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A LOCAL HOPF LEMMA FOR SOLUTIONS
OF THE ONE DIMENSIONAL HEAT EQUATION

NORIAKI SUZUKI

Abstract. The boundary behavior of solutions of the heat equation (temper-
ature functions) is investigated. It is proved that a temperature function is
identically equal to zero if it vanishes of finite order at some lateral boundary
point where it attains a local minimum.

§i
In [1], Baouendi and Rothschild proved the following uniqueness theo-

rem for harmonic functions: Let h be a harmonic function in a ball B which
is continuous on the closure B. Take a boundary point xo € dB where the
function h\dB attains a local minimum. If h vanishes of infinite order at a?o>
then h is identically equal to zero. They call this result a local Hopf lemma
in relation with the classical Hopf lemma. (The classical Hopf lemma says
that, if h has a "minimum" at XQ G dB, and vanishes "of one order" at XQ,
then h = 0 (cf. [4]).

In this note we consider a solution of the one dimensional heat equation

Uxx = Uf

on a domain in the Euclidean space R x R and discuss a thermic analogue
of the above result on harmonic functions.

Our theorem is the following

THEOREM 1. Let T > 0. Let u(x,t) be a continuous function on the
rectangle [0, π] x [0, T] and satisfy the heat equation in (0, π) x (0, T). Assume
that there exists SQ with 0 < εo < T such that

(1) KM)I <u(0,t) forte [T-εo,T].

If for every positive integer N,

(2) lim ^jP- = 0,
V J x^0+ XN
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thenu(x,t) = 0 on [O,τr] x [ Γ - ε o , Γ ] .

The outline of our proof depends on the method used in [1], but the

details are necessarily different. In particular, we have to pay attention to

the fact that a solution of the heat equation is not always analytic with

respect to the time variable. For this reason, to obtain our assertion we

need some condition which controls the behavior of u at x = TΓ, though it

seemes to be apparently surplus (cf. the last paragraph in §3). The proof

of Theorem 1 is given in §4. In §5, using the same method, we also show

the following theorem, which may be more suitable for the name of local

Hopf lemma.

THEOREM 2. Let T > 2 and u(x, t) be same as in Theorem 1. Assume

that there exists εo with 0 < εo < T such that

(3) τx(O,t)>O and u(π,t)>0 for t <E [Γ - ε o ,Γ],

or

(3)' u(0,t)>0 and u(π,t)<0 for t e [T - εo,Γ].

//; for every positive integer N,

ΊI(T T) iι(π — T 7Λ

(4) lim = 0 and lim — j - = 0,

then u(x, t) = 0 on [0, π] x [Γ - ε0, Γ].

In the sequel, we shall call a solution of the heat equation a temperature

function.

§2.

Let u be a temperature function as in Theorem 1. For the present,

we only assume (1) for u. It is well-known (cf. [6, p. 106]) that, for each

(x,t)e (0,τr)x(0,T),

lfc(χ,t) =

rt rt
+ / φ(x, t — s)u(0, s) ds + / φ(π — x, t ~ s)u(π, s) ds

Jo Jo
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where θ and φ are non-negative functions defined by

_/ x 1 1 ^ _ T 7 2 ς

θ{y, s) = 1— > e cos ny,
n=l

(^(^? 5) = — \^ ne~n s sin ny,
n=l

for — 00 < y < 00 and 5 > 0. Note that this representation holds for t = T

(cf. Lemma 4 below).

Now put

f( \ = [ ^°'5) o n lτ-£o,τ}
[S) { 0 on [0,Γ-ε0)

^^ 5 j I 0 on [0,Γ-ε0)

and we write

(5) U = Wι +W2 + W3,

where

ft
wι(x,t) = / φ(x,t — s)f(s) ds,

Jo
ft

w2{x,t) = φ(π-x,t-s)g(s)ds,
Jo

,t) = / [φ(x,t — s)u(0,s) + φ(π — x,t — s)u(π,s)]ds
Jo

+ Γ[θ(x -y,t)- θ(x + y, t)]u(y, 0) dy.
Jo

Note also that all wι are temperature and that the above equalities hold for

t = T.

LEMMA 1. There is a sequence {aj}(j(l=1 of real numbers such that for

every integer N > 0,

N

(6) w\{x>T) = ΣajX2^1 + O{x2N+1) as x 10

3=1
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if and only if for every interger N > 0,

OO ^ J 1

(7) J2 n2iV / e~ n 2 ( T - s ) /(s) ώ < oo.

Moreover if (7) holds for all integers, we have

Proof. To show "if" part, we fix an integer N > 0. Using the Taylor

expansion

we have

pT o

(9)

where

Wl{x,T)= -\yn2N+1e-n2( τ'shmnx\f(s)ds
J°. πln^l J

= a,χx + + ajyx +

Since |sinnxt| < nxt, (7) gives |A/v| = O ( x 2 i V + 1 ) . This implies that (6)

holds for N.

To show "only if" part, we use the induction on N. Let δ > 0. Since

φ(x,T — s) > 0 and /(s) > 0, we have

Σ - n 2

ne7Γ A— X
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Letting x [ 0 and next δ j 0, we have

This shows (7) for N = 1. Moreover by the dominated convergence theorem,

we have

Suppose that (7) holds for N > 1 and (8) holds for j = 1, 2, , N. We

shall prove (7) for N + 1. The argument is similar to the previous one. We

first remark that for x > 0, n > 1,

/ (1 - t)2N-λ sinnxtdt = — ί (2iV - 1)(1 - t) 2 7 V~ 2(l - cosnxt) dt > 0.
Jo nx Jo

By (9) and the above remark, we see

for any 5 > 0. Letting α: j 0 , we obtain

T—8 o

Since δ > 0 is arbitrary, we see that (7) holds for iV + 1. The dominated

convergence theorem again shows

This completes the proof of Lemma 1.
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As for W2 we have

LEMMA 2. There exists a sequence {bj}°°=1 of real numbers such that,

for every integer N > 0,

N

flOY wo(x T) — S^bx2^1 4- O(x2N+1) as x I 0

Moreover if w\ satisfies (6) /or αίί N > 0, then we see

(n) αi + fei = fe^τί:

Proof To show (10) we use another expression of (/P. Let fc(x, t) be the

fundamental function of the heat equation, i.e.,

k(x, t) = —L=e-χ2/4t (x E R, t > 0).
V4πί

Then

φ(π-x,T-s)=
0 0 π - x

(see [5, p.86]). Remark that the series converges uniformly for (x,s) G

[0,π/2] x (0,T). Hence putting

and observing

we have (10).

Moreover if (6) holds for all iV, then by the proof of Lemma 1 and the

assumption (1), we see

[T 2 Γ ^ 2(rr i

w2(α,T) = y -[z2ne~n {T~s)sinn(π-x)\g(s)ds

Jo 7τ L ^ ^ J
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where

/ i \j—l °° 9 ΓT

bj = —— y ^ — n2j/ (—I)n~~1e~n (T~s'g(s) ds for all j G N
^ ' 7 1 = 1

This and (8) show (11) immediately.

The last function w% has the following expansion.

LEMMA 3. We have

N

(12) w3(x, T) = J2 C3χ2j~l + O(x2N+1) as x 10
j=ι

for every integer N > 0, where

Cjj\
(13) \CJ\ < for all j G N

with some constant C > 0.

Proof. Recall that

ws(x, T) = / [ψ(X: T — s)u(0, s) + φ(π — x, T — s)u(π, s)] ds
Jo

PTT

Jo

Similarly to (9), we have

/ °[φ(x,T - s)u(0, s) + φ(π - x,T - s)u(π, s)]ds
Jo

— y^2ne~n ( SJ smnx[u(0,s) — (—l)nu(π, s)]ds

N

where

α, =
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Therefore, for any j G N,

i i ^ ^ I /i /~ \ i . i / \ ι \ τ -L X ^ 9i' —-r>2- n 2 g p

1 Γ00 „

j-l)\Jo X

with some constant C\ > 0.

Using Taylor expansion of sinnx again, we have

Γ[θ(x -y,T)- θ(x + y, T))u(y, 0) dy
Jo

N

where
(— 1V'"1 2

[
Thus

|ft| < I f My,o)l^ppηϊ Σ">'*-' £ σ2p|^)T

Since Cj = αj + /3j, we have the desired inequlity.

§3.

In this section we note two lemmas concerning an extension of tem-

perature functions. Here the mean-value characterization for temperature

functions plays an essential role (see [5, p.408]).

LEMMA 4. Let υ be a temperature function on a rectangle R = (0, π) x

(α,6) and continuous on R. Then v has an extension on (O,τr) x (α, 00) as

a temperature function.

Proof We put υ(0, t) = υ(τr, t) = 0(ί > b). Then

v(x, t) = Γθ{x -y,t)- θ(x + y, t)]υ(y, 0) dy
Jo

+ / φ(x, t - y)v(0, y)dy+ / φ(π - x,t - y)v(π, y) dy
J a J a

is a desired function.
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LEMMA 5. Let R and v be as in Lemma 4. //

v{x, b) = v(0, s) — υ(π, s) = 0

for x £ (0, TΓ) and s £ (α, 6). TTiera v = 0 on R.

Proof. Since i>(0, s) = v(π,s) — 0, we see the following function v\

defined by

{ — v(2τr — x, s) for TΓ < x < 2τr

v(a;,s) for 0 < x < π

—v(—x, 5) for — π < x < 0

is temperature on (—TΓ, 2TΓ) X (α, 6) (cf. [6, p.115]). Repeating this reflection,

we have a temperature function ί o n R x (α, 6), which is an extension of

i>. Since v is bounded and ΐ(x, b) = 0 for all x £ R, we have Ϊ Ξ O (cf. [6,

p.183] or [2, p.149]). Thus v = 0 on R.

Here we remark that there is a temperature function v φ 0 on R such

that it is continuous on R and satisfying

v(x, b) — v{x, a) = v(0, 5) = 0

for all x £ (0, π) and all s £ (α, 6) (see [3, Corollary 3]).

§4.

Now we give a proof of Theorem 1. By (2), (5), (10) and (12), we see

that (6) holds and hence by (13)

Cji\
(14) \ a j + b j \ = \Cj\<'-•' ' J] ' J l ^ ( 2 j - 1 ) !

with some constant C > 0. Set

T
WJ0 e-(2n)2{T-s)(f(s)-g(s))ds

pT
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Then all terms in dj and βj are positive and dj + βj = \bj + dj\ by (11). For

every η > 0,

Cjj\

(27^ϊj! " lCjl

i o °° T

which gives

fT (f(s)-g(s))ds<C2-\4CVy.
JT-η

Take 771 such that 4C771 < 1. Then letting j —> CXD, we have

and hence f(s) — g(s) = 0 for 5 £ [T —771, T]. Similarly, from the estimate of

βj it follows that there is 7/2 > 0 such that f(s)+g(s) = 0 for 5 G [Γ —772, Γ].

Therefore

u(0, s) = ix(TΓ, s) = 0 for all s G [T - 770, T]

where 770 = min{77i, 772}. By the reflextion

ί V τ ^ _ / u ( χ ' *) ( χ ' * ) e [°> ̂ ] x ( τ - %»T)
u&> τ> \ -U(-X, t) (Xj t) € [-7Γ, 0] x (Γ - 770, T\

and Lemma 4, we may assume that u is a temperature function on a neigh-

borhood of (0, Γ). Since u(x, T) is an analytic function of x (cf. [2, p.118]),

condition (2) implies u(x,T) = 0 for x G [0, TΓ]. Thus Lemma 5 shows that

W Ξ O O Π [O,τr] x [T-77o,Γ].

Now let

εi = sup{ε > 0 ; ε < ε 0 , w Ξ θ o n [0,π] x [Γ - ε,Γ]}.

Assume that ε\ < εo Then remarking u(x,T — εi) = 0 (x G [0, TΓ]) and

making the same argument for u on [0, TΓ] X [0,Γ — εi], we have W Ξ O O I I

[0, TΓ] x [Γ — s\ — 77, T — εi] for some 77 > 0, which contradicts the fact that

ε\ is the supremum. Hence εi = εo and we have in the end u = 0 on

[O,τr]x[Γ-εo,Γ].
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§5.

To show Theorem 2, let / and g be same as defined in §2 and let

u{x,T) = wi(x,T) + w2(x,T) + w3(x,T) be as in (5). Put wι(x,T) =

W2(TΓ — X , T ) , ύ)2(x,T) = wι(π — x,T) and ώβ(x,T) = ws(ττ — #,T), then

τx(π - x, Γ) = ώi(z, Γ) + w2{x, Γ) + ώ3(α;, Γ).

By the arguments in §2 and our assumption (4), we have

N

wx(x,T) = Σajx
2j-1 + O(x2N+1) as x [ 0

3=1

N

bjx2^1 + O(x2N+1) as a; | 0

AT

t^3 ( x , Γ ) = 5 3 CjX2*-1 + O(x2N+1) asxiO
3=1

N

ώi(x,T) = 53 ^ s 2 ' ' " 1 +O(x 2 7 V + 1 ) as x I 0
J=I

iV

ώ2(x, Γ) = 53 bjx2'-1 + O{x2N+ι) as x I 0

J=I

N

w3{x, T) = 5 3 Cjz 2 ' " 1 + O(x 2 A Γ + 1 ) as x I 0

and

1 9 _°°̂

PΊ)Ϊ π Σ

a n d | c j | < - — : ΓT for all j G N

v J )'

with some constant C > 0. Assume that (3) (resp. (3/) holds. Then
estimating

\aj + fy + άj + 6j| — \CJ + Cj| (resp. \a,j + 6j — (ά^ + bj)\ = \CJ — δj\)

as in (14), we have f(s)+g(s) = 0 (resp. f(s)-g(s) = 0) for s e[T-η,T]

with some η > 0. Similar reason as in §4, we obtain Theorem 2.
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