M. Then we define the operator, for

α>0,

(3.3) Ha = H-a\x\~2χΔ in L 2 (R 3 ") .

In addition, we define the quadratic form

= Σ Γ 7> Γ^dx + f
y=i ^ R 3 ^ *^R 3 N

for 0, 0 e C0°°(R3").

We remark that the self-adjointness of H and i/α is guaranteed in [11] (Chap.

X) or [12] (Chap. 8 and 9), by using the following property of the Kato class.

LEMMA 3.1 ([2] (Chap. 0), [12] (Chap. 9)). / / / e ^ f ( R 3 i V ) , then f is Σf=1

Tj -form bounded with the bound zero. Namely, for any ε > 0 there exists a positive

constant CP such that
-'ε

N

vl / I Φ> Ψ'L2 — £ 2~> II A0 Hi2 "^ ^ε II Φ IL2 /(W 0 e Co (K ) .

For a quadratic form ^ on C0°°(R ), we denote its closure in L (R ) by q,
3N\

and for an essentially self-adjoint operator A on C^°(R ) we denote its self-

adjoint extension in L (R ) by the same notation A. We remark that H is associ-

ated with qH.

Now our aim in this section is to prove the following theorem, which is in the

same form of Evans-Lewis-Saitό's result in [7].

THEOREM 3.2 {The case that b Φ 0). Recall (2.6) and (2.7). Suppose that there

exist δ0 > 0, Ro > 0 and a > 0 such that M3Q Φ S and

(3.4) K(Mδo,Ro;Ha) =
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# {σd(W Π ( - oo, Σ(H))} < +

Remark 3.3. Also for (3.1) Lemmas 2.1, 2.2 and 2.3 hold.

Remark 3.4. For any self-adjoint operator Hr in L (R ) such that Ha >

H\ if K(Mδo, R0;H') = Σ(fl), then ί Γ ( M v i ? 0 ; # α ) = Σ(fl ) . Hence, we can

replace i/α in (3.4) by i/ ' in Theorem 3.2, for example,

H' = H- a\x\~2χBωc

Here B(r) = ί r e R 3 " | * | < r}, J5(r)c = R3N\B(r) (r > 0) and

the characteristic function of a set Z).

denotes

Now we go into the proof of Theorem 3.2, which is in the same but slightly

simplified way as in [7]. Also the structure of the proof is due to [7]. At first, sup-

pose that Mδo Φ S (δ0 is in Theorem 3.2). We prepare two partitions of unity

in order to define the weight function w(x) and the related operator. The follow-

ing lemma is shown in [7].

LEMMA 3.5 ([7]). For M, δ0, RQ in Theorem 3.2, there exist two partitions of un-

ity {/<>» Λ» Λϊ and ίΛ> Q satisfying

[ J{ €= C°°(R3iV), 0 < I < 1 on R3N (i = 0 ,1 ,2) ,

f 3N

and

supp/0 c B(\), supp/x c Γ(MSo, 1/2)

supp/2 c (Γ(MV 2, 0) U 5(1/2))',

./i and / 2 are homogeneous of degree zero in B(l) ,

/i and I2 are functions of\ x |,

I, e C°°(R3N), 0 < / j < l * R 3 W (/' = 1,2),

/i c B(RO)C, supp/2 c

By using Lemma 3.5 we define



(3.5)

which satisfies

(3.6)
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w= <J0

3N
0 < w < 1 on R ,

w = 0 on Γ(MδQ/2, 2i?0),

w= lonR3N\Γ(Mδ,R0).

DEFINITION. Using the above partitions of unity, we define the quadratic form

Q[φ, φ\= f Σ T,φ Ύ~φdx

( 3 7 ) \ + / Σ { W i 0 ΓΛΛ0 + r/20 7;/20}dx

Q[0] — Q[0, 0] for 0, 0 e C0°°(R ).

For the sake of convenience we put

(3.8) r[0] = f Σ I Tjφ \2dx + f Σ {| Γy/J^ |2 + | TJ2φ \2}dx.

J\χ\<Roj=l J\x\>Roj = l

Then

(3.9) Q[0] = r[0] H

LEMMA 3.6. The following equality holds.

(3.10) Q[φ, φ] = qH[JoΦ, Joφ] + QHUJ.Φ, IJιφ'\ +qHU2Φ,

(\VJ0\
2 + WjJ + \VJ2\

2)φφw2dx

)Proof of Lemma 3.6. As is easily seen, for 0, φ ̂  C^°(R ),

= Q[0, 0] ~ Γ Σ Zφ Γ,0Jx

+ Γ Σ iTJoφ 7Vo0 + TJJxφ Γ/^0 + 7y20 TJ2φ)dx.
J\χ\<Roj=l

Since /2 = 1, w = 1 on B(R0) and / 0 + / : + / 2 = 1 on R , by a straightfor-

ward calculation we have
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w τ

= (Jo + Jt
- i/2V,<

= T,Φ τtφ
on B(Rϋ). Hence

( # ) =

which implies (3.

Joφ + Tjl^j

+ JΪ)Tjφ

'Jl + Jt +
• +(IF/OI 2

we have

Q[φ, ψλ +

10).

hφ
T,φ

+ I

TETSUYA

TjIJ\Φ

+ (\VJo

• (Tjφ)φ

FΛ I2 +

^lxl<i?o

HATTORI

+ w T;A20
I2 + I F / , I2 + 1F/21

2

+ ί/2F,C/o

| F Λ I 2 ) 0 0 » 2

I' + I F Λ Γ -

+ Λf +

^ 1 FΛ l:

)φφ
Λ2) (τ,4

')φφw dx,

D

LEMMA 3.7. Tfoe quadratic farm Q is densely defined, bounded below and clos-

able in L (R w dx).

Here we denote the weighted L -space with the weight w by L (R w dx),

and its inner product and its norm are denoted by (\ -)W2 and || \\W2, respectively.

Proof of Lemma 3.7. First we show that Q is bounded below in L (R

w dx). By Lemma 3.1, for any ε1 ^ (0,1) there is a positive constant C£i such

that

(3.11) (V_wφ, wφ)L2 = (VJoφ, J0φ)L2 + (VJJrf, IJrf)L* + (VJ2φ, J2φ)L2

< ελ Σ {|| TJoφ \\l> + || TjIJ.φ t + II TJ2φ |&} + Cβl II ̂ 0 |£,

for 0 ^ Cj°(R ). By the proof of Lemma 3.6

(3.12) Γ (I TJoφ Γ + I TJJ.φ Γ + I TJ2φ \2)dx
JB(R0)

Γ I 12 Γ I |2

^ I I T ; 0 I ( ix H~ d 0 / I wφ I rfx,
JB(R0)

 JB(R0)

where d0 = supXGβ(i?o){| VJ0 \2 + | VJ, | 2 + | F/21
2} < + oo. Combining (3.11) with

(3.12) we have

(o.lo) \V_wφ, wφ)L2 S ε1rL0J ~r vC/ε H~ αoy || wφ \\L2

for 0 e C0°°(R ). Hence we have

= τ[0] + (V+wφ, wφ)L2 — (V_wφ, wφ)L2

> (1 — εjτίφ] + (V+wφ, wφ)L2 — (C£ i + rf0) ||
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where V+(x) = maχ{V(x), 0). Further there is a positive constant γ =

yiSi) satisfying

(3.14) Qίφ] + r\ - εjτlφ] + (V+wφ, φ

for φ G C~(R ). This implies the boundedness from below.

Next we show that Q is closable in L (R3 ;w2dx). Suppose that

C0°°(R3\ {0; ) ; e N c C0°°(R3iV) and 0 ; — 0 strongly in L2(R3N tΛίr) . Then

JoΦjy IJiΦ,, JzΨj-

It easily follows that

I f (I VJa I
2 + I F/, Γ + I F/2

strongly in L2(R3N).

sup
x<=B(R0)

1/2f Γ \wφ,fdx
lJB(R0)

< (constant) \\ φ, H^-^O.

Therefore, by (3.10) and an integration by parts,

Qίφ, 0,] = (HJoφ, J0φ)L2 (HJ2φ,

Γ (I F/o
^ ( i ? 0 )

I2 + I F/2 0 as ;

This implies the closability of Q. D

By Lemma 3.7 we can define the self-adjoint operator (denoted by P) in

L (R w; <£c), which is associated with the closure Q, that is,

Qίφ, φ] = (Pφ, φ)w2 for φ , 0

Here we denote by D( ) the domain of an operator or a quadratic form. For γ =

7(1/2) in (3.14) (εx = 1/2) we define the inner product and the norm in D(Q):

+r\\Φ\fJ1/2,(Φ, ψ)r= QlΦ,ψ] \Φ\\r=

then D(Q) is a Hubert space with the above inner product and norm, and D(P) is

dense in D{Q).

LEMMA 3.8. Let

lk = lk(P) = inf{Q[0] 0 e C 0°°(U| > k), \\ 0 ||,2 - 1} ( t e N)



4 6 TETSUYA HATTORI

and

I = i(p) = lim ik = S up lk.

Then

inίσe(P) =1.

Proof of Lemma 3.8. At first we prove that / < i n f σ e ( P ) . For any λ

σe(P) there is a sequence {φn}n c D(P) such that || φn \\wz = 1 and

φn-> 0 weakly, (J>- λϊ)ψn-+O strongly in Z,2(R3* Λ x ) .

It follows that

(3.15) Ψn~>0 weakly in Z)(0) and Q[ψn]->λ.

In fact, for 0

= ((P — λl)φn, φ)w2 + (λ + γ)(φn, φ)w2-+0 as n—* <χ>,

and

Q[φn] = ((P — λl)φn, φn)w2 + λ || φnfw2^> λ a sw-^oo.

Since C0°°(R ) is dense in D(Q), there is a sequence {φn)n c: C^°(R ) such that

|| φn — φn \\r-+ 0 as n—> °°. Hence by (3.15) we have

(3.16) φn—*0 weakly in D(Q) as n —> °°,

. in paricular, φn—* 0 weakly in L (R w dx) as n

Letting A; > 2J?0, we pick up a function #Cr) G Cζ{B(k + 1)) such that ^ = 1 on

B{k) and 0 < θ < 1. Then, by the definition of lk,

(3.17) /,(|| 0W t + || θφn \\J2 < lk || (1 - θ)φn ||
2

2 < Q[(l - Λ 0 J ,

where we choose the sign in the left-hand side whether lk is positive or negative,

respectively. We estimate Q[(l — θ)φn\. Notice that (1 — ΘΫ < 1, supp(l —

θ) c B(k)\ / 0 = 0 on supp (1 - θ) and

Tj(l - θ)uφ = (1 - 0 ) 7 > 0 + i(Vjθ)uφ for u e C'CR3^).

3ΛK
Then, for 0 e Co (R ),



DISCRETE SPECTRUM OF SCHRODINGER OPERATORS I 4 7

(3.18) Q[(l - 0)0] = Σ Γ (I Γ,(l - 0)7^0 | 2 + I Γ,(l - θ)J2φ \2}dx
; = 1 JB(RQ)°

+ f V\ (1 - 0)w;0|2d.r

< Σ f ( 1 + <5X) (1 - θ)2{\ T,IJrf | 2 + I TJ2φ \2}dx

+ Σ Γ (1 + δΓ ι) I F,0 | 21 M>0 |2<£r + Γ (V+ - V_(l - 6»)2) | wφ \2dx
;=1 *^B(R ) c Jfl3N

N n N (*

< Σ l| TjIJγφ I + I Γ/ 2 0 I )dx + δ1Σ I \\ TjIJ$ \ + | TJ2φ \ )dx

+ I {Vl ŵ 0 | 2 + 17 V I wφ \2}dx + C(δ,) I I wφ \2dx

^ Q[0] + δ^lφ] + I ηV_\wφ \2dx + Ciδ.) I \ wφ \2dx,

Jπ3N JB(k+i)
where 5 X ( ^ (0,1)) is arbitrary, Ciδ^ is some positive constant depending on δv

and 77 = 1 — (1 — ^) £ C™(B(k + 1)). Here we have used the positivity of

2dx.

We estimate the third term of the last line of (3.18) as follows. By (3.13),

]i2
(3.19) (ηV.wφ, wφ)L2 < (V_wφ, wφ)^ (V_wηφ, wηφ)^

< ^ (ήφ] + || wφ \\2

L*Ϋ/2 {§- τίηφ] + ( C V 4 + do)

for any δ2 > 0 and some positive constant Cv Here the constant C 5 z / 4 + d0

appears in (3.13) and Cγ is independent of δx and δ2. Since

I Γ;>7W0 I < 2 I r7T; w0 I 4- 2 117^ | | uφ | < 2 | T ^ 0 | + ^ | «0 | Xsuppr?

for u £ C (R ) and some positive constant rf^ we have

(3.20) τt/?0] < 2r[0] + ^ || wφ (

By combining (3.19) with (3.20) we have

(3.21) (r]V_wφ, wφ)L2 < -τ= (τ[φ] +\\wφ\

\δ,( fi Γ Λ1/2

f r [0] + C(<52) I I w0 |2Λc ,
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where C(<52) is some positive constant depending on <52. Now we recall (3.14) with

ε1 = 1/2:

(3.22) || φ ||* > τ[φ] /2 + (V+wφ, wφ)L2 + \\ wφ ||22

||wψ|£.)/2 > r[0]/2.

By (3.21) and (3.22) we have

ί C 1 1 / 2

δ2 II φ II2 + C(δ2) J I wφ \2dx\ .
By combining (3.18) with (3.23) and by using (3.22) again for the second

term of the last line of (3.18), we have

(3.24) Q[(l - θ)φ]

+ C(δx) f \wφ\2dx.

Now we shall prove

(3.25) Γ I wφn \2dx~+ 0 and || θφn \W2-+ 0 as n

As is easily seen,

|F>0 E'u»(t+i» ^ 2(| | Ttφ fLHB(k+1)) + II b{x')φ f L H m k + m ) for 0 e C 0 ~(R 3 W ).

Hence, by using the fact that || φn \\r < + °°, we have

\\JθΦn Wϋ^lk+D) + II ̂ 2/1 Φn WHHBU+1)) ~^~ II Λ 0 » H

< / {2 Σ (I Γ/O0K I2 +1 W A I2 +1 TJ2φn I2) + (2 Σ I b(x!) |2 + 1 )

< 2τ[φn] + (constant) || φn |£, < + 00

Hence there is a subsequence {φn)}

 c {0M1 such that

[strongly in L2{B{k + 1)),

where Φ,(j = 0,1,2) is some function in L2{B{k + 1)). By (3.16)

0 < I Jl I Φ2 |
2dj: < I M/21 Φ2 |

2ίfe = (Φ2, Φ 2χβ (,+ 1 ))W2
•'Jίλ + D JB(k+l)

= lim (J2φn., ΦzXβik + l^w2 ~ 0,
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which implies

/ \JiΦn \2dx~>0 asw-^oo.

In the same way as above we have

f \j0φn\
2dχ-+0, f

JB(k+V JB(

j0φn f
JB(k+V JB(k+V

Summing up we have (3.25).

By (3.24) with φ = φn% (3.16), (3.17) and (3.25), letting n-+ °°, w e have

lk<λ + 25,(2 + γ) + C,(λ + γΫ/2{δ2U + γ)Ϋ/2.

Since δλ and <52 are arbitrary, this implies I < λ. Thus we obtain

Next we show the reverse inequality in the same way as in [6] (Theorem 10).

Taking μ < inf σe(P), we can put

( - 0 0 , 0 ) Π σ(P) = U ;}f= 1or 0 .

If (— °°, μ) Π σ(P) = 0 , then it is clear that / > inf σe(P). We assume (— °°,

μ) Π σ(P) = {λj};=1 and we denote by {0; };=1 the orthonormal eigenfunctions cor-

responding to {λj}f=ι. Let JB^ denote the spectral projection of P. Then for φ ^

(3.26) $[0] = Σ ^ I (0, <&,),. |2 + I
j = \ JU

m ft*

> Σ λ, I (0, φ,)* \2 + μ\\φ l> -μj d(Eλφ, φ)w>
m

= Σ(λ,-μ)\ (φ, φ)w* |2 + μ II φ |£».

By the definition of /̂ , there exists iφ) t c C °̂(R ) such that

(3.27) supp φj Π supp φk= 0 if jψ ky || 0, t» = 1 and Q[0,] -* /.

By (3.26) with φ — φt and (3.27), letting i—* °°, we have / > ^ which implies

/ > i n f σ e ( P ) . D

LEMMA 3.9. Far x e R3iV and R > 0, we put
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ΛR(x H) = inί{qH[φ] φ e C0°°CB(x R)), II Φ IL« = 1>,

w/ι<?r<? JBGΓ i?) = {z/ ^ R 3 | 2/ — x \ < R}. Then, for any ε > 0

i?(ε) > 0 such that

> f (ΛR(x H) - ε) \ φ \2dx forR> R(ε) and φ e C0°°(R
3").

One can show the above lemma in the same way as in [2] (p 33).

LEMMA 3.10. The following inequality holds.

(3.28) KiS3"'1 \ AfV4 H) < inf σe(P).

Proof of Lemma 3.10. By Lemma 3.9, for any ε > 0 there exists rλ = R(ε) >

0 such that

JΓ 12

I 01 r Cr w ~ ε) | ίί;0 | dx
R3N 1

for φ G C~(B(2R0)
c). For /c > 2i?0,

/, > inff Γ (Λr (x fl) - ε) | wφ \2dx φ e Co°°(| x I > Λ), || M;0 ||I2 = l l

> inf{ylr (x H) x ^ supp M; Π B(k)c} — ε.

Hence there exists a sequence ί r j * c: supp ^ Π β(/ί:)c such that

(3.29) /, > Λri(xk H) - 2είov k> 2R0.

Since {xA/| xk \}k c: S ~ \M5Q/2, there are A:^^ 2i?0) and a sequence {i?^}^ c: R

such that

(3.30) JJOr* rλ) c Γ(Sw~ι\MΛfι/A, Rk) for A > ^

and i?Λ ΐ °° as A—• °° (for example Rk = \ xk\ — rl9 k > > 1). Hence, by (3.29)

and (3.30),

lk > KiS™"1 \ Mδo/4, Rk H) - 2ε for A > kx.

By letting A—+ + °°, we have

which implies that
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By Lemma 3.8 we obtain (3.28). D

Now we estimate the error term in the localization formula, which is obtained

by the lemma on {/0, Jv J2} and {Ilf I2) in [7].

DEFINITION. For two partitions of unity {/0, Jv J2) and Uv I2) in Lemm

3.6, we define

Aj(x) = ( Σ I (VJ){x/\x\) |2}172, Aj(x) = (Σ I (VIt)(x) |2}172.
ί = l ; = 1

The following lemma appears in Evans-Lewis-Saito [7].

LEMMA 3.11 ([7]). For sufficiently small εr > 0 there is a positive constant Cεr

satisfying

2 I |2 / 2 2 1 1 - 2

Σ\VIj(x) Γ < iεΊlix) + CεJ2

2(x)) \x\~2Aj(x)

for I x I > 1.

Then, by using the above lemma, we have the following one, which is the

estimation of the error of the localization.

LEMMA 3.12. For sufficiently small ε' > 0 there exist positive constants

C(εO and CQ such that

\2 ^ π r τ 2 r 2 I l - 2 _ , ^ / . Λ . 2 1 . 1 - 2 .

I V(W |2 + I V(W I2 + IVJ21
2 < C^llJl I x Γ2χ4 + C^Ow21 x r2χB(Ro)c

for I x I I> 1, ^ e r e Co is independent ofε'.

Proof of Lemma 3.12. We note that w= (I2Jι + / 2 ) on | J: | > 1 and

supp{ V (w )} = 4 (Zl appears in the definition of Ha). By a simple inequality,

Of <2{I2

2\VJι\
2 + jt\VI2\

2)χΛ,

\2 <2(Iΐ\VJι\
2 + jΐW

Summing up and using Lemma 3.11, we have
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\) I2 +1 v(W |2 + I vj21
2 < 2 ί | Γ Λ I2 + I Vh I2 + Λ2(l vix I

2 + 1 r / , \ 2 ) ) X ί

< {2(ε'J2 + CεJ
2

2) I x \~2Aj + 2J2(εΊ2 + CεJ2) \ x Γ'Ajχ,

< c /τ2τ21 l~2

Here we have used ]x = {Iλ + I^Ji and Co = 2supJ7eR3^(^4/(x) 4- i47(x)), which

is independent of ε\ and

C(εO = 2 sup ((ε' + Cε,)Aj{x) + Cε,i47(x)). D
XGK3N

LEMMA 3.13. For α in (3.4) ί/ι̂ r̂  m^ί5 α positive constant Ca such that the fol-

lowing inequality holds.

(3.31) qH[φ] >Σ(H)\\ hhφ fc, + Qίφ] - [ Ca \x |"21 wφ fdx
JB(RO)C

Remark 3.14 The above inequality holds for φ e D(q~H) by a limiting

method, that is,

(3.32) q~[φ] >Σ(H)\\ IJ.φ fL2 + Q[φ] - f Ca\x\~2\wφ
JB(RO)C

for φ e D(<ΓH)

\2dx

Proof of Lemma 3.13. By using Lemmas 2.2 with Ω — B(RO)C and by Lemma

3.12, for 0 e C0°°(R3iv) and sufficiently small ε' > 0, we have

qHίφ] = Qίφ] + / Σ (I ΓΛΛ0 |2 + VI 7XΛ0 | 2 ) ώ

" / c (i ̂ Wi) '2 + 1 F ( / ^ i2 + 1 F 2̂12) i Φ Ux

> Qίφ] + Γ Σ (I TjIJrf \2 +V\ IJ,φ \2)dx
JB(RO)C ; = 1

— I C P' I T l~2v \ T T rh \2ή-v I Γ T P Λ I x I " 2 I W> \2ή-r

I L/Oε i x i χΔ I iiJiψ I tftZ I u vε / | ^ | I wip I t*x,
JB(RJC Jβ(RΛ)

c

f o I \χΔ I ^ 0 \ f
JB(RO)C JB(RO)

where C(εO is a positive constant in Lemma 3.12. Choosing € < a/C0 and using

the fact that 7 ^ 0 e Co°°(Γ(Aίδo, i?0)), we have

qHίφ] > Qίφ] + K(Mδo, R o Ha) \\ IJrf |£. - Γ C β | x I"2 \wφ \2dx,
0 JB(RO)C
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where Ca = C(ε'). By the hypothesis of Theorem 3.2, that is, K(Mδo, R0\Ha) =

ΣCH), we obtain (3.31). D

LEMMA 3.15 We define quadratic forms:

v[φ] = - f Ca\x\'2\wφ \2dx and Q'[φ\ = Q[φ] + v[φ] (φ e C0°°(R3iV)),
JB(RQ)C

then we have the self-adjoint operator in L (R w dx) {denoted by P'), which is

associated with Q', and

(3.33) infσ.CP) = i n f σ e ( P 0 .

Proof of Lemma 3.15. The first part is easily seen. We show only (3.33). Let

V'=V-Ca\x\-2χmRo)C.

Then it is easy to see that ( 7 0 _ ^ tt(R3N), so Lemma 3.8 holds also for P' and

Q\ The following inequality is easily obtained:

lk(P) > lk(P') > lk(P) - Cak'2.

Letting A—• oo, w e have l(P) = l{Pr) which implies (3.33). D

Now, by using lemmas prepared in this section, we prove Theorem 3.2.

Proof of Theorem 3.2. Lemmas 3.10 and 3.15 imply

Σ(H) < KiS™'1 \ Mδo/4 H) < inf σe(P) = inf σe(Pr).

Hence we have

# (σd(P0 Π ( - oo, Σ-(fl))) < + «>.

Let Ex = {ψλ,.. ., φm} (m < + °°) be orthonormal eigenfunctions corresponding

to the eigenvalues {σd(P') Π ( - co, Σ(f l ) ) } . Let £ 2 = {w2φlf...f w2ψj. If 0 e

Z)(fo) satisfies 0 1 £ 2 in L2(R3 i V), then 0 e ΰ ( Q ') and 0 1 ^ in L 2(R 3 i V;

^ <ίx). Hence we have

(3.34) Qf[φ\ > Σ(H) II 0 11̂  for 0 e ΰ ( ^ ) satisfying 0 1 £ 2 in L2(R3N).

By Remark 3.14 and (3.34), we have

qkίφl >Σ(H)\\ IJ,Φ III. + Q't0] > Σ(ff)
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for φ e D(qH) satisfying φ _L E2 in L 2(R 3 ). This implies

# (σ d (#) Π ( - oo,

4. Some vector potentials

In this section we introduce some magnetic vector potentials, which are used

in the proof of Theorem 1.1.

For a e (0,1), we define a function/ e (^([O, oo)) by

(4.1) /(s) =

1/2+ (2-α)"Vβ

1/2 + (2 - α)" 1 2" α " 2 (4 + las - as2) (1 < 5 < 2),

1/2 + (2 - β)" 1 2" β " 2 (4 + α) (0 < 5 < 1).

Furthermore, letting

(4.2)

for a parameter ί > 1, we consider a vector potential:

(4.3) fc,O/) = / , ( p ) ( - 0 2 . tfi. 0),

where z/ = (^, z/2, z/3) e R3, p = (yv y2) and p = | β |. This gives a perturbed

constant magnetic field. The following lemma, which also follows from Theorem

2.9 in [3], appears in [9].

LEMMA 4.1 ([9]). In the case that b{y) = g(y) (— y21 yl9 0),

C (R ), ί/ιg following inequality holds:

(4.4) (7XWV, 0)L2(R3) > J^ 3 {p ̂ ^ + 2g(y)} \ φ \2dx

for φ e C0°°(R ), ^ ^ T(W = - iVy - b(y).

By an elementary manipulation, using (4.1), we have

p-^ft + 2ft> t'2 + minί^ω, c2(t)p~a]

for some positive constants c^t) and C2(t) depending on /. Therefore by Lemma

4.1 we have the following lemma.

LEMMA 4.2 (key inequality).
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(4.5) (7X6,) 0, 0)^2^3) > ί II 0 II^^S) + I minί^CO, c2(rt|O } | φ \ dy

for 0 ^ C^°(R ).

Now letting

(4.6) # , = Γ ( ^ ) 2 - - Λ in L2(R^),

we study the essential spectrum of Ht and HNz(bt). First we want to show the fol-

lowing proposition.

PROPOSITION 4.3. σe(Ht) = [Γ 2 , °°).

To prove Proposition 4.3, we prepare the following two lemmas.

LEMMA 4.4. Far fixed t > 1, let

(4.7) φ'jβ) = βι

meimθpm exp(- £ ft(s)sds)

= βlniVx + ivύm exp(- fj ft(s)sds) (m e N),

where βm is a normalizing constant in L (Rf) and we use the polar coordinate

(p, θ) in (yv y2)-space. Then the following equality holds.

(4.8) Λ0i, = (Tibf - (- d2/dyt))^m = {2ft{p) +f;{p)p)φt

m (m e N).

Proof of Lemma 4.4. Let V2 = (d/dyv d/dy2). We remark that div bt = 0

and

By the equality

Pt = - V2- V2 + 2ib, V2 + i d i v bt + \bt

= -V2-V2 + 2ib,-V2 + \bl\
2

and by a straightforward calculation, we easily obtain (4.8).
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LEMMA 4.5. For any R > 0 there is a positive constant CR, which is independent

ofrn, such that

(4.9) (β'j2^ CRR-(2m+Ώ OweΞN).

Proof of Lemma 4.5. Letting gt(s) = ft(s) — t~ /2, by the definition of βm

we have

(βl)'2 = 2π J^+Vw + Iexp(- ΓV/2)exp(- 2 jΓ gt(s)sds)dp

> 2π Γ~ p2m+1 exp{- p2(Γ2/2 + nit)))dp

for some constant χx(t) ^ 0. Then, putting

CR = (2π f expί- p2(f2/2 +

we obtain (4.9). •

Now we go into the proof of Proposition 4.3.

Proof of Proposition 4.3. Since Σi(Ht) = Σ*(T(bt) ) > t~ by Lemma 2.1 and

(4.5), it suffices to show that

[Γ2, oo) aσe(Ht).

Picking up η0 ^ C0°°(l < \y3\ < 2) normalized as || η0 | | L 2 ( R l ) = 1, we define

5«(03)
 = m~1/2η0(y3/m) (m e N)

and

0L(*/) = ^ ^ β ^ C c D (m e N, A > 0, ί > 1).

Since supp φι

m c {z/ e R 3 | z/1 > m}, it is easy to see that

(4.10) — -I—r φf

m-> 0 strongly in L2(R3) as m-» oo.

By a straightforward calculation,

(• Λ 2 \

— - + λ2) φf

m -* 0 strongly in L2(R3) as m-> oo.
9^



DISCRETE SPECTRUM OF SCHRODINGER OPERATORS I 5 7

Letting

ht{p) =2(/,(p) ~ Γ 2 / 2 ) +ft'(p)p,

we will show that

h { ) ψ f 0 l i Z2(R3) m(4.12) ht{p) ψf

m-*0 strongly in Z,2(R3) as

If this is proved, we have by (4.8), (4.10) and (4.11)

{Ht - (Γ 2 + λ2)}ψt

m-+0 strongly in L2(R3) as ro — oo,

which implies f + λ e σe(Ht), hence [t~ , °°) c σe(Ht).

We will show (4.12) to complete the proof. It easily follows from (4.1) and

(4.2) that for any ε > 0 there exists R(t) > 0 such that

\ht(p) |2 <εfor p>R(t),

so we have

I I ht(p) |21 φι

m\2dy< ε.
Jp>R(t)

On the other hand,

' I A v̂/o) I \ φ m \ dy < s u p | Λ ^ p ) | | φm \ dy
P<R(t) 0<p<R(t) Jp<R(t)

p*"+ 1exρ - 2 I ft{s)sds\dp
*• Jθ *

<27rd1(/)( is;)2i?ω2" l + 1d2(/)

where

X
R(t) r s p Λ

exp - 2 I ft(s)sds\dp.
By using Lemma 4.5 with R — 2R(f), we have

Thus we have (4.10). CH

Next we study the essential spectrum of HNZ(bt). For the sake of conveni-

ence, we denote HNZ(bt) and Tj{bt) by HN and T; , respectively, for fixed Z > 0

and fixed / > 1. Now we want to prove the following proposition.
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PROPOSITION 4.6.

(4.13) σe(HN) = [Σ(HN), oo).

Before the proof of the above proposition we prepare the following lemma.

LEMMA 4.7 (uncertainty principle lemma). Let T(b) = — iVy — b(y) forb^

C (R ) which is real-valued, and let k ^ R . Then we have the following inequality:

{T(bΫφ, φ)LHR3) > 1/4(| y -k\~2φ, φ)LHR3) forφ<Ξ C0°°(R3).

We have only to show it in the case k = 0. The proof of Lemma 4.7 is omitted

since we can show it in the same way as in the case that b = 0 ([11] p. 169).

Now we prove Proposition 4.6.

Proof of Proposition 4.6. We recall (2.19): Σ(HN) = Λ(HN^) + Λ(T*). Here

TN is Tj with; = N. From (2.11) and Proposition 4.3 it follows that

(4.14) Σ(HN) = Λ{HN_,) + Σ(T2

N) = A{HN_Y) + f \

We consider the following two cases separated.

(I) The case that Λ(HN_λ) < Σ(HN_X).

Let x — (x\ x ) ^ R . I n this case there is a normalized eigenfunction

η(x') e D(HN_^) satisfying

(4.15) HN_xη = ΛWxJη in L 2 (R 3 "" 3 ) .

(II) The case that

In this case there exists a sequence of orthonormal function {ηι(xr))ι

D{HN_^) such that

(4.16) (HN_X - ΛiH^η^O strongly in L 2 (R 3 "" 3 ) as /-> <*>.

We only consider the case (II), since the case (I) can be treated similarly. For any

λ > 0, let μ = t + λ. By the proof of Proposition 4.3, there exists a sequence of

functions iφm(xN)}m <= C 2(R 3) Π D(T*) such that

(4.17)

Φm IUR3) = 1 0w e N), (φj9 0Λ2(R3> = 0 (jΦ k),

supp φm c {x ;\χ I > m} {m ^ N) and

(Jl - μ)φm-+ 0 strongly in L2(R3) as
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Let ψι

m(x) = ηt(xr)φm(xN) e D(HN) (rn, I e N) and remark that || φι

m \\L* = 1

(m, / e N) and

(0«. 0m')i2 = OiίmΦmΌrlΦ I'.

Then, by using the equality

7" N~1 1
u = u -L τ 2 — 4- V -1

I x I ^ = i I x — x I

we have

(4.18) HNφι

m = (Λ(HN^) + μ)φl

m

i(T2

N - μ)φm(χN)}rll(xΊ - γ^-φL + Σ '
I x I '•=!

right-hand side of (4.18) strongly converge to zero in L (R ) as / and m tend to

By (4.16) and (4.17), as is easily seen, the second, third and fourth terms in the

right-hand side of (4.18) strongly converge to zero in

infinity. We estimate the last term. By (4.17), we have

f , , 1

 Nι2\φl

m\2dx< f
J | s Ί < ι * " i / 2 \χJ - χ N \ 2 Λ r Ί < ι

On the other hand, from Lemma 4.7 it follows that

Φm \2dχN -4(τ^""Φm)LHR3) ~

for large m. Using this fact,

Γ
\x'\>m/2

Hence we have

-— 7 -̂ φl

m —* 0 strongly in L2(R3N) a s w - ^ ° ° (for any fixed /),

I x — x I
Summing up and using (4.18), we can find m = m(l) satisfying

(HN - (ΛiH^) + μ))φι

m{ι)-+0 strongly in L2(R3N) as / — oo,

which implies Λ(HN_ι) + / / e σe(HN), so we obtain (4.13).
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5. Proof of theorems

In this section we prove Theorems 1.1 and 1.2. We want to use Theorem 3.2

in order to derive the finiteness of discrete spectrum. Before going into the proof,

we prepare the following proposition, from which it follows that, by virtue of

Proposition 2.10, M= M(N) Φ S3N~ι holds. We denote HNa(b) by HN(b) for

short.

PROPOSITION 5.1. Let bt(y) be defined by (4.3). Let ε be arbitrary positive number

and Z Ξ> ε. Then there exists t(ε) > 1, which depends only on ε, such that

(5.1) ΛUWbtJ) <

that is, σ^H^b^)) Φ 0.

Proof of Proposition 5.1. We can pick up two real-valued functions φo(p)

CQ(P < 1) and ηQ(y3) e Co°°(| y3 \ < 1) normalized as || φQ ||L2(R2) = || ηQ I

1, where y = (yv y2, y3) e R3, β = (y19 y2) and p = | β |. Letting

φt(β) = t~ιφ,{β/f) and 77,(2/3) = r1/2η0(y3/t)

for ί > 1, we define

Φt(y) = Φt(ftrit(vJ G C ( R 3 ) ( ί > l ) .

Then 0 f is real-valued, || φt ||JΓ2(R3) = 1 and

(5.2) supp ψt c {(^ z/3) e R 3 p < t, \ y3 \ < t) ^ iy e R 3 | y \ <

Since φt is real-valued, we have

where Tt — — iVy — bt(y). By a change of variables and (5.2) it is easy to see

that

\\Vφt fL2 = Γ2(\\V2φ0 β 2 ( R 2 ) + II η'o \\2

L2(Rί)) = dj-2,

I f(p/t) \ p I φ t \ dx < d2t~
supp Φt

for some positive constants d1 and d2 which are independent of t. Hence, by using

(5.2) again, we have
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Γ Z
bjψt, ψt)L2 = (T2φt, φt)L2 - T—r I φt \

2dy
^supp Φt I a I

Hence, for a sufficiently large t,

Λ(Hx(bt)) < ( f f ^ M . φt)L2 <0<Γ2=

where we have used Proposition 4.3. Note that this t depends only on ε. EH

Now we go into the proof of Theorem 1.1.

Proof of Theorem 1.1. Let N > 2. At first, for any ε > 0, we pick up

t(ε) (being fixed) in Proposition 5.1. Also let Z > ε. Now we show that the num-

ber of the discrete spectrum of HNz(bt(ε)) is finite, that is, we have only to put bε

= btiε). For the sake of convenience, we denote HNZ(bHε)) by HN and put B =

t(ε)~ . From Propositions 5.1 and 2.10, it follows that M Φ S ~ , in particular,

(5.3) M e U M ( i ) , . , M ^ ' .

h>-'lN-l

—2N~2

Let δ0 = 16 for the present. It is easy to show that

(M')δ^ U (M, h_)iou [ { ( M ^ . ^ U U M, %. 2)O 2}]U( U Mh Jδi,
— 'tN-l 1ί' 'tN-2 H lN-2

hence the set (M')δ is covered as follows:

(5.4) (M')ΰo c (U M,)βV U Atχ lt (<50) = M(δ0),

i k=2 tv...,ik

where

[ A t i ( δ 0 ) = ( M , i ) δ \~ΪU~i i M , . ) / 2 ( k = 2 , . . . , N - 1 ) ,
( 5 . 5 ) \ x * d ^ ) ^ - * - 1 / 1 > " " k k v"" Λ~χ 1 > " " k~ι k~ι

[ δk = δ0 (k = 1 , . . . , iV — 1).

Here we exchange δ0 for such a small number that M(δ0) Φ S . We want to

show the following statement: there exist positive numbers Ro(> 1) and a such

that
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(5.6)

«HN -a\xΓ)φ, φ)L> > Σ(HN) || φ fL2

for φ e Co

ββ(ΓG4<1I...lljk(δo)» #o)) the case (I)

( « i , . . . , « * > c a , . . . , M , ^ = 2 , . . . , i v - i )

and for 0 e C0°°(Γ((U , Af,)^, i?0)) the case (II),

where a is in (4.1). For a while we admit the above statement and continue the

proof. We remark that (5.6) holds with Ro replaced by R such that R > Ro. Since

M(δQ) is an open covering of Mδ / 2 which is compact in 5 , there exists a

partition of unity

/ i , Jh,...ik i h , . . . , i k

such that

(5.7)

We define,

(5.8)

N-l

Σ Σ j ; x , > ) +Jί(ω) = l on M;O / 2 )
* 2 < h<i h

,)^, supp/fi <4 c 4 _

= JB{x/\ x \) (| Λ | > 1), then it is easy to see that

(VJ < C(δ0) \x |"2 (UI > 1)

for some positive constant C(<50) depending on δ0. Then , for i? > i?0, we have

(5.9) K(Mttn, R,HN-a\xΓ2

> inίi((HN -a\x\'2)φ, φ)L* φ e C ( Γ ( M δ ' o / 2 , i?)), || φ I* = 1}

= inf(Σ i((HN -a\xΓ2)Jβφ, JBφ)L> ~ (I VJS \2φ, φ)L>)

infίΣ «HN -

infίΣ i((HN
β

Σ(HN)

a\x\'a)Jβφ,Jt

0 e

Oί \ CC 1 )J

Φ)L

c;
2+α-
( W

- #{β}C(δo)\χ- + α ( | x

o/2, R))Jφl* = l}

} φ e Co°°(Γ(M;o/2) /?))

when i? is sufficiently large. Here we have used Lemma 2.2, (5.6), (5.8) and the

fact a < 1. It follows from Lemma 2.3 and (2.7) that

K(Mδo/2, R, HN- a\x\ χBωc) <

Hence by Remark 3.4 the hypothesis of Theorem 3.2 is satisfied. Therefore put-
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ting bε = bt(ε), by Theorem 3.2 and Proposition 4.6, we have

#σd{HN) < + oo.

This bε is independent of N and Z.

It remains to show (5.6). First we show it for the case (II). Since {{M)δ },- is

disjoint, we have (U, Mt)δi = U^Af,)^ and

Γ((U JkQ5i, i?) = U Γ((M,) 5 i, /?) (i? > 1),
i i

both of which are disjoint unions. So, for any 0 G C*CΓ((U t Λff)fli, I?)), we can

represent

(5.10) 0 = Σ 0,, φt e C0°°(r((M,.)5l, i?)) ( i = l , . . . , J V ) .
ί = l

Let us consider only the case i — N, since the other cases are similar. If x = (x',

χN) G Γ((MN)δi, R) (R > 1), then it follows from [8] (Appendix C) that

l r'1 < δ^xl \χj\ < fljxl (1 <j<N- 1), U ^ |

Then

z i V 1 \, Λ
U I M|ί'-x I' ;i2

•V. ^ ) L 2

for 0 e Co(ΓUMN)δi, R)). Here Γw = Γy with = N. Recall β = yKΓJ) =

Σ ( 7 $ = ί(ε)" 2 . By Lemma 4.2

(Γ^0, 0 ) ^ > B || 0 Hi* + (minidj, d21 x w |~a}0, 0)L2

^ B | | 0 | | i . + W2UΓ°0, 0)La

for 0 ^ C™(Γ((MN)δi, R)) when i? is large. From the above two inequalities

(HNφ, φ)L2 > (ΛiH^ + B) || 0 ||̂ 2 + W2/2 | x |~*0, Φ)L*

'ΊN) II 0 Hi2 ~^~ (d2/2 \ x\ 0, 0)L2,

for 0 s Co (Γ((MN)βi, R)) when i? is sufficiently large, where we have used

(2.19) and a < 1. Hence there exists i?x > 0 such that

(5.11) (iff,, - e?2/2 U Γ ) 0 , 0) L 2 > Σ(ffw) II 0 fc, for 0 e C0"(Γ((Λfw)Jif i?)).
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In the same way (5.11) holds for φ e C~(Γ((M^δi, RJ) (i = 1,. . ., N), hence,

by (5.10), also holds for φ e C0°°(Γ((U t M,)^, RJ).

Next we show (5.6) for the case (I). We consider only the case (iv. . ., ik)
 =

( 1 , . . . ,k) (2 < k < N — 1), since the other cases are similiar. If x = (x ,. . .,

x\ xr) G ΓG412...Λ(δo)» ^ ) (Λ ^ 1), then it follows that

(5.12) | x ' |

which we admit for a while. Then, by using the equality again that

Z N 1

#iv = ίζv-i + T\ ~ 1 Γ7 "^ Σ "̂  J 77,

I x I >=2 I # — x I
we can follow the similar way to the case (II). Hence there exists R2 > 0 such that

(5.13) i(HN - d2/2 \xΓ)φ, φ)L2 > Σ(HN) || φ \\2

L2 for φ e C0~(FC412...fc(<50), * 2 ) )

At the end we show (5.12). Let x = (x\ . . ., χk, x') e Γ(A12 k(δ0), R) and

let γ(x) = Σkjll I x |2. Since dist(j?/| x\, M12_k) < δk, it is easy to see that

\x' I < δk \x |. If γ(x) = 0, then x = ( 0 , . . . , 0, x\ xr) and

distCr/| x I, U Miv_ik_) < \ x/\ x \ - ξ | < 2δk < δk_x/2,

where ξ = \χk Γ^O,. . ., 0, x*, 0,. . ., 0). By the definition of Γ(A12...k(δ0), Ro),

this is contradiction. Hence γ(x) Φ 0. Now let ω = γ(x)~ (x , . . ., x " , 0,. . ., 0)
e Mu...k-v Since dist(ar/| ΛΓ |, M L . ^ _ ! ) ^ <5Λ_1/2 = yfδ^/2, we see that the ine-

quality

(5.14) \x/\x\- ω\>

holds. By a simple manipulation

x
j j I I / \ 1/2 I / 12 i I Ar | 2

1 7 1 ^ I 1 ^ •**

\X\ / Λ 1 / 2 I I / \ ι / 2 I I / \ 1 / 2/l I i / Λ1/2\
I ^ I τ( T) T T I T ) T Ύ(T) (\ T -I- τ( T) )

(j= l , . . . , f t - l ) .

Since ( |x' | 2 + | x* | 2 ) 1 / 2 < \x \ < \x | + r(^r)1/2, we have

Hence



DISCRETE SPECTRUM OF SCHRODINGER OPERATORS I

I k 12

65

Λ - 1

(5.15) \x/\x\ - ω\2 < Σ
X

r(χ)
1/2

x

< 2
I / I 2 i I k I 2

x \ +\χ

x\
4

By the definition of δk< it follows 1 — 8δk > 1/2. Hence we have by (5.14) and

(5.15)

x\

which implies

\χk\ >

Replacing γ(x) by Σ ; = 1 | x \ — \ x% | and following the same way, we have

(5.12). Thus the proof of Theorem 1.1 is complete. CJ

Now we start the proof of Theorem 1.2. First we consider the other vector

potential. Recall (4.1) and let g(s) = f(s) — 1/2. We can follow the same argu-

ment as in §4 by replacing f(s) by g(s). Then letting

gt(s) = t~2g(s/t) (t> 1),

(5.16) bt(y) =ft(p)(-y2,y190)

(y = (yu y2y y^ ^R3, P= (yu yj), P = I βI),

we have the following results:

' T(bt) > minic^f), C2(f)p a} in the form sense,

(5.17) σe(Ht) = [0, oo) where Ht = T(bt)
2 - Z/\y\ in L 2 (R 3 ),

The other lemmas and propositions in §4 and §5 also hold in the same form.

Furthermore, by using these facts, we can follow the same argument as in the

proof of Theorem 1.1. Hence we have

PROPOSITION 5.2. For any ε > 0, there exists a vector potential b£ of the above

form (5.16), which is independent of N and Z, such that the number of the discrete

spectrum ofHNZ(bε) is finite for N ^ 2 and Z > ε.
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Next we consider the case N = 1.

PROPOSITION 5.3. For any ε > 0, we pick up the vector potential bε, of the form

(5.16) in Proposition 5.2. Then

# σd(H1>z(bε)) < + °o for any Z > 0.

Proof of Proposition 5.3. By (5.17), it follows that

(7\(£) 2 0, Φ)L> > ί minί^ ίε) , φ ) \x\~a) \ φ \2dx for φ e C0~(R3),

where ^(ε) and c2(ε) are some positive constants. For the sake of convenience, we

denote Hlz(bε), Tx{bε), q(ε) , c2(ε) by Hlf Tί9 cl9 c2, respectively. Letting

Z
W{x) = minίCi, c2\x\ a) /2 - - π ,

we have

λ > T\/2 + W(x) in the form sense.

Since a < 1, there exists a positive number i? z such that W{x) > 0 for | x \ > Rz.

If we put W(x) = min{2W(x), 0}, then W has a compact support and 2W > W.

Hence

i/x > {Tl + ϊfO /2 = H[/2 in the form sense.

From the estimate of the number of negative eigenvalues in [3] (Theorem 2.15):

# {σd(H0 Π ( - oo, 0)} < (constant) Γ | WΛx) \3/2dx,
JR3

it follows that # σd(H{) < + oo. Hence, by noting that Σ ( ^ ) = Σ(H{) = 0, we

obtain

#σr f(ff1)< + oo. Π

Combining Propositions 5.2 with 5.3, we have Theorem 1.2, which includes the

case N — 1.

Remark 5.4. In particular, by Proposition 5.3 and the proof of Proposition

5.2 it follows that
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1 < # σd(HhZ(bε)) < +00 forZ>ε.

Note Added in Proof. Recently the related work has done by Steven D,

Underwood (University of Alabama at Birmingham). He also studied the Agmon

function for magnetic vector potentials to get the other result which is extension

of Evans-Lewis-Saitό's results to the magnetic case. I am thankful to Professor

Yoshimi Saitϋ for giving me this information.

Also I should have referred to the other works on the essential spectrum of

many body Schrόdinger operators with magnetic fields. For example, B. Helffer, A.

Mohamed; Ann. Institut Fourier, 38 (1988), 95-113. I am grateful to Professor B.

Helffer for telling me many references.
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