ON RELATIVE BASE POINT FREENESS OF ADJOINT BUNDLE

SHIGEHARU TAKAYAMA

Abstract

We give an effective result on the relative base point freeness of an adjoint bundle for a pair of a projective morphism and a relatively ample line bundle.

§1. Introduction

Recently, Angehrn and Siu [AS] and Tsuji [Tj] independently obtained results on the following:

Fujita's freeness conjecture of adjoint bundles. ([F]) Let X be an n-dimensional projective manifold defined over \mathbb{C} with an ample line bundle L. Then the adjoint bundle $\mathcal{O}_{X}\left(K_{X} \otimes L^{\otimes m}\right)$ is generated by global sections for every $m>n$.

Their effective bounds are $m>n(n+1) / 2$. The basic ideas of their proofs from $[\mathrm{AS}]$ and $[\mathrm{Tj}]$ (use of Riemann-Roch theorem, Nadel's vanishing theorem, Ohsawa-Takegoshi's L^{2}-extension theorem and so on) are extremely simple and can be applied to a variety of contexts. In this note we would like to go into detail about the method and consider the following relative version:

Main Theorem. Let $f: X \longrightarrow Y$ be a projective morphism from a complex manifold X to a complex space Y, and let L be a relatively ample line bundle on X. Then $\mathcal{O}_{X}\left(K_{X} \otimes L^{\otimes m}\right)$ is f-free, i.e., the natural sheaf homomorphism

$$
f^{*} f_{*} \mathcal{O}_{X}\left(K_{X} \otimes L^{\otimes m}\right) \longrightarrow \mathcal{O}_{X}\left(K_{X} \otimes L^{\otimes m}\right) \quad \text { is surjective },
$$

for every

$$
m>\frac{1}{2} d(d+1)
$$

here d is the maximum dimension of the fibres of f.
Received September 20, 1995.

Our relative version has some applications to the classification theory of higher dimensional algebraic varieties. For example, we have the following (refer to $[\mathrm{KMM}]$ for terminologies):

Corollary. Let X be a projective manifold defined over \mathbb{C} and let $\varphi: X \longrightarrow X^{\prime}$ be the contraction morphism of an extremal ray R of $\overline{N E}(X)$. Then the $d(d+1) / 2$-th anti-pluri-canonical divisor $-d(d+1) / 2 K_{X}$ is φ-free, here d is the maximum dimension of the fibres of φ.

This corollary is much helpful to the classification of the singular fibres of φ and contraction morphisms (cf. [K])

The reader should refer to [D2] (analytic approach) and [L] (algebraic approach) for the recent development of the theory of adjoint bundles.

I would like to express my thanks to Professor Takeo Ohsawa for his suggestions and encouragement during the preparation of this paper. I would also like to express my thanks to Professor Hajime Tsuji who kindly explained his basic ideas.

§2. Singular Hermitian metric and vanishing theorem

Our basic tool is singular Hermitian metrics as in [D1], [D2]. We use vector bundles and the associated locally free sheaves interchangeably. In this section we let X be a complex manifold.

2A. Singular Hermitian metric

Let L be a holomorphic line bundle on X. A metric h on L is called singular Hermitian, if there exist a function $\varphi \in L_{\mathrm{loc}}^{1}(X)$ and a smooth Hermitian metric h_{0} on L such that $h=e^{-\varphi} h_{0}$ holds. This defines a closed current

$$
\operatorname{curv} h:=\operatorname{curv} h_{0}+\sqrt{-1} \partial \bar{\partial} \varphi
$$

where curv h_{0} is the curvature form of the Hermitian metric h_{0} and $\partial \bar{\partial}$ is taken in the sense of currents. The (1,1)-current curv h is said to be the curvature current of the singular Hermitian line bundle (L, h). It is easy to see that curv h is independent of the choices of h_{0} and $\varphi . \sqrt{-1} \bar{\partial} \partial \log h$ is the formal expression of curv h. For a singular Hermitian line bundle (L, h) on a Hermitian manifold (X, ω). The L^{2}-sheaf $\mathcal{L}^{2}(L, h)$ is the sheaf defined by

$$
\mathcal{L}^{2}(L, h)(U)=\left\{s \in \Gamma(U, L) ; h_{0}(s, s) e^{-\varphi} \in L_{\mathrm{loc}}^{1}(U)\right\}
$$

where $h=e^{-\varphi} h_{0}$ is a local expression of h as above. Similarly, the multiplier ideal sheaf $\mathcal{I}(h)$ of the singular Hermitian metric is defined by

$$
\mathcal{I}(h)(U):=\left\{f \in \Gamma\left(U, \mathcal{O}_{M}\right) ;|f|^{2} e^{-\varphi} \in L_{\mathrm{loc}}^{1}(U)\right\}
$$

These sheaves do not depend of the choices φ, h_{0} and ω, and satisfy the following relation: $\mathcal{L}^{2}(L, h)=L \otimes \mathcal{I}(h)$.

2B. Vanishing theorem

We recall the following:
Nadel's coherence and vanishing theorem 2.1. ([N], [D1, §4]) Let (X, ω) be a complete Kähler manifold and let (L, h) be a singular Hermitian line bundle on X. Assume that there exists a real number c such that curv $h \geq c \omega$ on X. Then
(1) the sheaf $\mathcal{I}(h)$ is a coherent ideal sheaf of \mathcal{O}_{X}, and
(2) if c is positive, the q-th L^{2}-cohomology group

$$
H_{(2)}^{q}\left(X, K_{X} \otimes L \otimes \mathcal{I}(h)\right)=0
$$

for every $q \geq 1$.
As a simple application of the above theorem, we have
Proposition 2.2. Let (X, ω) be a complete Kähler manifold, x be a point of X, and let L be a holomorphic line bundle on X. Assume that L admits a singular Hermitian metric h_{x} such that
(1) there exists a positive constant c such that curv $h_{x} \geq c \omega$, and that
(2) x is isolated in the zero complex space $V \mathcal{I}\left(h_{x}\right)$.

Then there exists a holomorphic section of $K_{X} \otimes L$ which does not vanish at x.

We will need the following Serre type vanishing theorem:
Proposition 2.3. ([F, Theorem $\left.\mathrm{N}^{\prime}\right]$) Let L be a positive line bundle on a weakly 1-complete manifold X, i.e., a complex manifold with a smooth plurisubharmonic exhaustion function $\Phi: X \longrightarrow \mathbb{R}$. Then for every coherent analytic sheaf \mathcal{F} on X and for every $c<\sup _{X} \Phi$, there exists a positive integer m_{0} such that

$$
H^{q}\left(X_{c}, \mathcal{F} \otimes L^{\otimes m}\right)=0
$$

for any $q \geq 1$ and for any $m \geq m_{0}$, where $X_{c}:=\{x \in X ; \Phi(x)<c\}$ is a sublevel set of (X, Φ).

2C. Singular Hermitian metric with analytic singularities [AS, §2]

In this subsection we explain how to construct a singular Hermitian metric and how to control the multiplier ideal sheaf. The standard method of the construction is to use holomorphic sections; such metrics are said to be singular Hermitian metrics with analytic singularities.

It is convenient to introduce the notion of rational coefficient geometry as follows. We consider a family of local holomorphic functions $s=\left\{s_{\lambda} ; s_{\lambda} \in\right.$ $\left.H^{0}\left(U_{\lambda}, \mathcal{O}_{X}\right)\right\}_{\lambda \in \Lambda}$ for some locally finite open cover $\left\{U_{\lambda}\right\}_{\lambda \in \Lambda}$ of X. For a positive rational number q and for any smooth Hermitian holomorphic line bundle $\left(L, h_{0}\right)$ on X, the family of local holomorphic functions s is said to be a multivalued holomorphic section of $L^{\otimes q}$ over X, if there exists a positive integer p such that $p q$ being an integer and that $s^{p}:=\left\{s_{\lambda}^{p}\right\}_{\lambda \in \Lambda}$ defines an element of $H^{0}\left(X, L^{\otimes p q}\right)$. We denote

$$
\begin{aligned}
|s|:=\left(h_{0}^{\otimes p q}\left(s^{p}, s^{p}\right)\right)^{1 /(2 p)}: & \text { the pointwise length } \\
(s)_{0}:=\left\{x \in X ; s_{\lambda}(x)=0\right. & \text { for some } \lambda \in \Lambda\}
\end{aligned}
$$

We just consider $(s)_{0}$ as a set of zeros. We also define a singular Hermitian metric h of $L^{\otimes q}$ by a family of local real valued measurable functions such that h^{p} defines a singular Hermitian metric of $L^{\otimes p q}$. We can also define the curvature current and the multiplier ideal sheaf.

Let s_{1}, \ldots, s_{k} be a finite number of multivalued holomorphic sections $L^{\otimes q}$ such that $\left(s_{i}\right)^{p}(1 \leq i \leq k)$ is a holomorphic section of $L^{\otimes p q}$ for some positive integer p with $p q$ being an integer. Then we can define a singular Hermitian metric of $L^{\otimes q}$ by

$$
h:=\frac{h_{0}^{q}}{\sum_{i=1}^{k}\left|s_{i}\right|^{2}} .
$$

The curvature current is a closed positive current on X. Indeed, for local expressions $s_{i}=\left\{s_{i \lambda}\right\}_{\lambda \in \Lambda}$, we see

$$
\operatorname{curv} h=\sqrt{-1} \partial \bar{\partial} \log \sum_{i=1}^{k}\left|s_{i \lambda}\right|^{2}
$$

on every open set U_{λ}. We note that both the positivity of the curvature current and the multiplier ideal sheaf do not depend on the smooth Hermitian metric h_{0}. Let \mathcal{J} be the sheaf of ideal of \mathcal{O}_{X} generated locally by
$\left\{\left(s_{i}\right)^{p}\right\}_{i=1}^{k}$. We assume that the support of $\mathcal{O}_{X} / \mathcal{J}$ is compact. We take a modification $\pi: \widetilde{X} \longrightarrow X$ by a finite number of successive monoidal transforms with nonsingular centers and a family of smooth divisors E_{i} in \tilde{X} with only simple normal crossing so that the following three consitions hold:
(0) For every $i, \pi\left(E_{i}\right) \subset \operatorname{supp} \mathcal{O}_{X} / \mathcal{J}$.
(1) The sheaf $\pi^{-1} \mathcal{J} \cdot \mathcal{O}_{\widetilde{X}}$ which is the image of $\pi^{*} \mathcal{J}$ under the natural map $\pi^{*} \mathscr{J} \longrightarrow \mathcal{O}_{\tilde{X}}$ is equal to the ideal sheaf $\mathcal{O}\left(-\sum r_{i}^{\prime} E_{i}\right)$ for some non-negative integers r_{i}^{\prime}.
(2) $K_{\widetilde{X}}=\pi^{*} K_{X} \otimes \mathcal{O}\left(\sum b_{i} E_{i}\right)$ for some non-negative integers b_{i}. In other words, the holomorphic Jacobian determinant of the map $\pi: \tilde{X} \longrightarrow X$ vanishes precisely of order b_{i} along E_{i} and vanishes nowhere on $\widetilde{X}-\bigcup_{i} E_{i}$. Let $r_{i}:=r_{i}^{\prime} / p$. For every $t \geq 0$, we set

$$
\mathcal{I}(t):=\mathcal{L}^{2}\left(\mathcal{O}_{X},\left(\sum_{i=1}^{k}\left|s_{i}\right|^{2}\right)^{-t}\right)
$$

We see that every $\mathcal{I}(t)$ is a coherent ideal sheaf by $2.1(1)$ and that $\mathcal{I}(1)=$ $\mathcal{I}(h)$. Then a point x on X belongs to the zero complex subspace $V \mathcal{I}(t)$ if and only if there exists an index i such that E_{i} intersects $\pi^{-1}(x)$ and that $t r_{i}-b_{i} \geq 1$. For every point $x \in V \mathcal{I}(1)$, we see that

$$
\begin{aligned}
\sup \{t & \left.\geq 0 ; \mathcal{I}(t)_{x}=\mathcal{O}_{X, x}\right\} \\
& =\min \left\{t \geq 0 ; \operatorname{tr}_{i}-b_{i} \geq 1 \text { for } i \text { such that } E_{i} \text { intersects } \pi^{-1}(x)\right\}
\end{aligned}
$$

Note that the quantity, say $\alpha(x)$, is always a rational number and $0<$ $\alpha(x) \leq 1$.

§3. Preliminary lemma

3A. Reduction and non-vanishing with a parameter space

Let $f: X \longrightarrow Y$ and L be as in Main Theorem. We fix a point x on X. The situation is local on Y, so we may assume that Y is a closed complex subspace of the unit ball \mathbb{B}^{M} in \mathbb{C}^{M} with the global coordinate (y_{1}, \ldots, y_{M}) and that $f(x)=0$. Since L is f-ample, restricting Y on a smaller ball \mathbb{B}^{M} if necessary, we may assume L admits a smooth Hermitian metric h whose curvature form is positive on X.

In the local situation as above, we show the following non-vanishing lemma with a parameter space. It is important to handle the case that the zero complex subspace of the multiplier ideal sheaf has singularities.

Lemma 3.1. ([AS, Lemma 4.1]) Let Z be a closed subvariety (reduced and irreducible) in X of positive dimension d such that $x \in Z$ and $f(Z)=$ $f(x), B_{0}$ and B_{1} be smaller balls centered at $0 \in \mathbb{B}^{M}$ with $B_{0} \varsubsetneqq B_{1} \varsubsetneqq \mathbb{B}^{M}$, $Y_{i}:=Y \cap B_{i}$ and $X_{i}:=f^{-1}\left(Y_{i}\right)$ for $i=0$, 1, and let N be a positive integer. Let Δ^{\prime} be a local holomorphic curve in Z passing through x with x as the only singularity such that the normalization $\sigma: \Delta \longrightarrow \Delta^{\prime}$ is a one to one holomorphic map from the open unit disk Δ in \mathbb{C} with $\sigma(0)=x$. Then, replace Δ with a smaller disk if necessary, there exist a positive integer m and a finite number of holomorphic sections $\left\{\widetilde{\tau}_{j}\right\}_{j=1}^{K} \subset H^{0}\left(X_{1} \times\right.$ $\left.\Delta, p r_{X}^{*} L^{\otimes m(N+1)}\right)$, where $p r_{X}: X \times \Delta \rightarrow X$ is the first projection, such that

$$
\left.\widetilde{\tau}_{j}\right|_{Z \times u} \in H^{0}\left(Z, L^{\otimes m(N+1)} \otimes \mathcal{M}_{Z, \sigma(u)}^{m N}\right) \quad \text { for every } u \in \Delta-0
$$

and for every j, and that their common zeros satisty

$$
x \in X_{0} \cap \bigcap_{j=1}^{K}\left(\left.\widetilde{\tau}_{j}\right|_{X_{1} \times 0}\right)_{0} \varsubsetneqq Z .
$$

Proof. We denote the ideal sheaf of the graph $\sigma \times 1: \Delta \longrightarrow Z \times \Delta$ by $\mathcal{I}_{\Gamma} \subset \mathcal{O}_{Z \times \Delta}$. Since Z is compact, the direct image sheaf $p r_{\Delta_{*}}\left(p r_{X}^{*} L^{\otimes m(N+1)}\right.$ $\left.\otimes \mathcal{O}_{Z \times \Delta} \otimes \mathcal{I}_{\Gamma}^{m N}\right)$ is a coherent sheaf on Δ, where $p_{\Delta}: Z \times \Delta \longrightarrow \Delta$ be the projection. The sheaf $p r_{\Delta *}\left(p r_{X}^{*} L^{\otimes m(N+1)} \otimes \mathcal{O}_{Z \times \Delta} \otimes \mathcal{I}_{\Gamma}^{m N}\right)$ is generically locally free with $H^{0}\left(Z \times u, L^{\otimes m(N+1)} \otimes \mathcal{M}_{Z \times u, \sigma(u) \times u}^{m N}\right)$ as the generic fibre. We see that the latter space is non-zero for every large m and for every $u \in \Delta-0$ by the following asymptotic dimension compairing:

$$
\begin{aligned}
\operatorname{dim} H^{0}\left(Z, L^{\otimes m(N+1)}\right) & =(N+1)^{d}\left(L^{d} \cdot Z\right)(d!)^{-1} m^{d}+O\left(m^{d-1}\right) \\
\operatorname{rank} \mathcal{O}_{Z} / \mathcal{M}_{Z, \sigma(u)}^{m N} & =\binom{m N+d-1}{d}=N^{d}(d!)^{-1} m^{d}+O\left(m^{d-1}\right)
\end{aligned}
$$

Then by Theorem A of Cartan-Serre we see that, for every large m, there exists a section $\widetilde{\tau} \in H^{0}\left(Z \times \Delta, p r_{X}^{*} L^{\otimes m(N+1)} \otimes \mathcal{O}_{Z \times \Delta} \otimes \mathcal{I}_{\Gamma}^{m N}\right)$ such that $\left.\widetilde{\tau}\right|_{Z \times 0}$ is not identically zero.

For a smaller disk Δ_{1}, we take a sublevel set W of a weakly 1-complete manifold $X \times \Delta$ for an appropriate smooth plurisubharmonic exhaustion function which contains $X_{1} \times \Delta_{1}$. By Proposition 2.3, for every $x_{0} \times u_{0} \in$ $X \times \Delta-Z \times \Delta$, there exists a positive integer m_{0} such that

$$
H^{1}\left(W, p r_{X}^{*} L^{\otimes m} \otimes \mathcal{I}_{Z \times \Delta} \otimes \mathcal{M}_{X \times \Delta, x_{0} \times u_{0}}\right)=0
$$

for any $m \geq m_{0}$. Hence we can extend $\widetilde{\tau}$ as sections $\widetilde{\tau}_{1}, \ldots, \widetilde{\tau}_{K} \in H^{0}\left(X_{1} \times\right.$ $\left.\Delta_{1}, p r_{X}^{*} L^{\otimes m(N+1)}\right)$ which satisfy the desired properties.

3B. Calculus Lemma

The following simple calculus lemma on non-integrability will be used later to locate the zero-set of the multiplier ideal sheaf of a singular metric.

Lemma 3.2. ([AS, Lemma 3.1]) Let m and N be positive integers and $0<a<1$. Let f_{1}, \ldots, f_{k} be holomorphic functions on the unit polydisk Δ^{n} on \mathbb{C}^{n} with coordinates $z, w_{1}, \ldots, w_{n-1}$. Let $H:=\{z=0\}$ and let V be the subset of $H \cap \Delta^{n}$ where the vanishing order of $\left.f_{j}\right|_{H \cap \Delta^{n}}$ is at least $m N$ for any j. Let d be the codimension of V in $H \cap \Delta^{n}$ at the origin. Then $|z|^{-2 a}\left(\sum\left|f_{j}\right|^{2}\right)^{-t /(m N)}$ is not locally integrable at the origin for $t \geq d+m N(1-a)$.

Proof. By slicing and Fubini's theorem, we may assume $d=n-1$. Then $\sum\left|f_{j}\right|^{2} \leq C_{1}\left(|z|^{2}+|w|^{2 m N}\right)$ for some positive constant C_{1}, where we set $|w|^{2}:=\sum_{i=1}^{n-1}\left|w_{i}\right|^{2}$. The non-integrability of $|z|^{-2 a}\left(\sum\left|f_{j}\right|^{2}\right)^{-t /(m N)}$ follows from that of $|z|^{-2 a}\left(|z|^{2}+|w|^{2 m N}\right)^{-t /(m N)}$. Then we see the nonintegability by direct calculation by using polar coordinates for z and w with $x=|z|^{2}$ and $y=|w|$.

§4. Proof of Theorem

We fix a point x on X. We let $f: X \longrightarrow Y \subset \mathbb{B}^{\mathbb{M}} \subset\left(\mathbb{C}^{M} ; y_{1}, \ldots, y_{M}\right)$ and (L, h) be the local reduction around $f(x)$ as in 3A. We take smaller balls B_{0} and B_{1} centered at $0 \in \mathbb{B}^{M}$ with $B_{0} \varsubsetneqq B_{1} \varsubsetneqq \mathbb{B}^{M}$. We set $Y_{i}:=Y \cap B_{i}$ and $X_{i}:=f^{-1}\left(Y_{i}\right)$ for $i=0,1$. With these notations, our Main Theorem follows from the following

Theorem 4.1. For every $m>d_{0}\left(d_{0}+1\right) / 2$, there exists a holomorphic section $\tau \in H^{0}\left(X_{1}, \mathcal{O}_{X}\left(K_{X} \otimes L^{\otimes m}\right)\right)$ such that $\tau(x) \neq 0$, where d_{0} is the dimension of a maximum dimensional irreducible component of the fibre $f^{-1}(f(x))$ which contains x.

By Proposition 2.2, all we have to do is to show the following
Proposition 4.2. For every $m>d_{0}\left(d_{0}+1\right) / 2,\left.L\right|_{X_{1}} ^{\otimes m}$ admits a singular Hermitian metric H_{m} such that
(1) the curvature current dominants a complete Kähler form on X_{1}, and that
(2) x is isolated in the zero subspace $V \mathcal{I}\left(H_{m}\right)$.

If f is constant, then X is a projective manifold with an ample line bundle L, that is (a part of) the statement of $[\mathrm{AS}],[\mathrm{Tj}]$. Hence we assume that f is non-constant.

4A. Statement of the induction step

We formulate an induction statement for the proof of Proposition 4.2. Let $m_{d}:=\sum_{n=d+1}^{d_{0}} n$ for $0 \leq d<d_{0}$ and let $m_{d_{0}}:=0$. We take rational numbers $0=\varepsilon\left(d_{0}+1\right)<\varepsilon\left(d_{0}\right)<\varepsilon\left(d_{0}-1\right) \cdots<\varepsilon(0)<1$. For every positive rational number q and for every multivalued holomorphic section s of $L^{\otimes q}$ on an open set of X, we denote $|s|$ the length with respect to the smooth Hermitian metric h. For every d with $0 \leq d \leq d_{0}$, we consider the following

Induction Statement $(*)_{d}$. There exist a rational number $\varepsilon(d+$ 1) $<\varepsilon_{d}<\varepsilon(d)$ and a finite number of multivalued holomorphic sections $s_{1}^{(d)}, \ldots, s_{k_{d}}^{(d)}$ of $L^{\otimes\left(m_{d}+\varepsilon_{d}\right)}$ on X_{1} such that
(i) $\left(\bigcap_{i=1}^{k_{d}}\left(s_{i}^{(d)}\right)_{0} \cap X_{0}\right) \subset f^{-1}(f(x))$,
(ii) $x \in\left(Z_{d}(1) \cap X_{0}\right) \subset f^{-1}(f(x))$,
(iii) $x \notin Z_{d}(t)$ for $t<1$, and that
(iv) The dimension of $Z_{d}(1)$ at x is at most d, where

$$
\mathcal{I}_{d}(t):=\mathcal{L}^{2}\left(\mathcal{O}_{X_{1}},\left(\sum_{i=1}^{k_{d}}\left|s_{i}^{(d)}\right|^{2}\right)^{-t}\right) \quad \text { for every } t \geq 0
$$

be the multiplier ideal sheaf and where $Z_{d}(t):=V \mathcal{I}_{d}(t)$ be the complex subspace of X_{1} defined by the ideal sheaf $\mathcal{I}_{d}(t)$.

We note that, by the vanishing theorem: Proposition 2.3, there exist a finite number of multivalued holomorphic sections $\left\{t_{i}\right\}_{i=1}^{K}$ of L on X_{1} such that $X_{0} \cap \bigcap_{i=1}^{K}\left(t_{i}\right)_{0}$ is empty. We verify the first step:

Lemma 4.3. $\quad(*)_{d_{0}}$ holds.
Proof. We set

$$
\begin{aligned}
\mathcal{I}_{*}(t) & :=\mathcal{L}^{2}\left(\mathcal{O}_{X},\left(\sum_{i=1}^{M}\left|f^{*} y_{i}\right|^{2}\right)^{-t}\right) \quad \text { for every } t \geq 0 \\
\alpha_{*} & :=\sup \left\{t \geq 0 ; \mathcal{I}_{*}(t)_{x}=\mathcal{O}_{X, x}\right\}
\end{aligned}
$$

We see that every $\mathcal{I}_{*}(t)$ is a coherent ideal sheaf and that α_{*} is a positive rational number. We consider the complex subspace $V \mathcal{I}_{*}\left(\alpha_{*}\right)$ defined by the ideal sheaf $\mathcal{I}_{*}\left(\alpha_{*}\right)$. This space $V \mathcal{I}_{*}\left(\alpha_{*}\right)$ is compact and $x \in V \mathcal{I}_{*}\left(\alpha_{*}\right) \subset$ $f^{-1}(f(x))$. We choose a positive rational number $0<\varepsilon_{d_{0}}<\varepsilon\left(d_{0}\right)$ and set the multivalued holomorphic sections

$$
\left\{s_{i}^{\left(d_{0}\right)}\right\}_{i=1}^{k_{d_{0}}}:=\left\{f^{*} y_{i}^{\alpha_{*}} \times t_{j}^{\varepsilon_{d_{0}}}\right\}_{i, j}
$$

of $L^{\otimes \varepsilon_{d_{0}}}$ on X_{1}. Then we can verify $(*)_{d_{0}}$ by the following relation on X_{0} :

$$
\mathcal{I}_{d_{0}}(t):=\mathcal{L}^{2}\left(\mathcal{O}_{X_{1}},\left(\sum_{i=1}^{k_{d_{0}}}\left|s_{i}^{\left(d_{0}\right)}\right|^{2}\right)^{-t}\right)=\mathcal{I}_{*}\left(t \alpha_{*}\right)
$$

4B. Concentration of the singularity

In this subsection we verify the induction step. We assume $(*)_{d}$ with $d>0$. Let p be a positive integer such that $p\left(m_{d}+\varepsilon_{d}\right)$ being integer and that $\left(s_{i}^{(d)}\right)^{p}\left(1 \leq i \leq k_{d}\right)$ is a holomorphic section of $L^{\otimes p\left(m_{d}+\varepsilon_{d}\right)}$ on X_{1}. Let \mathcal{J}^{\prime} be the sheaf of ideal of $\mathcal{O}_{X_{0}}$ generated locally by $\left\{\left.\left(s_{i}^{(d)}\right)^{p}\right|_{X_{0}}\right\}_{i=1}^{k_{d}}$. By the assumption $(*)_{d}$ (i), we can extend \mathcal{J}^{\prime} as a coherent ideal sheaf \mathcal{J} of \mathcal{O}_{X} by setting $\mathcal{J}=\mathcal{O}_{X}$ on $X-X_{0}$. We take a modification $\pi: \widetilde{X} \longrightarrow X$ by a finite number of successive monoidal transforms with nonsingular centers and a family of smooth divisors E_{i} in \widetilde{X} with only simple normal crossing so that the following three consitions hold:
(0) $\pi\left(E_{i}\right) \subset f^{-1}(f(x))$ for every i.
(1) The sheaf $\pi^{-1} \mathcal{J} \cdot \mathcal{O}_{\widetilde{X}}$ which is the image of $\pi^{*} \mathcal{J}$ under the natural map $\pi^{*} \mathcal{J} \longrightarrow \mathcal{O}_{\tilde{X}}$ is equal to the ideal sheaf $\mathcal{O}\left(-\sum r_{i}^{\prime} E_{i}\right)$ for some non-negative integers r_{i}^{\prime}.
(2) $K_{\widetilde{X}}=\pi^{*} K_{X} \otimes \mathcal{O}\left(\sum b_{i} E_{i}\right)$ for some non-negative integers b_{i}. Let $r_{i}:=r_{i}^{\prime} / p$. The three conditions (ii)-(iv) in the statement $(*)_{d}$ can now be rewritten as the condition (ii) ${ }^{\prime}$-(iv) ${ }^{\prime}$ below. Let Λ be the set of all i so that E_{i} intersects $\pi^{-1}(x)$ and $r_{i}-b_{i} \geq 1$.
(ii) ${ }^{\prime} \Lambda$ is not empty;
(iii)' $i \in \Lambda$ then $r_{i}-b_{i}=1$;
(iv) $\quad i \in \Lambda$ then $\operatorname{dim} \pi\left(E_{i}\right) \leq d$.

We may assume that the index $i=0$ is an element of Λ and that $\operatorname{dim} \pi\left(E_{0}\right)$ $=\max \left\{\operatorname{dim} \pi\left(E_{i}\right) ; i \in \Lambda\right\}$.

We choose ε_{d-1} such that $\varepsilon(d)<\varepsilon_{d-1}<\varepsilon(d-1)$. Let $Z:=\pi\left(E_{0}\right) \subset$ $f^{-1}(f(x))$. If the dimension of Z is less than d, then for $(*)_{d-1}$ we simply choose multivalued holomorphic sections

$$
\left\{s_{i}^{(d-1)}\right\}_{i=1}^{k_{d-1}}:=\left\{s_{i}^{(d)} \times t_{j}^{\left(m_{d-1}+\varepsilon_{d-1}\right)-\left(m_{d}+\varepsilon_{d}\right)}\right\}_{i, j}
$$

of $L^{\otimes\left(m_{d-1}+\varepsilon_{d-1}\right)}$ on X_{1}. We now assume without loss of generality that the dimension of Z is precisely d.

We take a local smooth holomorphic curve Γ in $E_{0}-\bigcup\left\{E_{i} ; i \notin \Lambda\right\}$ with the following three properties:
(3) Γ intersects $\pi^{-1}(x)$ at one point.
(4) Γ either does not intersect $\bigcup_{i \neq 0} E_{i}$ or intersects $\bigcup_{i \neq 0} E_{i}$ only at the point $\Gamma \cap \pi^{-1}(x)$.
(5) Γ either does not intersect $\pi^{-1}(\operatorname{Sing} Z)$ or intersects $\pi^{-1}(\operatorname{Sing} Z)$ only at the point $\Gamma \cap \pi^{-1}(x)$.
The image $\pi(\Gamma)$ is a local holomorphic curve in Z. Let Δ be the unit disk in \mathbb{C}. By replacing Γ by a relatively compact open neighborhood of $\Gamma \cap \pi^{-1}(x)$ in Γ, we may assume that there is a nomalization $\sigma: \Delta \longrightarrow \pi(\Gamma)$ of $\pi(\Gamma)$ which is one to one and $\sigma(0)=x$.

We take a positive integer N such that $d / N<\varepsilon_{d-1}-\varepsilon(d)$. By Lemma 3.1, replace Δ with a smaller disk if necessary, there exist a positive integer m and a finite number of holomorphic sections $\left\{\tilde{\tau}_{j}\right\}_{j=1}^{K_{d}} \subset H^{0}\left(X_{1} \times\right.$ $\left.\Delta, p r_{X}^{*} L^{\otimes m(N+1)}\right)$ such that

$$
\left.\tau_{j, u}\right|_{Z} \in H^{0}\left(Z, L^{\otimes m(N+1)} \otimes \mathcal{M}_{Z, \sigma(u)}^{m N}\right) \quad \text { for every } u \in \Delta-0
$$

and for every j, and that

$$
x \in X_{0} \cap \bigcap_{j=1}^{K_{d}}\left(\tau_{j}\right)_{0} \varsubsetneqq Z,
$$

where $\tau_{j, u}:=\left.\widetilde{\tau}_{j}\right|_{X_{1} \times u}\left(\right.$ we regard $\left.\tau_{j, u} \in H^{0}\left(X_{1}, L^{\otimes m(N+1)}\right)\right)$ and $\tau_{j}:=\tau_{j, 0}$.
Then we take a positive rational number ε such that $\varepsilon m r_{0}(1+N)+$ $d / N<\varepsilon_{d-1}-\varepsilon(d)$. For every $u \in \Delta$ and for every $t \geq 0$, we set

$$
\begin{aligned}
\mathcal{I}(u, t) & :=\mathcal{L}^{2}\left(\mathcal{O}_{X_{1}},\left(\sum\left|s_{i}^{(d)}\right|^{2}\right)^{-(1-\varepsilon)}\left(\sum\left|\tau_{j, u}\right|^{2}\right)^{-t /(m N)}\right) \\
\alpha(u) & :=\sup \left\{t \geq 0 ; \mathcal{I}(u, t)_{\sigma(u)}=\mathcal{O}_{X, \sigma(u)}\right\}
\end{aligned}
$$

We see that every $\alpha(u)$ is a positive rational number and that

$$
x \in\left(V \mathcal{I}(0, \alpha(0)) \cap X_{0}\right) \varsubsetneqq Z \subset f^{-1}(f(x))
$$

We would like to estimate $\alpha(0)$ by d and $O(\varepsilon)$ (Lemma 4.6 below). The following semicontinuity lemma of multiplier ideal sheaves due to Angehrn and Siu is the key step to reduce the case $x \in \operatorname{Sing} Z$ to the case $x \in \operatorname{Reg} Z$.

Lemma 4.4. ([AS Lemma 6.1]) Let t_{0} be a positive number. Assume that $\alpha(u)<t_{0}$ for almost all $u \in \Delta-0$ with respect to the 2 -dimensional Lebesgue measure on Δ. Then $\alpha(0) \leq t_{0}$ holds.

The outline of the proof is as follows: Assume that $\alpha(0)>t_{0}$. Then the following theorem of Ohsawa and Takegoshi shows that $\alpha(u) \geq t_{0}$ for almost all $u \in \Delta-0$ which is a contradiction.

Ohsawa-TAKEgoshi's L^{2}-extension theorem 4.5. ([OT]) Let Ω be a bounded pseudoconvex domain in \mathbb{C}^{n+1} with coordinate z_{1}, \ldots, z_{n}, w. Let H be a complex hyperplane defined by $w=0$, and let ϕ be a plurisubharmonic function on Ω. Then there exists a constant C_{Ω} depending only on the diameter of Ω such that; for any holomorphic function f on $\Omega \cap H$ satisfying

$$
\int_{\Omega \cap H}|f|^{2} e^{-\phi} d V_{n}<\infty
$$

where $d V_{n}$ denotes the $2 n$-dimensional Lebesgue measure, there exists a holomorphic function F on Ω satisfying $\left.F\right|_{\Omega \cap H}=f$ and

$$
\int_{\Omega}|F|^{2} e^{-\phi} d V_{n+1} \leq C_{\Omega} \int_{\Omega \cap H}|f|^{2} e^{-\phi} d V_{n}
$$

Then we have
Lemma 4.6. $\alpha(0) \leq d+m N r_{0} \varepsilon$.
Proof. By Lemma 4.4, it is enough to estimate $\alpha(u)$ for $u \in \Delta-0$. We show $\left(\sum\left|s_{i}^{(d)}\right|^{2}\right)^{-(1-\varepsilon)}\left(\sum\left|\tau_{j, u}\right|^{2}\right)^{-t /(m N)}$ is not locally integrable at $\sigma(u)$ for $t \geq d+m N r_{0} \varepsilon$.

We take $u \in \Delta-0$ and a point \widetilde{x} in $\pi^{-1}(\sigma(u)) \cap \Gamma$. We see $\widetilde{x} \in E_{0}$ and $\tilde{x} \notin \bigcup_{i \neq 0} E_{i}$. Let W be an open neighborhood of \widetilde{x} in $\widetilde{X}-\bigcup_{i \neq 0} E_{i}$ so that a local coordinate $z, w_{1}, \ldots, w_{n-1}$ on W with $E_{0} \cap W$ defined by $\{z=0\}$, where n is the dimension of X. Since π maps the $(n-1)$ dimensional manifold E_{0} onto the irreducible d-dimensional subvariety Z, it follows that the codimension of $\pi^{-1}(x) \cap E_{0}$ in E_{0} is at most d at \widetilde{x}. The restriction $\left.\left(\pi^{*} \tau_{j, u}\right)\right|_{E_{0}}$ vanishes to order at least $m N$ at \tilde{x}. Let $\operatorname{Jac}(\pi)$ be the holomorphic Jacobian determinant of the map π. On W the divisor of $\operatorname{Jac}(\pi)$ is presicely $b_{0} E_{0}$. To conclude the local non-integrability of $\left(\sum\left|s_{i}^{(d)}\right|^{2}\right)^{-(1-\varepsilon)}\left(\sum\left|\tau_{j, u}\right|^{2}\right)^{-t /(m N)}$ at $\sigma(u)$, it suffices to prove the local non-integrability of

$$
|z|^{-2(1-\varepsilon) r_{0}}\left(\sum\left|\pi^{*} \tau_{j, u}\right|^{2}\right)^{-t /(m N)}|z|^{2 b_{0}} \quad \text { at } \widetilde{x} .
$$

Since $r_{0}-b_{0}=1$, by Lemma 3.2, $t \geq d+m N r_{0} \varepsilon$ implies the non-integrability. Hence $\alpha(u)<d+m N r_{0} \varepsilon$ for $u \in \Delta-0$.

We set $\mathcal{I}(t):=\mathcal{I}(0, t)$ and $\alpha:=\alpha(0)$. Then by Lemma 4.6, we see $\left(d+\varepsilon_{d-1}\right)-\alpha(1+1 / N)>\varepsilon(d)$. We set the multivalued holomorphic section

$$
\left\{s_{i}^{(d-1)}\right\}_{i=1}^{k_{d-1}}:=\left\{s_{i}^{(d)(1-\varepsilon)} \times \tau_{j}^{\alpha /(m N)} \times t_{k}^{\varepsilon\left(m_{d}+\varepsilon_{d}\right)+\left(d+\varepsilon_{d-1}\right)-\alpha(1+1 / N)}\right\}_{i, j, k}
$$

of $L^{\otimes\left(m_{d-1}+\varepsilon_{d-1}\right)}$ on X_{1}. We can verify $(*)_{d-1}$ by noting that $\mathcal{I}_{d-1}(t) \supset$ $\mathcal{I}(t \alpha)$ for $0 \leq t \leq 1$ and that $\mathcal{I}_{d-1}(1)=\mathcal{I}(\alpha)$, where

$$
\mathcal{I}_{d-1}(t):=\mathcal{L}^{2}\left(\mathcal{O}_{X_{1}},\left(\sum\left|s_{i}^{(d-1)}\right|^{2}\right)^{-t}\right)
$$

4C. Completion of the proof

In 4 A and 4 B , we showed that $(*)_{0}$ hold. Therefore there exist a rational number ε_{0} with $0<\varepsilon_{0}<1$ and a finite number of multivalued holomorphic sections $\left\{s_{i}^{(0)}\right\}_{i=1}^{k_{0}}$ of $L^{\otimes\left(m_{0}+\varepsilon_{0}\right)}$ on X_{1} such that x is isolated in $V \mathcal{L}^{2}\left(\mathcal{O}_{X_{1}},\left(\sum\left|s_{i}^{(0)}\right|^{2}\right)^{-1}\right)$. We take a smooth Hermitian metric h_{1} of $\left.L\right|_{X_{1}}$ such that the curvature form gives a complete Kähler form on X_{1}. Then we get the desired singular Hermitian metric

$$
H_{m}:=h_{1}^{m-\left(m_{0}+\varepsilon_{0}\right)} \frac{h_{1}^{m_{0}+\varepsilon_{0}}}{\sum\left|s_{i}^{(0)}\right|_{1}^{2}}
$$

for every integer $m>m_{0}=d_{0}\left(d_{0}+1\right) / 2$, where $\left|s_{i}^{(0)}\right|_{1}$ is the length with respect to h_{1}.

References

[AS] U. Angehrn, Y. T. Siu, Effective freeness and point separation for adjoint bundles, Invent. math., 122 (1995), 291-308.
[D1] J. P. Demailly, A numerical criterion for very ample line bundles, Jour. of Diff. Geom., 37 (1993), 323-374.
[D2] J. P. Demailly, L^{2} vanishing theorem for positive line bundles and adjunction theory, to appear, CIME Session, Transcendental Methods in Algebraic Geometry, Cetraro, Italy (1994).
[F] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive, Algebraic Geometry, Sendai, 1985, Advanced Studies in Pure Math., 10, North-Holland, Amsterdam (1987), pp. 167-178.
[K] Y. Kachi, Extremal contractions from 4-dimensional manifolds to 3-folds, preprint (1995).
[KMM] Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the Minimal Model Problem, Algebraic Geometry, Sendai, 1985, Advanced Studies in Pure Math., 10, North-Holland, Amsterdam (1987), pp. 283-360.
[L] Lazarsfeld R., Lectures on Linear Series, to appear (1994).
[N] A. M. Nadel, Multiplier ideal sheaves and existence of Kähler-Einstein metrics of positive scalar curvature, Ann. of Math., 132 (1990), 549-596.
[OT] T. Ohsawa, K. Takegoshi, On the Extension of L^{2} Holomorphic Functions, Math. Z., 195 (1987), 197-204.
[Tj] H. Tsuji, Global generation of adjoint bundles, Nagoya Math. J., 142 (1996), 5-16.

Department of Mathematics
Naruto University of Education
Takashima, Naruto-cho, Naruto-shi, 772
Japan
takayama@naruto-u.ac.jp

