ON PLAIN LATTICE POINTS WHOSE COORDINATES ARE RECIPROCALS MODULO A PRIME

AKIO FUJII and YOSHIYUKI KITAOKA

Abstract

We consider, for a given large prime p, the problem of covering a square $[0, p] \times[0, p]$ with discs center at the lattice point $(x, y), x$ and y subject to condition $x y \equiv 1(\bmod p)$ and with radius r. We are concerned with the size of r.

§1. Introduction

In this paper we consider, for each given large prime P, the problem of covering a 2-dimensional box $[0, P] \times[0, P]$ with discs $C_{(x, y)}(r)$ center at the lattice point $(x, y), x$ and y subject to the condition $x y \equiv 1(\bmod P)$ and with the least possible radius r. In other words, we wish to determine the infimum $r(P)$ of r satisfying

$$
\bigcup_{\substack{x=1 \\ x y \equiv 1(\bmod P)}}^{P-1} C_{(x, y)}(r) \supset[0, P] \times[0, P] .
$$

When $r=\sqrt{P}$, the area of the left-hand side member is roughly P^{2}, even if discs do not overlap. Thus it may be too optimistic to expect to have

$$
r(P)=\text { constant times } \sqrt{P}
$$

and actually for $P=5, r=\sqrt{5}$ is not large enough, but it would be reasonable to conjecture that

$$
r(P)=P^{\frac{1}{2}+\varepsilon}
$$

for every $\varepsilon>0$. If this is the case, we may claim that the lattice points (x, y) with $x y \equiv 1(\bmod P)$ are "uniformly distributed." Towards this conjecture, we shall prove the following theorem.

Theorem. For $P \gg 1$, we have

$$
r(P) \ll P^{\frac{3}{4}} \log P
$$

We can generalize the above problem to cover the higher dimensional box $[0, M] \times[0, M] \times \cdots \times[0, M]$ with the spheres

$$
C_{\left(x_{1}, \cdots, x_{N}\right)}(r)
$$

center at the lattice point $\left(x_{1}, \cdots, x_{N}\right)$ which satisfies $x_{1} \cdots x_{N} \equiv 1(\bmod M)$, and with the radius r, where M is a natural number. We shall give only a short notice for the generalization in the last section.

We may remark here that a related problem has been treated by Dinaburg and Sinai [1] and Fujii [2].

§2. Proof of Theorem

We shall give the following more general theorem.
Theorem. Suppose that M, K_{1}, K_{2}, H_{1} and H_{2} are integers satisfying $M \geq 3,0 \leq K_{1}<K_{2}<M, 0 \leq H_{1}<H_{2}<M, K_{2}-K_{1} \geq 2$ and $H_{2}-H_{1} \geq 2$. Then we have

$$
\begin{aligned}
& \sharp\{(x, y) \mid \\
& \left.\quad x, y \in \mathbf{Z}, x y \equiv 1(\bmod M), K_{1}<x \leq K_{2}, H_{1}<y \leq H_{2}\right\} \\
& =\frac{\varphi(M)}{M^{2}}\left(K_{2}-K_{1}\right)\left(H_{2}-H_{1}\right) \\
& \quad+O\left(\sqrt{M} \sigma_{0}(M) \sigma_{-\frac{1}{2}}(M) \log \left(K_{2}-K_{1}\right) \cdot \log \left(H_{2}-H_{1}\right)\right)
\end{aligned}
$$

where O does not depend on $K_{1}, K_{2}, H_{1}, H_{2}$ and $M, \varphi(M)$ is the Euler function and we put $\sigma_{a}(M)=\sum_{d \mid M} d^{a}$.

This implies the following corollary immediately.
Corollary. Suppose that M is a sufficiently large integer M and

$$
\frac{r}{\log r} \gg M^{\frac{5}{4}}\left(\frac{\sigma_{0}(M) \sigma_{-\frac{1}{2}}(M)}{\varphi(M)}\right)^{\frac{1}{2}}
$$

then we have

$$
\bigcup_{\substack{x=1 \\ x y \equiv 1(\bmod M)}}^{M} C_{(x, y)}(r) \supset[0, M] \times[0, M]
$$

Clearly, we get our theorem in the introduction.
To prove the theorem at the beginning of this section, we introduce the following functions $\chi_{K}(x)$ and $\chi_{H}(x)$ on the set of integers. They are periodic functions with period M and satisfying, for $0 \leq x<M$

$$
\begin{aligned}
& \chi_{K}(x)= \begin{cases}1 & \text { if } K_{1}<x \leq K_{2} \\
0 & \text { otherwise },\end{cases} \\
& \chi_{H}(x)= \begin{cases}1 & \text { if } H_{1}<x \leq H_{2} \\
0 & \text { otherwise },\end{cases}
\end{aligned}
$$

and we put

$$
\tilde{\chi}_{K}(x)=\sum_{y=1}^{M} \chi_{K}(y) e\left(\frac{y x}{M}\right)
$$

and

$$
\tilde{\chi}_{H}(x)=\sum_{y=1}^{M} \chi_{H}(y) e\left(\frac{y x}{M}\right),
$$

where $e(x)$ denotes $e^{2 \pi i x}$. Then we have

$$
\chi_{K}(x)=\frac{1}{M} \sum_{z=1}^{M} \tilde{\chi}_{K}(z) e\left(-\frac{x z}{M}\right)
$$

and

$$
\tilde{\chi}_{K}(0)=\sum_{y=1}^{M} \chi_{K}(y)=K_{2}-K_{1} .
$$

We shall use the following lemma.

Lemma. Let d be a natural number satisfying $d \mid M$. Then we have

$$
\sum_{\substack{x=1 \\(x, M)=d}}^{M-1}\left|\tilde{\chi}_{K}(x)\right| \ll \frac{M}{d} \log \left(K_{2}-K_{1}\right)
$$

and

$$
\sum_{x=1}^{M-1}\left|\tilde{\chi}_{K}(x)\right| \ll M \log \left(K_{2}-K_{1}\right) .
$$

Proof. For a real number a, we put

$$
\|a\|=\min ([a]+1-a, a-[a])
$$

where $[a]$ is the largest integer not exceeding a.
We shall prove the first inequality. Denoting by U the left hand side of the first inequality, we have

$$
\begin{aligned}
& U=\sum_{\substack{x=1 \\
(x, M)=d}}^{M-1}\left|\tilde{\chi}_{K}(x)\right|=\sum_{\substack{x=1 \\
(x, M)=d}}^{M-1}\left|\sum_{y=1}^{M} \chi_{K}(y) e\left(\frac{y x}{M}\right)\right| \\
& =\sum_{\substack{1 \leq x \leq \frac{M-1}{d} \\
\left(x, \frac{M}{d}\right)=1}}\left|\sum_{y=1}^{M} \chi_{K}(y) e\left(\frac{y x}{\frac{M}{d}}\right)\right|=\sum_{\substack{1 \leq x \leq \frac{M-1}{d} \\
\left(x, \frac{M}{d}\right)=1}}\left|\sum_{K_{1}<y \leq K_{2}} e\left(\frac{y x}{\frac{M}{d}}\right)\right| \\
& \ll \sum_{\substack{1 \leq x \leq \frac{M-1}{d} \\
\left(x, \frac{M}{d}\right)=1}} \min \left(\frac{1}{\left\|\frac{x}{M / d}\right\|}, K_{2}-K_{1}\right) \\
& \ll \sum_{1 \leq x \leq \frac{M-1}{d}} \min \left(\frac{M}{x d}, K_{2}-K_{1}\right) \\
& \left(x, \frac{M}{d}\right)=1, \frac{x}{M / d} \leq \frac{1}{2} \\
& +\sum_{1 \leq x \leq \frac{M-1}{d}} \min \left(\frac{1}{1-\frac{x}{M / d}}, K_{2}-K_{1}\right) \\
& \left(x, \frac{M}{d}\right)=1, \frac{x}{M / d}>\frac{1}{2} \\
& \ll \sum_{1 \leq x \leq \frac{M-1}{d},\left(x, \frac{M}{d}\right)=1}\left(K_{2}-K_{1}\right)+\sum_{1 \leq x \leq \frac{M-1}{d},\left(x, \frac{M}{d}\right)=1} \frac{M}{x d} \\
& \frac{x}{M / d} \leq \frac{1}{2}, \frac{M}{x d} \geq K_{2}-K_{1} \quad \frac{x}{M / d} \leq \frac{1}{2}, \frac{M}{x d}<K_{2}-K_{1} \\
& +\sum_{\substack{1 \leq \frac{M}{d}-y \leq \frac{M-1}{d},\left(\frac{M}{d}-y, \frac{M}{d}\right)=1 \\
\frac{\frac{M}{d}-y}{M / d}>\frac{1}{2}, \frac{M}{d y} \geq K_{2}-K_{1}}}\left(K_{2}-K_{1}\right)+\sum_{\substack{1 \leq \frac{M}{d}-y \leq \frac{M-1}{d},\left(\frac{M}{d}-y, \frac{M}{d}\right)=1 \\
\frac{\frac{M}{d}-y}{M / d}>\frac{1}{2}, \frac{M}{d y}<K_{2}-K_{1}}} \frac{M}{d y} \\
& \ll \sum_{1 \leq x \leq \frac{M}{d\left(K_{2}-K_{1}\right)}}\left(K_{2}-K_{1}\right)+\sum_{\frac{M}{d\left(K_{2}-K_{1}\right)}<x \leq \frac{M}{2 d}} \frac{M}{x d} .
\end{aligned}
$$

If $\frac{M}{d\left(K_{2}-K_{1}\right)} \geq 1$, then

$$
\begin{aligned}
& U \ll \frac{M}{d\left(K_{2}-K_{1}\right)}\left(K_{2}-K_{1}\right)+\frac{M}{d}\left(\log \left(\frac{M}{2 d}\right)-\log \left(\frac{M}{d\left(K_{2}-K_{1}\right)}\right)+1\right) \\
& \ll \frac{M}{d}+\frac{M}{d} \log \left(\frac{e}{2}\left(K_{2}-K_{1}\right)\right) \ll \frac{M}{d} \log \left(K_{2}-K_{1}\right) .
\end{aligned}
$$

If $\frac{M}{d\left(K_{2}-K_{1}\right)}<1$, then

$$
U \ll \sum_{1 \leq x \leq \frac{M}{2 d}} \frac{M}{x d} \ll \frac{M}{d}\left(\log \left(\frac{M}{2 d}\right)+1\right) \ll \frac{M}{d} \log \left(K_{2}-K_{1}\right)
$$

Thus we get the first inequality.
We can prove the second inequality by modifying the above argument as follows.

$$
\begin{aligned}
\sum_{x=1}^{M-1}\left|\tilde{\chi}_{K}(x)\right| & =\sum_{1 \leq x \leq M-1}\left|\sum_{K_{1}<y \leq K_{2}} e\left(\frac{y x}{M}\right)\right| \\
& \ll \sum_{1 \leq x \leq M-1} \min \left(\frac{1}{\left\|\frac{x}{M}\right\|}, K_{2}-K_{1}\right) \\
& \ll \sum_{1 \leq x \leq \frac{M}{\left(K_{2}-K_{1}\right)}}\left(K_{2}-K_{1}\right)+\sum_{\frac{M}{\left(K_{2}-K_{1}\right)}<x \leq \frac{M}{2}} \frac{M}{x} \\
& \ll M \log \left(K_{2}-K_{1}\right) .
\end{aligned}
$$

Thus we have completed the proof of the lemma.

We now proceed to the proof of the theorem.
Putting

$$
S=\sharp\left\{(x, y) \mid x y \equiv 1(\bmod M), K_{1}<x \leq K_{2}, H_{1}<y \leq H_{2}\right\},
$$

we have

$$
S=\sum_{\substack{x=1 \\ x y=1(\bmod M)}}^{M} \chi_{K}(x) \chi_{H}(y)
$$

$$
\begin{aligned}
= & \frac{1}{M^{2}} \sum_{\substack{x=1 \\
x y \equiv 1(\bmod M)}}^{M} \sum_{z_{1}=1}^{M} \sum_{z_{2}=1}^{M} \tilde{\chi}_{K}\left(z_{1}\right) e\left(-\frac{x z_{1}}{M}\right) \tilde{\chi}_{H}\left(z_{2}\right) e\left(-\frac{y z_{2}}{M}\right) \\
= & \frac{1}{M^{2}} \sum_{\substack{x=1 \\
x y \equiv 1(\bmod M)}}^{M} \tilde{\chi}_{K}(0) \tilde{\chi}_{H}(0) \\
& +\frac{1}{M^{2}} \tilde{\chi}_{K}(0) \sum_{\substack{x=1 \\
x y \equiv 1}}^{M} \sum_{z_{2}=1}^{M-1} \tilde{\chi}_{H}\left(z_{2}\right) e\left(-\frac{y z_{2}}{M}\right) \\
& +\frac{1}{M^{2}} \tilde{\chi}_{H}(0) \sum_{\substack{x=1 \\
x y \equiv 1}}^{M} \sum_{z_{1}=1}^{M-1} \tilde{\chi}_{K}\left(z_{1}\right) e\left(-\frac{x z_{1}}{M}\right) \\
& +\frac{1}{M^{2}} \sum_{\substack{x=1 \\
x y \equiv 1(\bmod M)}}^{M} \sum_{z_{1}=1}^{M-1} \sum_{z_{2}=1}^{M-1} \tilde{\chi}_{K}\left(z_{1}\right) \tilde{\chi}_{H}\left(z_{2}\right) e\left(-\frac{x z_{1}+y z_{2}}{M}\right) \\
= & S_{1}+S_{2}+S_{3}+S_{4}, \text { say. }
\end{aligned}
$$

It is easy to see

$$
S_{1}=\frac{1}{M^{2}} \varphi(M)\left(K_{2}-K_{1}\right)\left(H_{2}-H_{1}\right)
$$

S_{2} is clearly equal to

$$
\frac{1}{M^{2}}\left(K_{2}-K_{1}\right) \sum_{z_{2}=1}^{M-1} \tilde{\chi}_{H}\left(z_{2}\right) \sum_{\substack{x=1 \\ x y \equiv 1(\bmod M)}}^{M} e\left(-\frac{y z_{2}}{M}\right)
$$

The last partial sum on x is

$$
\begin{aligned}
\sum_{\substack{x=1 \\
(x, M)=1}}^{M} e\left(-\frac{x z_{2}}{M}\right) & =\sum_{d \mid M} \mu(d) \sum_{x=1, d \mid x}^{M} e\left(-\frac{x z_{2}}{M}\right) \\
& =\sum_{d \mid M} \mu(d) \sum_{1 \leq x \leq \frac{M}{d}} e\left(-\frac{x z_{2}}{M / d}\right) \\
& = \begin{cases}M \sum_{d \mid M} \frac{\mu(d)}{d} & \text { if } M / d \mid z_{2} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

where $\mu(d)$ is the Möbius function. Hence, we get

$$
S_{2}=\frac{1}{M^{2}}\left(K_{2}-K_{1}\right) M \sum_{d \mid M} \frac{\mu(d)}{d} \sum_{\substack{z_{2}=1 \\ M / d \mid z_{2}}}^{M-1} \tilde{\chi}_{H}\left(z_{2}\right) .
$$

The last partial sum on z_{2} is equal to

$$
\begin{aligned}
& \sum_{1 \leq \frac{M z}{d} \leq M} \tilde{\chi}_{H}\left(\frac{M z}{d}\right)-\tilde{\chi}_{H}(0) \\
= & \sum_{1 \leq z \leq d} \sum_{y=1}^{M} \chi_{H}(y) e\left(\frac{y M z}{d M}\right)-\left(H_{2}-H_{1}\right) \\
= & \sum_{y=1}^{M} \chi_{H}(y) \sum_{1 \leq z \leq d} e\left(\frac{y z}{d}\right)-\left(H_{2}-H_{1}\right) \\
= & d \sum_{\substack{y=1 \\
d \mid y}}^{M} \chi_{H}(y)-\left(H_{2}-H_{1}\right) \\
= & d\left(\left[\frac{H_{2}}{d}\right]-\left[\frac{H_{1}}{d}\right]+O(1)\right)-\left(H_{2}-H_{1}\right) \\
= & d\left(\frac{H_{2}}{d}-\frac{H_{1}}{d}+O(1)\right)-\left(H_{2}-H_{1}\right) \\
= & O(d) .
\end{aligned}
$$

Consequently, we get

$$
\begin{aligned}
S_{2} & =\frac{1}{M^{2}}\left(K_{2}-K_{1}\right) M \sum_{d \mid M} \frac{\mu(d)}{d} O(d) \\
& \ll \frac{1}{M^{2}}\left(K_{2}-K_{1}\right) M \sum_{d \mid M}|\mu(d)| \\
& \ll \sum_{d \mid M}|\mu(d)| \ll \sigma_{0}(M)
\end{aligned}
$$

Similarly, we get

$$
S_{3} \ll \sigma_{0}(M) .
$$

Finally, using the estimate on the Kloosterman sum (cf. p. 35 of Hooley
[3], for example), we get

$$
\begin{aligned}
S_{4} & =\frac{1}{M^{2}} \sum_{z_{1}=1}^{M-1} \sum_{z_{2}=1}^{M-1} \tilde{\chi}_{K}\left(z_{1}\right) \tilde{\chi}_{H}\left(z_{2}\right) \sum_{\substack{x=1 \\
x y=1(\bmod M)}}^{M} e\left(-\frac{x z_{1}+y z_{2}}{M}\right) \\
& \ll \frac{1}{M^{2}} \sum_{z_{1}=1}^{M-1} \sum_{z_{2}=1}^{M-1}\left|\tilde{\chi}_{K}\left(z_{1}\right)\right|\left|\tilde{\chi}_{H}\left(z_{2}\right)\right| \sqrt{M} \sigma_{0}(M)\left(M, z_{1}\right)^{\frac{1}{2}} \\
& \ll \frac{1}{M^{2}} \sqrt{M} \sigma_{0}(M) \sum_{d \mid M} \sqrt{d}\left(\sum_{\substack{z_{1}=1,\left(z_{1}, M\right)=d}}^{M-1}\left|\tilde{\chi}_{K}\left(z_{1}\right)\right|\right)\left(\sum_{z_{2}=1}^{M-1}\left|\tilde{\chi}_{H}\left(z_{2}\right)\right|\right) \\
& \ll \frac{1}{M^{2}} \sqrt{M} \sigma_{0}(M) \sum_{d \mid M} \sqrt{d} \frac{M}{d} \log \left(K_{2}-K_{1}\right) \cdot M \log \left(H_{2}-H_{1}\right) \\
& \ll \sqrt{M} \sigma_{0}(M) \sigma_{-\frac{1}{2}}(M) \log \left(K_{2}-K_{1}\right) \cdot \log \left(H_{2}-H_{1}\right) .
\end{aligned}
$$

All of these estimates lead to the theorem at the beginning of this section.

§3. Concluding remark

3-1. It is clear that our theorem could be refined slightly, if we take care of the condition

$$
\left(x, \frac{M}{d}\right)=1
$$

in the process of the proof of our lemma, or by replacing $\left(M, z_{1}\right)^{\frac{1}{2}}$ by $\left(M, z_{1}, z_{2}\right)^{\frac{1}{2}}$ in the estimate of S_{4}.

3-2. To get a higher dimensional analogue of our theorem, it is enough to apply the esimate on the higher dimensional Kloosterman sum due to Deligne.

3-3. As a final remark, we mention a slightly different approach.
It is to reduce our problem to the following estimate on the incomplete Kloosterman sum:

$$
\sum_{\substack{K_{1}<x \leq K_{2} \\(x, M)=1}} e\left(-\frac{\bar{x} z}{M}\right) \ll \sqrt{M} \sigma_{0}(M) \sqrt{(z, M)} \cdot \log \left(K_{2}-K_{1}\right),
$$

where $2 \leq K_{2}-K_{1} \leq M, z$ is an integer in $1 \leq z \leq M-1$ and \bar{x} satisfies $\bar{x} x \equiv 1(\bmod M)$. The above estimate can be obtained by modifying the proof of Lemma 4 on p. 36 of Hooley [3].

Now

$$
\begin{aligned}
\sharp\{(x, y) \mid & \left.x y \equiv 1(\bmod M), K_{1}<x \leq K_{2}, H_{1}<y \leq H_{2}\right\} \\
& =\sum_{\substack{K_{1}<x \leq K_{2} \\
(x, M)=1}} \chi_{H}(\bar{x})=\frac{1}{M} \sum_{\substack{K_{1}<x \leq K_{2} \\
(x, M)=1}} \sum_{z=1}^{M} \tilde{\chi}_{H}(z) e\left(-\frac{\bar{x} z}{M}\right) \\
& =\frac{1}{M} \sum_{\substack{K_{1}<x \leq K_{2} \\
(x, M)=1}} \tilde{\chi}_{H}(0)+\frac{1}{M} \sum_{z=1}^{M-1} \tilde{\chi}_{H}(z) \sum_{\substack{K_{1}<x \leq K_{2} \\
(x, M)=1}} e\left(-\frac{\bar{x} z}{M}\right) \\
& =W_{1}+W_{2}, \quad \text { say. }
\end{aligned}
$$

It is easy to see

$$
W_{1}=\frac{1}{M^{2}} \varphi(M)\left(K_{2}-K_{1}\right)\left(H_{2}-H_{1}\right)+O\left(\frac{H_{2}-H_{1}}{M}\right)
$$

Using the above estimate on the incomplete Kloosterman sum and Lemma, we get

$$
\begin{aligned}
W_{2} & \ll \frac{1}{M} \sum_{z=1}^{M-1}\left|\tilde{\chi}_{H}(z)\right|\left|\sum_{\substack{K_{1}<x \leq K_{2} \\
(x, M)=1}} e\left(-\frac{\bar{x} z}{M}\right)\right| \\
& \ll \frac{\sqrt{M} \sigma_{0}(M) \log \left(K_{2}-K_{1}\right)}{M} \sum_{z=1}^{M-1}\left|\tilde{\chi}_{H}(z)\right| \sqrt{(z, M)} \\
& \ll \frac{\sqrt{M} \sigma_{0}(M) \log \left(K_{2}-K_{1}\right)}{M} \sum_{d \mid M} \sqrt{d} \sum_{\substack{z=1 \\
(M, z)=d}}^{M-1}\left|\tilde{\chi}_{H}(z)\right| \\
& \ll \sqrt{M} \sigma_{0}(M) \sigma_{-\frac{1}{2}}(M) \log \left(K_{2}-K_{1}\right) \cdot \log \left(H_{2}-H_{1}\right) .
\end{aligned}
$$

Thus we get

$$
\begin{aligned}
& \sharp\{(x, y) \mid \\
& \left.\quad x y \equiv 1(\bmod M), K_{1}<x \leq K_{2}, H_{1}<y \leq H_{2}\right\} \\
& =\frac{1}{M^{2}} \varphi(M)\left(K_{2}-K_{1}\right)\left(H_{2}-H_{1}\right) \\
& \quad \quad+O\left(\sqrt{M} \sigma_{0}(M) \sigma_{-\frac{1}{2}}(M) \log \left(K_{2}-K_{1}\right) \cdot \log \left(H_{2}-H_{1}\right)\right)
\end{aligned}
$$

which is the same as the assertion in the section 2.
If we assume a strong conjecture on the above incomplete Kloosterman sum, then we can certainly replace $\frac{3}{4}$ in the theorem in the introduction by a better constant.

References

[1] E. I. Dinaburg and Y. G. Sinai, Statistics of the solutions of the integral equations $a x-b y= \pm 1$, Funct. Anal. Appl., 24 (1990), 165-171.
[2] A. Fujii, On a problem of Dinaburg and Sinaı, Proc. of Japan Academy, 68 A (1992), 198-203.
[3] C. Hooley, Applications of sieve methods to the theory of numbers, Cambridge Univ. Press, 1976.

Akio Fujii
Department of Mathematics
Rikkyo University
Toshima-ku, Tokyo 171
Japan
fujii@rkmath.rikkyo.ac.jp
Yoshiyuki Kitaoka
Graduate School of Polymathematics
Nagoya University
Chikusa-ku, Nagoya 464-01
Japan
kitaoka@math.nagoya-u.ac.jp

