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VOLUME-PRESERVING GEODESIC SYMMETRIES
ON FOUR-DIMENSIONAL

HERMITIAN EINSTEIN SPACES

J. T. CHO, K. SEKIGAWA AND L. VANHECKE

Abstract. We prove that a four-dimensional Hermitian Einstein space is
weakly *-Einsteinian and use this result to show that all geodesic symmetries
are volume-preserving (up to sign) if and only if it is local symmetric.

§1. Introduction

Riemannian manifolds such that all (local) geodesic symmetries are

volume-preserving (up to sign) or equivalently, are divergence-preserving,

have been introduced in [5] and are called DΆtri spaces [27]. The first

examples which are not locally symmetric were discovered in [4], [6]. These

are the naturally reductive homogeneous spaces. Since then, many other

classes of examples has been found and studied. The main classes are the

following: Riemannian g.o. spaces (i.e., spaces such that every geodesic

is an orbit of a one-parameter group of isometries), commutative spaces

(i.e., homogeneous spaces whose algebra of all differential operators which

are invariant under all isometries is commutative), generalized Heisenberg

groups, harmonic spaces (in particular, the Damek-Ricci examples), weakly

symmetric spaces, 5C-spaces (i.e., spaces such that the principal curvatures

of small geodesic spheres have antipodal symmetry), probabilistic commu-

tative spaces, TC- and Co-spaces (see [1], [2] for more details). Of course,

any manifold which is locally isometric to one of these examples is also a

DΆtri space. We refer to [1], [2], [12], [26], [28] for more information and

further references, in particular to the papers where these spaces have been

introduced and to the extensive survey paper [13].

It is worthwhile to note that a DΆtri space is always analytic in normal

coordinates [10], [22]. Moreover, their classification is completely known for

dimensions smaller than four [12] but for higher dimensions the problem is

completely open. Further, to our knowledge, an example which is not locally
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homogeneous is not known yet and this led to the following

PROBLEM 1. Are D'Atri spaces necessarily locally homogeneous?

In the framework of four-dimensional geometry some partial results are

known. It is proved in [20], [21] that four-dimensional Kahler or 2-stein

D'Atri spaces are locally symmetric. In view of Problem 1 and Jensen's

theorem stating that locally homogeneous four-dimensional Einstein spaces

are locally symmetric, the following problem arises naturally:

PROBLEM 2. Is any (connected) four-dimensional Einstein D'Atri

space locally symmetric?

The main purpose of this paper is to provide a positive answer for the class

of Hermitian spaces:

THEOREM A. A connected four-dimensional Hermitian Einstein space

with volume-preserving geodesic symmetries is locally symmetric.

Note that the theorem does not hold if the Einstein condition is deleted

since the Riemannian product of the three-dimensional Heisenberg group

with a line is a Hermitian D'Atri space which is not locally symmetric (see

[25]).

In the course of the proof of Theorem A we will also show the following

THEOREM B. A four-dimensional Hermitian Einstein manifold is

weakly *-Einsteinian.

See Section 2 for the definition of this last notion.

§2. Proof of Theorem B

Let M = (M, J, g) be a (connected) 2n-dimensional almost Hermitian

manifold. We denote by V, i2, p and τ the Levi Civita connection, Rie-

mannian curvature tensor, Ricci tensor and scalar curvature, respectively.

For R we take the sign convention

(2.1) R(X,Y) = V[xχ]-[Vx,Vγ}

for I , F G X(M) where X(M) denotes the Lie algebra of all smooth vector

fields on M. Further we denote by p* the Ricci *-tensor defined by

(2.2) p*(x, y) = - - trace (z ι-> R(x, Jy)Jz)
Δ
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for x,y,z G T m M , the tangent space a t m G M. The ^-scalar curvature is

given by

(2.3) r* = trace Q*

where Q* is the endomorphism field defined by g(Q*x,y) = p*(x,y). Note

that (2.2) implies at once that p*(x,y) = p*(Jy,Jx) for all x,y G TmM.

For a Kahler manifold the Ricci *-tensor coincides with the Ricci tensor.

An almost Hermitian manifold M is said to be a weakly *-Einstein space

if p* = \*g for some smooth function λ* on M. In this case r* = 2λ*n. M

is said to be a *-Einstein space if λ*, or equivalently, r* is constant. We

note that these notions appear naturally in the study of non-Kahlerian met-

rics. For example, in [15] D. Page constructed a non-Kahlerian Hermitian

Einstein metric on CP2 with one point blown up and it was shown in [11]

that with this metric the Hermitian surface is weakly *-Einsteinian with

positive *-scalar curvature (see also Theorem 2.1 and the note following it).

Theorem B shows that any four-dimensional Hermitian Einstein space is

always weakly *-Einsteinian. We also refer to [24] where it is shown how

p* naturally appears in the decomposition of the space of curvature tensors

on an almost Hermitian manifold.

Next, we assume that M = (M, J, g) is a four-dimensional Hermitian

manifold. Then we have

(2.4) 2 9 { { V χ J ) y ' Z) =

-ω(JZ)g(X,Y)-ω(Z)g(X,JY)

for X, y , Z G X{M) and where ω is the Lee form of M given by ω = <5Ωo J,

Ω being the Kahler form on M defined by Ω(X,Y) = g(X,JY) for X,

Y G X(M) [18]. Further, let {e^,i = 1, ,4} = {βi,e2 = J e i , e 3 , e 4 =

Jββ} be an orthonormal basis of TmM. We adopt the following notational

convention:

(2.5)

j), ViJjk = g((VeiJ)ej,ek),

iJ)ej, βfc), , ̂ iJ-β = g{(^JeiJ)Jej, Jek) = -VjJjk,

Pij = p(e», ej), p^ (J ) (J J )
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etc., 1 < i , j < 4. Then, by using (2.1) and (2.4), we get

1 1,, ,

1 1,
(2 6) δit^7iω* + 2ωkωά g l l^H^) M V ^ + cj^i |

| | | | 2 J ) + J ( V +ωpjj | | ω | | J £ i ) + J^(V<α;Λ +

) J{S + ) + J(V +ωjUJk) Jkj{Si^i + ^ ^ ^ ) + Jki(VjUt +
Δ Δ Δ

(see [18]). From this we obtain

(2.7) T - T * = 2<$U;+H|2.

From now on we suppose that M is also Einsteinian. First we shall

provide a proof of Theorem B and derive the relation (2.50) which will be

needed to pove Theorem A.

We start by giving a series of relations which follow at once from (2.6)

and (2.7):

(2.8)

(2.9)

(2.10)

(2.11)

Then

2(#1313

2 (#2413

2(#1423

2(#2323

(2.8) and

2(#131ί

- #1324) = - ^

- # 2 4 2 4 ) = V

+ #1414) = —^

+ #23u) = —^

(2.9) yield

i — #2424) = —

7ia* - V 3 c 3 -

2ϋϋ2 + V4CJ4 +

7iωi - V4C4 -

72α!2 — V 3 ω 3 -

V i ω i - V3u;3

1
" 2 "
1 -

1

1

2 1 2

, 1 2

> + 2 ω I -
2 1 2

2 1 2

h - 2ω3 ^

2^2 + V40

II I I 2

^ l l - l l 2 ,
1 2

-\\M2

(2.12) ,
/ 2 2 2

- -(ω1 +ω3-ω2 -

(2.13) 2(i2i3i3 + #2424 - 2 # i 3 2 4 ) = δω + hωf = \{τ - r*).

Similarly, from (2.10) and (2.11) we have

2(#2323 - #1414) = Viωi + V 4 ω 4 - V 2 ω 2 -
(2.14) χ
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(2.15) 2(fli4i4 + #2323 + 2i?1 4 2 3) = δω + ^\\ω\\2 = i ( r - r*).

Finally, from (2.8) and (2.10) we derive

#1234 = ~#1342 — #1423

#1313 + #1414 + - ( V I C J I + V3ω3 + -ω\ + -ω\ - - | M | 2 )

+ - ( V ^ ! + V4^4 + ψ\ + -ω\ - -\\ω\\2)

- ( V I C J ! - V2α;2 + -ω\ - -ω2

2) - -\\ω\\2

(2.16) = I - Λ l 2 1 2 +

r^ ! 2 ! 2

£ (Vi^i - V2α;2 + -ωλ - - α ; |

Again, by (2.6) we get

(2.17) 2(jRi2i3 - ^1224) = -V1CJ4 - V 2α; 3 - -^1^4 - -

(2.18) 2(i?34i3 - i?3424) = V3CJ2 + V4CJ1 + ~CJ2^3 +

(2.19) 2(i2i2i4 + Λ1223) = Viα;3 - V 2α; 4 + -CJICJ 3 - -

(2.20) 2(i?34i4 + i?3423) = V 4 C J 2 - V3u;i + -ω2ω4 - -
(2.21) 2(i?i3i4 + i?i323) = ~ V I C J 2 - V3CJ4 - -ωχω2 - ~

(2.22) 2(i?2423 + #2414) = - V 2 C J I - V4α;3 - -u^2 - -

Using the Einstein condition, the relations (2.17) - (2.22) yield

^1242 = #1213 + #1213(V2CJ3 + V1CJ4 + - ^ 2 ^ 3 + -
(2.23) 2 2

+ (V + V + ++ (V2cc;3 + Viu;4 + α;2α;3 +

#1343 = #1213 ~ #1213(V3ω2 + V4CJ1 + -CJ2^3 + ^^1^4)
(2.24) 2 2

+ -(V3u;2 + V4α;i + -ω2ω3 + -
4 Z Z
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#1232 = #1214 + #1214(V2ω4 - Vχω3 - -ω\ω$ + -ω2ω4)
(2.25) 2 2

+ (V V ++ (V2α;4 Viα;3 ωιω$ +

#3414 = #1214 + #1214(V3d;i — V4CJ2 + " ^ 1 ^ 3 ~ ~ω2ω4:)
(2.26) 2 2

+ -(V3CJ1 - V4ϋ;2 + - ^ 1 ^ 3 - -

#1323 = #1314 + #1314(ViU;2 + V 3 ^4 + ~ω^ω2 + o

(2.27) 2 2

l 1
CJ1CJ2 +

#2414 = #1314 - #1314(V4ϋ;3 + V2^l + -< 3̂< 4̂ + ~
(2.28) 2 2

K 1
+ (V4u;3 + V2u;i + CJ3<̂ 4 +

4t Δ Δ

Now, on the Hermitian manifold the relation Y^=χ V ^ = 0 holds [23],

i.e., we have

(2.29) Vχω2 - V 2^i + V3α>4 - V4α;3 = 0.

Further, from (2.21), (2.22) and the Einstein condition we obtain

(2.30) Viu;2 + V2k;i + V3CJ4 + V4u;3 + ω\uj2 + ω^ω^ = 0.

By direct calculation we have

+ +
Δ

V4CJ3 + -U)\(JJ2 + ~
Δ Δ

2 2 + (V3u;4)
2

(2.31)

-
Δ

Next, by (2.29) and (2.30) we get

2 V4CJ3)2

(2.32)
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So, from

/χo;2 -

(2.30)-

r V3M4

+ (̂

-(2

[ +

7 .
'2U

.32)

1

2ω]

>\ +

we obtain

1 2

2
1

2

1
2 + 2

— o.

Hence, we have

1 1

(2.33) l λ

1 1
V 2 ^ i + V4U3 + -ω\ω2 + -OU3^4 — 0.

Since the basis (eχ,e2 = ^βχ,β3,β4 = Je%) is chosen arbitrarily, we may

replace (βχ,e2) by (β2,— ex) in (2.33). Then we also get

-V 2α; 1 + V3ω4 - -cjχα;2 + ~^3^4 = 0,
(2.34) Z l

1 1
— VχCJ2 + V4CJ3 — -α;χCϋ2 + - ^ 3 ^ 4 = 0.

Δ Δ

So, (2.33) and (2.34) yield

= 0,
yZ.oϋj

V + V + CJ3CJ4 = 0.

Further, using the Einstein condition, we obtain

T

^3434 = - — (

T T T
7 ~~ ( 4 ~~ ̂ 12X2 — ^?X3X3 + - — i?2X21 ~ ^ 2 3 2 3 )

r
+ 2iϊ + ^ + -R2323
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r r

— ~~~T + 2#i212 + T ~~ #4343

= 2jRχ2l2 — #4343

and hence,

(2.36) #1212 = #3434-

From this we get

#1313
T T T T

= T — #2323 - #4343 ~ 7 ~ #2323 ~ #2121 ~ 7 ~ (7 "~ #2424) = #2424-

So, we have

(2.37)

Similarly, we obtain

(2.38)

#1313 —

#1414 —

#2424-

#2323-

Thus, by (2.12), (2.14), (2.37) and (2.38) we get

- ήωϊ ~ 0^2 = °.
(2-39)

+ -ωj - -ωj = 0.

Finally, we compute the square of the length of R by making use of the

previous formulas. We have

#2α26 + #3α36 +
a,b

2 , p 2 , p 2 , 0 2 , p 2 , p 2 \
1212 "Γ Λ 1 3 1 3 + Λ 1 4 1 4 "+" ̂ 2 3 2 3 "Γ ^ 2 4 2 4 "+" ̂ 3 4 3 4 ;

+ 8(#1234 + #1324 + #1423)'
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Using the Einstein condition and the formulas (2.8)-(2.38) we first obtain

Aa4b)
4 22(Rlalb + R2a2b + R3a3b + RA

a,b

= 4{4 ̂  R\alh

a,b

(2 41) 1
v ' } + 2 J R I 3 I 4 ( V I U ; 2 - V2α;i + V3α;4 - V4u;3) + -

^2^3 + x ^ i ^ ) + ^( V 3^2 + V4α;x + ω2ω3 +

-(V2ω4 - Viu;3 + -u;2α;4 - - C J I C ^ ) 2 + -(V4α;2 -

1 1 N 2

-α;2α;4 - - ^ 1 ^ 3 )

4 Z2 (Rlalb + ̂ 2α26 + R3

So, using (2.29) and (2.39), we see that (2.41) reduces to

Z 3a3b
a,b

= 16 Σ Rϊaib + 4 Σ Riaib(Vaωb - Vbωa - V-aω-h + V-h

α,6 α,6

(2.42) + Σ(V α u> 6 - V a ω 5 + -ωaωb - -ω

a,b

= 16 Σ Λ + Σi^ ^ +
Next, from (2.13), (2.15), (2.16), (2.37) and (2.38) we have

^ ( *)

(2-43)

—

and hence,

QίΏ2 i Ώ2 i Ώ2 ^ —

°V1X1234 "" / t1324 ' •rL1423/ ~~

(2.44)
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Thus, using (2.42) and (2.44), (2.40) reduces to

(2.45) α '6

a,b

Now we are ready to give the

Proof of Theorem B. Let m be an arbitrary point of M and (eχ,e2 =
Jei, β3, e4 = Jββ) an orthonormal basis of T^M. Further, let G denote the
smooth function on M defined by

1 1
G(m) = V~7Vαu;fr — V^c^ H—ωa

ωb ω&
7 2 2

a,b

Next, put £ = β\ and

o,6

Then (2.45) may be written in the form

(2.46) ||J?||2 = 16F(0 + 2(r - 3r*)iί(ξ) - i ( r 2 - 3τ*2) + G

at each m G M, where iί(£) denotes the holomorphic sectional curvature
of the holomorphic plane determined by ξ. Thus, for an arbitrary, not
necessarily unit vector x G ΓmM, we get

\\R\\2g(x, x)g(x, x) = 16F(x) + 2(r - 3τ*)H(x)
(2.47) χ

+ {-(3τ*2-τ2) + G}g(x,x)g(x,x),

where F(x) = ΣxiXjXkXiRiajbRkaib and if (a;) = ΣχiχjχkXeRijkϊ for x =

Now, by taking twice the Euclidean Laplacian D in TmM of both mem-
bers in (2.47) (or by integrating (2.46) over the unit sphere in TmM) we
eventually obtain, omitting the detailed computation,

(2.48) G(ra) - 0



FOUR-DIMENSIONAL HERMITIAN EINSTEIN SPACES 2 3

for each ra G M. Hence, the definition of G and (2.17) - (2.22), (2.33) yield

#1213 = #1224, #1214 = ~ #1223, #1314 = —#1323,

(9 AQ\ #1334 = #2434 = —#1213,

#1434 — —#2334 = ~#1214,

#1424 — —#2324 = #1314-

From this and (2.2) we get at once

Pil = Ph = Ph = P*ΰ = °

and an easy computation also yields

P*3 = P*4 = P*23 = P*24 = °

Furthermore, from (2.2) and (2.36) we get

Pll — P33 — #1212 + #1234-

From this we may conclude that 4p* = τ*g at each m G M, and this

completes the proof.

Remarks. A. From (2.47) and (2.48) we have

27(:r, x)g(x, x) = 16F{x) + 2(τ - 3τ*)H(x)
(2.50)

-(3τ* 2 - τ2)g(x,x)g(x,x)

for any x G TmM and all m G M.

B. Using Theorem B and also Theorem 1.1 in [7], we obtain

THEOREM 2.1. Let M be a four-dimensional compact Hermitian Ein-

stein manifold. Then either

(i) M is Kάhlerian, or

(ii) the metric of M is conformal to an extremal Kdhler metric with

non-constant positive scalar curvature. Moreover, the scalar curvature of

M is a positive constant and the *-scalar curvature of M is positive and

non-constant.

The converse also holds.
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The proof of this theorem is given in [7] under the additional assumption
that (M, g, J) is weakly *-Einsteinian. Our Theorem B shows that this
hypothesis is redundant.

We note here that the above result is partly contained in [14] where the
author proved that a compact Hermitian Einstein surface (M, #, J) is either
Kahlerian or there exists an extremal Kahler metric conformal to g with
non-positive scalar curvature. Moreover, in the last case, (M, J) is obtained
from CP2 by blowing up one, two, or three points in general position. We
refer to [3], [15] for an example of a non-Kahler Hermitian Einstein metric
on CP2 with one point blown up.

§3. Proof of Theorem A

Let M be a four-dimensional, connected, Einstein DΆtri space. Then
it follows from [20], [21] that ||i?||2 is constant on M. But using [9], we have
more. Indeed, in [16] it is proved that a compact connected DΆtri space of
arbitrary dimension is ball-homogeneous, i.e., the volume of a sufficiently
small geodesic ball only depends on the radius of this ball. In [9] it is proved
that this result still holds when one deletes the compactness condition.
Hence, this and the formulas given in [8] imply

PROPOSITION 3.1. Let M be a four-dimensional, connected DΆtri

Einstein space. Then \\R\\2 and ||Vi2||2 are constant on M.

In what follows we suppose that M is in addition a Hermitian surface
(M, J, g). Let K, L, N be the smooth functions on the tangent bundle TM
of M defined by

K(x) = x(τ*)H(x) = x{τ*)R(x, Jx, x, Jx),

(3.1) L(x) = (VxR)(x, Jx, x, Jx) - ω(x)H(x)

.e^x, Jx)fli(x,x),
2 = 1

N(x) = x{τ*2)g(x,x)g{x,x)

for x G TmM, m G M and where {ê , i = 1,2,3,4} is an orthonormal basis
of ΓmM. Further, put

(3.2) (Vi?)(x) = (Va;#)(x, Jx, x, Jx).

Next, let i) be the Euclidean Laplacian on ΓmM. Then, from (2.50),
(3.1), (3.2) and taking Proposition 3.1 into account, we get by a direct and
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long computation which we omit:

(3.3) (D2K)(x) = 16(τ + 3 τ > ( τ * ) ,

(3.4) (L>2Vi?)(z) = 48z(τ*),

(3.5) (D2L)(x) = 48x(r*) - 2(r + 3τ*)u;(z),

(3.6) (£>2N)(^) = 768r*x(r*).

Now, since M is a DΆtri-space, we have

(3.7) xF{x) = 0

for all x G TmM and all m G M (see for example [20], [21]). Hence, by

(2.50), (2.4), (3.1), (3.2) we obtain

(3.8) - 2AK(x) + 8(τ - 3τ*)L(x) + 3N(x) = 0.

Then, using (3.3)-(3.6), this implies

-24(τ + 3τ*)x(τ*) + (r - 3τ*){24x(r*) - (r + 3r*)α;(x)} + 144r*x

and hence, we obtain

(3.9) (r - 3τ*)(r + 3τ*)co(x) - 0

for all x e TmM and all m 6 M.

Finally, we denote by MQ, M I , M2 the subsets of M defined by

M0 = {me M\(r - 3r*)(r + 3r*) 7̂  0 at m},

Mi = {m e M\τ + 3r* = 0 at m},

M2 = {m e M\τ - 3τ* = 0 at m}.

First, we assume that MQ φ 0. Then it follows from (3.9) that the open

subspace Mo = (Mo, J, g) is Kahlerian and hence locally symmetric [20].

Then (2.7) implies that τ = T* = const. Therefore we may conclude

that MQ = Mo a n d s o MQ = M. Next, we assume that Mo = 0. Then

M = Mi U M2. We assume now that r ^ O . Then we have Mi Π M2 = 0

and hence Mi = 0 or M2 = 0 since M is connected. First, let Mi = 0 and

hence M2 = M. Then (2.50) yields that F(ξ) is independent of the choice

of unit vector ξ G TmM for all 777, G M and so, M is a 2-stein space. It

follows then from [21] that M is locally symmetric.
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We are left with the case M\ — M, i.e., r + 3τ* = 0 on M. Then, let

{ei,e2 = Jei,e3,β4 = Je%} be a unitary basis of TmM as constructed in

the proof of Lemma 11 in [20, p. 282]. For such a basis we have

(3.10) #1213 + #1224 = 0, #1214 ~ #1223 = 0, #1314 = 0, #1323 = 0

and hence

(3.100 #3413 + #3424 = 0, #
3 4 2

3 ~ #3414 = 0, #
2 3
24 = 0, #1424 = 0.

Now, since G(m) = 0, we have from (2.17)-(2.22):

(
 v #1213 - #1224 = 0, #1214 + #1223 = 0,

#1314 + #1323 — 0, #2423 + #2414 = 0

and hence also

(3.11/) #3413 — #3424 = 0, #3414 + #3423 = 0.

So, (3.10), (3.10'), (3.11), (3.11/) yield that this unitary basis is a Singer-

Thorpe basis. Now, put

a = #1212 = #3434, b = #1313 = #2424, C = #1414 = #2323,

a — #1234, β — #1342, 7 = #1423-

Then we have from (2.43) and r + 3τ* = 0:

(3.12) a = -— -a, β = - - b, <y=^-c.
V } 12 6 6

Next, using the expressions [20, (7), (9)] for the curvature invariants | | # | | 2

v
and #, we get

(3.13) 16{(α + ^ ) 2 + 62 + c2} = A r 2 + | | β | | 2 )

(3.14) 16{4[(α + ^ ) 3 + 63 + c3] - r[(α + ^ ) 2 + b2 + c2] = R - ^τ3,

where

(3.15)
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Further, we also have (since a + b + c = J)

(3.16) ( α + I ) + 6 + c = = ^ .

So, from (3.13), (3.14), (3.16) and taking into account (3.15) and Propo-
sition 3.1, we see that a,b,c (and hence, α,/3,7) are constant. So, M is
curvature homogeneous and thus locally symmetric (see [21]). However, it
follows from the results in [17] that this case cannot occur when r ^ O .

To finish the proof we still have to consider the case r = 0. But then
r* = 0 on M. In this case it follows from (2.50) that M is again a 2-stein
space and so the result follows from [21].
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