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FINITE ARITHMETIC SUBGROUPS OF GLn, V

YOSHIYUKI KITAOKA

Abstract. Let K be a finite Galois extension of the rational number field Q
and G a Gal(K/Q)-stable finite subgroup of GLn(Oκ)> We have shown that
G is of A-type in several cases under some restrictions on K. In this paper, we
show that it is true for n = 2 without any restrictions on K.

Let K be a finite Galois extension of the rational number field Q with

Galois group Γ and let G be a Γ-stable finite subgroup of GLn(Oκ). Here

Oχ stands for the ring of integers in K and we define the action of σ G Γ

on g = (gij) G GLn(Oκ) by σ(g) := (σ(g^ )). G being Γ-stable means

that σ(g) G G for every σ G Γ and every g G G. To state the property of

such a group, we introduce the notion of A-type. Let H be a subgroup of

GLn(Oχ). We denote by L — Z[ei , . . . , en] a free module over Z and we

make h = (hij) G H act on OχL by h{eι) = Y^j=\ hijZj- If there exists a

decomposition L = @%=1Li such that for every h G H, we can take roots of

unity βi(h) (1 < i < k) and a permutation s(h) so that βi(h)hLi = Ls^^

for i = 1, 2, . . . , /c, then we say that H is of A-type.

We have shown in [4] that if Γ is nilpotent, then G is of A-type. The

aim of this paper is to show the following

THEOREM. Let K be a finite Galois extension of the rational num-

ber field Q with Galois group Γ and let G be a Γ-stable finite subgroup of

GL2{OK). Then G is of A-type.

Through this paper, algebraic number fields are finite over the rational

number field Q. For an algebraic number field if, we denote the ring of

integers in K by Oχ. When K is the rational number field Q, we use Z

instead of O Q , as usual. An algebraic number field is called abelian if it is a

Galois extension over Q with abelian Galois group. Let K be an algebraic

number field and p an integral ideal of if, and let G be a subgroup of

GLn(Oκ). Then we set
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where ln stands for the identity matrix of size n. For elements g, h in a

group, we set

[g,h] := ghg~ιh~ι.

§1.

In this section, we give the proof of the theorem except the proof of

Lemma 1.6, which is given in the succeeding sections.

LEMMA 1.1. (Theorem 1 in [3]) Let K be an abelian extension of Q

with Galois group Γ. Then a Γ-stable finite subgroup of GLn{Oχ) is of

A-type.

LEMMA 1.2. (Lemma 3 in [3]) Let K/Q be a Galois extension with

Galois group Γ and G a V-stable finite subgroup of GLn(Oκ). Let Γf be

the commutator subgroup of Γ and Kf the maximal abelian subfield of K

corresponding to Γf. Suppose the following conditions:

1. If a proper subfield F of K is a Galois extension of Q, then G Π

GLn(F)cGLn(K').

2. At least two rational primes ramify in K.

Then G is of A-type.

We prove the theorem by induction on [K : Q]. By virtue of Lemmas

1.1, 1.2, we may assume that the number of prime numbers ramified in K

is one.

LEMMA 1.3. Let K be an algebraic number field and suppose that

g G GLn(Oκ) is of finite order and g = l n mod p for a prime ideal p of K.

Then the order of g is a power of the prime number p which lies below p.

Proof Let Kp be the completion of K at p and π a prime element of

Kp. Suppose that the order of g is divided by a prime number q different

from p. Let h be a power of g whose order is q. We write h — ln + πrA,

where A is an integral matrix and π~λA is not integral. Then we have

and hence

g / A Ξ

Since q φ 0 mod π, A φ 0 mod π and r > 0, it is a contradiction.
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LEMMA 1.4. (Lemma 1 in [4]) LetF be an abelian extension o/Q with

Galois group Γ ; and p a prime ideal. Let G be a Γ -stable finite subgroup

of GLU(OF). Then there exists an integral matrix T G GLn(Z) such that

{TgT~ι I g G G,g = ln mod p} consists of diagonal matrices.

LEMMA 1.5. Let K be a Galois extension o/Q with Galois group Y,

and let G be a T-stable commutative finite subgroup of GL2(Oκ). Then G

is contained in GL2(Kf), where K1 is the maximal abelian sub field of K.

Proof. If G consists of scalar matrices, the assertion is clear, and hence
we assume that G contains a non-scalar matrix. Let m be the exponent of
G and it is obvious that we have only to prove the assertion for Kfi1'171)

instead of K. So we may assume I1/771 G K\ then there is a matrix T G
GL2{K) so that T~ιGT consists of diagonal matrices. Take any non-scalar
element g G G and put

Take σ G Γ and set

u := () (

then σ(cf) G G implies u\ 1 = I I u for some roots of
V ° σ^ J \ ° m J

unity 7/i, η2, and hence uχσ{ζ{) = uληu u2σ(ζ2) = u2ηu u>3<r(ζi) = 3̂̂ 72 and
^4σ(C2) — UAV2- Suppose U1U2 φ 0; then we have σ(ζχ) = ηι and σ(C2) = ̂ 71,
which contradict ζι φ (%. Thus we have u\U2 = 0. Suppose u^u^ φ 0; then
we have σ(ζι) = 772 and σ(^2) — 7̂25 which are the contradiction, similarly.
Thus we have u\U2 — u^u^ — 0 and hence

By setting

T0:=<σeΓ σ{T) =T\ U* ° J for some u1,u4€κ
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the index [Γ : Γo] is at most 2 and Γo contains the commutator subgroup

of Γ. Let F be the subfield corresponding to Γo; then F C Kf. Set

We divide the proof into the three cases,

(i) The case of c = 0.

For σ G Γo, we have

/ σ(α) σ(b) \ _ ( a b \ ί ux 0 \

(̂  0 σ(d) / \ 0 d ) \ 0 in )'

and so σ(b/d) — b/d. Hence t := b/d is in the field F. Then we have, for

roots of unity 71, 72,

/ 71 0 \ ! = / a d t \ ( Ί ι 0 \ ί a'1 -a~H \

\ 0 72 ) ^ 0 d j ^ O 7 2 / \ 0 d-1 )

( \ / —1 -_1 \

0 dΊ2 ) \ 0 d-1 )

= ( 7i (72 - 71)* "\ E G L /^/N

\ 0 72 /

Thus G is in GL2(K').

(ii) The case of d = 0.

For σ G Γo, we have

/ σ(α) σ(6) \ / α ί> \ / ui 0 \

^ σ ( c ) 0 / y e ° / \ 0 ^ 4 / '

and so σ(a/c) = a/c and hence t := a/c belongs to F. Then we have, for

roots of unity ηι, 72,

τ ( Ίi 0 \ ! = / cί 6 \ / 71 0 \ / 0 c-1 \

V 0 72 ) \ c 0 ) \ 0 Ί2 )\b-1 -b'H )

( ctji 672 \ / 0 c" 1 \

C7i 0 ^6-1 -6-1*

= ( 72 (71 - 72)ί \ (

0 71 /
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Hence G is contained in GL2{K').

(iii) The case of cd φ 0.

For σ G Γo, we have

σ[a) σ(b) \ =

σ(c) σ(d) I

and so σ(a/c) — a/c, σ(b/d) = b/d and hence t\ := a/c, t2 := b/d are in F.

Then we have, for roots of unity 71, 72,

€ GL2(K
f).

Thus we have shown G C GL2(K
f).

LEMMA 1.6. Letp be a prime number and let K be a Galois extension
of Q with Galois group Γ where p is the only rational prime number ramified

in K, and let p i , . . . , p^ be all the prime ideals in K lying above p. Let G be

a Y-stable finite subgroup of GL2(Oκ). Then the subgroup of G generated

by G ( p i ) , . . . , G(pg) is commutative.

The proof for an odd prime p (resp. 2) is given in the second (resp. third)

section.

LEMMA 1.7. Letp be a prime number, and K a Galois extension ofQ

with Galois group Γ where p is the only prime number ramified in K, and let

p i , . . . , p£ be the prime ideals in K lying above p. Let G be a V-stable finite

subgroup of GL2(OK). Then we have G(pi) = ••• = G(pg) C GL2(Kf),

where Kf is the maximal abelian sub field of K.

Proof. By Lemma 1.6, the subgroup H generated by G(pi),..., G(pg)

is an abelian Γ-stable subgroup of GL2{Oχ). By Lemma 1.5, H is con-
tained in GL2(Kr). Let p be the unique prime ideal of Kf lying above p\
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then G(pi) c ( G Π GL2(K'))(p) follows from the fact pi Π K' = p. The

inclusion (G Π GL2(K'))(p) C G{pi) is obvious and so we have G(pi) —

(GΠGL2(K'))(P). D

LEMMA 1.8. Let p be a prime number and K a Galois extension of

Q with Galois group Γ. We suppose that p is the only prime number that

ramifies in Ky and let p i , . . . ,pg be the prime ideals of K lying above p.

Let G be a T-stable finite subgroup of GLn(Oχ) and suppose that G(pi) =

• = G(pg) is in GLn(K') where K' is the maximal abelian subfield of K.

Then G is of A-type.

Proof. Let g G G and set Aσ := σ{g)g~ι for σ G Γ; we have, for

σ , μ G Γ

Λμσg = μσ(g) = μ(Aσg) = μ{Aσ)Aμg

and hence Aμσ = μ(Aσ)Aμ. Since Kf is abelian over Q, the prime ideal p

in Kf lying above p is uniquely determined and p i , . . . ,pg lie above p. By

the assumption G(pi) = = G(pg) C GLn(K'), we have G(pi) C (G ΓΊ

GLn{K!)){p). Therefore, by Lemma 1.4, there exists a matrix Γ G GLn(Z)

such that {TgT~ι \ g G G(pi)} consists of diagonal matrices. Considering

TGT~ι instead of G, we may assume that G(pi) and hence all G(pi) consist

of diagonal matrices without loss of generality. Let Vi be the inertia group

for the prime ideal p^. For σ G V̂ , we have cr(g)g"1 = ln mod p^ and hence

Aσ G G(pi) is diagonal. Since p is the only rational prime that ramifies

in ί ί , Vi,..., Vg generate Γ and so for every σ G Γ, Aσ is diagonal. By

Lemma 1 in [3], there exists a diagonal matrix A G GLn(K) such that

Aσ = σ{A~x)A and Aw G GL n (Q), where w is the number of roots of unity

in K. Thus we have σ{g)g~ι — Aσ — σ(A~ι)A and hence σ(Ag) = Ag for

every σ G Γ. Therefore Ag is in GL n (Q) and we write Ag — Dh, where

D,h G GL n (Q), D is diagonal and the greatest common divisor of entries of

each row of h is one. Then g — (A~1D)h implies A~ιD G GLn(Oχ), since

the entries of each row of h and g are relatively prime. Now (A~1D)W =

(AW)~1DW G GL n (Q) yields that the diagonal entries of A~ιD are roots of

unity. Thus we have g = (A~lD)h G GLn(K') and hence G C GLn(Kf).

By Lemma 1.1, G is of A-type. Π

Under the postposition of the proof of Lemma 1.6, we have completed

the proof of the theorem.

Remark. To generalize the theorem to an arbitrary size of matrices,

it is enough to generalize Lemmas 1.5, 1.6.
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§2. The proof of Lemma 1.6 for odd prime numbers

In this section, p is an odd prime number and K is a Galois extension

of Q with Galois group Γ such that p is the only prime number ramified

in /ί, and G is a Γ-stable finite subgroup of GL2{Oκ). We remark that if

a root of unity e is congruent to 1 modulo a prime ideal of K lying above

p, the order of e is a power of p, and that if [g,h] = ghg~ιh~ι is scalar for

g,he GL2(K), then [g, h] = ± 1 2 .

LEMMA 2.1. Let p be a prime ideal of K lying above p. Then G(p)

is commutative.

Proof. Suppose that G(p) is not commutative. By regarding it as a

representation of degree 2, it is an irreducible representation and so the cen-

ter Z of G(p) consists of scalar matrices by Schur's lemma. The assumption

implies G(p) φ Z and the order of G(p) is a power of the prime number

p by Lemma 1.3. Hence G(p)/Z is a non-trivial p-group, and we can take

h G G(p) \ Z so that h gives a non-trivial center of G(p)/Z. Then we have,

for g G G(p)

[g,h}ez,

and hence there exists s G Kx such that [g,h] = 5I2 with s = ± 1 . On

the other hand, SI2 = [g,h] G G(p) yields that the order of s is a power

of p. Hence we have s = 1. This means that ft, is a center of G(p), which

contradicts h (£ Z. Q

LEMMA 2.2. Let pi7 p2 be prime ideals in K lying above p. Then the

elements in G(pi) and G(p2) are commutative.

Proof, (i) The case that G(pι) Π G(p2) contains a non-scalar matrix g.

By the previous lemma, G(pι) is commutative and hence there ex-

ists a complex regular matrix T such that Γ~ 1 G(pi)Γ consists of diagonal

matrices and put g = T \ I T~λ with ζι φ ("2- Since G(p2) is com-
V 0 C 2 )

mutative, we have gh = hg for h G G(p2). Putting h := T I , I Γ " 1 ,
\ c d J

we have

( Ciα Cib\ = ( ζia ζ2b \
I C2c ζ2d j I ζlC ζ2d i '
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and hence b = c = 0 by virtue of ζι φ ζ2. Hence T~1G(p2)T also consists of

diagonal matrices, and so the elements of G(pi) and G(p2) are commutative.

(ii) The case that G(pi) Π G(p2) consists of scalar matrices.

Take g i e G(pi) (i = 1,2); then [gug2} = gig29Ϊ1g2

1 € G(pi) ΓΊ G(p2)

is clear and there exists s G Kx such that [̂ 1,̂ 2] — s^2 with s = dbl. By

[91592] £ G(pi), the order of [01,92] and hence of s is a power of p. Hence

we have 5 = 1. Thus #i, #2 are commutative. Q

Thus Lemma 1.6 has been proved for odd primes.

§3. The proof of L e m m a 1.6 for p = 2

Through this section, K is a Galois extension of Q with Galois group

Γ such that 2 is the only prime number ramified in K, and G is a Γ-stable

finite subgroup of GL2(Qκ). F2 denotes Z/2Z. We remark that the group

of automorphisms of a vector space over F2 of dimension 2 is isomorphic to

the symmetric group Θ3 of degree 3.

LEMMA 3.1. Let h := T I I T " 1 be a regular matrix, where
\ 0 ζ2 J

ζi Φ CΊ, C1C2 Φ 0 and a matrix T is regular. Let g := T [ . I T~λ be a
\c d )

regular complex matrix.

If [ffϊ h] = 1 2 , ί/ien we have g = T ί ^ J Γ " 1 .

we have ζ\ = —ζ2 and g = T

Proof. Since

[g? /i] = 1 2 implies 6 = c = 0, and [g, /ι] = —12 implies a = oί = 0, and so

6 7̂  0 and then we have ζ\ = —ζ2 D

LEMMA 3.2. Let p 6e a prime ideal of K lying above 2. Suppose that

G(p) is not commutative. Then the center Z of G is equal to the center of

G(p) and it consists of the scalar matrices in G, and one of the following

properties holds:
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1. G(p)/Z = F2® F2 and for g G G(p) \ Z,tτ(g) = 0 holds. Moreover,

for hi, h2e G(p) \ Z we have [hι,h2] = -12 if hλZ φ h2Z.

2. The order of the center of G{p)/Z is two and a commutative subgroup

Gf of G(p) of index 2 is unique.

Proof. By regarding G(p) itself as a representation of degree 2, it

is irreducible, since G(p) is not commutative. Hence its center Z(G(p))

consists of scalar matrices. Similarly, the center Z of G consists of scalar

matrices. The inclusion Z(G(p)) C Z is clear. Suppose g = el2 G Z. Since

g is of finite order, e is a root of unity and 2 is the only prime number which

ramifies in ί ί , the order of e is a power of 2. Let φ be the unique prime

ideal of the maximal abelian subfield of K lying below p; then e = 1 mod φ ,

which means g = e l 2 G G(φ) C G(p). Thus we have shown Z(G(p)) = Z.

By virtue of Lemma 1.3, the orders of the elements of G(p) are powers

of 2 and hence G(p)/Z is a 2-group. Therefore we can choose an element

h G G(p) \ Z so that hZ is a non-trivial center of G(p)/Z. This yields

[<7, h] G Z for g G G(p), and hence

[flf, /ι] = dzl2 for every 3 G G(p).

Setting

G0:={geG(p)\[g,h] = l2},

we have [G(p) : Go] < 2. We take a regular matrix Γ so that

Lemma 3.1 yields that T 1G$T consists of diagonal matrices and hence Go

is commutative. Since G(p) is not commutative, we have G(p) φ GQ and

so

(1) [G(p) : Go] = 2

and hence there exists an element g G G(p) so that [g,h] = —12. Then

Lemma 3.1 yields that

/14 = —h\.

We divide the proof into two cases.
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(i) The case that there exists an element c £ G(p) which gives a center

of G(p)/Z, but is not in G o .

The property [c, h] = — 1 2 implies c = Γ T " 1 by virtue
V C3 ° /

of Lemma 3.1. Then {Z,hZ,cZ,hcZ} is a subgroup of G(p)/Z and is

isomorphic to F 2 © F 2 . It is easy to see [c,/ι] =• [c,hc] = [/ι,/ιc] = — 1 2 .

Once [G(p) : Z] = 4 has been proved, this case (i) gives the first case in

the lemma. By virtue of (1), we have only to prove [Go : Z] = 2, and as a

matter of fact we show

Go = Z U hZ.

GQ D Z U hZ is clear. Let us take / G Go By virtue of Lemma 3.1, we

have / = Γ I I Γ " 1 . Since c gives a center of G(p)/Z, there is a

complex number s so that [c, /] = s l 2 with s = ± 1 . By noting that

\cf]=τ(V ) ί V7 W
_τ( Ulh 0 \ j

\ υ /1//4 /

if the condition s = 1 holds, then f\ = j \ and hence f E Z. The condition

s = — 1 implies /4 = —/1 and so / £ /zZ. Thus we have shown Go = ZUhZ

and complete the case (i).

(ii) The case that every element c £ G(p) which gives a center of G(p)/Z

is contained in GQ.

First, we show that the center of G(p)/Z is {Z,hZ}. Let c £ G(p)

give a center of G(p)/Z. We must show c £ Z U /ιZ. The assumption

implies [c, /ι] = 1 2 and hence c = T I j T " 1 by Lemma 3.1. Take

V ϋ c4 J
an element ^ £ G(p) \ Go; then \g, h] = - 1 2 yields g = T \ 9* ) T'1

\ 93 0 /
Since c gives a center of G(p)/Z, i.e., [g,c] £ Z, we have [̂ ,c] = s l 2 with

5 = ± 1 . On the other hand, from [g,c] = T ( C 4 y / C l ° j Γ " 1 follows
y U C1/C4 y

that C4 = ±ci, which means c £ Z or /ιZ. Thus we have shown that {Z, /ιZ}
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contains the center of G(p)/Z. The converse inclusion is clear, and hence
the center of G(p)/Z is {Z, hZ}.

We recall that Go is a commutative subgroup of G(p) with [G(p) :
Go] = 2. Let S be a commutative subgroup of G(p) with [G(p) : S] = 2, and
suppose S φ Go- We show [G(p) : Z] < 4. The canonical homomorphism
</> : Go/Gi i—> G(p)/S is clearly injective, where we put G\ := GoΓlS. By the
assumption, GQ/G± φ {1} and [G(p) : 5] = 2 hold and so φ is isomorphism.
Thus we have [Go : Gx] = 2 and hence [G(p) : Gx] = 4. We take g G
G(p)\G0, gf eG0\Gι; then G(p) = GΐUgfG1UgG1UggfG1 is trivial. On
the other hand, S φ Go and [S : Gi] = 2 imply S = GiUgGλ or GιUgg'Gχ.
Neither g nor ggf is contained in GQ. Putting / = g or #</, we have 5 =

Gi U /Gi and / G G(p) \ Go. Lemma 3.1 yields / = T I j? ^2 j T~ι

by [/, ft] = —12. Take an element 6 E Gχ Since 6 is commutative with

ft by virtue of 6 G Go, we can write b = T I ^ 7 I Γ" 1. On the other
\ 0 64 y

hand, S is commutative and so 6, / G 5 implies [6,/] = I2, which implies
61 = 64, i.e., 6 G Z. Thus Gx C Z follows and then [G(p) : Gi] = 4 implies
[G(p) : Z] < 4. Thus G(p)/Z is commutative. As we have shown that the
center of G{p)/Z is equal to {Z, ftZ}, we have [G(p) : Z] = 2. It yields that
G(p) is commutative, which contradicts our assumption. Thus this case
gives the second case in the lemma. Π

LEMMA 3.3. Let p be a prime ideal of K lying above 2. Suppose that
G(p) is not commutative. Then the case (2) in Lemma 3.2 does not occur.

Proof. Let Z be the center of G(p), and suppose that the case (2)
occurs; then the order of the center of G(p)/Z is two and a commutative
subgroup Go of G(p) of index 2 is uniquely determined and is equal to
{g G G(p) I [g, ft] = I2} as in the proof of Lemma 3.2, where ft G G(p)
is an element such that hZ is the unique non-trivial center of G(p)/Z.
Since G(p) is a normal subgroup of G, the mapping x 1—> gxg~ι induces
an automorphism of G(p)/Z for every g G G. Hence g(hZ)g~1 is the non-
trivial center of G(p)/Z and so we have

ghg"1 G hZ for every g G G,

which implies [g, ft] G Z, and by virtue of Lemma 3.2, Z consists of scalar
matrices, and hence we have

(1) [g, ft] = ±12 for every g G G.



142 Y. KITAOKA

For σ G Γ, we put

Gσ := {g \ g € σ(G(p)),[g,h] = 12},

which is commutative by Lemma 3.1. We show

Gσ = σ(G0)

The inequality [σ(G(p)) : Gσ] < 2 follows from (1). If [σ(G(p)) : Gσ] = 1,

then σ(G(p)) is commutative, which contradicts the non-commutativity of

G(p). Hence we have [σ(G(p)) : Gσ] = 2, and σ~1(Gσ) is a commutative

subgroup of G(p) of index 2, and hence σ~ι(Gσ) = GQ. Thus we have

shown the claim.

We can take a matrix T so that T~ιG$T consists of diagonal matrices and

put h := T ( ~ . ) Γ " 1 . Since σ(/ι) (G σ(G0) = Gσ) is commutative

with h for σ G Γ, there exist 771, 772 such that σ(h) = Γ I I Γ " 1 .

Therefore the set {σ(h) \ σ G Γ} generates a Γ-stable abelian finite subgroup

G' of GL2(OK). Hence Lemma 1.5 yields that G" C GL2(K;), where if' is

the maximal abelian subfield of K. Since there exists a matrix S G GZ/2(Z)

such that S~ιG'S consists of diagonal matrices by Lemma 1.4, we may

assume that (h G) G' consists of diagonal matrices without loss of generality,

considering S~1GS instead of G. So, put h := I I, and the non-

commutativity of G(p) implies the existence of an element g G G(p) so that

[g,h] = —12, noting (1) and Lemma 3.1. By the same lemma, we have

g = \ I, which contradicts g G G(p). Thus we have completed the
\ ^3 0 J

proof. Π

LEMMA 3.4. Let p be a prime ideal of K lying above 2. Suppose that

G(p) is not commutative. Denote the center of G by Z. If the mapping

x ι-> gxg~ι for g G G induces the trivial automorphism of G(p)/Z, then we

have g G G(p).

Proof By virtue of Lemmas 3.2, 3.3, we can take hι,h2 G G(p) so

that G(p)/Z = {Z,hιZ,h2Z,h3Z} with h3 := hλh2. Suppose that the
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inner automorphism by g G G induces the trivial automorphism of G(p)/Z;
then

ghig~λh~ι G Z for i = 1,2, 3.

Define βi = ± 1 by [g,hi] — €il2. Moreover h% = h\h2 implies 63 =
€1 e2. If €\ = e2 — €3 = 1, and g is not scalar, then Lemma 3.1 im-
plies that T~ιhiT is diagonal, taking a matrix T so that T~ιgT is di-
agonal. Hence G(p) is commutative, which is a contradiction. Thus we
may assume e\ = 1, e2 = €3 = — 1 without loss of generality. We can put

1 , I T^1 by Lemma 3.2; then by [g, hi] = I2 and Lemma
ϋ —hι J

ΓΓ 1 . If g\ — ^4, then # is scalar and so
\ ° 04 /

g e Z C G(p). Suppose #i / #4; then [#, h2] = —l2 and Lemma 3.1 implies
tr(g) = 0 and hence #4 = —gi and gh^1 is scalar and so gh^1 E Z C G(p),
which implies g G G(p), too. Thus we have completed the proof. Q

LEMMA 3.5. Let p be a prime ideal of K lying above 2. Suppose that

G(p) is not commutative. Then G(p) 25 T-stable.

Proof. Let Z be the center of G; then Z C G(p) and G{p)/Z = F 2 0 F 2 .
Define the automorphism 0(gf) of G(p)/Z for ^ G G by φ{g){xZ) = gxg~ιZ.
By the previous lemma, we have ker(^) = G(p). Then G/G(p) is isomorphic
to a subgroup of the symmetric group Θ3 of degree 3. We divide the proof
into three cases.

(i) The case that the order of φ(G) is odd.

In this case, G{p)/Z is the unique 2-Sylow subgroup of G/Z. Since for
σ G Γ, σ(G(p))/Z is also a 2-Sylow subgroup of G/Z, we have σ(G(p)) =
G(p) for σ G Γ.

(ii) The case that the order of φ(G) is 2.

We show that this case does not happen. Take an element H G G\G(p);
then the assumption yields G/G(p) = {G(p), HG{p)}. φ(H) is a non-trivial
automorphism of order 2 of G(p)/Z, and so we can take /iχ, h2 G G(p) \ Z
so that

Kz fllZj, ΓL fl\£1 Kz Γί2Δ.

Then the representatives of G/Z are {1, h\, h2^ hιh2,H^ h\H, h2H, h\h2H}.

The equalities [h\h2^hι]Z = [hιh2,h2]Z = [h\h2,H]Z — Z imply that
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hιh2Z is a center of G/Z. [H,hi]Z = hλh2Z for i = 1,2 yield that the
center of G/Z = {Z,hιh2Z}. Let σ G Γ; then σ induces an automorphism
of G/Z, and hence we have

(1) σ{hλh2)Z = hλh2Z.

Hence {Z U h\h2Z} is a Γ-stable finite abelian subgroup of GL2(Oχ). By
Lemma 1.5, (1) yields that h\h2 G GL2(Kf), where K' is the maximal
abelian subfield of K. Since hχh2 G G(p) Π GL2(K'), as in the proof
of Lemma 3.3, we may assume that h\h2 is diagonal and we see that
[h\,hιh2] — —12 follows from Lemma 3.2 and so Lemma 3.1 yields that

hi = I I G G(p), which is a contradiction. Thus this case does not

happen.

(iii) The case of φ(G) = 63.

We can take generators A,B{β G) of G/G(p) so that A2 G G(p),
5 3 G G(p), ASA"1 G 52G(p). Then the 2-Sylow subgroups of G/Z
are {AZ/Z, G(p)/Z}, {BAfi-^/Z, G(p)/Z} = {ΛBZ/Z, G(p)/Z} and
{β 2Aβ" 2Z/Z, G(p)/Z} = {A52Z/Z, G(p)/Z}. Thus G(p)/Z is the inter-
section of all 2-Sylow subgroups of G/Z. Take σ G Γ. Then σ induces an
automorphism of G/Z and so σ(G(p)) = G(p), that is G(p) is Γ-stable. Q

LEMMA 3.6. Let p be a prime ideal of K lying above 2. Then G(p)

is commutative.

Proof. Suppose that G(p) is not commutative; then G(p) is Γ-stable
by the previous lemma. Denote the center of G by Z. Every element σ G Γ
induces an automorphism of G(p)/Z = F2 0 F2, and so, by putting

Γo := {σ I σ(gZ) = gZ for every g G G(p)},

Γ/Γo is isomorpic to a subgroup of Θ3. Denote the subfield of K corre-
sponding to ΓQ by H. We divide the proof into four cases.

(i) The case of Γ = Γo.

We take h\, h2 G G(p) so that the set {I2, hi, h2, hιh2} is a set of the
representatives of G(p)/Z. We may assume that K contains a sufficiently
many roots of unity whose orders are powers of 2, and then we may assume
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for some T G GL2{K) by Lemmas 3.1 and 3.2. The condition Γ = Γo

implies σ(hιh2) = eσhιh2 for some eσ G K. Comparing the determinants,
we have eσ = ±1. Putting

Γi := {σ G Γ | σ(hλh2) = h1h2},

we have [Γ : Γi] < 2. Hence the entries of hιh2 belong to a quadratic
field. Let K' be the maximal abelian subfield of K\ then by Lemma 1.1,
we may assume that the elements of G(p) Π GL2(Kf) are diagonal and
hence hφ2 is diagonal. By Lemmas 3.1, 3.2 and [hι^hιh2] = —12, we have

hi = I I, which contradicts hi G G(p).

(ii) The case of Γ/Γo = Z/2Z.

We take an element σ G Γ \ Γo; then σ induces an automorphism of
G(p)/Z of order 2. Therefore there exists hι,h2 G G(p) so that σ{h\) G
h2Z and σ{h2) G hiZ, and that the set {li, hi, h2, hφ2} is a set of the
representatives of G(p)/Z. Hence we have σ(hιh2) G hιh2Z, and so hφ2Z
is Γ-stable. This is the contradiction as in the previous case.

(iii) The case of Γ/Γo = Z/3Z.

The assumption yields that the field L corresponding to Γo is a cyclic
extension of Q with [L : Q] = 3. But 2 is the only prime which ramifies in
K and hence in L, which implies that [L : Q] is a power of 2. Thus we have
a contradiction and this case does not happen.

(iv) The case of Γ/Γo = 63.

Let L be the subfield of K corresponding to Γo; then 2 is the only
prime which ramifies in L. A quadratic field M in L is Q(\/--ϊ), Q(\/~2)
or Q(Λ/2), and in such a field, the norm of the unique prime ideal lying
above 2 is 2 and the class number is 1. The class field theory tells us that
the degree of an abelian extension of M is a power of 2. This contradicts
[L : M] = 3. Thus this case does not happen either. Π

LEMMA 3.7. Let pi,p2 be distinct prime ideals of K lying above 2.
Suppose that G(pi) Π G(p2) consists of scalar matrices. If there exists gι G
G(pi) 2 = 1,2 such that [gι,g2] φ 12, then we have G(pι) — Z U giZ and
G(p2) = ZUg2Z, where Z is the subgroup consisting of the scalar matrices
in G.
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Proof. Since [31,52] = 91929^9^ G G ( P i ) n G (p2), [ffi,^] is scalar
and hence is equal to ±1.2. Moreover [31,(72] Φ I2 implies that 31, 32 are
not scalar and that [(71,52] — —12 By Lemma 3.1, we can write

and the commutativity of G(pi) yields that T~1G(pι)T consists of diagonal

matrices. For g G G(pi), we have [5,32] € G(pi)nG(p2) a n d hence [5,52] =

± 1 2 . Put g = Γ ( α , 1 Γ" 1 ; then we have

and hence a = aid. If α = d, then 5 = αl2 Otherwise, we have 5 = aζ~1g\.

Thus we have G(pi) C Z U g±Z, and the converse inclusion is clear and

hence G(pi) = ZUg1Z. •

LEMMA 3.8. Lei pi,p2 ê distinct prime ideals of K lying above 2.

Then G(pi) and G(p2) are element-wise commutative.

Proof. Let 2 n be the order of G(pi) and we may assume that K con-
tains a primitive 2 n th root of unity without loss of generality. We divide
the proof into two cases.

(i) The case that G(pχ) Π G(p2) contains a non-scalar matrix.

Take a non-scalar matrix g G G(pi) Π G(p2) and write

Since ζι -φ (& and G(pi), G(p2) are commutative, respectively, Lemma 3.1

yields that both T~ 1 G(pi)T and Γ~ 1 G(p 2 )Γ consist of diagonal matrices.

Thus elements of G(pi) and G(p2) are commutative.

(ii) The case that C(pi) Π G(p2) consists of scalar matrices.

Denote the subgroup consisting of scalar matrices in G by Z. Suppose
that h\ G <3(pi), h2 G G(p2) are not commutative. By [hι,h2] G G(pι) Π
G(p2)j [hιJh2] is scalar and so [h\,h2] — —12. Since G(pi) is commutative,
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there exists T E GL2(K) so that T~ιG(pι)T consists of diagonal matrices.

By Lemma 3.1, we may assume

Λi =T

Since ζl2 is in Z, we may assume ζ = 1 for hi. By the previous lemma, we

have G(pi) = ZU h\Z and G(p2) = Z U h2Z. Now we claim that if p is a

prime ideal of K lying above 2, then G(p) is one of the following:

(1) {Z\JhχZ}, {ZUh2Z}, {ZΌhxh2Z}.

Let p be a prime ideal lying above 2. Since there exists an element σ E Γ

such that G(p) = G(σ(pi)) = σ(G(pi)), we have [G(p) : Z] = 2, and the

trace of every element of G(p) \ Z equals 0.

Suppose that G(p) and G(pi) are element-wise commutative; by virtue

of Lemma 3.1, Γ~1G(p)T consists of diagonal matrices, since G(p) is com-

mutative with hi. Hence [G(p) : Z] = 2 implies G(p) = Z U hZ for some

h = T I I T~ι = ah\. h, hi E G implies al2 E G and hence
v° ~a J

αl 2 E Z. Thus G(p) = G(px) follows.

Suppose that G(p) and G(pi) are not commutative; then we have

G(p) φ G(pi) and let G(p) = ZUhZ] then we have [h,hι] E G(p)ΠG(pi) =

Z, and hence [h,hλ] = - 1 2 , which implies /ι = Γ ί J Γ" 1 . If G(p)

V c ϋ /
and G(p2) are commutative, then G(p) = G(p2) follows as above. So, we

may assume that G(p) and G(p2) are not commutative. Then we have

[h,h2] = —12 similarly as above, and hence 67 = —βc. Thus we obtain
h = -cΊ~

ιT I ° M T~ι = -cΊ~
ιhιh2, and so G(p) = Z U hλh2Z.

V - 7 0 J
Thus we have shown the claim (1).

By virtue of σ(G(p)) = G(σ(p)) for σ E Γ, Γ acts on the set {G(p) | p

is a prime ideal lying above 2}, which consists of the three elements in (1).

Denote by ΓQ the set of elements of Γ which induce the trivial permutation;

then Γ/Γo is isomorphic to a subgroup of Θ3. Since there is no Galois

extension of Q whose Galois group is isomorphic to Z/3Z or ©3 if 2 is

the only ramified prime number, as in the proof of Lemma 3.6, we have

[Γ : ΓQ] < 2. Therefore Γ/ΓQ has a fixed point as an action on the three

elements in (1), and let it be {Z U /11Z}, say. Thus we have σ(hι) E hiZ
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for every σ E Γ. Therefore G(pi) = {Z U h\Z} is a Γ-stable abelian finite

subgroup of GL2(OK) and hence we may assume that hi is diagonal and

then [hi, h^\ = —12 and Lemma 3.1 imply h^—y I. This contradicts
V * ϋ /

/i2 £ G(p2). Thus we have incuced the contradiction, assuming that G(pi)
and G(p2) are not commutative. D

Thus we have completed the proof of Lemma 1.6 in the case of p = 2.
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