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INTEGRATION OF LOCAL ACTIONS ON
HOLOMORPHIC FIBER SPACES

PETER HEINZNER! anp ANDREA IANNUZZI?

Abstract. It is proved that every holomorphically convex complex space en-
dowed with an action of a compact Lie group K can be realized as an open
K-stable subspace of a holomorphically convex space endowed with a holo-
morphic action of the complexified group K C. Similar results are obtained for
holomorphic K-bundles over such spaces.

Let G be a real Lie group which acts by holomorphic transformations
on a (reduced) complex space X. Suppose that the Lie algebra of the
complexification G of G (see [Ho, p. 204]) is the complexification of the
Lie algebra of G. This holds for example in the case where G is simply
connected. Then, by integrating the holomorphic vector fields given by the
G-action, the complexification G® acts locally and holomorphically on X
(see [K]).

Adapting the terminology of Palais (see [P]), we say that a complex
space X* which contains X as an open subset is a globalization of the
complex G-space X whenever the local G®-action on X extends to a global
holomorphic action on X* and G¢ - X = X*.

The following results are proved in this paper.

THEOREM 1. Let G be a compact Lie group and X a holomorphically
convexr complex G-space X. Then there exists a globalization X* of X
satisfying the following conditions

(i) X* is holomorphically convex

(i1) Every G-equivariant holomorphic map ¢ from X into a complex space
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Y where GC acts holomorphically extends to a GC-equivariant holo-
morphic map v*: X* - Y.

Part (ii) of Theorem 1 implies that the globalization of the Remmert reduc-
tion of X (see [GR, p. 221]) is the Remmert reduction of X, since, in the
special case where X is assumed to be Stein, the globalization X* is also a
Stein space ([H1]) (see §7 for the precise statement).

Theorem 1 is a special case of

THEOREM 2. Let G be a compact Lie group, X a holomorphically con-
vex complex G-space and P —— X a holomorphic principal G-bundle over
X with complex structure group S. Then the bundle P "~ X extends to a

*

holomorphic principal GC-bundle P* "= X* which also has S as structure
group.

Theorem 2 has an important application when X is a Stein space.
Under the assumption that a certain bundle of Lie groups over X extends
to X*, there is an equivariant version of Grauert’s Oka Principle ([HK]),
ie.,

Bunde (X)% = Bundeo (X)“

where Bundp(X)® (resp. Bundgo(X)®) denotes the isomorphism classes
of holomorphic (resp. topological) G-bundles over X with fixed complex
structure group S and fiber. Theorem 2 implies that this assumption in
[HK] is superfluous.

Local differentiable actions and their globalizations have been exten-
sively studied by Palais in [P]. In the category of possibly non Hausdorff
manifolds he has given necessary and sufficient conditions for a local action
to admit a globalization. Although Palais’ globalization is in general non
Hausdorff, it gives important insight into the behavior of a local action. In
order to verify the Hausdorff property in our setting, it is necessary to use
tools of complex geometry. The proof of Theorem 1 is carried out by com-
bining Palais’ method with complex analytic techniques, e.g., properties of
the Remmert reduction and Stein theory. It should also be noted that the
proof of Theorem 1 for Stein spaces (see [H1]) can be substatially simplified
by incorporation of Palais’ techniques (§7 Remark).

We would like to thank W. Kaup for calling Palais’ results to our at-
tention. For the convenience of the reader, we recall in the first three
paragraphs those parts of this theory which are used here. Of course we
formulate them in the context of complex spaces.
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As an application we show in §5 that a holomorphically separable com-
plex G-space X admits a possibly non Haudorff globalization if G is a
compact group or vector group.

In §6 we discuss “globalizations” of G-equivariant holomorphic maps.
These results are used to prove Theorem 1 in §7 and Theorem 2 in §8.

A consequence to Hamiltonian actions of a compact group G on a holo-
morphically convex Kéahlerian space is given in §9.

§1. Local actions

Let G be a real connected Lie group and X a complex space which is
assumed to be reduced. A local action of G on X is given by a real analytic
map ®: Q2 — X where Q2 is an open neighborhood of the neutral section
{e} x X in G x X such that

(i) for all z € X the open subset Q(z) := {g € G; (g,z) € Q} of G is
connected,

(ii) for fixed g € G the map = — ®(g,z) =: ¢g -  is holomorphic when
defined, e -z = = and

(iii) if (gh,z) € Q, (h,z) € Q and (g,h-z) € Q, then (gh) -z =g (h-x)

hold.

For a complex Lie group G the local action is said to be holomorphic
if ® is holomorphic.

There is a natural notion of equivalence of local G-actions on X which
is given by restricting 2 to a smaller neighborhood of {e} x X in G x X. To
an equivalence class of a local action one can assign a linear map from the
Lie algebra g of G into the Lie algebra Vec(X) of holomorphic vector fields
on X. The map A: g — Vec(X) is closed by & — £x, where the holomorphic
vector field £x on X is defined by

ex() = (5) _ foemte

The map A is a homomorphism of Lie algebras if we view g as the Lie
algebra of right invariant vector fields on G.

Conversely, if there is a homomorphism A: g — Vec(X) of Lie algebras,
then up to equivalence there exists a unique local G-action on X which
induces the given A (see [K]).

If G is a complex Lie group, then local holomorphic G-actions corre-
spond to C-linear homomorphisms.
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For a Lie group G which is not connected let G. be the connected
component of the neutral element ¢ € G. A local G-action will always
mean a local G.-action.

§2. Foliations associated to local actions

Let GG be a Lie group and X a space. For a G-action on X we have an
induced diagonal action of G on G x X given by ¢- (h,z) = (gh,g-z). The
quotient map

GxX— X*:=(GxX))G, (hz)— [h,a]

is equivariant with respect to the “right” G-action on G x X which is given
by 7(g) - (h,z) = (hg™!, z) and the induced action on X* satisfies

[hg™', 2] = [e, (gh™" - z].

In particular there is a tautological G-equivariant isomorphism X — X*,
z — le,x].

Under certain assumptions there exists a reasonable quotient X* of
G x X also when one consider a local G-action on X. In this case the
above map leads to an open locally G-equivariant embedding of X into X*
which is in general not surjective. Thus after adding to X some points one
obtains a set X* containing X such that the local action on X is induced
by a global G-action on X*.

Palais made this precise in [P]. In order to present and to show how
to carry over his results to local actions on complex spaces we need some
preparation.

Let @: Q2 — X be a local action of a connected Lie group G on the com-
plex space X. A product NV x U, where N is an open connected neighbor-
hood of the neutral element e € G and U is an open subset of X satisfying

(a) N=N"1,
(b) N2 x U c Q and
() N°2x N2.UcCQ

is called an elementary slice pair.
The union of all elementary slice pairs covers a neighborhood of {e} x X
and the image W of an elementary slice pair N x U with respect to the map

U:NxU — G x X, (g,2) — (9,9 - )
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is open. Moreover ¥ is an isomorphism onto W. The images of all possible
W translated by the right action of G on G x X, which is given by right
multiplication on the first component, cover G x X. For h € G and an
elementary slice pair N x U the isomorphism

U Nk x U — Wh,  (g,2) — (g, (gh™") - z),

where Wh := {(gh,y) € G x X; (g,y) € W}, is called a slice chart with
respect to h and N x U for the local diagonal G-action on G x X.

PrROPOSITION 1.  Let ¥;: Njg; x U; — Wj be slice charts, j = 1,2.
For any s € Nygy N Nygy there are isomorphisms

W;(s): Njgj x (sg51) U — W;  (g,2) — (g,(957") - z)
such that
Uj(s) ™ (Wi N We) = (Nigi 0 Naga) x ((sg7') - U1 0 (sg3 ") - Ua).
In particular, U1(s) = Wa(s) on Uy(s) L (W1 N Wa) = Ws(s) L (W1 N Wh).

Proof. Since sg;~1 € Nj, {sgj_l} X (sgj*l) -U; C Q and ¥; is an isomor-
phism, the map

Wj(5): Nygy x (s051) - Uy = Wi, (9,2) = (9, (997 ") - ((s95) ™ - )

is also an isomorphism. For (g,z) € N,g; X (sgj”l) - U; it follows that
gg}lgjs‘l =gs7l¢ NJ-Z, x € Nj-U;. Thus Nj2 x N; - U; C 2 implies

(99;%) - ((sg;i D)™ - z) = (gs71) - .

Now W;(s)(N;g; x (sgj_l) -Uj) = ¥;(Njg; x U;). Thus g € N;g; and
y € Njgj and y € N; - U; for (g,y) € W;. Moreover sg! € Nj2 and
N? x N;-Uj C Q. Therefore ¥;(s)™': W; — Njg; x (sg; ') - U is given by
(9,9) = (9, (s97") - 9)- N

COROLLARY 1. For slice charts Wj: Njgj x U; — Wj, (g,z) —
(g, (ggj“l) -z), j = 1,2 there exist open subsets Uia resp. Ugy of Uy resp. Us
such that
U (W1 N Wy) = (N1g1 N Nagz) X Usz
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Tesp.

U (Wi NWa) = (N1g1 N Nags) x Us.

For any s € Nygy N Nags the isomorphism
oy UTHW, N W) — U1 (W N W), Uy =5t oy

is given by (9,2) — (g, (9257") - ((sg1 ' - 2)). 0

Using slice charts one can define a leaf topology on G x X. A subset V
of G x X is a neighborhood of (hg,yo) in this topology if and only if there
exists a slice chart V: Nh x U — W such that

(ho,y()) € \I’(Nh X {.’L‘O}) cVv

for some zq € U.

A connected component of G x X in the leaf topology is called a leaf
of the local G-action on G x X. The leaf topology depends only on the
equivalence class of the local G-action on X. Since G x X is a disjoint
union of leaves, one has a quotient space X* of G x X whose points are the
leaves. Endow X* with the quotient topology and denote by II: Gx X — X*
the quotient map.

Corollary 1 has the following interpretation. A slice chart ¥;: N;g; x
Uj — W; is a homeomorphism if we view N;g; x U; as the disjoint union
of manifolds N;g; x {z}, z € U;, and W; as an open subset of G x X
with respect to the leaf topology. The manifold structure on N;g; induces
a manifold structure on ¥;(N;g; x {z}) for each € U; and Corollary 1
says that the slice charts ¥; are analytically compatible charts G x X with
respect to the leaf structure. Each connected component, i.e., each leaf, is
a regulary embedded submanifold of the analytic space G x X. If the given
local G-action on X is holomorphic, then each leaf is a complex submanifold
of G x X.

PROPOSITION 2. (c.f. [P, p. 10]) Let ¥ be a leaf, zo € Ly and let
Wo: Nogo X Uy — Wy be a slice chart such that zg € YXg N Wy. For ev-
ery z1 € Y there exists a slice chart Wy: Nygy x Uy — Wy with z; € Wy,
N1 C Ny, an open analytic embedding B: W1 — Wy and an open holomor-
phic embedding f: Uy, — Uy such that

(i) ¥5'oBoWi(g,2) = (9971 g0, f(z)) for (¢,x) € N1g1 x Uy and
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(ii) if a leaf ¥ intersects W1 non trivially, then ¥1(N1g1 x {z}) C ¥ and
Uo(Nogo x {f(z)}) C X2 for some x € Uy.

Proof. Since a leaf is connected, it is sufficient to show that the set of
z1 € X such that the statement of Proposition 2 holds is open and closed
in the leaf topology. But this is a consequence of Proposition 1. 0

COROLLARY 2. The quotient map II: G x X — X™* is open.

§3. Univalent actions

For a local G-action of a connected Lie group G on a complex space X
the projection pg: G x X — @ is an analytic map with respect to the leaf
structure on G X X. Moreover, the restriction py, of pg to a leaf X is a local
isomorphism. In particular pg(X) is open in G.

The local G-action on X is said to be univalent if for each leaf ¥ the map
pyx, is injective (see [P, p. 62]). In this case there is an analytic isomorphism
gs:pe(X) — X which is the inverse of py.

A univalent local G-action on X is regular, i.e., each point zg of G x X
is in the image of a slice chart ¥: Ngg x U — W such that

(x) aleaf ¥ intersects W non trivially if and only if ENW = ¥(Ngo x {z})
for some z € U.

For a regular local action the leaves are closed in G x X.
A slice chart ¥: Nggp x U — W which has the property (x) is called a
reqular slice chart. For a univalent local action every slice chart is regular.
Although the quotient X™* is in general non Hausdorff one has the fol-
lowing

THEOREM 1. (c.f. [P, p. 63]) For a univalent G-action on X the quo-
tient X* is a possibly non Hausdorff complex space such that every slice
chart ¥: Ngo x U — W inudeces an open holomorphic embedding ¥*: U —
X* which makes the diagram

NgoxU L GxX

pu | 1
U T X*

commutative.
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Proof. Each point z € G x X lies in the image of a slice chart U: Ngg X
U — W. Since II is open and V¥ is a regular slice chart, the induced map
U*: U — II(W) is a homeomorphism. From §2 Propostion 2 it follows that
two regular charts ¥; induce holomorphically compatible maps ¥7. 0

The group G acts by multiplication from the right on the first com-
ponent of G x X. Since for every g € G the map 7:G x X — G x X,
rg(h,z) = (hg~!,z) maps leaves onto leaves, there is an induced G-action
on the quotient X*. For a univalent local G-action on X this action is
compatible with the complex structure of X*.

THEOREM 2. (c.f. [P, p. 71]) For a univalent local G-action on X the
map v: X — X*, o(z) = (e, ), is a locally G-equivariant open holomorphic
embedding which has a the following universality property.

If G acts locally and univalently on a complex space Y, then for every
locally G-equivariant holomorphic map ¥: X — 'Y there exists a unique G-
equivariant holomorphic map ¥*: X* — Y™* such that the diagram

X = X*
() Ly*
Y — Y*

commutes.

Proof. The map t: X — X* is locally biholomorphic and by univalency
it is injective. Thus ¢ is an open locally equivariant holomorphic embedding.

Since G-¢(X) = X*, the map ¢*: X* — Y™ is unique. In order to prove
existence we set 1:G x X — G x Y, 1[)(9,:1:) = (g9,%(z)). Then ¥ maps
leaves into leaves and is G-equivariant with respect to the right G-action.
Thus we obtain an equivariant map between the quotients ¥*: X* — Y™.
Using regular charts on X and Y one sees that ¥* is holomorphic. 0

For a complex space X with a local G-action a not necessarily Hausdorff
complex space X* with a global G-action and a locally G-equivariant open
holomorphic embedding ¢: X — X* is called a universal globalization of the
local G-action on X if the universality property of Theorem 2 is satisfied.
Thus a universal globalization of a univalent local G-action always exists
and it is unique up to biholomorphisms. In this case we have G-¢(X) = X*.
If X* exists, then we will always identify X with its image in X*.
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ProPOSITION. (c.f. [P, p. 70]) Let X* be a universal globalization of
a local G-action on X. For a leaf ¥ of G x X and (go,z9) € ¥ we have
pc(E) = Qogo where Qq is the connected component of e in{g € G; g-xg €
X}. The map

gs: Qg0 — L, gs(9) := (9, (995 ") - o)
is the inverse of ps: ¥ — Qogo, px = pal|X.

Proof. Since the map gy, is continuous with respect to the leaf topology,
the image Xo := ¢5(Q0g0) is an open subset of . In fact it is also closed.
For this let (g, Z) be in the closure of ¥y and let ¥: Ngx U — W, (g,z) —
(g,(9g71) - =) be a slice chart such that Z € U. Since ¥(Ng x {Z}) is open
in ¥, NgN<€ogo is non empty and Nggy 1UQy is a connected neighborhood
of e € G. Moreover, there exists an s € NgNQogo such that (s, (sg71)-z) =
(s, (sgo_l) - xo). This implies Ngggl =N-Z C X, ie, Nggo~1 C Qp and
(9,7) € Xo. 0

Remark. 1t follows that a local G-action is univalent if and only if it
admits a universal globalization. Moreover, for a univalent local G-action
the map gy: Qpgo — ¥ is an isomorphism. Note that the universality prop-
erty of X* was not used in the above proof. Hence, if X admits some
globalization, then it has also a universal one.

EXAMPLE. Let G be a complex Lie group and H a closed complex
subgroup. The local holomorphic G-action on a domain X C G/H is
univalent and the universal globalization X* is G-homogeneous. Thus X* =
G/H where H is an open subgroup of H.

84. Local holomorphic actions induced by global real actions

Let G be a connected Lie group which is a subgroup of its complex-
ification G® and let X be a complex G-space. The G-action induces a
local holomorphic G®-action on X. Every leaf ¥ C G® x X is a complex
G-manifold and the projection ps;: & — G€ is a G-equivariant locally biholo-
morphic map. Hence ¥ is a Riemann domain over G with the additional
property that ps: ¥ — G€ is G-equivariant, i.e., ¥ is a Riemann G-domain
over G®. The complex manifold GC is a Stein manifold which contains G
as a closed totally real submanifold (see e.g. [H2]).

A Riemann domain over a Stein manifold has an envelope of holomor-
phy (see [R]). The envelope of holomorphy 3 of ¥ is again a Riemann
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G-domain over GC. The diagram

G(C

commutes and all maps are locally biholomorphic and G-equivariant. In
particular if ¢ and py, are injective, then py is injective. Thus, if G© is such
that any Stein Riemann G-domain over G is schlicht, then every local G®-
action on holomorphically separable G-space is univalent (see proof of §5
Proposition 2). Note that a local G%-action on X can be univalent only if
all leaves ¥ C G® x X are holomorphically separable.

In order to describe the geometry of the leaves ¥ C G® x X, let K be
a maximal compact subgroup of G. There is a G-equivariant real analytic
isomorphism G x gk M — G®, [g,z] — g-z, where M is a closed K-invariant
real analytic submanifold of G® (see [A] and [HHK]) and G x ¢ M denotes
the quotient of G x M with respect to the K-action which is given by
k-(g9,z) = (gk~ ',k - z). This implies that ¥ is G-equivariantly and real
analytically isomorphic to G xg N where N := (ps)~!(M). The diagram

N — GxxgN = %

pl ! I ps
M — GxgM = G

commutes, where p is given by restricting px, to N. Since the G-action on
G® and ¥ is free, K acts freely on M and on N. Thus py. is injective if and
only if p induces an injection p: N/K — M/K. In general, p is only a local
isomorphism.

If dimG = dim M/K > 2, then it is possible to construct a Riemann
G-domain X over G¢ which is not schlicht. For this one has to choose a
connected manifold Ny and a local isomorphism p: No — M /K which is not
injective. Pulling back the K-principal bundle M — M /K with respect to
P, we obtain a K-principal bundle p: N — Ngy. After identifying G xx M
with G, we see that there is a local isomorphism px: ¥ — G©, where
2= G xXg N is a real analytic manifold.

§5. Basic examples

It is a simple matter to give concrete example of local actions which
are not univalent.
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ExaMPLEs. (c.f. [P, p. 88]) (a) C* acts on C* by multiplication and

therefore C* acts locally on the universal covering C of C*. The local C*-
action on C is not univalent.
(b) Every complex Lie group G of positive dimension contains an open
connected subset Y whose fundamental group is isomorphic to Z. The
group G acts locally on Y by left multiplication. The local action on the
universal covering X of Y is not univalent, since otherwise there would be
a locally biholomorphic G-equivariant map from X* into G which is not
injective.

For later use we note an important

PROPOSITION 1. (c.f. [P, p. 84]) A local R-action on a complex space
X 1is univalent.

Proof. A leaf ¥ C Rx X is a connected real one dimensional manifold.
Since a local diffeomorphism from ¥ into R is automatically injective, the
statement follows. ]

Remark 1. There exist local R-actions which do not admit any glob-
alization which is a Hausdorff topological space (c.f. [P, p. 86]).

For the next example of a univalent local action we consider a complex
space X with an action of a vector group G = R™.

PROPOSITION 2. A local holomorphic C™-action on a holomorphi-
cally separable complex space X which is induced by a global R™-action is
univalent.

Proof. A leaf 3 C C™ x X is a connected holomorphically separable
manifold with an R™-action and an R™-equivariant locally biholomorphic
map px: 2 — C™, where R™ acts by addition on C™. Thus % Zcmisa
holomorphically separable tube domain over C™. It is sufficient to prove
the following

CLAaM. A holomorphically separable tube domain over C™ is schlicht,
i.e., px 1S injective.

In order to prove the claim we first note that X embeds equivariantly
into its envelop of holomorphy which is agian a tube domain over C™.
Thus we may assume that ¥ is a pseudoconvex tube domain over C™. By a
result of K. Stein (see [St]) the universal covering of ¥ is also pseudoconvex.
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Hence, in addition, we may assume X to be simply connected. Now an
argument of Yang (see [Y, p. 278, proof of Theorem 1]) shows that py is
injective. 0

A similar result holds for local actions of G® which are induced by a
global action of a compact group G.

PROPOSITION 3. Let G be a compact connected Lie group which acts
globally on a holomorphically separable complex space X. Then the induced
local G¢-action on X is univalent.

Proof. In this case a leaf 3 is a holomorphically separable complex
manifold where G acts globally. Moreover, since X P2 GC s G-equivariant
and locally biholomorphic, ¥ does not contain any proper G-invariant closed
complex submanifold. From §4.1 Proposition in [H1] it follows that py is
injective. []

Remark 2. 1t is likely that Propositions 2 and 3 are special cases
of the same statement for Lie groups G with a bi-invariant Riemannian
metric, i.e., for Lie groups such that the universal covering is isomorphic to
a product of a vector group and a compact semisimple Lie group.

Remark 3. One can construct a holomorphically separable complex G-
manifold X with an induced univalent local G®-action which admits some
Hausdorff globalization such that the universal globalization X* is not a
Haudorff topological space as follows.

If A denotes the unit disc in C, then Z := A x G® is a holomorphically
separable manifold. Let B be a closed G-invariant subset of G such that
G® \ B is not connected and set A := {0} x B. Then X := Z\ A is a
holomorphically separable complex G-manifold with an induced univalent
local G®-action. Moreover Z is a Hausdorff globalization of X and the
universal globalization X* is not a Hausdorff topological space.

Note that it is note possible to construct such that an example for a
compact group G and a Stein manifold X (see §7).

86. Relative globalizations

Let X and Y be complex spaces and let the connected Lie group GG
act locally on X and Y. If ¢: X — Y is a locally equivariant holomorphic
map, then in general univalency of the local action on Y (resp. X) does not
imply univalency of the local action on X (resp. V).



INTEGRATION ON HOLOMORPHIC FIBER SPACES 43

ExaMmPLEs. (a) If X is the product Y x Z and H is some Lie group

which acts locally and not univalently on Z, then X considered as a space
with a local G x H-action is not univalent.
(b) The group R? acts on Y = C? \ R? by addition. Thus C2-acts locally on
Y and C? is the universal globalization of Y. Every non trivial covering X
of Y is an example of a local C%-action on a complex manifold which is not
univalent (c.f. [P, p. 88]). Note that X is a tube domain over C? which is
not holomorphically separable (c.f. §5 Proposition 2).

In this section we are interested in conditions for which univalency of
the local action on Y implies univalency of the local action on X. The
examples show that one has to make restrictions on the group as well as on
the map ¢: X — Y.

As a first step observe that the map ¢:G x X — G XY, ¢ = idg x¢ is
continuous with respect to the leaf topology and maps a leaf ¥ in G x X
into a leaf A in G x Y. Moreover we have the following

PROPOSITION.  For univalent local G-actions on X and Y the map
¢ maps a leaf 3 C G x X isomorphically onto an open subset of a leaf
A C G xY. If ¢ is proper, then ¢ maps ¥ isomorphically onto A.

Proof. For (go,zo) € L let A be the leaf through ¢(go, o) := (go,%o)
where yg = ¢(x¢). The maps

g pa(E) — %, g — (9,(995") - z0)
and
aan:pa(A) — A, g — (9,(995" - o)

are isomorphisms. Since le odogs: pc(X) — pe(A) is the inclusion map,
the first part of Proposition 1 follows.

For a proper map ¢ the induced map qg is also proper. Since 3 is closed
in G x X (see §3), this implies that ¢(X) is closed in A. Consequently we
have $() = A. U

Let G act locally on X and Y and let ¢: X — Y be locally G-equivariant
holomorphic map. The map ¢ is called univalent if qg = idg X¢ maps each
leaf in G x X injectively into a leaf in G X Y. We say that ¢ has the lifting
property with respect to the local action of G if (Z) maps each leaf in G x X
isomorphically onto a leaf in G xY (this terminology is explained by Lemma
1 below).
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COROLLARY. For local R-actions on X and Y a locally equivariant
proper holomorphic map ¢: X — Y has the lifting property.
0

LEMMA 1. Let G be a Lie group which acts locally on X and Y. If
the G-action on'Y is univalent and the locally equivariant holomorphic map
¢ has the lifting property, then the G-action on X is univalent.

Proof. Let ¥ be aleafin GxX and (gg, zg) € X. For yg := ¢(z¢) denotg
by A the leaf containing (go,yo). The statement follows from ps = pp o ¢
where py, := pg|E and py = pgl|A. 0

Remark 1. The conclusion of Lemma 1 also holds for a univalent map.

Let G be a Lie group such that the universal covering G. of the con-
nected component of the neutral element e € G is a product of a compact
group and a vector group. In this case the universal complexification G of
G is polar, i.e., the map

GXig—*Gca (gvg)—')gexpg

is a real analytic G-equivariant isomorphism, where g denotes the Lie alge-
bra of G.

Let Z be a not necessarily Hausdorff complex space with a holomorphic
G®-action. A G-invariant subset A of Z is said to be orbit convez if for all
a € Aand £ € ig the set {t €R; (exptf)-a € A} is connected.

If G acts on a complex space Y such that the local Gt-action on Y is
univalent, then the universal globalization Y™* of Y is called orbit convez if
Y considered as a G.-invariant subset of Y™ is orbit convex.

LEMMA 2. Let G be a connected Lie group such that G€ is polar
and let X and'Y be complexr G-spaces such that Y admits an orbit convex
globalization Y* with respect to the induced local G¢-action.

If : X — Y is a G-equivariant holomorphic map which has the lifting
property with respect to every local R-action given by the homomorphisms
Ye:R — G®, t — expté, € € ig, then ¢ has the lifting property with respect
to the local GC-action.

In particular the universal globalization X* exists and it is orbit convex.
Moreover if Y* is Hausdorff then X* is also Hausdorff.
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Proof. For any zo € X and yo := ¢(xg) € Y we have to show that b=
idge X ¢ maps the leaf ¥ C G x X through the point (e, z) isomorphically
onto the leaf A C G x Y which contains (e,yo). Denote by ¢: % — A
the map QAS restricted to the leaf X. Since qg is a local isomorphism, it is
sufficient to prove the existence of a continuous section o: A — 3, i.e., a
map o such that ¢ oo = idy. By univalency of the local GC-action on
Y, this is equivalent to the construction of a lifting gs: pge(A) — X of the
isomorphism ga:pge(A) — A, h — (h, h - yo) with gs(e) = (e, zo).

For h € pge(A) let g € G and £ € ig be such that h = gexp¢. Since Y*
is an orbit convex globalization, we have gexpté € pge(A) for all ¢t € [0, 1].
Therefore expté € pge(A) for t € [0,1). Using the lifting property of ¢
with respect to the local R-action given by £ € ig, we seé that F¢: [0,1] —
X, Be(t) == (exptf) - xo make sense. Thus we can define the analytic
map gs:pge(A) — 3 by gs(h) = (h,g - B¢(1)), where h = gexp¢. The
equivariance of the map ¢ shows that gx, is a lifting of g,.

Thus the universal globalization X* exists (Lemma 1).

CLAIM.  For the induced map ¢*: X* — Y* one has X = (¢*)"1(Y).

Proof of Claim. For z € X* and ¢*(z) =y €Y let g € G, € € ig and
Z € X be such that g71 -z = (exp€) -z, and 7 := ¢*(Z) € Y. Then by
orbit convexity (exptf)-g € Y for all ¢t € [0,1]. The lifting property implies
(expt€) -z € X for all t € [0,1]. In particular z € X and the claim follows.

Since X = (¢*)71(Y) and ¢* is G®-equivariant, it follows that X is orbit
convex in X*. Finally to prove Hausdorffness we have to separate points of
X* which lie on a fibre of ¢*. But X* = G* - X and the equivariance of ¢*
implies that these points belong to g- X for some g € G®. 0

THEOREM. Let G be a Lie group with polar complezification G¢ and
Y a complex space with global G-action which admits an orbit convex glob-
alization Y* with respect to the induced local GC-action.

Then every G-equivariant proper holomorphic map ¢: X — Y has the
lifting property with respect to G¢. In particular the universal globaliza-
tion X* exists, it is orbit conver and if Y* is Hausdorff then X* is also
Hausdorff. The induced map ¢*: X* — Y™* is proper.

Proof. By the above Corollary a proper map has the lifting property
with respect to all local R-action. Thus Lemma 2 applies. The properness
of ¢* follows from the properness of the restrictions ¢*|g- X:9g- X — g Y
for every g € GC. 0
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Remark 2. Let G be a Lie group with polar complexifcation G¢ and
X a complex G-space with an orbit convex and Hausdorff globalization X*
with respect to the local GC-action. Then Q(z) = {g € GS; g-z € X} is
connected and contains G, for all z € X. For every v € GG the holomorphic
maps

Qx) — X7, h—~-(h-z) and
Qz) — X*, h— (Yhy™) - (v-2)

agree on G.. Therefore they are equal. This implies that the G-action on
X extends to a G-action on X*. From this it follows that the G-action
extends to a holomorphic G®-action on X*.

§7. Holomorphically convex spaces

Let X be a holomorphically convex space, i.e., for every compact sub-
set C of X the holomorphically convex hull C = {z € X; |[f(z)| <

sup |f(y)| for all f € O(X)} is also compact. We recall the following re-
yeC

sult of Remmert (see [GR, p. 221]).

There exist a Stein space Y and a proper surjective holomorphic
map ¢: X — Y such that

(i) all fibers of ¢ are connected and

(ii) the induced sheaf homomorphism from Oy into the direct
image sheaf ¢.Ox is an isomorphism.

The map ¢: X — Y is called the Remmert reduction of X. From a
set theoretical point of view Y is obtained by identifying those point of
X which cannot be separated by holomorphic functions. On the level of
holomorphic functions one can identify O(X) with O(Y).

The Remmert reduction ¢: X — Y is equivariantly with respect to the
group Autp(X) of biholomorphic maps on X, i.e., to every biholomorphic
map g € Autp(X) there exists a biholomorphic map on Y which we also
denote by g, such that the diagram

x %

¢l ¢

Yy — Y
g



INTEGRATION ON HOLOMORPHIC FIBER SPACES 47

commutes. Moreover, the corresponding homomorphism Autp(X) —
Autp(Y) is continuous with respect to the compact open topology. It fol-
lows that an action of a Lie group G on X pushes down to a G-action on Y
such that ¢: X — Y is equivariant. The base Y of the Remmert reduction
is a Stein G-space. In [H1] the following is proved:

Let G be a compact Lie group and Y a Stein G-space. Denote
by G the universal complezification of G. Then there exists a
universal globalization Y* of the local GC-action on'Y such that

(i) Y* is Hausdorff
(ii) Y* is a Stein space and

(iii) Y considered as an open subset of Y* is orbit convez.

Remark. As a consequence of the result in §5, Y* exists as a possibly
not Hausdorff complex space. Since the leaves of the local diagonal G-
action on G x Y are closed (see §3) the G-invariant holomorphic functions
on G€ x Y separate the fibers of the quotient map II: G x Y — Y* (see
[H1, §2.3 Corollary 2]). It follows that Y* is Hausdorff.

THEOREM. Let G be a compact Lie group which acts on a holomor-
phically convex complex space X. Then there exists a universal globalization
X* of the local G-action on X such that

(i) X* is Hausdorff

(il) X* is holomorphically convex and the diagram

X — X*
¢l Lo
Y — Y*

commutes, where the horizontal maps are given by globalizations and
the vertical maps are Remmert reductions.

(iii) X considered as an open subset of X* is orbit convex.

Proof. Since the Remmert reduction maps X equivariant onto the
Stein space Y, there exists a universal Hausdorff globalization Y* of the
local GC-action on Y. Moreover Y considered as an open subset of Y* is
orbit convex. By §6 Theorem, this implies the existence of a Hausdorff orbit
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convex globalization X* of X and a holomorphic G®-equivariant proper map
¢*: X* — Y™ such that the diagram

X — X

¢l 19"

Yy — Y*
commutes. Since ¢* is proper and Y* is Stein, it follows that X* is holomor-
phically convex. The equivariance of ¢* implies Oy« = (¢*).Ox+. There-
fore ¢*: X* — Y™* is the Remmert reduction of X*. 0

§8. Globalization of bundles

In this section we study the action of a Lie group G which has a polar
complexification G¢ on bundles. Let P 5 X be a holomorphic principal
bundle over a complex space X with complex structure group S. We assume
that S acts from the right on P and for s € S denote by the same symbol
rs the maps P — P,p—p-sand S — S, x — z-s. An S-invariant vector
field £p on P induces a vector field £x on X such that £x(7(p)) = mép(p)
for every p € P. In general, if £ is a holomorphic vector field on a complex
space Z, then the corresponding local R-action on Z is univalent (see §5
Proposition 1). Thus with respect to the universal globalization Z* of Z we
can associate to £ and z € Z the connected component I(z,£) containing
zeroin {t e R; t-z € Z}.

LEMMA. Let PS5 X be a holomorphic principal bundle over X with
structure group S. Then 7 has the lifting property with respect to any local
R-action on P which is given by an S-invariant vector field £p on P.

Proof. Let £x be the vector field on X which is induced by £p. It is
sufficient to show the following

CrAamM. (c.f. [GH]) For every zp € X and p € 7 '(zg) we have
I(zo,€x) = I(p,&p), i.e., Ep can be integrated as far as €x.

We have I(p,&p) C I(zo,£x) for every p € 7~ 1(x0) (§6 Proposition).

For t; € I(zg,&x) let U be an open neighborhood of z1 = t; - g such
that P|U is trivial, i.e., P|U = U x S. In this trivialization the vector field
&p is of the form

Ep(u, h) = (Ex(u), (Th)«E(u)),
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where £ is a real analytic map from U into the Lie algebra s of S. Let J
denote a compact neighborhood of t; € I(xzg,&x) such that t -z € U for
t € J. Then there exists a solution t — ¢(¢) € S of equation

(roy-1)x0(t) = A(t),

where A(t) = &(t - o), with ¢(t1) = e and which is defined on an open
neighborhood of J (see [KN, p. 69]). Using the trivialization P|{U =2 U x S
we see that for h € §

Ya(t) = (- o, ¢(t) - h)

defines an integral curve ~p, of the vector field £p with v,(t1) = (x1,h).
Using this, one sees that I(p,&p). This proves the claim 0

By an action of a Lie group G on the principal bundle P we mean a
group homomorphism p from G into the group Autg(P) of S-equivariant
biholomorphisms of P such that the map GxP — P, (g,p) — p(g)(p) :=gp
is real analytic. If p is given, then we say that P is a holomorphic principal
G-bundle. For a complex Lie group G this will automatically mean that
the map G x P — P is holomorphic.

Let G be a Lie group which admits a polar complexfication G¢ and X
a complex G-space with an orbit convex globalization X™*.

THEOREM. A holomorphic principal G-bundle P 5 X with complex

structure group S extends to a holomorphic principal GC-bundle P* LNS'ES
Moreover, if X* is Hausdorff, then P* is Hausdorff.

Proof. Since m: P — X has the lifting property with respect to every
local R-action on P which is induced by the homomorphisms R — G€,
t — exptf, £ € ig, there exists a universal globalization P* of P with
respect to G€ which is Hausdorff if X* is Hausdorff. Let 7*: P* — X* be the
map induced by m: P — X. For a subset U of X we set P*|U := (7*)~1(U).
In order to prove that P* is a principal bundle one may proceed as follows.
We have (7*)71(X) = P (§6 Lemma 2). Thus for each g € G we obtain a
biholomorphic map ®4: P*lg- X — P, ¢ — g~'-q Forsc SandgecG©
let sg: P*|g- X — P*|g be defined by s4(q) =g-((g71-q) - s).

CrLaM. For g1, g2 € G¢ we have Sg1 = Sg, 0N P*|g1 - X Nga- X.

Proof of Claim. For z € X let Q(z) := {h € G% h-z € X}. The set
Q(z) contains the image of G in G® and it is invariant with respect to the
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G-action on G® which is given by left-multiplication. Since X* is an orbit
convex globalization, it follows that Q(z)/G is connected. The holomorphic
maps from Q(z) into P given by

h— (h-p)-s

resp.
h—h-(p-s),

where p € 7~!(z) is fixed, agree on the image of G in GC. The Identity
Theorem implies that
(h-p)-s=h-(p-s)
for all h € Q(x).
For g1, go € G¢, s € Sand ¢ € P*|g; - X Ngy- X set p := g5 - q,
z =7(p) and h:= g; gy, Tt follows from the above consideration that

5.(@) = g1-((97"-@)-s) = g1-((hgy " -q)-5) = (g1h) - (951 - @) - 8) = 54,()
holds. This proves the claim.

As a consequence we see that the S-action on P extends to a fiberwise
free and transitive action on P* which commutes with the GC-action. Using

the maps @, one sees that P* ™ X*isa holomorphic principal G¢-bundle
over X*. 0

COROLLARY. Let G be a compact Lie group, X a holomorphically
convex G-space and P 5 X a holomorphic principal G-bundle over X with
structure group S. Then P 5 X extends to a holomorphic principal GE-
bundle P* T X*.

il

As we already mentioned in the introduction, the Corollary has an im-
portant application to the equivariant version of Grauert’s Oka Principle. In
order to explain this, let G be a compact Lie group and X a Stein space. We
fix a complex Lie group S and denote by Bundp(X) (resp. Bundgo (X))
the isomorphisms classes of holomorphic (resp. topological) principal G-
bundle over X with complex structure group S. Under the assumption
that a certain G-bundle of Lie groups over X extends to a G®-bundle over
X* it has been shown in [HK] that the natural map

Bundp (X )¢ — Bundeo (X)¢

is an isomorphism. The Corollary implies that this assumption is superflu-
ous.
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§89. Hamiltonian actions on Kahlerian spaces

Let X be a complex space. A Kéhlerian structure w on X is given by an
open covering {U,} of X together with a family of smooth strictly plurisub-
harmonic functions p,: Uy — R such that ho,g = po — pg is pluriharmonic
on U, N Ug. Note that for smooth X one obtains the usual definition of
a Kéahlerian manifold whose Kéhler form is given locally by w, = %85@1.
For smooth X we will not distinguish between w as defined above and the
associated Kéhler form w := %85/)(1.

For a complex G-space X one has a natural notion of a G-invariant
Ké&hlerian structure w. A moment map on a complex G-space X with
respect to such an invariant Kahlerian structure is a smooth map pu: X — g*
such that

(i) p is G-equivariant and
(ii) dpe = tew for every £ € g*

holds on every smooth G-stable complex submanifold Y of X. Here w
denotes the Kéhler form induced on Y, £x the vector field on X induced
by &, ue the {th component of 1 and ¢ is the usual contraction.

If the complexification G acts on X, then the following result is well
know (see e.g. [GS], [HL], [Ki], [N], [S]). ‘
The reduction p=1(0)/G is in a natural way a Kdhlerian complez space.

One can construct the complex structure on p=1(0)/G as it follows. Let
X (i) be the set of semistable points with respect to u=1(0), i.e., X(u) =
{z € X; GC-znpu1(0) # B}. The relation = ~ y if and only if GE-z N
GC-yNnX(p) # 0 is in fact an equivalence relation on X (p), X (p) is open
in X and p~1(0)/G is isomorphic to X (u)//GC. The sheaf of holomorphic
functions can be “identified” with the sheaf of GC-invariant holomorphic
functions on X (u).

Now assume that X is a Kéahlerian G-space with moment map w and
also assume that X has an orbit convex globalization X*, e.g., X is holomor-
phically convex. Then we can set X*(u) = {z € X*; GC-z N p~1(0) # 0}.
In this case the above result can be extended as follows.

QUOTIENT THEOREM. The set X*(u) of semistable points is open in
X*. The quotient X*(11)//G® has a structure of a complex space such that
the quotient map m: X*(u) — X*(n)//GC is holomorphic and

(i) for any open subset Q of X*(1)//GE we have O(Q) = O(r1(Q))%",
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(ii) the embedding p~='(0)— X*(u) induces a homeomorphism p=1(0)/G —
X*(1)//GS and

(iii) X*(u)//G® is Kihlerian space whose Kdhlerian structure is compatible
with the symplectic reduction p~1(0) — p=1(0)/G.

The main ingredient in the proof is a slice theorem of Luna type (see
e.g. [H1], [HL], [L], [S]). In our setting this can be formulated as follows.

SLICE THEOREM. For everyy € u~1(0) we have H := (G,)¢ = (G®),
and there exists a locally closed H -invariant complex subspace S of X* which
contains y such that U := G© - S is open in X* and the natural map

G'xyS—H, [g1]—9g-=z
is biholomorphic.

The proofs of these theorems are very similar to those of the corre-
sponding result in [HL] and they will therefore be omitted.

Remark. X*(u) is always Hausdorff.
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