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ON TWISTED DE RHAM COHOMOLOGY

ALAN ADOLPHSON1 AND STEVEN SPERBER

Abstract. Consider the complex of differential forms on an open aίfine subva-
riety U of A^ with differential ω »—• dω + φ Λ ω, where d is the usual exterior
derivative and φ is a fixed 1-form on U. For certain U and φ, we compute the
cohomology of this complex.

§1. Introduction

For many purposes, a hypergeometric function (in any number of vari-

ables) may be thought of as an integral

expo(x)

' (x)Pl f (x)Pr Λ ' " Λ

where /3χ,..., βr G C, g, / i , . . . , fr are polynomials in # 1 , . . . , xjy, and in-

tegration is taken over some cycle. (The variables of the hypergeometric

function occur as coefficients of the polynomials in the integrand.) This

leads one to consider twisted de Rham cohomology: Take the complex of

global differential forms on the complement of the divisor f\ fr = 0 and

"twist" the usual exterior derivative d by /j~ f~@r expg, i.e., replace d

by d + (dg — YZ=\ βjdfj/fj)/\. In this article, we compute the cohomology

of this complex for generic g, / i , . . . , fr, β\,..., βr.

Recent work on this problem has been done by Kita [KI] and Aomoto-

Kita-Orlik-Terao [AKOT], to which we refer for further background and

applications along the above lines. We take a somewhat different approach

here. In [DW1], Dwork introduced a p-adic cohomology theory for varieties

over finite fields, which is also often referred to as "twisted de Rham coho-

mology." Dwork's definition is algebraic and makes sense over any field of

characteristic zero. The connection between Dwork's theory and classical

de Rham cohomology was studied by Katz [KI, K2], who introduced an

algebraic notion of "Laplace transform" to connect the two theories. This

theory of the Laplace transform was developed further by Dwork [DW2

chapters 10 and 11] (see also Batyrev [B section 7]).
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Dwork's p-adic cohomology theory was developed further in [AS3, AS4],
where the cohomology of a general class of "twisted exponential sums"
was computed, and in [AS5], where the cohomology of smooth complete
intersections over finite fields was computed. The point of this article is
that, via the Laplace transform, the results and methods of [AS3, AS4,
AS5] can be used to compute the twisted de Rham cohomology groups
as defined in [KI, AKOT]. The work of Dwork establishes a connection
between special values of (p-adic) hypergeometric functions and eigenvalues
of Frobenius acting on p-adic cohomology. We hope that our work here
on the relation between Dwork cohomology and classical hypergeometric
functions will ultimately yield new insights into this phenomenon.

We outline the method here. Introduce dummy variables
and consider the formal integral

/

/ r x

χίN+ι *' xN+r e x P ( 9 + Σ χN+jfj ) dxi Λ Λ dxN+r.
V 3=1 J

Making the change of variable XN+J •—> χN+j/fj &nd integrating formally
with respect to #JV+I> ? XN+r, we see that this is equal (up to Γ-factors) to
(1.1). (This is referred to as the "Cayley trick" in [GKZ section 2.5].) This
leads one to consider the complex of global differential forms in x\,..., XN+V

on the complement of the divisor XN+I ''' XN+r = 0 with differential d +
(dh + Y%=ι βjdxN+j/xN+j)Λ, where

(1.3) h = g +
3=1

This reduces us to the situation where poles occur along coordinate hyper-
planes only.

The integral (1.2) is a formal analogue of a "twisted exponential sum"
Σ a ίΠz Xi{χί))^{h(x)), where h is a polynomial over a finite field, χι
(resp. Φ) is a multiplicative (resp. additive) character of that finite field,
and the sum runs over elements of the field. The p-adic cohomology of such
sums was studied in [AS3, AS4]. The main point, which was the basis for
those articles, is that cohomology can be computed from a much smaller
complex (the complex K' introduced in section 4), where questions about
cohomology can often be answered by applying results of Kouchnirenko
[KO].

We state our main result. The most natural setting is the purely toric
case, although we ultimately give results for the "mixed case" (a product
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of toric and affine spaces) as well (Theorem 6.7). The toric case seems

to cover all the classical hypergeometric functions (see [DL], particularly

the appendix). For example, AppePs hypergeometric function F4, which

required some extra work from the point of view of [KI], fits nicely into

this situation (see the example at the end of this section). Let T ^ be

the iV-torus over a field F of characteristic zero and let #, / i , . . . , / r £

F[xι,... ,xN, (xλ - XN)"1]. For any / e F[xu . . . , xN, (xλ XN)~1}, we

define the support of / , supp(/), to be the set of exponents of the monomials

appearing in / , thought of as lattice points in ΈlN. Let A(h) C HN+r be

the convex hull of supp(/i) U {(0,..., 0)}, where h is defined by (1.3). Let

Y C T ^ be the divisor /1 fr = 0 and let Ωz(*y) be the space of global

/-forms with poles along Y. Let

N 1

Xi

where α i , . . . , OLN+T G F. This defines a complex (Ω'(*F),

THEOREM 1.4. Suppose that αjv+i? 5<̂ Â +r ̂ TL, h is nondegenerate

relative to A(h), and dimA(h) = N + r. Then

dimF ^ ( Ω ' ( * y ) , V^,α) = (N + r)\

where V(h) denotes the volume of A(h) relative to Lebesgue measure on

Remark. The definition of uh nondegenerate relative to A(h)" will be

recalled in section 4. It ensures that we are at an ordinary point of the corre-

sponding system of hypergeometric differential equations ([A Lemma 3.3]).

For now, we observe that (for specified supp(g), supp(/j), j = 1,... , r) this

condition is satisfied for generic g, / i , . . . , fr ([KO Theoreme 6.1]).

EXAMPLE, (see [KI section 5.4]) AppeΓs hypergeometric function F4

has an integral representation of the form

((1 ) 4 dx\ Λ dx2,
X\ X2

so we take g = 0, f\ — 1 — x\ — #2? Ϊ2 — 1 — λi/xi — λ2/^2 The polytope

A(h) C R 4 is the convex hull of the origin and supp(a?3/i + £4/2)
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computes 4\V(h) = 4. For generic λi, λ2, #3/1 + #4/2 is nondegenerate,
hence for 0̂ 3, a^ £ Z we have in that case

The latter equality reflects the fact that the system of partial differential
equations satisfied by F4 has four linearly independent solutions at an or-
dinary point.

Another example is given in section 7, where we calculate the twisted de
Rham cohomology on A ^ for "generic" polynomials g, / 1 , . . . , fr of degrees
do, d i , . . . , dr, respectively. The special case dι = 1 for i = 1,..., r was
worked out in [AKOT].

§2. Twisted de Rham complexes

Let F be a field of characteristic 0, let T m be the m- tor us over F,
and let A n be affine n-space over F. Put N = m + n. Let / 1 , . . . , / r ,
g G F[xι,..., xjy, {x\ - - - Xm)~ι], the coordinate ring of T m x An, and let
Y C T m x An be the divisor fx fr = 0. (We allow the possibilities m = 0
and n = 0.) Let Ωz(*y) be the space of global /-forms with poles along Y.
Thus

Ω°(*Y) = F[xi, . . . , XΛΓ, {Xι - ' ' Xmfι fr)'1]

and Ωι(*Y) is the free Ω°(*y)-module with basis

(2.1) — - Λ Λ — - A dxik+1 A Λ dxin

X%\ ik

where 1 < i\ < < i& < m, and ra + 1 < i^+i < - - - < iι < m + n. Choose
a = ( α l 5 . . . , α^v+r) ^ FN+r subject to the requirement that α m +i = =

, = 0. Let ωg^a G Ω1(*F) be given by

N 1 r in

2=1 ^ j= l J ^

where d : Ω^(*y) —> Ω^+1(*y) is the usual exterior derivative, and put

Straightforward calculations show that (Ω'(*Y), V^>α) is a complex.
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We shall compute the cohomology of this complex for sufficiently gen-

eral / i , . . . , /r? 9 and nonintegral αjv+i?..., ajv+r. The first step is to ap-

ply the Laplace transform theory of Dwork and Katz. Introduce dummy

variables #yv+i> > χN+r and put R — F[x\,..., XN+T, {χi ''' χ
m))~1}

coordinate ring of T m x A n + r . Put

H h XN+rfr(xi, --> XN) G Λ.

We need some notation to distinguish the roles played by the different types

of variables that are involved. We index the set of all variables by S

{1,. . . , N + r}, the toric variables by Sto = {1, . . . , 772}, the affine variables

by Saf = {ra + 1,.. . , N + r}, the space variables by Ssp = {1, . . . , iV},

and the dummy variables by S^u = {N + 1,. . . , TV + r}. For any subset

/ C S, we use subscripts to denote intersection with one of these sets, e.g.,

J t o = I Π Sto We also put Js

ap = / Π 5af Π 5 s p . For any subset JCSaf, let

R1 — (ΠZG/ x 0 ^ ? ^^e set of elements of R divisible by X{ for all i G /.y
We introduce the ring Rr = R[{lΓj=ι χN+j)~1} and put R;I= (Uiei χi)R'

for any subset / C SspΠSΆΪ. Let Z C T m x A n + r be the divisor Y[r

j=1 xN+j =
0 and let ΩZ(*Z) be the space of global I-forms with poles along Z. Thus
Ω°(*Z) = Rr and ΩZ(*Z) is the free i^-module with basis

(2.3)

i.e.,

where / = {π, . . . , i{\. We define the differential to be

—Λ (tXi
dh

Straightforward calculations show that (Ω'(*Z), <5̂ ?α) is a complex.

We give an explicit formula for 6^a. For % = l,...,7V + r, define
differential operators Di^a by

i o 1 Oί{ ή X{
OXj OX«
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Note that for i = 1,..., ΛΓ,

dh dg " dfj

3—1

while for j — 1,... , r,

dh

For ξ (dx^/x^) Λ Λ (dxijx^) G Ω*(*Z) we have

(2.4) δh,a[ξ ί Λ Λ M = 2^A,h,a(0 ) Λ L Λ Λ

We define a "direct image complex" Ω'(*Z) under the projection of

T m χ An+r QntQ t h e firgt ^ factors a s follows. FθΓ Z = 0, . . . , JV, put

ΩZ(*Z) =
l<ii< <i/<JV

where / = {z'i,... , i/}. Define δhiOί : Ω^(*Z) —> Ω ί + 1(*Z) by additivity and
the formula

a well-defined map since all the D^h^s commute with one another.
We shall show that the complex (Ω#(*Z),δ^α) is isomorphic to the

complex (Ω*(*y), V^)Q!) when α/v+i,... ,α/v+r are not integers. Let L :
i?7 —> Ω°(*Y) be defined by F-linearity and the condition

U UN + l U
XN+1 ' xN+r

where ?/ = (i/i,... ,UN), (U±, ..., ^τv+r) G ZN+r, ιx m +i,.. . ,^JV > 0, and

ί
+ l)(αjv+:7 + 2) (aN+j + uN+j - 1) if uN+j > 1,

1 if rxiv+j = 1,
iV+j - 1) (&N+j + ίXAΓ+j))"1 if V>N+j < 1?

a well-defined element of F since α^v+j ^ Z.
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LEMMA 2.5. Suppose ατv+1? •> aN+r a r e not integers. Then the map
L induces an isomorphism L : Rf/J2Tj=1 DN+J^^R!) ~ Ω°(*Y).

Proof (Dwork). For i = 0 , 1 , . . . , r, set

i?W = F[xι, . . . , XN+i, (Xl'" ZmXN+l ' ' ' ZN+ifi+1 ' ' ' / r ) " " 1 ] -

In particular, R^ = R! and R^ = Ω°(*y). Note that DN+jihiOί acts on
R(V for j — 1 ? . . . ? ί. We show that for i = 1,.. ., r there are isomorphisms
of F-vector spaces

It will be clear that under this isomorphism the action of DN+j,h,a o n

RW/DN+iihiOί(RW) is identified with its action on i?^"1) for j = l , . . . , i - l .
We then get the desired isomorphism by composition.

Note that i?W is a free module over the ring F[x\,..., xjy+i-i, {x\
XmXN+i--XN+i-ifi+i" ' fr)'1} with basis {x%+i \ u G Z} and i?^""1) is
a module over this ring spanned by {f^u}^Lo- F° r i = 1,... ,r, we define
Li : i?W _^ i?^"1) to be the homomorphism of modules over this ring
defined by

for u G Z. Each Z^ is F-linear and surjective (since αjv-f.̂  φ Z) and it is
easily checked that L = L\ o o Lr. We have

x XΛΓM ' ^τv+2

* /r

XN+l ' ' 'XN+i / z x XA^+1 ' ' * XN+i-l X

i-l ^AΓ+i

H+l ' " Jr

and an easy calculation shows that Z?jv+i,/ι,α(-R ) ί
We show that kerL^ C £)j/v_|_^/ljα(i?W). Let ^ G kerL^ and write

^ CW -WiV+z + l rUN+r

M 2
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where Mi, M 2 G Z and gfe G i φ i , . . . , XN+Ϊ-U (χi ''' χm %N+I '

ΐ-1 /i+i * * /r)" 1 ]- We argue by induction on M 2 — M\. Write £

+ ξi, where & = Σ f c J xN+i<lk. We have

M 2

(2-6) = Σ

Solving this equation for gM2 (which is possible since aw+i is not an in-
teger) we get qM2 = / i6 5 where ξ2 G F [ x i , . . . , xτv+i-1^ (^1' * * χmχN+i * * *
XΛΓ+2-i/z-fi'' * fr)~l} Thus ξ = ξi+x^J^, with £2 independent of XN+Ϊ-

But

so

e = ίi -
Applying Li gives

Ufa - (aN+i + M2- l ) ^ - 1 ^ ) = 0.

We have
M2-i

+ M2 - 1)^7X6 = £ x

with gfc G F[xi,..., XΛΓ+2-I, (^1 ^m^ΛΓ+i XN+i-ifi+i''' Λ ) " 1 ] . By in-
duction we are reduced to the case Mi = M 2 = M, i.e., ξ = xj^+iqM- But
from (2.6), we see that this implies ςΆί = 0.

We regard L as an isomorphism between Ω°(*Z) and Ω°(*Y). We

now explain how to use L to construct isomorphisms (also denoted L) be-

tween Ω*(*Z) and ΩZ(*Y) for / = 1,.. ., N as well. Since multiplications by

# 1 , . . . , #τv commute with -Djv+i^α,..., £)jv+r,^,αj we have isomorphisms

Λ7 Σ DN+j^a(R!) ^ RfIaΐIJ2 DN+jAa(R/Iaΐ)
3=1 3=1

given by multiplication by Π ^ / a f

 x «' where / = {ί i , . . . , i/} C 5 s p . Thus

Z) can be identified with

(2.7) φ (β'/ ̂  ^ + j Λ , α ( β ' ) ) ^ ^ Λ • - Λ ^ Λ ώ 1 H 1 Λ -ΛdXiι,
l<ΐi<-<iί<JVV y X X
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where 1 < ή <---<ik<m, m + l < i^+i < • • • < iι < N. For

ξ € R'/Σr

j=ι DN+jAa{R'), define

dx' dx'
Λ Λ Λ dxi, t1 Λ Λ dxj}X

h

Λ Λ ^ Λ dx i f c + 1 Λ Λ

By Lemma 2.5 and the fact that Ωι(*Y) is a free Ω0(*F)-module with basis

given by (2.1), it follows that L : ίlι(*Z) —•> ΩZ(*F) is an isomorphism

of F-vector spaces for / = 0, 1,..., N (provided αjv+i ? ? ^iv+r are not

integers).

THEOREM 2.8. Suppose Ĉ AΓ+I , . . . , «τv+r ^ r e nc>̂  integers. Then the

map L : Ω*(*Z) —» Ω'(*y) Z5 an isomorphism of complexes.

Proof. By what we have done so far, it suffices to show that L is a

map of complexes, i.e., that the diagram

Ω'(*Z) ^ 4 Ωι+1(*Z)

Li ΪL

QI^Y) Yiz Ω/+1(*y)

commutes. Let ξ = xuχu^^ • • • aJ^^Γ 6 R' and let [ξ] denote its image in

R'/ Ί2Vj=i DN+j,h,a(R') By (2-7), elements of Ω'(*Z) may be represented

as linear combinations of expressions of the form

We need to check that

(2.9)

= V ^ o L M f ] - ^ - Λ Λ -^- Adxik+1 Λ- ΛdxiA.

Let 5 G S'sp. We compute the coefficient of

dx' dx'
(2.10) dxs Λ — — Λ Λ — — Λ dxik+1 Λ Λ c?x^



64 A. ADOLPHSON AND S. SPERBER

on both sides of (2.9). First of all, the exterior product (2.10) vanishes if
s G I — {ii,..., i/}, so we may assume s £ I. By definition, the coefficient

of — - Λ — ± Λ Λ —— Λ dxih.Λ Λ Λ dxi} mδha[ [ξ] — - Λ Λ — ^ Λ

Λ Λ dxΛ is [^^^(x^x^i1 xU^+r

r)}, and

XN+1 xN+r

/ da \
I w*S i ^*"S i "-1 S r\ ! « * / « * - > M i l ' XN+r

_ | _ \ '«... ~ -^^^W^w^+1

Thus the coefficient of (2.10) on the left-hand side of (2.9) is

(2.11)

{us + as + xsdg/dxs){-rp

' ' J

j=ι

Note that if s G 5af, then as — 0 so (ixs + as)xu is divisible by xs. Now

consider the right-hand side of (2.9). We have

(2.12)

J1 * * * fr

• — — Λ Λ — — Λ dxik+1 Λ Λ i

Applying V^Q, to the right-hand side of (2.12) and picking out the coefficient
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of (2.10) we get

d dg as ^ dfj/dx&

/1 " ' Jr

A short calculation shows that this is equal to (2.11).

§3. Relation between Ω'(*Z) and Ω'(*Z)

Our methods will compute the cohomology of Ω'(*Z) (Theorem 5.1).
In view of Theorem 2.8, we must thus establish a connection between the
cohomology of Ω'(*Z) and the cohomology of Ω'(*Z). The hypothesis of
the following theorem might be awkward to check directly, but we shall
show in section 5 that it is a consequence of the hypothesis that allows us
to compute the cohomology of Ω'(*Z).

For / C Ssp Π Saf, define a complex (A'j, δ) by

Λ

Note that for j G £af Π ̂ p , multiplication by Xj commutes with Dk}h,a f° r

fc = iV + l J . . . , iV + r, hence multiplication by Πje/ x ύ ι s a n isomorphism
of complexes from (A^δ) onto (A},<5). In particular, all these complexes
have isomorphic cohomology.

PROPOSITION 3.1. Suppose that Hι{A'^) — 0 for I Φ r. Then

Hι(Ω'(*Z)) = ϋ" / + r(Ω*(*Z)) for all I.

Remark. Up to reindexing and some sign changes, the complex (A}, δ)

is the Koszul complex on Rf defined by {-Div+fc,̂ α}fe=i Thus the hypoth-

esis of the proposition is equivalent to the requirement that the Koszul

complex (A^, δ) be acyclic in positive dimension, i.e., Hi — 0 for all / > 0.

Proof Consider the double complex κp, q for p, q > 0 defined by

κw= θ l

dxin dxj,
Λ Λ — ^ Λ — ^ Λ Λ

Xjq
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where / = {ii,...,zp}, with maps d\ : κp, q —> κp+l,q, d2 : κp,q
KV-> 9 + 1 defined by

Λ Λ ̂  Λ ̂  Λ Λ
/ \ / \ / \ / \ / \

j±
 X

j
q

Xip Xjl Xjq

Wiγi, \ f\rp. HIT ' ftΎ fιΠΓ •

k=N+ι ' ' X k ' X i l Xip x^ xi<i

The total complex associated to this double complex is easily seen to be
Ω"(*Z). Let X' be the complex Hr(κ

Ί ,d 2 ), i.e., Xp = κp,r/d2(
κp,r - 1)

with differential induced by d\ : κpyr —> κp+ l ,r . It is easily seen that
Ω'(*Z) = X'. Note that for a fixed p, the complex (^p, ,c?2) satisfies

where / = {ii,... ,i p}. Our hypothesis implies that for all / C 5af Π ί>Sp,
£ΓZ(Λ}) = 0 for / φ r, hence jff9(^p, , d2) = 0 for all p and all q φ r. The
conclusion of the theorem is then a standard fact about double complexes
[M Appendix B].

§4. Cohomology of a related complex

We consider a slightly more general version of the previous situation,

but work in the purely toric case. This has the advantage that all the

complexes we encounter are Koszul complexes (up to reindexing and sign

changes), hence are somewhat easier to analyze. Let / = ΣjeJajx^ £

F[xχ,..., xp, Oi Xp)"1], where J C Zp is finite, j = ( j i , . . .,jp), xJ =

xf -xft, and aά G Fx. Let Δ(/) C R^ be the convex hull of J U

{(0, . . . ,0)} . Recall [KO] that / is nondegenerate relative to Δ(/) if for

every face σ of Δ(/) not containing the origin, the Laurent polynomi-

als dfσ/dxι,... ,dfσ/dxp have no common zero in (Fx)p, where fσ =

Σj£σnJajx^ a n ( l F is an algebraic closure of JF.
Let C(f) C R p be the real cone spanned by the elements of J , let

M(/) = ZP Π C(/), and put R = F[xu | tx E M(/)]. Let L(f) C R^ be the
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real subspace spanned by the elements of J and let M'(f) = ZpΠL(f). Put
d(f) — dixn ̂ L(f). Let V(f) be the volume of Δ(/) relative to Lebesgue
measure on L(f) normalized so that a fundamental domain for the lattice
M'(f) has volume 1. Let a = (αi , . . . ,α p ) G Fp and define differential
operators Diji(X on R for i = 1,... ,p by

Define a complex (JK", <5/,c*) by

dxi
Λ Λ —

Remark. Suppose we are in the situation of section 2 with n = 0
and take p = N + r, f = h. The inclusion R C R' identifies the complex
(K\δf^a) with a subcomplex of (Ω'(*Z),(5^;Q;). Our calculation of Hι(K')
here will lead to a calculation of Hι(Ω* (*Z)) in section 5.

The subspace L(f) C Rp can be defined by linear equations with ra-
tional coefficients, i.e., there exists L C Qp such that

L(/) = R 0 L C
Q Q

Our basic result is the following.

THEOREM 4.1. Suppose f is nondegenerate relative to Δ(/). If a φ

F<g)QL, then Hι(K') = 0 /or αM /. If a G F ® Q L , ίΛen Hι(K') = 0 /or

Z < d(f) orl>p and dimF Hι(K') = ( ^ / j ) ^ / ) ! V(/) /or d(/) < Z < p.

In particular, if d(f) = p̂  then Hι{K') — ̂  if I φ p and dimp HP(K') =

Proof The case a φ F 0 Q L is essentially trivial. Choose a linear
form p = Y%=ι hui on Qp such that p vanishes on L but p(α) 7̂  0. Put

p

P(Df,a) = Σ
2 = 1
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a differential operator on R. It commutes with the differential <5JJQ of the
complex K'. Since K' is (up to reindexing and some sign changes) the
Koszul complex on R defined by {-Dz,/,α}?=i> it follows that p(DfjOί) is the
zero operator on Hι(K') for all I. On the other hand, since all monomials
xu E R satisfy u E X, a calculation shows that p(DfiOί) acts on R by
multiplication by p(α). Since p(α) φ 0, p(DfiOί) is invertible on R and
hence on Hι(K') for all L This implies Hι(K') = 0 for all I.

From now on we assume a E F ® Q L . The ring R has an increasing
filtration F. defined as follows. Define the weight w(u) of u E M(f) to be
the least nonnegative real (hence rational) number w such that u E wA(f),
the dilation of Δ(/) by the factor w. It is easily seen that there exists a
positive integer e such that w(u) E e- 1Z>o. Define F^/eR to be the F-span
of those monomials xu with w(u) < k/e. Note that Xidf/dxi E Fi-R for
i = 1,... ,p. We let fi denote the image of Xidf/dxi in gr1(β), where gr.(-R)
is the associated graded ring.

This filtration induces a filtration on the complex K' by defining F^/eK
ι

to be the span of the /-forms xu (dx^/x^) A Λ (dxijx^) with w(u) <
(k/e) — I. The differential δf^a preserves this filtration. We denote the
associated graded complex by (K\δfi(X). Explicitly,

Rι
Rι=

X.

dx

The subspace L can be parametrized by d(/) coordinates. To fix ideas,
suppose these coordinates are u\,..., ^d(/). Then L can be defined by
equations

d(f)

(4.2) m = Σ bvuJ (ί = d ( / ) + 1

? - >PJ

 6 « G Q )

Since the exponent of every monomial in / lies in L, it follows that

df d{f) df
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in particular, we have

d(f)

Let (K[^δι) be the complex defined using only / i , . . . , /^(/), i.e.,

d(f) A,

By [KO Theoreme 2.8] (see also [AS3 Theorem 2.14]), the hypothesis that
/ is nondegenerate implies that

(4.3) Hι(K[) = 0

and dimF H
d^{K{) = d(f)\ V(f).

Let (K[,δι) be the corresponding complex defined by DijjCt for i —
l,...,d(f), i.e.,

This is a filtered complex (using the previously defined filtration) whose
associated graded complex is K[. Thus there is an E\ spectral sequence
whose E\ term is the cohomology of K[ and whose E^ term is the associated
graded of the cohomology of K{. By (4.3) this spectral sequence collapses
at the Eι term, hence

(4.4) Hι(K{) = 0

(4.5) dimi?

Since a G F ® Q L, as operators on R we have

(4.6)
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By standard properties of complexes, (4.4) implies

(4.7) Hι(K') = H

where K'2 is the complex

Λ

dxjt

i \

But it follows from (4.6) that A,/,α acts trivially on Hd(f\k{) for i =

d(f) + l , . . . ,p, hence the differential 62 is trivial. It is then clear that

Hι(K2) is isomorphic to the direct sum of (p~"fΛ) copies of Hd^f\k[).

Theorem 4.1 now follows from (4.5) and (4.7).

We now define some complexes "between" K' and Ω'(*Z). Let σi, . . . ,
σ s be the codimension-one faces of the cone C(/). Define linear forms
Zi,...,ί5 on L by the conditions: (i) l\ — 0 on σ̂ , (ii) k(Mf(f)) = Z,
(iii) Zi > 0 on C(/). It is easily checked that for u e L(/), tx G C(/) if
and only if k(u) > 0 for i = 1,..., s. Let / C {1,..., s}. We say that
a is semi-nonresonant relative to I if either a <£ -F0Q -̂  o r ^(^) is not a
positive integer for i G /. For / C {1,..., 5}, let M/(/) = {u G M ;(/) |
*i(u) > 0 for all i £ 1} and let iϊ/ be the ring i?7 = F[xu \ u G M/(/)]. In
particular, M$(f) = M(f) and i?0 = β. Define a complex (UΓ},5/jα) by

Λ Λ

Λ Λ

The natural inclusion R ^-^ Rj identifies (K\δfa) with a subcomplex of

PROPOSITION 4.8. If a is semi-nonresonant relative to I C {1,..., s},

then the inclusion (K\δfiOί)
 <L-> (K\,δfiQ) is a quasi-isomorphism, i.e., it

induces isomorphisms H (K') ~ H (Kj) for all I.
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Proof. When a ^ F ® Q L , the same argument that was used in the

proof of Theorem 4.1 for K* shows that Hι(K}) = 0 for all /. So we may

assume that a G J ^ ® Q L. Note that if a is semi-nonresonant relative to /

then a is semi-nonresonant relative to J for every subset J C I. It clearly

suffices to show that for every J C / and i G / \ J, the natural inclusion

(Kj,δfiOί)
 c-> ( ί juf jb^Q) is a quasi-isomorphism. We achieve this by

showing that the quotient complex KJ^^/KJ satisfies H \K'j\ju\l'K'j) — 0

for all I. We view this quotient complex as follows. The quotient RJΌ^/RJ

may be identified with the F-vector space V with basis the set of all xu for

u G M'(/) satisfying lk(u) > 0 for k φ JU{i}, k(u) < 0. We then have the

identifications

l<ii<.. <iz<p ~<i ~*i

5 / , α ί — Λ Λ - ^ M - ( ] ζ 7 - ( A c , / , α ( 0 ) — ) Λ - ^ Λ Λ - ^ ,

where

ί x w if xu G V,

0 if xu £ V.

Thus the quotient complex can be identified with the Koszul complex on V

defined by the operators {7- o -Dfc,/,a}/|Ur

There is an increasing filtration F. on V defined by letting FaV be the
subspace spanned by those xu with k(u) > —α, a = 0,1,.. . . Note that
FQV = (0). By a standard spectral sequence argument, it suffices to show
that the associated graded complex has trivial cohomology. We identify the
associated graded complex with the Koszul complex on gr.(F) defined by
the induced action of 7_o.D/cjjCn k = 1,... ,p, which preserve this filtration.
Extend the form l{ on L to Q p and write it as

k(uU . . . , Up) = Σ Ckuk (ck G Q).

Put li(DfyOί) = Yjk-ι CkΊ- ° Dkj^ai a n operator on V. One checks that it is
independent of the choice of extension of U to Qp. Then li(Df^a) is the zero
operator on all homology groups of the Koszul complex on gr.(V) defined
by {7- o £?fc,/,α}fc=i We show that li(DfiOί) is invertible on gr.(V), which
implies that all these homology groups must vanish.
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One computes that

(4.9) k(Dfta)(xu) = k(a + u)xu + 7 _

(recall / = Σjajx^)- But l%{j) > 0, so each x^u that appears in (4.9)

with nonzero coefficient satisfies k(j + u) > k(u). It then follows from

(4.9) that li{Pf^) operates on grα(V) as multiplication by k(a) — a. The

hypothesis that a be semi-nonresonant implies this is nonzero (with the

possible exception of the case a = 0, which is not a problem since grQ(V) =

(0))

From Theorem 4.1 and Proposition 4.8, we have immediately the fol-
lowing.

COROLLARY 4.10. Suppose that f is nondegenerate relative to Δ(/)

and a is semi-nonresonant relative to I C {1,..., s}. If a fi F ® Q L, then

Hι(K}) = 0 for all I / / α e F ® Q L, then Hι{K}) = 0 for I < d(f) or

l>pand d i m F Hι(K}) - ( Γ ί { / ) V ( / ) ! V(f) for d(f) <l<p.

In the special case / = Σ = {1,..., s}, we can drop the hypothesis of
semi-nonresonancy. This follows because for any u G M ;(/), multiplication
by xu is an isomorphism of complexes

(its inverse is multiplication by x~u). Even if a fails to be semi-nonresonant
relative to Σ, we can always choose u G M(f) so that a — u is semi-
nonresonant relative to Σ and apply Proposition 4.8 to the complex on the
right-hand side. Thus we have the following.

COROLLARY 4.11. Suppose f is nondegenerate relative to Δ ( / ) . //
a £ F(g)QL, then Hι(KΈ) = 0 for all I. If a G F(g) Q L ? then Hι(KΣ) = 0

for I < d(f) orl> p and dimF Hι{K{1 s}) = (Πj(/)M/) ! VU) for all

Put i?o = F[x\,..., Xp, (x\ - - - Xp)^1}. We compute the cohomology of
the complex KQ defined by

Λ Λ

l<ΐi< <ii<P X ί l X i ι

Λ Λ L = > DifJζ) Λ Λ Λ L,
T I T '
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Note that RQ has a direct sum decomposition as F-vector space

[u]eZp/M'(f)

where RQ is the F-span of all xv such that υ G [u]. Each ^,/, a is stable

on JRQ , hence we get a corresponding direct sum decomposition

(4.12) ( 4 W = 0 (*ό,M> «/,*)•

When u G M'(/), ( ^ r 1,(5^) is just the above complex (K'^δf^). Fur-
thermore, for i£ G Zp, one checks easily that

which says that multiplication by xu is an isomorphism of complexes be-
tween (K'Έ,δf^+u) and (K'Q^δfiCί). Thus by Corollary 4.11, Hι(K'Q^
δfiOί) — 0 for all I if a + u ^ F 0 Q L while if α + u G F ® Q L , then
^ = 0 for Z < d(/) or ί > p and dimFfTz(ir- j [u],«/ ia) -

f o r rf(/) < ι < P There is either zero or one class
[u] G Zp/M'(f) such that α + u E F ® Q L , according as to whether
(α + Zp) Π (i^^Q L) is empty or nonempty. By (4.12), we therefore have
the following.

THEOREM 4.13. Suppose f is nondegenerate. If (a+Zp)Π(F ® Q L) =

0, then Hι(K0,δf^) = 0 /or αZZ /. // (α + Zp) Π ( F ® Q L ) ^ 0, then

Hι(K0, δfia) = 0 forl< d(f) orl>p and

dimF

for d(f) <l<p.

§5. Proof of Theorem 1.4

We return to the setting of sections 2 and 3 but make the additional
assumption that we are in the purely toric case, i.e., that n = 0. Thus

0> fu J Λ ^ ^[^i , . . . , XJV, (xi XJV)"1],

r

Λ' = 9 + X^ xN+jfj 1



74 A. ADOLPHSON AND S. SPERBER

THEOREM 5.1. Suppose h is nondegenerate relative to Δ(/ι) and
dim Δ(h) = N + r. Then

tt{*Z),δh,a) = (N + r)lV(h).

Proof. We apply the results of section 4, taking p = N + r, / =
h. One checks that the complex (K^δfiOί) of section 4 then becomes
(Ω'(*Z)A> α). Since dimΔ(/ι) = ΛΓ + r\ we have L - QN+r. Thus
(α + Z^+ r ) Π ( F ® Q Q^+ r ) ^ 0 for all a and d(/) = N + r. The the-
orem is then an immediate consequence of Theorem 4.13.

Proof of Theorem 1.4. By hypothesis, α v̂+i? ? <̂7V+r ^ Z, /ι is non-
degenerate relative to Δ(/ι), and dimΔ(/ι) = N + r. Suppose we can show
that these conditions imply the hypothesis of Proposition 3.1, namely, that
H1(A'Q) = 0 for I φ r. Then by Proposition 3.1 and Theorem 2.8 we have
isomorphisms

for all Z. Theorem 1.4 is then an immediate consequence of Theorem 5.1.
We are thus reduced to checking that Hι(A^) — 0 for I φ r.

As observed in the remark following Proposition 3.1, the complex Aψ is
(up to reindexing and some sign changes) the Koszul complex on Rf =
F[xι,..., XN+n (xi'" XN+r)'1} defined by the operators {DN+jjhiOί}

r

j=1.

We denote this Koszul complex by K. in what follows. Thus we must
check that K. is acyclic in positive dimension, i.e.,

(5.2) Hι(K.) = 0 ϊoτl>0.

We accomplish this by a modification of the arguments of section 4.

Note that D^^-j^a = XN+jd/dxjy+j + OLN+J + χN+jfj is independent

of g. Furthermore, the nondegeneracy of h relative to A(h) implies the

nondegeneracy of YZ-χXN+jfj relative to Δ ( 5 3 = 1 XN+jfj)- (Every face

σ of Δ ( Σ ^ = 1 xjsf+jfj) not containing the origin is also a face of A(h) and

(Y7j=ixN+jfj)a = hσ for such a face.) So we may assume g = 0, i.e.,

h = Σrj=1XN+jfj. The ring R of section 4 is generated by monomials

xu with u G ZN+r Π C(h). The weight function w defined in section 4 is

given explicitly in this case by w(u) = ujy+i + + UN+r, and it defines

a grading (not just a filtration) on R. Furthermore, R is known to be
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a Cohen-Macaulay ring (see [H]). The theorem of Kouchnirenko takes a

sharper form in this case (see [KO section 2.12]). The hypothesis that h is

nondegenerate and dimΔ(/ι) — N + r imply that {xidh/dxi}izJ[r form a

regular sequence on R. Taking i = iV + l,. . ., iV + r, we see in particular

that {xN+jfj}rj=ι form a regular sequence on i2, hence the Koszul complex

they define on R is acyclic in positive dimension. Fix an element u G M(h)

that is also an interior point of C(h). For each integer α > 0, let C. be

the Koszul complex on the R-module x~auR defined by {xN+jfj}Tj=ι- Since

multiplication by x~au is an j?-module isomorphism from R onto x~auR, it

follows that Hι{c[a)) = 0 for all Z > 0 and all a. Let Zλ(α) be the Koszul

complex on x~auR defined by {DjV"+j,/ι,α}L=i This is a filtered complex,

where the filtration F. on x~auR is defined by taking Fk(x~auR) to be the

F-span of all x~auxv with w(v) < k. Its associated graded complex is C\ ,

hence the same spectral sequence argument used to prove (4.4) shows that

Hι(D[a)) = 0 for all Z > 0 and all α.

Now consider K., the Koszul complex defined above. Since Rf =

U ^ o x ~ α w J ϊ , it follows that any /-cycle £ representing a homology class

of Hι(K.) is an /-cycle in some complex D{a\ But Hι(D[a)) = 0 for I > 0,

i.e., £ is an /-boundary in D,, , hence £ is an /-boundary in K. also. It

follows that Hι(K.) = 0 for all / > 0. This establishes (5.2).

§6. Cohomology of Ω"(*Z) on T m x A n + r

In this section we go beyond the purely toric case and consider the
problem of computing the cohomology of Ω*(*Z) on T m x A n + r . For this it
is necessary to pursue the ideas of section 4 a little further. For most of this
section, we deal with an arbitrary polynomial h G F[x\,... ,Xjγ+r5 (#i * *
Xm)~1]' For the application to twisted de Rham cohomology (Theorem 6.7
below), we shall take h to be as given in (2.2).

For any subset / C S with Sto ^ ^άn Q /, let hj be the polynomial
obtained from h by setting Xj = 0 for j £ I. (Note that j £ I implies
j ^ 'S'af ^ SSp.) We say that h is convenient relative to 5af Π 5 s p if for all
such / we have

(6.1)

This implies in particular that dimΔ(/ι) = iV + r.
Let / i , . . . ,/s be the linear forms on Q ^ + r defining the codimension-

one faces of the cone C(h), normalized as in section 4. The hypothesis
that h be convenient relative to S'af Π Ssp implies that the equations xι =
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0 for i = m + 1,... , m + n define codimension-one faces of C(h), hence
must lie among the forms / i , . . . , Zs, say, l\ — % + i , . . . , ln = x m + n Let
B = {n + 1,..., 5} C {1,. . . , s}. We recall the corresponding complex K'B
defined immediately preceding Proposition 4.8. We have Mf(h) = ZN+r,
hence

MB(h) = {u = (ui,... ,uN+r) e ZN+r I τxm+i,... ,um+n > 0}.

It is then clear that the ring Rβ — F[xu \ u E Mβ(h)] defined there is
identical to the ring R! = Ω°(*Z). Thus (K'B,6hia) is the complex

l<ύ< <ii<iV+r

Note that Ω"(*Z) is a subcomplex of i^^. More precisely, the difference

between these two complexes is that in K'B we allow logarithmic poles

along the divisor Π?=i χm+i = 0 whereas in Ω'(*Z) we do not.

PROPOSITION 6.2. Suppose that h is nondegenerate relative to Δ(/ι)
and convenient relative to Saf Π Ssp and that a is semi-nonresonant relative
to B. Then

h,a) = (N + r)\V(h).

Proof. The proposition is a special case of Corollary 4.10.

We explain how to drop the hypothesis that a be semi-nonresonant. A
short computation shows that the condition that h be convenient implies
that there exists u G C(h) with k(u) = 0 for i = 1,. . . , n but k(u) > 0 for
i G B . In particular, both xu and x~u lie in i?r, so multiplication by xu is
an isomorphism of complexes

The condition that U{u) > 0 for i G B implies that a — ku is semi-
nonresonant relative to B when fc is a sufficiently large positive integer.
Hence we get the following corollary.
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COROLLARY 6.3. The conclusion of Proposition 6.2 remains true when
the hypothesis that a be semi-nonresonant relative to B is dropped.

We connect (ϋΓ^,δ^α) with (Ω'(*Z),δhia) by introducing some related
complexes. For I C S with 5to U S^u C J, let

R'(I) = F[xu I u G MB(h), UJ = 0 for j $ J],

i.e., R'(I) is the coordinate ring of the variety which is the projection of
T m x An x T r onto those coordinates which are indexed by /. For i G /,
let Difa^a be the differential operator on Λ;(/) defined by

A

Let (if^(/),δ/ι/jα) be the complex defined by

where the direct sum is over all increasing sequences i\ < < i\ of elements
of / and

For /' C /s

a

p

f, let R'(I,Γ) = ([\jeI, Xj)R'(I), the elements of R'(I)
divisible by Xj for all j £ /'. Define a subcomplex (K'B(I,I'),6^^) of
(K'B(I),δhliOt)by

JCJ, |J|=Z X i l Xil

where J = {ή,..., ij}, ή < < i/. Note that K'B(S, 0) = K'B(S) = i ^
and ^ ( S , Saf Π Ssp) = Ω'(*Z). Let i G /s

a^, i ^ /'. Consider the map Q{ :
fl'(J, J') -> ^ ( / \ {i}, /') defined by setting x{ equal to 0. Let K'B(I, Γ) be
the complex obtained by shifting indices by 1 in K'B(I, i7), i.e., Kl

B(I, Ir) =
Kι£ι{I,Γ). The map 0* induces a map 0* : KB(IJ') -> KB(I \ {i}Jf)
defined by

— ^ Λ Λ — ^ Λ Λ — i ί i f i € { z ! , .
X^χ X{ Xit

otherwise,
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whose kernel is easily seen to be K'B(I, VU {i}). Thus there is a short exact
sequence of complexes

(6.4) 0 —> KB(I, I' U {i}) — KB(I, I') —+KB(I\ {i}, I') — 0.

We use this exact sequence and Corollary 6.3 to compute the cohomology
of each KB(/,/').

THEOREM 6.5. Suppose that In is nondegenerate relative to Δ(/ι) and
convenient relative to 5af Π Ssp. Then

Hι(KB(I,I'),δhl,a) = 0 ( /^ | / | ) ,

dίmFHW(KB(I,l'),δhl,a) = £ (-l)l cl( |/ | - \C\)\V(hiχc),
CCΓ

where V(hj\c) denotes the volume of A(hj\C) relative to Lebesgue measure
lAi

on

Proof. The proof is by induction on \Γ\. Suppose / ; = 0. The hy-
pothesis implies that hj is nondegenerate relative to A(hj) and convenient
relative to I^ί, so the theorem is an immediate consequence of Corollary 6.3.
Now suppose the theorem is known for sets /' of a given cardinality and let
i G Ifp, i φ. V. The induction hypothesis implies that

Hι(KB(I,I>)) = Hι(KB(I\{i},l')) = 0

for I φ \I\, so the long exact homology sequence associated to (6.4) shows
that Hι(K'B(I, V U {i})) = 0 for I φ \I\ also. The exact homology sequence
then gives

(I, ΐ U{i}))

The induction hypothesis gives a formula for each term on the right-hand
side, and an easy calculation then gives the desired formula for the left-hand
side.

Applying this in the case I = S, Γ = 5af Π 5 s p gives the following.

COROLLARY 6.6. Suppose that h is nondegenerate relative to Δ(/ι) and
convenient relative to SΆς Π SSp. Then

Hι(Ω (*Z),δhιOί) = 0 (lφN + r),

C C 5 a f n 5 s p
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We now assume that h is given by (2.2). In section 5 it was proved that
the hypothesis that h be nondegenerate relative to Δ(Λ) and dimΔ(/ι) =
N + r implies that the hypothesis of Proposition 3.1 holds. Thus under the
hypothesis of Corollary 6.6 the conclusion of Proposition 3.1 holds, and by
Theorem 2.8 we have the following.

THEOREM 6.7. Suppose that c w + i, •••, &N + r $ Z and that h =

J2rj=iχN+jfj is nondegenerate relative to Δ(/ι) and convenient relative to

S'afΠS'sp. Then

ccsaίnssp

§7. An example

In this section we apply Theorem 6.7 in the case of twisted de Rham

cohomology on A ^ where g, / i , . . . , / r £ F[x\^..., XN] are polynomials of

degrees do, dχ:..., d r, respectively. We assume that for i = 1,.. ., ΛΓ, the

monomial a:̂ J appears in /j (resp. in g if j = 0) with nonzero coefficient

and that g(0,. . . , 0) and fj(0,..., 0) for j = 1,. . ., r are all nonzero. This

implies in particular that h is convenient relative to SSp = {l,...,iV}.

Furthermore, this makes it easy to compute V(h).

We regard Δ(/ι) C JHN+r as fibered over R r , the last r coordinates.

The projection of Δ(/ι) on R r is the simplex

For λ = ( λ i , . . . , λ r ) G Δ, it is easily seen that the fiber of A(h) over λ is
the simplex in R ^ with vertices at the origin and

((1 - λi λr)d0 + λidi + + λrdr)ei (i = 1,..., N),

where {ei,..., e v} is the standard basis for R . Thus the volume of this
simplex is

j=ι

which implies that

N
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A straight-forward calculation using induction on r then shows that the

right-hand side equals the sum of all monomials of degree N in do, c?i,. . , dr,

(7.1) (N + r)\V(h)=

= 0

N

= ΣI
2 = 0 \V

(I

N-iDi(d0,..

ΦN),

.,dr).

We remark that this formula appeared previously in relation to the expo-

nential sum corresponding to h (see [AS1, AS2]).

Let Djs[(do^..., dr) denote the expression on the right-hand side of (7.1).

Our hypothesis on g, / i , . . . , fr implies that for / C S with S^u C / , we have

| / | ! V(hj) = D|7sp|(cίo, . , dr). If we assume now that h is also nondegener-

ate relative to Δ(/ι), we have the following consequence of Theorem 6.7:

(7.2)

(7.3)

When dx = • = dr = 1, one can check that this formula agrees with the

result of [AKOT].
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