
M. A. A. de Cataldo
Nagoya Math. J.
Vol. 147 (1997), 193-211

THE GENUS OF CURVES ON THE THREE
DIMENSIONAL QUADRIC

MARK ANDREA A. DE CATALDO

Abstract. By means of an ad hoc modification of the so-called "Casteln-
uovo-Harris analysis" we derive an upper bound for the genus of integral curves
on the three dimensional nonsingular quadric which lie on an integral surface of
degree 2/c, as a function of k and the degree d of the curve. In order to obtain
this we revisit the Uniform Position Principle to make its use computation-free.
The curves which achieve this bound can be conveniently characterized.

Introduction

The objects of investigation of this paper are the following two con-
nected problems. What are the possible geometric genera of integral curves
C of degree d lying on a nonsingular three dimensional quadric Q3 in P4

and on an integral surface S of degree 2k contained in Q3? As it is shown
in this paper the above genera are bounded above by a function of d and k.
What is the structure of the curves for which the genus is maximum with
respect to k and d?

The above problems are natural questions stemming from the analogue
problems that one can state by replacing, in what above, Q3 by P3 and 2k by
k. These were answered completely in the paper [JH]. The paper [G-P] (and
its refinement contained in [E-P]) deals with the very similar questions of
(i) determining the biggest possible genus for curves of degree d in P3 which
do not lie on a surface of degree less than fc, or lie on a surface of degree k
and of (ii) understanding the curves for which the genus is the maximum
possible. Going back to the quadric body ([A-S], §6) gives an answer to the
problem of determining the maximum possible genus for curves which lie
on a surface of degree 2/c under the assumption d > 2k(k — 1). To do so
they use the technique of [G-P], coupled with the idea of considering only
hyperplane sections which are tangent to the quadric Q3.

In this work an upper bound for the above genera is worked out with
no assumptions on the degree d. The bound is obtained pursuing some
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numerical properties of embedded curves; a certain maximization process is
involved (cf. §2). In analyzing the curves that should achieve that bound,
the unpleasant answer is that some systems of invariants are inconsistent
with each other so that, except for some special cases in which the bound
is sharp and the curves of maximal possible genus are characterized, the
bound turns out to be not sharp: the biggest possible genus is strictly
smaller than the derived upper bound. It is appropriate to say that some
geometric information gets lost in the process. At present the author is
unable to bridge the gap between the bound obtained in this paper and
"the real bound." He conjectures that the extremal curves should be special
curves (cf. Definition 1.3) so that the right bound should then be (3.5.1)
(see also §4, Question A).

The Paper [C-C-D] deals with questions (i) and (ii) above in the context
of the arithmetic genus for curves in P4 of degree "sufficiently big."

The paper is organized as follows. §1 contains the statement of Theo-
rem 1.4, which is the main result of this paper: it gives the upper bound,
it says exactly when it is sharp and characterizes the curves of maximum
genus in the cases in which the bound is sharp; the proof of (1.4.1) is in
§2 and the one of (1.4.2) is in §3. This section also contains some prepara-
tory material. The reader acquainted with the paper [JH] will realize how
big is the debt of the present work towards it. However certain subtleties
associated with the possibility of having to deal with "unbalanced" curves
on nonsingular quadric surfaces had to be circumvented by means of a sys-
tematic use of the Uniform Position Principle; this section contains some
alternative formulations of it. §2 is a Castelnuovo-Harris type approach to
the determination of the wanted upper bound. It is an ad hoc modification
of the above mentioned paper of Harris. It contains also a bound for the
genus of curves for which the general hyperplane section is not contained
in any curve "of type fc" (see Theorem 2.10). §3 discusses the bound ob-
tained in §2. Moreover it deals with a special class of curves (see Definition
1.3) which arise naturally in the contest of curves with the biggest possible
genus. §4 is speculative in nature: it raises two questions that the author
could not answer.

Note added in proof. Theorem 1.4 has been used by the author in his
study of codimension two subvarieties of quadrics (cf. [Dl]). In particular,
it was instrumental 1) in proving that, for every n > 4 (the cases n = 4 and
n = 6 are due to Arrondo-Pedreira-Sols and Fania-Ottaviani, respectively),
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there are only finitely many components of the Hubert scheme of Qn cor-

responding to codimension two nonsingular subvarieties of Qn which are

not of general type (see [D2], which generalizes [E-P]), 2) in studying the

adjunction-theoretic structure of codimension two nonsingular subvarieties

of quadrics (see [D3]) and 3) in classifying subvarieties of degree at most

10 and scrolls (see [D4]).
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§1. Preliminaries

The basic notation is the one of [Ha].

The ground field is the field of complex numbers C.

Qi denotes a smooth z-dimensional quadric in a projective space P ϊ + 1 .

When there is no danger of confusion, little distinction is made between

Cartier divisors and associated rank one locally free sheaves and the ad-

ditive and tensor product notation are sometimes used at the same time.

The topological space will be sometimes dropped when one is dealing with

cohomology groups and their dimensions.

In this paper the use of the adjective general in connection with an element

H of P is a quantifier; it means that there exists a Zariski dense open subset

W of P, such that for every H G W,. ..

[t\ denotes the biggest integer smaller than or equal to t.

The following two sets of data are fixed throughout the sequel of the

paper:

1.1. C is an integral curve lying on a smooth three-dimensional quadric

Qs, k is a positive integer, Sjς is an integral surface in \Oq3(k)\ containing

C, d and g are the degree and the geometric genus of C, respectively.

DEFINITION 1.2. Define n 0 and e when d > 2k(k - 1) and θ0 and e'
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when d < 2k{k — 1) as follows:

i d - 1
n 0 := 2k

d = —e (mod 2k),

d-l

0 < e < 2fc - 1;

2k

d = -e (mod2<90), 0 < e' < 2θ0 - 1.

The following class of curves plays a central role in the understanding
of the curves whose genus is the maximum possible. Arithmetically Cohen-
Macauley is denoted by a.CM..

DEFINITION 1.3. A curve C as in (1.1) is said to be in the class 6(d, fc),
if it is nonsingular, projectively normal and linked, in a complete intersec-
tion on Q3 of type (fc, n0) if d > 2k(k - 1) ((0O, k) if d < 2fc(fc - 1)), to an
(a fortiori) a.CM. curve D€ (De/, respectively) of degree e (er, respectively)
lying on a quadric surface hyperplane section of ζ>3

The following is the main result of this paper: it is a bound for the

geometric genus of curves as in (1.1) in terms of d and k.

THEOREM 1.4. Notation as in (1.1) and (1.2). Assume d > 2k(k-l).

Then

(1.4.1)

where

τr(d, k) =

and

d2

g - 1 < π(d,fc) - Ξ ,

,fc — eN

e : = 6 — fc;

0
1

ife = 0, 1 ; 2, 2 f c - 1,

(1.4.2) Γ/ιe bound is sharp for e = 0, 1, 2, 3, 2fc - 2, 2fc - 1. 4 cun e
achieves such a maximum possible genus if and only if it is in the class
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, k), except, possibly, the cases e — 3, 2k — 2.

Assume d < 2k(k — 1). Then the analogous statements with πf{d,k) =

π(cZ, [(d — l)/2k\ + 1) = π(d, ΘQ) and with Έ!, e', (θo,k) and D€f replacing
Ξ, e, (fc,no) and De respectively, hold.

The following, which is proven in [JH], page 194, is stated for the
reader's convenience; it is one of the two main ingredients of the analy-
sis:

LEMMA 1.5. (Gieseker) Let E C H°(ψ\θ{l - 1)), { 0 } / F C

0(7)) be two vector spaces of dimensions e and f respectively, such that:

E x i ϊ °(P 1 ,O(l)) C F. Then either f > e + 2, or \F\ equals the complete

linear system \OΨi (/ — 1)| plus (Z — / + 1) fixed points.

The following two lemmata are nothing else but a reformulation of

the Uniform Position Principle (U.P.P.) (cf. [A-C-G-H], pages 111-113)

in terms of subvarieties and of coherent sheaves respectively, rather than

in terms of linear systems. The use of this principle is the second main

ingredient. First some notation.

Let C be an integral curve of degree d in a projective space P of any
dimension, H a hyperplane, Γ the corresponding hyperplane section of C.

Let Z be the incidence correspondence in P x IP defined by {(p if)
p G H} with first and second second projections p and q respectively, T

a coherent sheaf on 3 By abuse of notation H can and will denote the
hyperplane and the corresponding point of P.

Let 3(6), 1 < δ < d be the incidence correspondences in Cδ x P, defined by

{(pi,.. . ,pδ] H) I pi e H, Vz}, where Cδ denotes the δ-fold product of C. The

essence of the U.P.P. is that the spaces 3(δ) are irreducible. This principle

should be regarded as a fundamental property of curves in projective space.

Finally define 3(δ) to be the quotient of 3(<5) by the action of the symmetric

group Sβ' 3{δ) — 3{δ)/'S$. The spaces 3(δ) are irreducible as well.

LEMMA 1.6. (U.P.P. 1) Notation as above. Let 03 be a Zariski closed

subset of Z and <B# C 23 be the Zariski closed subset cut by a general

hyperplane H, i.e. 95 Π q~λ{H). Then, either Γ C ^H, orTΠ

Proof. Define Γ" := Γ Π OS//, and let δ be the cardinality of Γ7; δ is

constant on a Zariski dense open subset of P. Without loss of generality

assume <5 > 0. By shrinking the above set to another Zariski dense open
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set W, if necessary, one can assume that the incidence correspondence 3(5),

restricted over W, is a connected etale covering of degree (δ)δ\. Clearly the

corresponding covering associated with 5(5) has degree (^). The assignment

{W 3 H} —> {Γf G 5(5)}, defines a holomorphic section over W of the

latter covering; this is a contradiction unless 5 = d. Π

Let B be any algebraic scheme of dimension b. Consider the following

decomposition of sets: Support(Bred) — B^U B^i U . . . B\ U i?o, where B{

denotes the union of all the supports of the components of B of dimension

i.

LEMMA 1.7. (U.P.P. 2) Notation as above. Let H be a general hyper-

plane. Consider the natural map: H®(F\q-ιrH}) ®oH F\q-i(H) ~~^ ®H, and

the coherent ideal sheaf Tr&H,H ' ~ ^^-iv)- Then for each positive integer i

we have that either Γ C *BHi, orT Π <BHί = 0.

Proof. Generic flatness (cf. [Mu], Lecture 8) and semicontinuity give a

Zariski dense open subset W C P over which q^T is a locally free coherent

sheaf and the natural maps q*T ®ow k(H') —> h°(^q-i^H^) are isomor-

phisms V H' G W. Pick ς >> 0 such that q*T ® Op(ς) is spanned by global

sections on P; then the following diagram commutes and has surjective ver-

tical arrows, V H' G W:

g*Op(ς)) ® f ® q*OP{-ς) > Όz

-HHl)

Hence, for a general H, the set *BHΪ is the restriction to H of a Zariski closed

subset 93' of Z Let Γ^ := *&Hi Π Γ and δ be its cardinality; shrink W, if

necessary, in order for δ to be constant over W. One can now conclude as

in the previous lemma. Q

Remark 1.8. The above proposition is still valid, after obvious changes,

if one replaces P by some closed subscheme C C X C P. In this paper T = Q3.

Remark 1.9. It is maybe worthwhile to observe that (1.6) and (1.7) are

both equivalent to the irreducibility of the varieties 5(5), 1 < δ < d.
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§2. Deriving the upper bound

The following is a presentation of the relevant invariants and of how to

use them to give an upper bound on g as a function of d and k (cf. [JH]).

Consider the following natural morphisms: C A C ̂  Q3 ^ P 4, where

C —» C denotes the normalization of C, the other two arrows the given

embeddings. All sheaves of the form O(h) are pull-backs from P4; the

sheaves on C are pull-backs via v. Let p := ι o v and p\ be the map induced

in cohomology by p; define:

at := dimc[ImH°(Q3,OQ3(l)) - ^ H°(C,O6(l)].

Let H be a general hyperplane of P 4, Γ := C Π H, Q2 := Q3Π H\ then

for every I there is the map: H0(Q3,IΓ,Q3(1)) - ^ H°(C,Ird(l)) ~ iί°(C,

O a ( i - 1)).

Since Im( W _i) C Im(σ,), Ker( Λ ) = Ker(σ;) = H°(1C,Q3(1)), HI(OQ3) = 0,
one gets the following chain of relations at the end of which the quantities
βl are defined:

oil — OL\-\ = dimlm(p/) — dimlm(p/_i) > dimlm(p/) — dimlm(σ/)

= h\ΌQ3{l)) - h°(IΓ,Q3(l) = h\OQ2{l)) - h°(IΓ,Q2(l))

=:βl-

One may think of β\ as the number of independent conditions that Γ imposes

on | O Q 2 ( 0 I

Define:

7ί := βι - βi-i

= [h°(OQ2(l)) - h°(Ir,Q2(l))} - [h°(OQ2(l - 1)) - h°(lΓtQ2(l - 1))].

These "second differences" are quantities that can be realized geometrically

as follows: consider the following exact sequence defining a general conic

Qι (to be chosen so that it is smooth and it does not meet Γ) in Q2:

0 -> J Γ , Q 2 ( - 1 + I) -+ XΓ,Q 2 (0 -+ O Q l (/) ^ 0.

Let

Ex := Im[H°(l^Q2(l)) -, H°(OQl(l))]>

and

eι :=



200 M. A. A. DE CATALDO

Then: Ίι = h°(OQl(l)) - [/ι°(ϊΓ,Q2(0) " h°(XΓ,Q2(l - 1))].

It is now clear that 7/ measures the incompleteness of the linear systems

induced on Q\ by |2r,Q2(Z)|:

7/ = 2Z + 1 - ex.

Let:

θ := min{£ G N | h°(IΓ,Q2(t)) > 0}.

By the existence of S^, one infers that θ < k. Let:

n := min{^ G N | \Zr,Q2(
ι/)\ ^s n ° t empty and

does not have fixed components}.

Since 7/ = βx - βx_u and βx = d, VZ > 0 (hι(lτ^Q2(l) = 0, VZ > 0), one sees

that 7/ = 0, VZ > 0. Define

m := min{μ G N | 7μ = 0}.

Clearly 7/ = 0, VZ > m.

Following Halphen, Castelnuovo, and more recently Gruson-Peskine

and Harris, by choosing λ ^> 0, one gets:

g — I — (Riemann-Roch)

d λ - Λ 0 ( C ? 5 ( λ ) ) < ( α z < / ι ° ( σ 5 ( λ ) ) )

dλ- ax< (βt < a t - α t _ i )

λ ί

(2.1) dλ - Y^βt = (βt = 5^7z)

λ λ

dλ - J ^ ( λ - I + 1)7/ = ( ^ 7/ = d)
z=o z=o

λ

/=0

The next step is to maximize the above sum with respect to some constraints

on the numbers 7/. For the sake of clarity the analysis of these quantities

is divided into three cases: d > 2k(k — 1), d < 2k(k — 1) and θ =< k — 1,

d < 2k(k — 1) and θ — k. It is not necessary to distinguish between the last

two cases; however if one assumes θ = k then one gets the smaller upper

bound (2.10), and does so without assuming the existence of the surface

sk.
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The Case d> 2k{k - 1).

By (1.2): d = 2nok - e.

If d > 2k(k — 1), then equality holds in the inequality θ < k; for if

one chooses H general then D^ := S^ Π Q2 will be an integral curve which

will not contain any of the components of DQ E |TΓ,Q 2 (^)I S O that, by

computing intersections on Q27 o n e gets: D^ DQ = 2θk > d > 2k(k — 1),

that is θ > (k - 1).

It follows that the linear systems E\ are empty in the range [0, k — 1]:

7/ = 2Z + 1, Vie [0,/c-l].

Since D^ is an integral curve the linear systems |2τ,Q2(0l — ̂ k +

\OQ2{1 — fc)|, in the range [k,n — 1], so that, on the general Qi, E\ =

Dk Π Qι + \OQι(l - fc)|; it follows that:

7; = 2fc, Vz G [fc,n- 1].

The above interval is empty if and only if |XpjQ2 (fc)| is free of fixed

components, which in turn is equivalent to the statement that D^ moves;

this last condition implies of course hP(Iγβ2(k)) > 2 so that, if n = k then

7fc<2fc- l .

As in [JH] it is now time to use Gieseker's Lemma; it allows to under-

stand better the behavior of the quantities 7/ in the third remaining interval

[n, m].

LEMMA 2.2. If k < n then one has the following information as to the

behavior of the quantities 7/: 7 n _i — 7 n > 1; 7/_i — 7/ > 2, V7 G [n, m — 1];

7m_i — 7 m = 7m-i ̂  l If k = n then the same conditions hold except,

possibly, the first one; in any case 7^ < 2k — 1.

Proof. The only difference between the two possibilities k < n and

k — n lies, possibly, in (7n_i — 7n) By what has been shown above, the

second statement for the case k = n is clear.

Assume therefore that k < n. One has E3 C H°(OQl(j)) ~ fίo(C?pi(2j))

and ίΓ°(OPi(l)) xiί°(O ] P i(l)) x E ^ ! C ̂ . One applies Lemma (1.5) twice

for every index j in the range considered, keeping in mind that, since Q\

does not meet Γ, the lack of fixed components for \Ir,Q2(J)\ implies the

base-point-freeness of the corresponding Ej. It follows that e\ — e/_χ > 4,

except possibly I = n, m where e\ — e\-\ > 3. Π
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Since |2Γr,Q2(
n)l does not have fixed components, any curve in that

linear system cuts on Dk a set of 2nk points (counted with multiplicities)

that contains Γ, so that 2nk > d:

n > n0 = L-^J + l

One can summarize the information on 7 : [0, m] —> N as follows:

7/ = 2Z + 1, I e [0,fc- 1];

7/ = 2fc, I e [fc,n- 1];

7 n < 2k - 1;

7/ -7/+1 > 2, / G [ n , r a - 2];

7/ = 0, l>m\

1=0

After (2.1), the goal is to maximize Σ/=oG "~ ̂ -)lu subject to the above
constraints. One can start by reducing the process to the case in which

n = ΠQ.

Remark. It should be noted that m < no + k. This is a straightforward

consequence of the constraints on 7. In particular one could already find

an a priori upper bound for Σ(l — 1)7/ by adding up setting, for example,

Ίi = 2k.

LEMMA 2.3. Given any function 7 subject to the above constraints

there exists a function 7, subject to the same constraints, for which the

corresponding n = no (here n is the first number greater or equal to k for

which j n < 2k) and for which ^2(1 — 1)7/ < Σ(l ~ 1)7/•

Proof. Assume n — no =: ξ > 0, otherwise there is nothing to show.

One has:

n— 1 m m m
d = & / +Σ,Ίι = ~k2 -

0 n

it follows that

By the above, k > 2, so that 2ξk > 4 and Σ™ η{ < k2 - 4. It follows that

one of the following conditions must hold:
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a) there is an index n < j < m — 1 for which Jj-i ~ Ίj > 5;

b) there are two distinct indices j \ < 22 as in α) for which Y3SHit-\ ~

ΊJt) > 6;

c) there are three distinct indices j \ < 22 < J3, as in a) such that

Σi(7jt-i-7Jt)>8;

d) there are four distinct indices jι < j 2 < j% < J4, as in a) such that

In case a) one decreases (increases) 7^-1 (7j) by one. In case b) either one

is also in case a) or one can decrease (increase) Ύj1—i (7j2) by one. Similarly

in the remaining cases. As a consequence of this process, the constraints

are respected but Y^il — 1)7/ increases. Since this sum is bounded from

above by the above remark the process must come to an end, i.e. one can

modify any 7 to a 7 for which the corresponding ξ = 0. Π

COROLLARY 2.4. The following function 7 satisfies the constraints and

maximizes Σ™(/ — 1)7/:

ifO < e < k:

7/ = 2/ + 1, 0 < / < k- 1,

7/ = 2/c, k < I < no,

7/ = 2{k + no — /) — 1, no < / < no + A: — e — 1,

7/ = [2(k + n 0 - /) - 1] - 1, n 0 + k - e < I < n 0 + k - 1,

7/ = 0, n 0 + k < /,

i / fc + 1 < e < 2k - I, letτ :=e-k, then:

Ίi = 2/ + 1, 0 < / < k - 1,

77 = 2/c, k < / < no,

7/ = [2(fc + no - 0 - 1] - 1, n 0 < / < n 0 + k - r - 1,

7/ = [2(fc + n 0 - /) - 1] - 2, no + k-T<l<no + k-l,

7/ = 0, n 0 + A; < /,

Proof. By the previous lemma one can assume n = no; it remains to

define 7/ in such a way that Σ™Q jι — k2 — e and J (̂Z — 1)7/ is maximized.

First define 7/ = 2(k + no — /) — 1 for / G [no, no + & — 1]. Now one has to

delete from the graph of ηe points; 7 is the way to delete those points while

maintaining the constraints and meeting the above maximization require-

ments. Π
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2.5. If one adds up Y^'l'o G ~~ ̂ )ΊU o n e Se^ s the desired function π =
π(d, k) for which (g — 1) < π. For its explicit form see Theorem 1.4.

Remark. The above is the bound obtained in [A-S], §6 for curves C of

degree d > 2k {k — 1) contained in an integral surface of degree 2k. As it

will be shown in §3, the bound (2.5) is not quite sharp.

The Case d < 2k(k - 1), θ < k - 1.

In this case the analysis of the behavior of the function 7 associated

with C is analogous to the first case. The twist is the behavior of 7 in the

interval [0, n — 1]. The following takes care of that interval.

PROPOSITION 2.6. 7/ = 2Θ, VZ e [0,n - 1].

Proof. Let Z be in the above range. Using the notation of (1.7) define

3 Q 3 '=P~λQ^ £ ^ P ^ C and define .F(Z) := 2c,αQ3 ® P * O Q 3 ( 0
 T h e P r o o f

of Lemma 1.7 and Remark 1.8 imply that for every I the fixed component

Fι of |2r,Q2(0l contains all of Γ. Clearly Fθ D F ^ + 1 D . . . D F n _ x .

If FQ D Fι, for some /, then the curve i ^ — F\ would be free to move in

|XΓ ? Q 2 (0) | , a contradiction. It follows that Fβ = ... = Fn-\.

To conclude one has to show that Fβ is actually a member of |Zτ,Q2(^)l
One can choose a line ί C P 4 such that:

i) it defines a pencil of hyperplane sections of Q3 based on a smooth

conic Q\ that does not meet C,

ii) it meets the open set W of (1.7) and

iii) it meets the open set of P 4 for which Γ has cardinality d.

Using the same method as in the quoted lemma one constructs a surface S

on q~ι(ί) (which is the blowing up of Q3 along Qi), that cuts on the general

element of the pencil the corresponding curve Fβ. This surface descends to

Q3 as a surface S that cuts on, the general element of the pencil, a curve of

the form FQ + μQi, where μ is some integer. Since Pic(Q^) ~ Pzc(P4), one

sees that S G |C*Q3(C)I? f°r some integer ζ; it follows that Fβ E |ίr,Q2(x)l>

for some integer χ. By the minimality of θ one concludes θ = χ. Π

Remark. The same method as above offers an alternative way to prove,

less elementarily but in an unifying way, that 7/ = 2/c, VZ E [fc, n — 1] in the

case d > 2k(k - 1).
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Now one can repeat the analysis of the case d > 2k(k—l) and obtain an

analogous function 7 as follows: substitute k and no by #0 and k respectively,

for if one does so, then m will be maximized.

2.7. Adding up one gets, as in (2.5), a function π' — πf(d,k) that

bounds g — 1 from above. By construction π'{d,k) = π(d, L ^ F J + 1) =

τr(d,0o).

Remark. The bound TΓ7 is not quite sharp as well (see §3.).

The Case d < 2k(k - 1), θ = k.

In what follows the surface S^ will play no role. Hence the only as-

sumptions needed are:

2.8. C C Q3 is an integral curve of degree d < 2k(k — 1); for which the

general hyperplane section Γ C Q2 is not contained in any curve belonging

to the linear system \OQ2(k — 1)|.

Clearly θ > k; as in the previous case 7/ = 20, if / G [0, n — 1]; also

Lemma 2.2 holds with k replaced by θ.

Now one starts modifying 7, if necessary, to maximize 5Z(Z — 1)7/. First

of all, since \UQ2(k - 1)| ~ P ^ , one has d > k2 = Σfjo 1^- N e x t ^ s i n c e

the numbers 7/ must add up to d < 2k(k — 1), after reducing oneself, as

in Lemma 2.3, to the case k = θ — n, it is easy to see which function 7

maximizes ra, and thus Σ{1 — l)7/

let v^ e be the unique non-negative integers such that

(2.9) d =

then define 7 as follows:

if 0

if z / + 1

< 6 < i/, then

7i = 2Z + l ,

7 ; = [2(fc + v -

7/ = [2(fc + 1/ -

7ί = 0,

< e < 2i/, let first

7ί = 2/ + 1,

7; = [2(fc + v -

7i = [2(fc + u-

7i = 0,

fc2

0
0

r

0
0

+ ̂ 2

- i ] ,

: = e

- i ]

- 1 ]

+ e

+ 1,

- 1 /

+ 2,

+ 1,

and

0

A;

k

k

< e

0

k

+ e

+ ̂

0

k

+ τ

<

<

<

<

<

<

<

<

<

2v,

1 <

ι<
ι<
h

1 <

ι<
ι<
I.

k- 1;

fc + e - 1 :

k + u-l

k-1;

k + τ-1

k + u-l
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Remark. Even without adding up, at this point one already knows,

since θo < fc, that the result will be strictly smaller than the corresponding

π' of (2.7).

The proof of (1.4.1) is now complete. By adding up what above one

gets the following:

THEOREM 2.10. Assumptions and notation as in (2.8) and (2.9). The

geometric genus of C satisfies the following bound:

3 1 1 1
(k - -)d - -(k3 - v3) - -{k -v) + -e 2 , if 0 < e < v;
v 2J 3 V ; 6 V ; 2 - -

+ -z/2 + -(e-v)(e-v + k-3), if is + I < e < 2v.
Δι Δt

§3. Discussion: When is the bound sharp? When is it not?

Assume the curve C has geometric genus maximum with respect to

the upper bounds π, π' of (2.5) and (2.7). In particular 7 = 7 and the

inequalities in (2.1) are all equalities. By the following elementary claim, if

such a curve exists then it will be smooth and projectively normal.

CLAIM 3.1. C is smooth if and only if pi is surjective\/l ^> 0. Moreover

if C is smooth it is projectively normal {i.e. p\ is surjective VZ) if and only

if βi = Oil — QLi-i, VZ.

Proof. (Cf. [JH], page 193). The first part is clear since the normal-

ization map 1/* : ΌQ —> O^ has zero cokernel if and only if C is smooth. As

to the second part one argues as follows. If p\ is surjective for every Z, then

σ\ — pi-i for every Z as well. Conversely assume C is not projectively nor-

mal and let Zo be any index such that p/0+i is surjective but pι0 is not. Since

hι(lc,Q3(lo + 1)) = 0, σ / o +i is surjective. It follows that alo+1 - ato > βι0.

D

CLAIM 3.2. If d > 2fc(fc—1), then there exists an integral surface Sno G

T(77g3(no)| such that Sj~ (jL SnQ. If d < 2k{k —1); then there exists an integral

surface Sθo G \1C,Q3(ΘO)\.
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Proof. Assume first that d > 2d(k — 1). Then since | ΐr,Q 2 ( n o)| is free

of fixed components, one finds in it an element Fno that does not contain

the irreducible curve Ό^. The projective normality of C translates into

the surjection H0(OQ3(1)) -» H°(OC{1)), VZ. This, in turn, is equivalent to

H1(Ic,Q3(l)) — 0, VZ. Applying this to the case I = ΠQ — 1 one gets the

surjection H°(lΓ^Q3(no)) -» H°(Tr,Q2(n0)).

Therefore FnQ can be lifted to a surface Sno G |2C,Q 3(ΉΌ)| Since Pic(Qs) —

Z it follows that this surface is integral otherwise one would find n\ <

no for which there is an element Fni G |2r,Q2(
ni)l n ° t containing D&, a

contradiction, since then |Zr,Q2(
ni)l would be free of fixed components.

If d < 2k(k — 1) then there is a unique element FQ0 G |ϊr,Q2(^o)h o n e c a n

lift it to a surface SQ0 G |Ic,Q3(#o)| which is integral by the minimality

property of ΘQ. Π

By what has just been shown, C is residual to a curve De of degree e if

d > 2k(k — 1) (Det of degree e1 if d < 2k(k — 1)) in a complete intersection

on Q3 of type (fc,n0) ((βo, fc), respectively).

The following lemma is the technical device needed to relate C and De (Df

e).

The proof is a mere generalization of [JH], page 199, where the case S c± P 2

was dealt with. It will be used here only in the case 5 ~ Q2] proving it in

a more general form is not more costly.

LEMMA 3.3. Let S be a normal and projective surface, Os(l) a nef

and big line bundle on it, F and G two curves in \Όs{n)\ and \Os{m)\

respectively without any common component. Denote by Γ their scheme-

theoretic intersection. Assume Γ = Γ + Tr, where Γ is reduced and disjoint

from T1 and Γ C Sreg. Then:

h^S.lr^sin + m - I) 0 ωs) = /iO(S,2r',s(0)> v / < mi n

Proof. Let π : S' -^ S be the blowing up of S along Γ, E the exceptional

divisor. Since F and G meet transversally at Γ one gets the following

relations concerning strict transforms: Ff = π*F — E, Gf = τr*G — E.

Denote by Γ/; the scheme on S' isomorphic to Γ ; via π, and by Os'(v) the

pull back π*Osf(v) By taking the cohomology of the following resolution:

0 -> π*O s(-n - m + I) + 2E

-+ π*Os(-n + l) + EΘ π*O5(-m + Z) + E -> I Γ "(0



208 M. A. A DE CATALDO

one gets, for I < n, m:

0 -> fr°(IΓ»(O) -^ ^ ( O s ' l - n - m + I) +

-* H^Όsi-n + l) + E)® H\Os<(-m + I) + E) -* ...

The above vector space is zero, for / < n, ra, as it is now shown. Leray

spectral sequence gives Hι{Os>{-t + I) + E) = Hι(Os{-t + Z))> Vt. The

latter group is zero (this is a well-known argument): take a desingularization

<S —> S, pull back Os(—t 4- ί) to a nef and big Os(—t 4- I); Kawamata-

Viewheg vanishing (cf. C-K-M, Lecture 8) descends, again by Leray spectral

sequence, to S.

Next, S' being normal it is Cohen-Macauley. Using Serre Duality:

By Leray spectral sequence one concludes using the isomorphism b. Π

CLAIM 3.4. De lies on some quadric surface Σ C Q3.

Proof. If e = 0 there is nothing to prove. Let e > 0, and denote by Γ7

the general hyperplane section of De. Then ηnQ+k-ι — 0 a n d βnQ+k-2+t — dΊ

Vt > 0. One has: 0 < 7no+/c-2 = d- βno+k-3 = d - [d - hι(lγ,Q2(n0 +

k — 3))] = hP(Iγr(l))\ the last equality follows from (3.3). C being projec-

tively normal, De is a.C.M. (cf., for example, [Mi], Th 1.1). It follows that

h°(ΊDeF4(l) > 0, i.e. De is contained in a hyperplane. Π

EXAMPLE 3.5. Here the function 7 and the genus of the curves in the

class Θ(d, k) are computed. The curves in these classes are the natural

candidates to be the curves of maxima genera with respect to d and fc.

Since the two cases d > 2k(k — 1) and d < 2k(k — 1) are treated in the same

way, the example is worked out only in the former case.

Let Γ' denote the general hyperplane section of De. Assume first that e is

even: e = 2a. Since De is a.C.M., one sees that De G |Os(a) | . One takes

the cohomology of the following projective resolutions of the twists of the

ideal sheaf of Γ;:

0 -> O Q 2 ( - 1 - a + /) -> OQ2{-1 + I) Θ OQ2(-a + I) -> JΓ ' ,Q 2(0 ~> 0.

To compute the quantities 7/ one argues as in (3.4) using Lemma 3.3:

Ίno+k-2-l = h°(lΓ',Q2(l + 1)) - fc°(Zr',Q3(0), VZ < A; - 2.
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Now it is assumed that e is odd: e — 2a — 1. One can pick a line C on

Σ so that M := De U C is a curve in | O Σ ( α ) | (cf. [A-C-G-H], Ex. Ill D7).

The general hyperplane section of Λ4 is Γ/f = Γf U p, where p is the point

hyperplane section of the line C In addition to the projective resolution for

Γ", which is the same as above, one also has the following exact sequences:

0 - JΓ»,Q2(0 ^ ZΓ',Q2(O - Op -+ 0.

Keeping in mind that /ι1(Tr//,Q2(0) = 0, V7 > α, Lemma 2.2 and the usual

constraints a straightforward computation, analogous to the one of the case

e even, gives the desired quantities 7.

From what above one concludes that the function 7 for these special curves

is the following:

first let

JO if e = 0 or e is odd,

1 1 if 6 is even and e > 2;

and let a be as above, then

7/ = [2 (no + k - I) - 1], n o < / < n o + fc-α-2

7/ = [2(n0 + fe - /) - 1)] - Δ, / = n 0 + k - a - 1,

<γj = [ 2 ( n 0 + fc - Z) - 1] - 2, n o + / c - α < / < n o + A : - 2

7/ = 0, n + fc - 1 < /.

Moreover by adding up one gets that the genera of these curves are:

(3.5.1)

ί i d 2 + \{k ~ 3)d -^k- ^ ί 1 - ̂  - I' if e is odd'

The two functions 7 of (2.4) and 7 coincide if and only if e = 0, 1, 2, 2/c — 1.

This proves that the geometric genus of C achieves the bound π if and only

if 6 = 0, 1, 2, 2/c - 1 and C G 6(d, fc). Conversely if C G 6(d, fc) then its

associated function 7 and its genus are as in (3.5.1).

As to the cases 6 = 3, 2k—2. By what above g—1 < π, and Σ(/—1)7/ = π—1;

it follows that this latter value is the sharp bound.

This proves (1.4.2) so that the proof of Theorem 1.4 is now complete.
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§4. Two open questions

The author would like to pose the following two questions. The first

one is the consequence of the incompleteness of Theorem 1.4. The answer

to the second one would constitute a natural property of curves on quadrics.

QUESTION A. Is it true that the curves of maximal genus with respect

to (d, k) are the ones of the class Θ(o2, k) ?

A positive answer would give the sharp bound (3.5.1) and the complete

characterization of the curves of maximal genus.

QUESTION B. The U.P.P. is expressed in terms of the space of hy-

perplane sections of Q3, i.e. P 4 . Does the analogue statement hold if one

considers only hyperplanes which are tangent to Q%, i.e. replacing P 4 by

Q3 ? If such a statement fails to be true, what are the implications for the

embedded curve CΊ
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