A. Adolphson and S. Sperber
Nagoya Math. J.
Vol. 146 (1997), 55-81

ON TWISTED DE RHAM COHOMOLOGY
ALAN ADOLPHSON! anp STEVEN SPERBER

Abstract. Consider the complex of differential forms on an open affine subva-
riety U of AN with differential w — dw + ¢ A w, where d is the usual exterior
derivative and ¢ is a fixed 1-form on U. For certain U and ¢, we compute the
cohomology of this complex.

§1. Introduction

For many purposes, a hypergeometric function (in any number of vari-
ables) may be thought of as an integral

exp g(z)
1.1 dzy N -+ ANdzxy,
( ) fl (m)ﬁl “es fr(a;)/@r 3:1 :L‘N
where 5,...,06- € C, g, f1,..., fr are polynomials in z1,...,zy, and in-

tegration is taken over some cycle. (The variables of the hypergeometric
function occur as coefficients of the polynomials in the integrand.) This
leads one to consider twisted de Rham cohomology: Take the complex of
global differential forms on the complement of the divisor f;--- f, =0 and
“twist” the usual exterior derivative d by f; A fPrexpg, i.e., replace d
by d+ (dg — 377 B;dfj/f;)A. In this article, we compute the cohomology
of this complex for generic g, f1,..., fr, B1,---, Br.

Recent work on this problem has been done by Kita [KI] and Aomoto-
Kita-Orlik-Terao [AKOT], to which we refer for further background and
applications along the above lines. We take a somewhat different approach
here. In [DW1], Dwork introduced a p-adic cohomology theory for varieties
over finite fields, which is also often referred to as “twisted de Rham coho-
mology.” Dwork’s definition is algebraic and makes sense over any field of
characteristic zero. The connection between Dwork’s theory and classical
de Rham cohomology was studied by Katz [K1, K2], who introduced an
algebraic notion of “Laplace transform” to connect the two theories. This
theory of the Laplace transform was developed further by Dwork [DW2
chapters 10 and 11] (see also Batyrev [B section 7]).
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Dwork’s p-adic cohomology theory was developed further in [AS3, AS4],
where the cohomology of a general class of “twisted exponential sums”
was computed, and in [AS5], where the cohomology of smooth complete
intersections over finite fields was computed. The point of this article is
that, via the Laplace transform, the results and methods of [AS3, AS4,
AS5] can be used to compute the twisted de Rham cohomology groups
as defined in [KI, AKOT]. The work of Dwork establishes a connection
between special values of (p-adic) hypergeometric functions and eigenvalues
of Frobenius acting on p-adic cohomology. We hope that our work here
on the relation between Dwork cohomology and classical hypergeometric
functions will ultimately yield new insights into this phenomenon.

We outline the method here. Introduce dummy variables zy41,...,
zN+r and consider the formal integral

.
(1.2) /x?\}ﬂ e m?\})ﬁ exp(g + Z:I:N+jfj> dri A NdTNpr.
j=1

Making the change of variable zn4; — xn4;/f;j and integrating formally
with respect to £ n41, . - ., ZN4r, We see that this is equal (up to I'-factors) to
(1.1). (This is referred to as the “Cayley trick” in [GKZ section 2.5].) This
leads one to consider the complex of global differential forms in x1, ..., N4,
on the complement of the divisor 41 - zn+r = 0 with differential d +
(dh + 3771 BjdTN+j/TN+;)A, where ‘

,
(1.3) h:g—{—Z:cNﬂ-fj.
j=1

This reduces us to the situation where poles occur along coordinate hyper-
planes only.

The integral (1.2) is a formal analogue of a “twisted exponential sum”
> o (IT; xi(z:)) ¥(h(z)), where h is a polynomial over a finite field, x;
(resp. ¥) is a multiplicative (resp. additive) character of that finite field,
and the sum runs over elements of the field. The p-adic cohomology of such
sums was studied in [AS3, AS4]. The main point, which was the basis for
those articles, is that cohomology can be computed from a much smaller
complex (the complex K introduced in section 4), where questions about
cohomology can often be answered by applying results of Kouchnirenko
[KO|.

We state our main result. The most natural setting is the purely toric
case, although we ultimately give results for the “mixed case” (a product
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of toric and affine spaces) as well (Theorem 6.7). The toric case seems
to cover all the classical hypergeometric functions (see [DL], particularly
the appendix). For example, Appel’s hypergeometric function Fj, which
required some extra work from the point of view of [KI], fits nicely into
this situation (see the example at the end of this section). Let TV be
the N-torus over a field F' of characteristic zero and let g, fi,...,fr €
Flzy,...,zN,(z1--2n)" Y. For any f € Flzy,...,zN, (21 2n)7Y, we
define the support of f, supp(f), to be the set of exponents of the monomials
appearing in f, thought of as lattice points in RY. Let A(h) C RM*" be
the convex hull of supp(h) U {(0,...,0)}, where h is defined by (1.3). Let
Y C TV be the divisor f1--- f, = 0 and let Q/(*Y") be the space of global
[-forms with poles along Y. Let

N T
dx; df:
vg,a =d+ (dg + E (7 l‘ — E aN+j—}"—‘fiJ->/\ : Ql(*Y) — QH'l(*Y),
=1 K 7=1 J

where ay,...,an4r € F. This defines a complex (" (xY), Vga)

THEOREM 1.4. Suppose that an+1,...,an+r & Z, h is nondegenerate
relative to A(h), and dim A(h) = N +r. Then

HY(Q (+Y),Vga) =0 (1# N),
dimp HY(Q (xY),Vya) = (N +7)!V(h),

where V(h) denotes the volume of A(h) relative to Lebesque measure on
RN,

Remark. The definition of “h nondegenerate relative to A(h)” will be
recalled in section 4. It ensures that we are at an ordinary point of the corre-
sponding system of hypergeometric differential equations ([A Lemma 3.3}).
For now, we observe that (for specified supp(g), supp(f;), j =1,...,r) this
condition is satisfied for generic g, f1,..., fr (KO Théoréme 6.1]).

EXAMPLE. (see [KI section 5.4]) Appel’s hypergeometric function Fj
has an integral representation of the form

A A
2L 22yea gy A day,

/x'flxg‘z(l -z —x9)*(1— e,

so we take g =0, fi =1 -z — 2, fo =1 — A1 /z1 — Aa/z2. The polytope
A(h) C R* is the convex hull of the origin and supp(zsfi + z4f2). One
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computes 4!V (k) = 4. For generic A1, A2, z3f1 + z4f2 is nondegenerate,
hence for ag, as ¢ Z we have in that case

H'( (+Y), Va) (1#2),

dimp H3(Q' (xY),V,) = 4.
The latter equality reflects the fact that the system of partial differential
equations satisfied by Fy has four linearly independent solutions at an or-
dinary point.

Another example is given in section 7, where we calculate the twisted de
Rham cohomology on AY for “generic” polynomials g, fi,..., f, of degrees
dg, di,...,d,, respectively. The special case d; = 1 for ¢ = 1,...,r was
worked out in [AKOT].

§2. Twisted de Rham complexes

Let F be a field of characteristic 0, let T™ be the m-torus over F,
and let A" be affine n-space over F'. Put N = m +n. Let fi,..., fr,
g € Flzy,...,zN, (21 2m) "], the coordinate ring of T™ x A", and let
Y C T™ x A™ be the divisor fi--- f, = 0. (We allow the possibilities m = 0
and n = 0.) Let Q!(xY) be the space of global I-forms with poles along Y.
Thus

QU*Y) = Flzy,...,xn, (@1 Zmfi - fr) 7Y

and Q!(xY) is the free Q°(*Y)-module with basis

dx; dx;
A "/\"-l‘k“/\d%kﬂ/\'“/\dl'i“

2.1
(2.1) Py .

where1 <4y < - < <m,and m+1 < ipp1 < -+ <7 <m+n. Choose
a=(a,...,aN4r) € FNAr subject to the requirement that a1 =+ =
Qman = 0. Let wy o € Q1(¥Y) be given by

Noodr < df;j
wg,a:dg—{-zai - _ZQN+jT’

where d : Q! (xY) — Q1 (xY) is the usual exterior derivative, and put
Voo = d+wgah : QH(Y) — QFL(xY).

Straightforward calculations show that (£2'(xY’), Vg o) is a complex.
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We shall compute the cohomology of this complex for sufficiently gen-
eral fi,..., fr, g and nonintegral any1,...,an4,. The first step is to ap-
ply the Laplace transform theory of Dwork and Katz. Introduce dummy
variables Zy41,...,ZN4r and put R = Flz1,...,Tn4p, (T1° Tim) "], the
coordinate ring of T x A™*". Put

(2.2) h(l‘l,---,@wr) =g(z1,...,2n) + ey fi(zr, ... 2N)
+- -+ N fr(z1,...,2N) € R.

We need some notation to distinguish the roles played by the different types
of variables that are involved. We index the set of all variables by S
{1,..., N +r}, the toric variables by Si, = {1,...,m}, the affine variables
by Sat = {m + 1,...,N + r}, the space variables by S, = {1,...,N},
and the dummy variables by Sq, = {N + 1,...,N + r}. For any subset
I C S, we use subscripts to denote intersection with one of these sets, e.g.,
Iio = I N Sio. We also put I2 = I N Sy N Sep. For any subset I C Sy, let
R! = ([T;e; ®i)R, the set of elements of R divisible by z; for all i € I.

We introduce the ring R'= R[([Tj-; n+;) '] and put R'= ([ier i) R’
for any subset I C SspNS,e. Let Z C T™x A" be the divisor ]—[921 TNy =
0 and let Q!(xZ) be the space of global I-forms with poles along Z. Thus
Q(xZ) = R and Q!(xZ) is the free R'-module with basis

dz; dz; ) .
(2.3) H il?z‘J> ‘11/\.../\_.11, 1<ig1 <<y <N+,
i;€5.NSep 7 Tl Z,
ie.,
af dx dx
Ql(*Z)z @ RTse 270 A oA 20
1< << SN+1 Liy s,

where I = {i1,...,%}. We define the differential to be

N+r )
6}%0{ =d+ (dh+ Z aid%) AW
=1

Z;

Straightforward calculations show that (Q'(%Z), 6, ) is a complex.
We give an explicit formula for ép 4. For ¢ = 1,...,N 4 r, define
differential operators D; j, o by

oh
Dipo = %8—% +a; + 2 oz,
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Note that fort=1,..., N,

while for j =1,...,r,

oh
INti——— =TN+;i[5.
+J8$N+j +Jf9

For & (dz, /ziy) A -+ A (g, /23,) € QY(*Z) we have

N+r
i 7, i dl dz
(2.4) 6h,a(gd"’”1/\-.- dxl)—( Dipal(é dx) Y pooop B
. Z ‘

i1 T4 Ty T,

We define a “direct image complex” Q'(*Z ) under the projection of
T™ x A™'" onto the first N factors as follows. For [ =0,..., N, put

5 ZT dz; dz;
Ql(*Z) = @ (R,Iaf/ DN+]7haa(RlIaf)> x : /\ e /\ :L‘ : )
1<i < <H <N j=1 Liy Tiy

where I = {i1,...,4;}. Define &y : Q(xZ) — QF1(xZ) by additivity and
the formula

- ; dz; dx; i dz;
5h,a(£d-;z—l/\'” xl) (ZDzha x) dml/\"‘/\&,

11 Tg xil xil

a well-defined map since all the D; 5, ,’s commute with one another.

We shall show that the complex (Q(¥Z),84) is isomorphic to the
complex (Q'(xY),V,,) when ayyi,...,an4, are not integers. Let L :
R’ — Q°(+Y) be defined by F-linearity and the condition

uN+7‘>

UN 41
L(z" TNyl " TN

r

= (~1) 2= e (H(ouw - 1)uN+j_1)xu FUUNA L prun

Jj=1
where u = (u1,...,un), (u1,...,un4r) € ZV" Upmy1,...,uy > 0, and

(antj+ Dlans; +2) - (anys Hung; — 1) i uny; > 1,
= 1 if UN+j = 1,
(antj(an+; = 1) (ansj + un+)) ™ if uny; <1,

a well-defined element of F' since an; ¢ Z.
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LEMMA 2.5. Suppose any1,..., N1, are not integers. Then the map
L induces an isomorphism L : R'/ > =1 Dyijha(R) =~ QOY).

Proof (Dwork). For i =0,1,...,r, set

R = Flay,..., N, (21 N1 TN fie1 - fr) -

In particular, R™) = R’ and R©® = Q°(xY). Note that Dpyyjhe acts on
R® for j =1,...,i. We show that for ¢ = 1,..., there are isomorphisms
of F-vector spaces

R /Dy yipo(RD) = RE-D.
It will be clear that under this isomorphism the action of Dy.y;4a on

R(i)/DNH,h’a(R(i)) is identified with its action on R~V for j =1,...,5—1.
We then get the desired isomorphism by composition.

Note that R® is a free module over the ring Flz1,...,xNti-1, (T1- -
TmIN+1°* TN4io1fie1 - fr) 7t with basis {z%; | v € Z} and RG~1) ig
a module over this ring spanned by {f;“}52,. Fori =1,...,r, we define

L, : R® — R(-1) t5 be the homomorphism of modules over this ring
defined by

Li(zyy) = (D) "(angi + Dour /i

for u € Z. Each L; is F-linear and surjective (since ayy; ¢ Z) and it is
easily checked that L = Ly o--- o L,. We have

uULUN+1 UN 42
D T INy1 TN
N+i,h,o fUN+i+1 T fUN+r
i+1 T
U, UN+1 UN 44 u, UN+1 UN4i—1, UN4it+1
= 1 a .)93 i1 Ty SNy o eN G TN
= \UN+i N+i fuN+z+1 . fUN+r fuN+z+1 . {UN+r ’
i+1 T 1+1 T

and an easy calculation shows that DNH’h,Q(R(i)) C ker L;.
We show that ker L; C DNH’h,a(R(i)). Let £ € ker L; and write

:Eux'l;[N-Q-l . $UNN+i

_ +1 +i

E_ZCUfuN-"t*’l..‘fuN‘:; (C’U,EF)
u i+1 T

Mo
- k
- Z IN+i9k:
k=M,
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where M;, My € Z and qr € Flz1, ..., TN+i-1, (T1- TmTN41 -
TNyio1 fix1 - fr)7}]. We argue by induction on My — M;. Write £ =
:EAN/[iiqu + &1, where & = Zﬁg\}i x’fv+1qk. ‘We have

0= L‘(E)
(2.6) = Z (—1)*(ani + Dp—1-p

k

k=M1 f
Solving this equation for gps, (which is possible since ayy; is not an in-
teger) we get qu, = fi2, where {2 € Flx1,...,ZN4i-1,(T1 - TmTNy1 - -

Tnyic1fivr - fr)7Y. Thus € =& +a:AN41ifi§2, with &, independent of z ;.
But

DN+z',h,a(fC%iZl§2) = (on4i + My — 1)56%12152 + $N+zfz§2,

SO

£ =& — (anyi+ My — 1)z 6 + Dy yinalzy?; '6a)-

Applying L; gives

Li(& — (an4i+ My — Dzy27'6) =0

We have
My~1
&1 — (anti+ My —1 xl\l\/fl—zi-zl Z =R i
k=M,
with gy € Flz1,...,2N4i-1, (@1 Tm@N41 - TN4i-1fig1 - fr) 7] By in-

duction we are reduced to the case M1 = My = M, ie., £ = x%f“qM. But
from (2.6), we see that this implies gpr = 0.

We regard L as an isomorphism between 0(xZ) and Q°(xY). We
now explain how to use L to construct isomorphisms (also denoted L) be-
tween Q' (xZ) and Q(xY) for [ =1,..., N as well. Since multiplications by
Z1,...,xy commute with Dyy1pas- .-, DNiyrha, We have isomorphisms

T T
RI/ Z DN-[—j,h,a(R/) ~ R/Iaf/ Z DN—l—j,h,a(RIIaf)
j=1 j=1

given by multiplication by [[,c; , #i, where I = {i1,...,4} € Ssp. Thus
Ql(*Z) can be identified with
dx;, dx;,

(2.7) D (R’/ ZT: DN+j,h,a(R')> A

1<ii<o<yg <N j=1 Ziy Zir

Az, ANz,
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where 1 < 43 < -+ < i <m, m+1 < 4y < --» <4 < N. For
§€ R/ DNyjna(R), define

— /[ dx; dz;

L&A A2 Aday, . A+~ Nda;

k+1 l
Tjq Tiy,

= d.’L‘z 1

— L) T p L p B gy

iy,

. ’Llc+1 SVAN dl‘il.
CElI

By Lemma 2.5 and the fact that Ql(*NY) is a free 20(xY)-module with basis
given by (2.1), it follows that L : Q'(xZ) — QY(+Y) is an isomorphism

of F-vector spaces for [ = 0, 1,..., N (provided ayi1,...,ani, are not
integers).
THEOREM 2.8. Suppose ani1,...,aN+r are not integers. Then the

map L : Q' (xZ) — Q (xY) is an isomorphism of complezes.

Proof. By what we have done so far, it suffices to show that L is a
map of complexes, i.e., that the diagram

(x2) 25 Qi (x2)
L] L
(xY) 223 Qii(4y)
commutes. Let £ = z%z\\{' -+ 2" € R’ and let [¢] denote its image in

R /Y1 DNyjha(R). By (2.7), elements of Q!(xZ) may be represented
as linear combinations of expressions of the form

d-Tz‘l

d:cZ
A AN —2 ANdz < Adxy,.
[5] T4 xzk Zk+1 Tqy
We need to check that
-« d dx;
Loé;wl([f] T nen P Adzi, A /\da:il)
(2.9) i ik
_ dx;
_VgaoL([g] T A ENdzi,,, A /\daczl>
Ty Tiy,
Let s € Ssp. We compute the coefficient of
dz; dx;
(2.10) dzs A m_“ A A w"’“ Ndzg N A dag,
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on both sides of (2.9). First of all, the exterior product (2.10) vanishes if
s€I={iy,...,4}, so we may assume s ¢ I. By definition, the coefficient

dzs dx; i in é da: e
of T lezl/\“./\ xk/\dxik+1/\.../\da;il ln(sh,a<[€] a -

N NN
Ts Ty Tiy, 71 ik

A

. . i U UN+L | UN+r
dzg N+ A d:cll> is [Ds otz -2y )], and

U UN+1 uN+T
D po(z TN +1 zy)

dg u u
- (’U.S+Oés+il's IEua?NIY’_-Iil"'SCNI\fQ__:nT

Oz

N
of;

E: ) J U YN+ UNr

+ xNﬂst:r TUTNL TNy -
Jj=1 s

Thus the coefficient of (2.10) on the left-hand side of (2.9) is

(2.11)

(us + s + xsag/axS)(”l)ZFl e (H(QNH + 1)uN+j—1)xu
=1

xsf;"N+1 . f:l'N+7‘

(—1)20= 54 (T (@wss + Duwyyo1) 2" of./o
=1 y xs
- T FINE > (ang + UN+j)—]fj——-
T ]=1

1

Note that if s € Sy, then as = 0 so (us + as)z® is divisible by z;. Now
consider the right-hand side of (2.9). We have

dz; dx;
LA A Zk/\da:i,m/\~-~/\dg:7;l>
a:,-l xT;

23

(1

(2.12) B (—1)20=1 "N+ (IT=1(an4j + Duyy,—1)z"
- UN +1 UN 47
fl Ce fr

dz; dz;
i1 ik

A A

ANdx;, A Ndx;,.
T, xik Tk+1 Qi

Applying V , to the right-hand side of (2.12) and picking out the coefficient
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of (2.10) we get

0 09 a5 ‘ij/axs)
(8.’173 * Oz, * Ts ;CMN%—J fj

| ((—1)E?=1 N ([T (o + D,

f;iN+1 . f:fN-Q-r

A short calculation shows that this is equal to (2.11).
§3. Relation between (' (xZ) and Q' (xZ)

Our methods will compute the cohomology of Q' (¥Z) (Theorem 5.1).
In view of Theorem 2.8, we must thus establish a connection between the
cohomology of Q' (+Z) and the cohomology of @ (xZ). The hypothesis of
the following theorem might be awkward to check directly, but we shall
show in section 5 that it is a consequence of the hypothesis that allows us
to compute the cohomology of Q' (xZ).

For I C Ssp N S,f, define a complex (A7, 6) by

1 dx; dz;
Al — @ Rl J1 A A J ,
N1 <<jy<N4+r T Li

da; dx; kg d da; dx;
5(5&A...Aﬂ) _ ( 3 thﬂ(g)ﬂ) P NN
Tj Zyj k=N+1 Tk Ljy Lj,
Note that for j € Sar N Sgp, multiplication by z; commutes with Dy p, o for
k=N +1,...,N +r, hence multiplication by [];c; z; is an isomorphism
of complexes from (A, ) onto (A},6). In particular, all these complexes
have isomorphic cohomology.

PROPOSITION 3.1.  Suppose that Hl(Ab) = 0 forl # r. Then
HYQ (x2)) = HH" (0 (% 2)) for all L.

Remark. Up to reindexing and some sign changes, the complex (A}, §)
is the Koszul complex on R’ T defined by {Dn+k,hatie;- Thus the hypoth-
esis of the proposition is equivalent to the requirement that the Koszul
complex (Aé, 6) be acyclic in positive dimension, i.e., H; = 0 for all [ > 0.

Proof. Consider the double complex Xp, ¢ for p,q > 0 defined by
I,
“ra= @ TR
1<i1 < <ip<N N+1<j1 <<jg<N+r
dz;, dz;, dz; A

Aeee A —22 A
Xy T;
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where I = {i1,...,ip}, with maps d; : Kp,q — Kp+1,q, do : Kp,q —
Kp,q+1 defined by

d1<§dxi1 /\.../\d_xi}i/\%/\.../\%)

:L‘il CL‘ip .’Ejl Cqu
N
dxy, dx; dx; dzx; dz;
=(ZDk,h,a(f)—)/\ = A EA— N,
k=1 Tk Ty :L'ip .Ih qu
dz; dz; dx dx
e )
ﬂ’)il :cip Cle iltjq
N+r
dz dz dx dx dxr
= ((=1P Y Dipale) == A Ui g
m x T x; T
k=N+1 i ip J1 Jq

The total complex associated to this double complex is easily seen to be
Q' (*Z). Let X be the complex H"(X-, - dp), i.e., XP = Kp r/dy(Kp,r — 1)
with differential induced by d; : Kp,7 — Kp+1,7r. It is easily seen that
Q(*Z) = X'. Note that for a fixed p, the complex (¥p, -, dy) satisfies

¥pda) = D (A, (=1)%),

1<iy < <ip<N

where I = {i1,...,ip}. Our hypothesis implies that for all I C Su¢ N Sqp,
HZ(A‘I) =0 for I # r, hence Hi(Kp,. dy) = 0 for all p and all ¢ # r. The
conclusion of the theorem is then a standard fact about double complexes
[M Appendix B].

§4. Cohomology of a related complex

We consider a slightly more general version of the previous situation,
but work in the purely toric case. This has the advantage that all the
complexes we encounter are Koszul complexes (up to reindexing and sign
changes), hence are somewhat easier to analyze. Let f = 3 .c; a;zl €
Flz1,...,3p, (z1 - xp) Y], where J C ZP is finite, j = (j1,...,Jp), @’ =
x{l‘wmgf’, and a; € F*. Let A(f) € RP be the convex hull of J U
{(0,...,0)}. Recall [KO] that f is nondegenerate relative to A(f) if for
every face o of A(f) not containing the origin, the Laurent polynomi-
als 0f,/0z1,...,0f,/0z, have no common zero in (F*)P, where f, =
> jeond a;jz’ and F is an algebraic closure of F.

Let C(f) C RP be the real cone spanned by the elements of J, let
M(f) = ZP N C(f), and put R = F[z* | u € M(f)]. Let L(f) C R” be the
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real subspace spanned by the elements of J and let M'(f) = ZPNL(f). Put
d(f) = dimg L(f). Let V(f) be the volume of A(f) relative to Lebesgue
measure on L(f) normalized so that a fundamental domain for the lattice
M'(f) has volume 1. Let o = (o,...,0p) € FP and define differential
operators D; ¢, on R for i = 1,...,p by

0
Difa = ﬂfza—% +a; + 3918—;:
Define a complex (K", 8 fa) by

R= @ [N

1<iy < <0 <p Liy Ty
dx; dx; b dx; dx; dz;

$ (gi/\.../\_”>:( D l)/\ LA

fie Tiy L4y ; 1,f,0t(€) Zi i1 L4,

Remark. Suppose we are in the situation of section 2 with n = 0
and take p = N 4+, f = h. The inclusion R C R’ identifies the complex
(K',854) with a subcomplex of (Q'(+Z),8p,q). Our calculation of HY(K")
here will lead to a calculation of H (2 (xZ)) in section 5.

The subspace L(f) € RP can be defined by linear equations with ra-
tional coeflicients, i.e., there exists L C QP such that

L(f)=RQLCREQ =R".
Q Q

Our basic result is the following.

THEOREM 4.1. Suppose f is nondegenerate relative to A(f). If o ¢
FQ®qL, then H(K') = 0 for alll. If o € FQq L, then H'(K') =0 for
L <d(f) orl>p and dimp H(K") = (-3 d(F)IV(S) for d(f) <1< p.
In particular, if d(f) = p, then HY(K) = 0 if | # p and dimp H?(K') =

ptV(f).

Proof. The case a ¢ F &®q L is essentially trivial. Choose a linear
form p = 3""_ bju; on QP such that p vanishes on L but p(a) # 0. Put

p
p(Dfa) =D biDj a,
=1
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a differential operator on R. It commutes with the differential 6 f,a of the
complex K. Since K' is (up to reindexing and some sign changes) the
Koszul complex on R defined by {D;, fati_y, it follows that p(Dy ) is the
zero operator on H {(K") for all I. On the other hand, since all monomials
z* € R satisfy u € L, a calculation shows that p(Dfqo) acts on R by
multiplication by p(a). Since p(a) # 0, p(Dy,4) is invertible on R and
hence on H'(K") for all . This implies H(K") = 0 for all [.

From now on we assume o € F'@q L. The ring R has an increasing
filtration F. defined as follows. Define the weight w(u) of u € M(f) to be
the least nonnegative real (hence rational) number w such that u € wA(f),
the dilation of A(f) by the factor w. It is easily seen that there exists a
positive integer e such that w(u) € e 'Zxq. Define F}, /EIA{ to be the F-span
of those monomials z* with w(u) < k/e. Note that z;0f/dx; € F1R for
i=1,...,p. Welet f; denote the image of z;0f /8z; in gr; (R), where gr.(R)
is the associated graded ring.

This filtration induces a filtration on the complex K’ by defining F}, /eK t
to be the span of the l-forms z* (dzi, /zi,) A -+ A (dzg, /x;,) with w(u) <
(k/e) — 1. The differential 6, preserves this filtration. We denote the
associated graded complex by (K, 84). Explicitly,

K= @ e@®in.n%

1<i1 <--<iy<p Tiy Ziy

(622 1 850) = (§ ) 2 p

Ty L4y

The subspace L can be parametrized by d(f) coordinates. To fix ideas,

suppose these coordinates are ui,...,u4s). Then L can be defined by
equations

d(f)
(4.2) uU; = Z biju; (t=d(f)+1,...,p, bi; € Q).

=1

Since the exponent of every monomial in f lies in L, it follows that

Ty

af :‘% o

%,
(9.’]31' J Jaxj

=d(f)+1,...,p),

=1
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in particular, we have

A
flzzbijfj (Z:d(f)+1v>p)
=1

Let (K;,61) be the complex defined using only fi,... ,fd(f) ie

- - dx; dz;
Ki: @ gr(R) xl/\.../\i’
1<iy <<y <d(f) Tiy Ty
d(f) . )
61(56@21 Ao d ) (Zfz dmz> dx.” /\.../\d_x"l_.
Ziy Ly L T4y

By [KO Théoréme 2.8] (see also [AS3 Theorem 2.14]), the hypothesis that
f is nondegenerate implies that

(4.3) H(E) =0  (I#£d(f))

and dimp H¥(K7) = d(f)!V (f).
Let (K;,61) be the corresponding complex defined by D; ;s for i =
L d(f), ie.,

S N dz;
K{ - @ R _J Ao A .J’
I<h<<ip<d(f) T Ti

a(f)
; Z d ; ;
61( dé“/\.../\d:p ) ( Dis xz) da:“/\.”/\d:ztzl.

iy Ly Liy Ty

This is a filtered complex (using the previously defined filtration) whose
associated graded complex is K;. Thus there is an E; spectral sequence
whose E; term is the cohomology of K; and whose E, term is the associated
graded of the cohomology of K;. By (4.3) this spectral sequence collapses
at the F term, hence

(4.4) HY(K;)=0 (1 # d(f)),
(4.5) dimp HN(KY) = d(f)1V(f).

Since a € F ®Q L, as operators on R we have

d(f)
(4.6) D ta Z b D; .0 (G=d(f)+1,...,p).
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By standard properties of complexes, (4.4) implies
(47) HY(R") = B0 (K,

where K. 5 is the complex

KL= @ Hd(f)(K)dmu /\--'/\dx."’,

d(f)+1<i1< <y <p Tiy Zy,

62(5%/\... dx”)—( Z D; dm) dxa/\m/\%
:Uz (Bl 7.f, fEi xi .

' ! i=d(f)+1 1 .

But it follows from (4.6) that D, acts trivially on H4/) (K;) for i =
d(f) + 1,...,p, hence the differential 62 is trivial. It is then clear that
H'(K;) is isomorphic to the direct sum of (p_‘ll(f )} copies of HUN(K;).
Theorem 4.1 now follows from (4.5) and (4.7).

We now define some complexes “between” K’ and V(xZ). Let 0yq,...,
os be the codimension-one faces of the cone C(f). Define linear forms
li,...,ls on L by the conditions: (i) I; = 0 on oy, (ii) L(M'(f)) =
(i) &; > 0 on C(f). It is easily checked that for u € L(f), u € C(f) if
and only if l;(u) > 0 for ¢ = 1,...,s. Let I C {1,...,s}. We say that
a is semi-nonresonant relative to I if either a ¢ F'®q L or l;(«) is not a
positive integer for ¢ € I. For I C {1,...,s}, let Mi(f) = {u € M'(f) |
l;(u) > 0foralli ¢ I} and let Ry be the ring Ry = Flz% | u € M;(f)]. In
particular, My(f) = M(f) and Ry = R. Define a complex (K}, 8} .4) by

K}: @ Rldxil/\.../\dxil’

1<iy<o<ig<p  Th Liy

di d»,, 1 1 d’L
5f,a<£§lA~~ ”"’) (ZD,L df”_) PN

i1 Ty Ly

The natural inclusion R < R; identifies (K’ ",0¢) with a subcomplex of
(KI’ 6f1a) :

PROPOSITION 4.8. If a is semi-nonresonant relative to I C {1,...,s},
then the inclusion (K',6fq4) — (Kj,6¢4) 15 a quasi-isomorphism, i.e., it
induces isomorphisms H' (K') ~ HY(K}) for all L.



ON TWISTED DE RHAM COHOMOLOGY 71

Proof. When «a ¢ F'®q L, the same argument that was used in the

proof of Theorem 4.1 for K shows that H' (K;) = 0 for all I. So we may
assume that a € F ®q L. Note that if « is semi-nonresonant relative to [
then « is semi-nonresonant relative to J for every subset J C I. It clearly
suffices to show that for every J C I and i € I\ J, the natural inclusion
(K7,680) — (K:IU{i}’éf:a) is a quasi-isomorphism. We achieve this by
ugiy/ K satisfies Hl(K'JU{i}/K:I) =0
for all [. We view this quotient complex as follows. The quotient Ry, /Ry
may be identified with the F-vector space V with basis the set of all z* for
u € M'(f) satisfying ly(u) > 0 for k ¢ JU{i}, l;(u) < 0. We then have the
identifications

showing that the quotient complex K

dz;,

. . dz;,
(KJU{i}/KJ)l: P v

1<iy < <8 <p Ty Z;,
dz; dz; P dxy, dx; dx;
) (g TA-A “>:( Y—(Dg t.a(€ —>/\——’—1—/\--~/\ v,
ralé o I; (Dropal®) ) A o
where
¥ ifz¥ eV
uy y
7‘(””)_{o if 2% ¢ V.

Thus the quotient complex can be identified with the Koszul complex on V
defined by the operators {y— o Dy f.o}oe1-

There is an increasing filtration F. on V defined by letting F,V be the
subspace spanned by those z* with [;(u) > —a, a = 0,1,.... Note that
FyV = (0). By a standard spectral sequence argument, it suffices to show
that the associated graded complex has trivial cohomology. We identify the
associated graded complex with the Koszul complex on gr (V) defined by
the induced action of y_oDy ¢+, k = 1,...,p, which preserve this filtration.
Extend the form [; on L to QP and write it as

p
li(ul,...,up) = chuk (Ck S Q)
k=1

Put [;(Dy,0) = Y_%_1 ck¥— © Dg f,a, an operator on V. One checks that it is
independent of the choice of extension of [; to QP. Then l;(Dy ) is the zero
operator on all homology groups of the Koszul complex on gr. (V) defined
by {7- © Dk fatrey- We show that l;(Dy ) is invertible on gr.(V), which
implies that all these homology groups must vanish.
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One computes that

(4.9) li(nya)(CCu) = li(a + U)JIu + - <Z ajli(j)$j+u)

J
(recall f = 3, a;jz?). But l;(j) > 0, so each 297" that appears in (4.9)
with nonzero coefficient satisfies {;(j + u) > l;(u). It then follows from
(4.9) that l;(Dy o) operates on gr,(V') as multiplication by l;(a) — a. The
hypothesis that a be semi-nonresonant implies this is nonzero (with the
possible exception of the case a = 0, which is not a problem since gry(V) =

(0))-

From Theorem 4.1 and Proposition 4.8, we have immediately the fol-
lowing,.

COROLLARY 4.10. Suppose that f is nondegenerate relative to A(f)
and a is semi-nonresonant relative to I C {1,...,s}. If a ¢ FQ®q L, then
HYK;) =0 foralll. Ifa € FQ®qL, then HYK};) = 0 for I < d(f) or

> p and dimp H'(K;) = (I;jj((;‘)))d(f)! V(f) for d(f) <1< p.

In the special case I = % - {1,..., s}, we can drop the hypothesis of

semi-nonresonancy. This follows because for any u € M’(f), multiplication
by z* is an isomorphism of complexes

(KZH 6f,a) =~ (KZ, 6f,a—u)

(its inverse is multiplication by 2™*). Even if « fails to be semi-nonresonant
relative to ¥, we can always choose u € M(f) so that a — u is semi-
nonresonant relative to ¥ and apply Proposition 4.8 to the complex on the
right-hand side. Thus we have the following.

COROLLARY 4.11. Suppose f is nondegenerate relative to A(f). If
a¢ FqL, then HY(Ky)=0 foralll. Ifa € FQ®qL, then H(Ky)=0
for U < d(f) orl > p and dimp H(K}, ) = (f;jj((]{)))d( NV (S) for all
d(f) <i<p.

Put Ry = Flz1,...,Zp, (z1- - 2p)"1]. We compute the cohomology of
the complex K|, defined by

dz; dz;

Ki= @ BRo—2n---n—1,
xX; x;

1<iy <-<3;<p (31 2

6f,a (5 Cifll NN d-’L‘ll ) — (Z D,L’f,a(g) d:I:z) A dle NN dl’zl ‘
=1

21 wil wi xil xil




ON TWISTED DE RHAM COHOMOLOGY 73

Note that Ry has a direct sum decomposition as F-vector space

RO = @ R([)u],
[uleZr/M'(f)

where R[[)u] is the F-span of all z¥ such that v € [u]. Each D; ;s is stable

on R([)"], hence we get a corresponding direct sum decomposition

(4.12) (Ko,80) = D (Ko 6ra)-
[uleZ? /M/(f)

When v € M'(f), (K| [u> 0f,a) is just the above complex (K5, 6f,a). Fur-
thermore, for u € ZP, one checks easily that

u o )
Di,fyaox =z OD'L,f,a—Q—ua

which says that multiplication by z* is an isomorphism of complexes be-
tween (Ky,0fq+y) and (Ké’[u],éf’a). Thus by Corollary 4.11, Hl(K(')y[u],
6fa) = Oforall lif a+u ¢ FQqgL while if a +u € FQqL, then
Hl(Ké’[u],éf,a ) =0 forl < d(f) orl > p and dimFHl(K(’),[u],éf,a) =
(’;’:j((}c)))d(f)!V(f) for d(f) < I < p. There is either zero or one class
[u] € ZP/M’'(f) such that a +u € F@gqL, according as to whether
(a+2ZP) N (F®q L) is empty or nonempty. By (4.12), we therefore have
the following.

THEOREM 4.13. Suppose f is nondegenerate. If (a+ZP)N(F Qq L) =
0, then H(K(,6f0) = 0 for all 1. If (a + ZP) N (FQqL) # 0, then
HZ(K('),éf’a) =0 forl <d(f) orl>p and

p—d(f)

dimp H (K, 65.0) = (z 3 d(f)>d(f)! V(f)

ford(f) <1<np.
§5. Proof of Theorem 1.4

We return to the setting of sections 2 and 3 but make the additional
assumption that we are in the purely toric case, i.e., that n = 0. Thus

g?fla'--’f’r‘ GF[Q?l,...,JJN,(Z'l"’J?N)—l],

T
h :g+ZxN+jfj € F[.’El,...,SL‘N+T,(.'171---:EN)_1].
j=1
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THEOREM 5.1.  Suppose h is nondegenerate relative to A(h) and
dim A(h) = N +r. Then

H'Y(V (+2), ) =0 (1# N +7),
dimp HV?"(Q'(%Z), 6h.0) = (N + 7)1V (h).

Proof. We apply the results of section 4, taking p = N +r, f =
h. One checks that the complex (K,6f) of section 4 then becomes
(2 (xZ),6n0). Since dimA(h) = N + 7, we have L = QN*". Thus
(@ +ZN*) N (FQq QN*") # 0 for all « and d(f) = N +r. The the-
orem is then an immediate consequence of Theorem 4.13.

Proof of Theorem 1.4. By hypothesis, ayt1,...,an+r € Z, h is non-
degenerate relative to A(h), and dim A(h) = N 4 r. Suppose we can show
that these conditions imply the hypothesis of Proposition 3.1, namely, that
H l(A('D) = 0 for [ # r. Then by Proposition 3.1 and Theorem 2.8 we have
isomorphisms

HY™(Q (x2)) ~ HY(Y (x2)) ~ HY(Q' (xY))

for all [. Theorem 1.4 is then an immediate consequence of Theorem 5.1.
We are thus reduced to checking that H'(Aj) =0 for I # r.

As observed in the remark following Proposition 3.1, the complex A is
(up to reindexing and some sign changes) the Koszul complex on R’ =
Flzy,...,2N4r, (1 - TN4r)"t] defined by the operators {DN+j,h,a}§:1-
We denote this Koszul complex by K. in what follows. Thus we must
check that K. is acyclic in positive dimension, i.e.,

(5.2) H(K.)=0 forl>0.

We accomplish this by a modification of the arguments of section 4.

Note that Dyyjha = TN+;0/0CN+j + anyj + N4 f; is independent
of g. Furthermore, the nondegeneracy of h relative to A(h) implies the
nondegeneracy of 371 zn4;f; relative to A(XT_; zn+;f;). (Every face
o of A(Y 71 ZN+;fj) not containing the origin is also a face of A(h) and
(Xj=1ZN+jfi)o = ho for such a face.) So we may assume g = 0, i.e.,
h = 37 1 2znyjf;- The ring R of section 4 is generated by monomials
% with u € ZVN*" N C(h). The weight function w defined in section 4 is
given explicitly in this case by w(u) = uny41 + -+ + Un4r, and it defines
a grading (not just a filtration) on R. Furthermore, R is known to be
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a Cohen-Macaulay ring (see [H]). The theorem of Kouchnirenko takes a
sharper form in this case (see [KO section 2.12]). The hypothesis that A is
nondegenerate and dim A(k) = N + r imply that {z;0h/8z;}¥1" form a
regular sequence on R. Taking ¢ = N 4+ 1,..., N + r, we see in particular
that {en4;f; };7:1 form a regular sequence on R, hence the Koszul complex

they define on R is acyclic in positive dimension. Fix an element u € M (h)

that is also an interior point of C(h). For each integer a > 0, let @ pe
the Koszul complex on the R-module 27" R defined by {zn;f; }9:1- Since

multiplication by 7% is an R-module isomorphism from R onto z~%“R, it

follows that Hy(C\”) = 0 for all I > 0 and all a. Let D be the Koszul
complex on z7%R defined by {DN+j,h,a}§:1- This is a filtered complex,
where the filtration F. on z7*“R is defined by taking Fj(z~*“R) to be the
F-span of all z7%z” with w(v) < k. Its associated graded complex is C.(a),
hence the same spectral sequence argument used to prove (4.4) shows that
Hy(D'™) =0 for all I > 0 and all a.
Now consider K., the Koszul complex defined above. Since R’ =
2o T ™R, it follows that any l-cycle £ representing a homology class
of H(K.) is an l-cycle in some complex D9, But Hl(D,(a)) =0forl >0,

i.e., £ is an [-boundary in D.(a), hence £ is an [-boundary in K. also. It
follows that H;(K.) = 0 for all [ > 0. This establishes (5.2).

§6. Cohomology of Q' (xZ) on T™ x A™*"

In this section we go beyond the purely toric case and consider the
problem of computing the cohomology of 2'(*Z) on T™ x A™*". For this it
is necessary to pursue the ideas of section 4 a little further. For most of this
section, we deal with an arbitrary polynomial h € Flzy,...,ZN4r, (T1 -
Tm) Y. For the application to twisted de Rham cohomology (Theorem 6.7
below), we shall take h to be as given in (2.2).

For any subset I C S with Sy, U Squ C I, let Ay be the polynomial
obtained from h by setting «; = 0 for j ¢ I. (Note that j ¢ I implies
J € Saf N Ssp.) We say that h is convenient relative to Sy N Sy, if for all
such I we have

(6.1) dim A(hy) = |1.
This implies in particular that dim A(h) = N + 7.
Let Iy,...,ls be the linear forms on QN*" defining the codimension-

one faces of the cone C(h), normalized as in section 4. The hypothesis
that h be convenient relative to S,s N Ssp implies that the equations z; =
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0 for i = m +1,...,m + n define codimension-one faces of C(h), hence
must lie among the forms ly,...,l;, say, l1 = Zmt1,.--yln = Tinan. Let
B={n+1,...,s} C{1,...,s}. We recall the corresponding complex Kp
defined immediately preceding Proposition 4.8. We have M'(h) = ZN*",
hence

Mg(h) ={u= (u1,...,unsr) € Z¥T | Upi1,. ..\ Umgn > O},

It is then clear that the ring Rp = F[z* | v € Mp(h)] defined there is
identical to the ring R’ = Q°(xZ). Thus (K, 0h,0) is the complex

dz; dz;
K= @ R—"nr--n—"2,
1<i<--<ig<N+r T Ly

) . N+r . . )
5(5% Aoee A d””’l) - (Z Di,h,a(g)d””) N NS

:Eil .CI?il = x;

Note that Q'(xZ) is a subcomplex of K. More precisely, the difference
between these two complexes is that in Ky we allow logarithmic poles
along the divisor [[i"; €m+i = 0 whereas in Q' (xZ) we do not.

PROPOSITION 6.2. Suppose that h is nondegenerate relative to A(h)
and convenient relative to S, N Ssp and that a is semi-nonresonant relative

to B. Then

HY(Kp,6h4) =0 (1# N +r),
dimp HN?" (K, 6h.4) = (N + 7)1V (R).

Proof. The proposition is a special case of Corollary 4.10.

We explain how to drop the hypothesis that o be semi-nonresonant. A
short computation shows that the condition that h be convenient implies
that there exists u € C'(h) with {;(u) =0 for ¢ =1,...,n but l;(u) > 0 for
i € B. In particular, both 2% and ™% lie in R/, so multiplication by z is
an isomorphism of complexes

(KBa 6h,a) = (KB, 5h,a—u)'

The condition that [;(u) > 0 for ¢ € B implies that a — ku is semi-
nonresonant relative to B when k is a sufficiently large positive integer.
Hence we get the following corollary.
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COROLLARY 6.3. The conclusion of Proposition 6.2 remains true when
the hypothesis that o be semi-nonresonant relative to B is dropped.

We connect (Kp,0p.q) with (2°(x2), 6n ) by introducing some related
complexes. For I C S with S;, U Sg, C I, let
R(I)=F[z" | v € Mp(h), uj =0 for j ¢ I,

i.e., R/(I) is the coordinate ring of the variety which is the projection of
T™ x A™ x T" onto those coordinates which are indexed by I. For i € I,
let D; p, o be the differential operator on R'(I) defined by

L
83: i xl@mi'

Let (Kg(I),0n; o) be the complex defined by

@R’ dxn ‘”/\da:il’

Diyhfza

Ty,
where the direct sum is over all increasing sequences i1 < - - - < 4; of elements
of I and
dx; dx dx; dx; dx;
5hl,a(§ LA A ”) (ZDM,, ) L .
Tia Tiy il Ti Tiy L4

For I' C Isag, let R'(I,1") = ([Ljep x;)R'(I), the elements of R'(I)
divisible by z; for all j € I'. Define a subcomplex (Kg(I,I'),6p, ) of
(K1), 6h,a) by

Kp(I,LI'= € RUII'nJ)—2
JCI, |J|=l

where J = {i1,...,4}, 11 < --- < 4. Note that Kz(S,0) = Kg(S) = Kp
and K5 (S, Sar N Ssp) = Q' (xZ). Let i € Igg, i ¢ I'. Consider the map 6; :
R'(I,I') — R'(I\{i},I') defined by setting z; equal to 0. Let K; (5(I,1") be
the complex obtained by shifting indices by 1 in K5(I,1'), i.e., K B(I =
K51 (1,1'). The map 6; induces a map 6; : Kz(I,I') — KB(I\{Z} I
deﬁned by

Oi(f%/\---/\dmil)

dwll dz;,

A
Tiy :Cil

Ty T,
d; dx; dz; L ,
_ e == A A=A A ifi € {iy,...,0},
Ti, z; T;,

0 otherwise,
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whose kernel is easily seen to be K (I, I'U{i}). Thus there is a short exact
sequence of complexes

(6.4) 00— Kyp(I,I'U{i}) — Kyz(I,I') — Kg(I\ {i},I') — 0.
We use this exact sequence and Corollary 6.3 to compute the cohomology
of each Kg(I,I).

THEOREM 6.5. Suppose that h is nondegenerate relative to A(h) and
convenient relative to Sys N Sgp. Then

HYKR(I,I'),6h,0) =0 (1 1)),
dimp HIW(KB(I,T), 60,0) = Y (=111 = [C)V (hpe),
ccr

where V(hp\¢) denotes the volume of A(hp\¢) relative to Lebesgue measure
on RINCI

Proof. The proof is by induction on |I’|. Suppose I’ = (. The hy-
pothesis implies that h; is nondegenerate relative to A(hy) and convenient

relative to Isa‘lf, so the theorem is an immediate consequence of Corollary 6.3.

Now suppose the theorem is known for sets I’ of a given cardinality and let
i€ I;’g, i ¢ I'. The induction hypothesis implies that

H' (Kp(I,I')) = H(Kp(I\ {i}, 1) =0
for I # |I|, so the long exact homology sequence associated to (6.4) shows
that H'(K(I,I' U{i})) = 0 for | # |I| also. The exact homology sequence
then gives

dimp HI(K5(1,I' U {i}))
= dimp HH(K5(1,1')) — dimp HI-Y(K(1\ {i},I)).

The induction hypothesis gives a formula for each term on the right-hand
side, and an easy calculation then gives the desired formula for the left-hand
side.

Applying this in the case I = S, I’ = S,s N Sp gives the following.

COROLLARY 6.6. Suppose that h is nondegenerate relative to A(h) and
convenient relative to Sye N Ssp. Then

HY Q' (+Z),6h4) =0 (1# N +r),

dimp H¥*(Q (x2),6p0) = Y (1IN +7 = |C)!V (hs\c)-
Cgsafnssp
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We now assume that h is given by (2.2). In section 5 it was proved that
the hypothesis that A be nondegenerate relative to A(h) and dim A(h) =
N + 7 implies that the hypothesis of Proposition 3.1 holds. Thus under the
hypothesis of Corollary 6.6 the conclusion of Proposition 3.1 holds, and by
Theorem 2.8 we have the following.

THEOREM 6.7.  Suppose that an+1, ..., an+r € Z and that h =

> i=1TN+;fj is nondegenerate relative to A(h) and convenient relative to
Saf N Ssp. Then

HY (Y (+Y),Vy4a) =0 (1 # N),

dimp HY (' (+Y),Vga) = 3 (-DIUN +7 —|CNV (hs\0)-
CQSafﬂSsp

87. An example

In this section we apply Theorem 6.7 in the case of twisted de Rham
cohomology on AN where g, fi,...,fr € Flr1,...,zy] are polynomials of
degrees dyg, di,...,d,, respectively. We assume that for ¢ = 1,..., N, the
monomial xfj appears in f; (resp. in g if j = 0) with nonzero coefficient
and that ¢(0,...,0) and f;(0,...,0) for j = 1,...,r are all nonzero. This
implies in particular that h is convenient relative to Sg, = {1,...,N}.
Furthermore, this makes it easy to compute V' (h).

We regard A(h) € RN+ as fibered over R", the last 7 coordinates.
The projection of A(h) on R" is the simplex

A:{(/\l,...,)\r)ER’"I/\1+--~+)\r§1, OSAZSI(Z:L,T)}

For A = (A1,...,A.) € A, it is easily seen that the fiber of A(h) over A is
the simplex in RN with vertices at the origin and

((1 -—Al — e —)\T)Cl0+/\1d1+"'+/\rdr)ei (i: 1,...,N),
where {ey,...,ex} is the standard basis for R". Thus the volume of this
simplex is

T N
~Ni (do = (do — dj)>\j> ,
j=1

which implies that

(N+r)!V(h)=UV—;"3— (do—Zdo— )Nd)\l/\---/\d)\r.
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A straight-forward calculation using induction on 7 then shows that the

right-hand side equals the sum of all monomials of degree IV in dy, dy, ..., d,
ie., o ‘
(7.1) (N+r)V(R)= > dodi---dy.

ig+ir++ir=N
We remark that this formula appeared previously in relation to the expo-
nential sum corresponding to h (see [AS1, AS2]).

Let Dy(dp, . ..,d,) denote the expression on the right-hand side of (7.1).
Our hypothesis on g, f1, ..., fr implies that for I C S with Sy, C I, we have
'V (k1) = Dz, (do, - - ., d.). If we assume now that h is also nondegener-
ate relative to A(h), we have the following consequence of Theorem 6.7:

(7.2) HYQ (+Y),Vga) =0 (I#N),
N N .
(7.3) dimp HN (' (+Y),Vga) = > ( , )(—1)N"Di(d0,, o dy).
i=0 \*
When dy = --- = d, = 1, one can check that this formula agrees with the

result of [AKOT].
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