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THE MIXED HODGE STRUCTURE
ON THE FUNDAMENTAL GROUP OF THE FIBER
TYPE 2-ARRANGEMENT

YUKIHITO KAWAHARA

Abstract. The complement of an arrangement of hyperplanes is a good ex-
ample of the mixed Hodge structure on the fundamental group of an algebraic
variety. We compute its isomorphic class using iterated integrals in the fiber
type case and then get the combinatorial and projective invariant.

Introduction

The mixed Hodge structure on the homotopy group of the algebraic
variety was constructed in two different ways. One way is Morgan’s con-
struction based on Sullivan’s theory of minimal models [M]. The other way
is Hain’s method based on the bar construction [H5]. We shall deal with
Hain’s method as this approach is very natural from the topological view-
point and it directly gives precise results on the fundamental group.

Due to Hain [H1], we can construct a mixed Hodge structure on the
fundamental group of an algebraic variety using iterated integrals defined
by K-T. Chen as follows. Let V be an algebraic variety over C. We fix a
point  of V and consider the truncation

Zmy (V) ) J5H

of the group algebra of the fundamental group m1(V,z) over Z by some
power of its augmentation ideal J. An iterated integral is a function on
the space of paths in V. Let us denote the space of iterated integrals with
length < s that are homotopy functionals on the space of loops based at x
(i.e. its value depends only on the homotopy class of the loop.), by

H(Bs(V), ).
Then the integral map
H°(B,(V),2) — Homg (2Zm, (V,z)/J**,C)
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114 Y. KAWAHARA

is an isomorphism (K-T. Chen). As an iterated integral [wy---wy, is in FP
if the total number of d’s in w;’s is = p, a Hodge filtration on H%(B4(V), z)
can be defined. The weight filtration is given by the length filtration when
V' is smooth and projective:

Wi(Zmi (V) J5F)* = (zm(V,2) /T 2 HO(By(V), 2)

If H'(V) is a pure Hodge structure of weight 2, then the weight filtration
on Zm (V,x)/J*T! is defined by

Wort1 = Wy = (Zm (V,z)/ T = HY(By(V),z).

Thus the Hodge and weight filtration induced by those define a mixed Hodge
structure on Zm; (V,x)/JHL.
In particular, when s = 1, there is an isomorphism

cm(V,z)/J* = C® H(V,C)

of mixed Hodge structures. And, since the mixed Hodge structure on H; (V)
is independent of the base point, so is the same on Cry(V,z)/J?. Thus, the
interesting case is when s = 2; the mixed Hodge structure on Crmy(V, z)/J3
will vary with the base point. In fact,

THEOREM. IfV =P! — {ay, --,an}, then the polarized mized Hodge
structure on J(V,t)/J> determines (V,t) up to biholomorphism.

And if V is a smooth projective algebraic curve, the similar theorem is
obtained by Hain and Pulte ([H1]}).

On the other hand P! — {ay,---,a,} can be seen as the complement of
an arrangement of hyperplanes in C. We consider the same arguments in
the case of the complement of some 2-arrangement. An arrangement A of
hyperplanes in C? is called fiber type if

A= {Hb"')Hn)Gl,"‘aGm}
satisfies the following conditions.

(1) Each Gj is parallel to G, and each H; is not parallel to Gy. (i.e. For
each i # j, GiNG; = 0 and for each k, I, H,NG; # 0. )

(2) If H; N Hj # 0, then there exists unique Gy, such that

H,NH, C Gy.
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In general, if H;(V,Z) is torsionfree, there is an exact sequence
0 — HYV) — Hom(J/J* Z) — K — 0,

where K is the kernel of the cup product H*(V)® H*(V) — H?(V). When
H'(V) has a pure Hodge structure, the mixed Hodge structure on the dual
of J/J? is a separated extension of Hodge structures. The set of suitable
classes of extensions of K by H! forms an abelian group Ext(K, H'), and
there is an abelian group isomorphism (see [Cal)

Hom(K, H')¢

: Ext(K, H* .
Ve B B = R H e + Hom(K, HY)s

For a pointed fiber type 2-arrangement (A, b), with suitable each basis
of H' and K, the concrete description of ¢((J(M(A,b)/J3)*) gives that it
depends only on cross ratios

Aij (Isi<jsn) Ay (Ii<jsm)

arising from (A, b). Two pointed fiber type 2-arrangements are called cross
ratio equivalent if these respective cross ratios coincide. Then we obtain
the following result.

MAIN THEOREM. Let (A,b) and (A,b') be pointed fiber type 2-
arrangements. If there is a ring isomorphism

¢ L (M(A),b)/J3 — Zmy (M(A), 1)/ J°

that induces an isomorphism of mized Hodge structures, then (A,b) and
(A", V) are cross ratio equivalent.

81. The mixed Hodge structure on

In this section, we review some results on the mixed Hodge structure
on 7 using Hain’s method [H1].
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The mixed Hodge structure on m;

Let K =R or C, and M a smooth manifold. Denote the set of piecewise
smooth path ~: [0,1] = M by PM and the subset of loops based at x by
P, M. E; (M) denotes the de Rham complex of C*° k-valued forms on M.
First we denote the iterated integral as follows. For wy,..., w, € E}(M)
and v € PM, define

[erw =[] filt) - fo(t)dty -+ dy.
v 0st15Str 51

where f;(t)dt = v*w;. [wi---w, denotes the function PM — k, v —
f,y wi---wp. If » = 0, it is the constant function. A linear combination
of such functions and the constant function is called an iterated path inte-
gral, and a linear combination of a constant function and iterated integrals
f w1 w, with » < s is called an iterated integral of length < s. Sometime
we shall denote the integration value of an iterated integral I on a path ~
by < I,v >.

A function F on PM is homotopy functional, if F(v) depends only on
the homotopy class of v relative to its endpoints.

We define subspaces of iterated integrals;

Bs(M) = {iterated integrals on M of length < s },

HY(Bs(M),z) = {I € Bs(M) | I is homotopy functional on P, M },
Bs(M) = {I € Bs(M) with zero constant term},

HO(By(M),z) = HY(Bs(M),z) N Bs(M).

Note that
Bs(M) =k & Bs(M).

Suppose that A" is a subdifferential graded algebra of E; (M) such that
the inclusion A" — E; (M) is a quasi isomorphism. B,(A’) is a set of iterated
integrals on M spanned by [wi ---w, where each w; € Al and 0 < r < s.
We define subspaces H(B,(A'),z), Bs(A'), and H’(B,(A’), ) in the same
way.

Let G be a group and R a commutative ring. We denote by RG the
group algebra of G over R and by J its augmentation ideal.

THEOREM 1.1. (Chen) For each x € M and s > 0, the integration
map
H%(Bs(A'),z) — Homg (Zmy (M, z)/J*T1 k)

is an isomorphism.
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Proof. The proof is given in [H1,2,3]. cf. C1,23].
COROLLARY 1.2.
H°(B4(A),z) — Homg(J (M, z)/J* k)
18 an isomorphism.
Using this, we can give the mixed Hodge structure on Zmy (M, z)/J5T.

THEOREM 1.3. (Morgan, Hain) If M is an algebraic variety over C
and x € V, then there is a mirzed Hodge structure on

Zry (M, x)) T

that is natural with respect to morphism of pointed varieties. Moreover, if
s 2 t, then the quotient map

Zm (M, z)) T — 2wy (M, x) ) T
induces a morphism of mized Hodge structures.

Proof. The theorem is proved by induction s, using the following propo-
sition. For detail, see [H1].

PROPOSITION 1.4. (Hain) There is a natural isomorphism
C® HY(M,C) — H°(B{(M),z)
ADw— A+ /w
and for all s, the sequence
0 — HY(B,_1(M),z) — H°(B,(M),z) £> @*H' (M, C)
1s exact, where p takes the iterated integral I to the function
p(l): @°H(M,C) — C

)@ ®lad — < 1L ][ (0~ 1) >
j=1

for each loop o based at x.

Proof. The proof is given in [H1].
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Extensions of mixed Hodge structures
We also review the extension of mixed Hodge structures, (cf. [Ca] and

[H1]).

A separated extension of Hodge structures is an exact sequence
0—-A—-FEFE—-B—0

of mixed Hodge structures, where A is a pure Hodge structure of weight m,
B is a pure Hodge structure of weight n, and n > m. Two extensions

0—-A—FE; —B—0, j=12,

are congruent if there is an isomorphism of mixed Hodge structures ® :
E| — Es5 such that

0 A Ey B 0
0 A Ey B 0

commutes. The set of congruence classes of extensions of B by A forms an
abelian group that we shall denote by Ext(B, A). There is an abelian group
isomorphism

Hom(B, A)¢
FOHom(B, A)c + Hom(B, A)z

Y Ext(B,A) —

that is given as follows. If

0 A E B 0

is an extension, choose a Hodge filtration preserving section sp : B — E of
p and a retraction rz : E — A of ¢ that is defined over Z. Composing these
gives an element (L) = rgz o sp of Hom(B, A)c. It can be checked that
Y(E) = rg o sp is well-defined modulo FYHom(B, A)¢c + Hom(B, A)z. It is
easy to construct an inverse of . For detail see [Ca).

When B is of weight 2p, then rz o sp also induces a homomorphism
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p:BYP — Ac/FPA+ Az

called the motif of the extension (cf. [Ca]) where BLP = By N BPP.
We can express the mixed Hodge structure on (J/J3)* as an extension.

LEMMA 1.5. Suppose that (X,x) is a path connected, pointed topolog-
ical space. If H1(X,Z) is torsion-free, then there is an exact sequence

0— HAX) -5 Homy (J(X,2) /0%, 2) —» HY(X) @ HL(X) — H2(X).

Here i(z)(g — 1) =< 2,9 >, where g € m(X,z) and z € HY(X). If ¢ €
(J/J®)* and a, (3 are loops based at , then

p(9)([e] @ [8]) =< ¢, {a} = D({B} = 1) > .

Proof. See [H1].
§2. Fiber type arrangements

DEFINITION 2.1. Let A be 2-arrangement i.e. a finite set of hyper-
planes in C? and M(A) a complement of A in C2. We call A affine fiber
type if Ais aset {Hy, -+, Hp,G1,--+,Gp} of hyperplanes in C? satisfying
the following conditions

(1) Each G is parallel to G; and each H; is not parallel to G;. (i.e. For
each i # j, G;N G, =0 and for each k, [, H, NG #0.)

(2) If H, N H; # 0, then there exists unique Gy, such that

HiﬂHj C Gg.

We assume that all H;’s are not parallel each other. (In this paper
arrangements mean affine arrangements.), cf. see [FR] and [J].

Now we reconsider the extension of (J/J?)*. For a fiber type 2-arrange-
ment A and a base point b of the complement M = M(A) of A, there is
the extension

0 ——— HY (M) ——— (J/J?)* K 0
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of (J/J3)* where J is the augmentation ideal of the group algebra of
m(M(A),b) over Z and K is the kernel of the cup-product H'(M) ®
HY(M) — H?*(M). Since the first cohomology is pure of weight 2 and
the kernel K of its cup product is pure of weight 4, there is the extension
isomorphism

Y Ext(K, H') — Hom(K, H' )¢ /Hom(K, H');.

We shall give the description of ¥((J/J3)*) for (A,b). First each basis of
HY(M), Hi(M), K and K* can be given as follows.
As we take a coordinate (x,y) in C2, we can assume that

A: {Hla"')H’rLaGl7"'7Gm}7

where each H; is defined by the equation y = h;(z) and each G; is defined
by the equation g;(x) = 0 where h;, g; are linear polynomials in z. Set

w; = 2m/—d10g(y ho(z)) 1Zisn
and .
nj = 27r—\/—_—1d10g(9y(50)) 1=jsm.

Brieskorn showed that the cohomology of the complement of hyperplanes
Hy, = {l; = 0} is generated by forms

———=d log(!
W = 27r\/— Og k)

in general [B|(for detail, see [OT: 5.4]). Then w;’s and 7,’s generate the
cohomology H*(M(A),Z). Set

BH' = {wl""’wnanlv"',7lm}~

Let B be the subarrangement {G;---,G,,} of A. Fix a base point
b= (zo,yo) of M(A). We put

F={(z0,y) € M(A)} =C—{y1, ", yn}

and

B = {(:c,yo) S M(B)} :C*{Sﬁl,"',xm})
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where
Y, = hi(xg) 1sisn
and

z; = Kerg, 155 m.

Choose loops a;, 1 £ < n, based at yp in F' such that, for each i, «; is
anti-clockwise around y; and nullhomotopic in C — {y1, -, ¥, -, yn}. In
the same way we choose loops 3;, 1 < j < m based at xy in B. It is clear

that
=ty [n=ts [n=[w=0
/az Jj J 5, ij o 5 Jj

where ¢;; is Kronecker’s delta. Consequently, [a1],- -, [an], [B1], -, [Bm] is
the dual basis of Hy(M(A),Z). Set

BHJ = {ab"'aan:ﬁla”'?lﬁm}'

Remark 2.2. In general, let A be an arrangement of hyperplanes in
CN and M = M(A) the complement of A. The mixed Hodge structure on
the cohomology H*(M) is pure. Moreover any element of H'(M) has the
Hodge type (4,%) (see [Sh]).

We hope to find the basis of K. In general, if a vector space H of

dimension n has a basis 71, - -, 7, then we can choose the basis of H ® H
as
1 1 .
§[Ti,f7']:§(TlTj—TjTi) 1si<j<n
1 1 L
5{Ti,Tj}:§(TiTj+TjTi) 1sisjsn.
We put

w]i; = { [wi, wj] + [wj, mk) + [k, wi] if 0 £ H;NHj C Gy
Y wiwy) it H,n H; =0
n)i; = [Uia'ﬂj]
{w}ij = {wi,wj}
{n}ij = {ni,nj}-

We can obtain the following proposition.
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PROPOSITION 2.3.

3lwly, 1<i<j<n
iy 1Si<js<m
BKg = 3{w}; 1Zi<j<n
3{n}i 1<i<j<m
%{wi,nj} 1<i<n,1<5<m

is a basis of Kg.

Let H = {F},---, F1} be an arrangement with F; = kery,;. We define a
basis 71, -, 7 of HY{(M(H)) by 7; = r\l/_—ldlogwi. Let Zy,---,Z; be the
dual basis of H1(M(H)). Denote the free associative algebra they generate
by C < Zy,---,Z; >. We shall denote its augmentation ideal by I. The
geometric lattice L(H) consists of the subspaces of the form

Fy,n---nF, where {iy,---,ip} C{1,---,1}.

Let L?(H) be a set of codimension-two elements of L(H). For K € L*('H),
we set Hxg = {F, € H|K C F;} and define the relation ideal Ry of C <
Zla"')Zl > by

[ZiuaZi1+"'+Zip]=0 1§I/

A

p,
where Hyx = {F;,, -+, Fj, }. Let R = (Rg)ger2(n) and define
As=C< Zy,--,Z1 > /R+ I,

Set
w=wZ) 4+ +wZ € HY(M(H)) ® As.

The relations guarantee that w A w = 0. For detail, see [K1,2,3].

Proof of Proposition 2.3. Let A be the fiber type 2-arrangement and
M = M(A) its complement. We take the basis wy, -, wpn,n1, -, Nm of
H'(M) and let X1, -+ ,X,,Y1, -,Ys, be a dual basis of Hy(M). Set

Ay =C< X;,Y; > /R+ P!

and

T=Y wXi+ > Y,
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where R is the relation ideal for A. Since A is fiber type, for K € L?(A),
we can write

AK:{Hin" ’Lpa ]K}
and its relation is
(Xi, Xiy +++ X, +Yj ] =0  1=svsp
== »
(X5, Yl = > [Xi,. X,,] 1Zv<p.
p=1

Hence, any [X;,Y]] is generated by [X;, X;]’s. For § # H; " H, C G}, there
exists uniquely K;; € L%(A) such that H;, H,,Gj € Ag,,, and we set

AK”‘ = {H’iijvaaHiU‘ o ’Hip}v

where ¢, 7,41, -, %, are distinct each other. We can find the relations in-
cluding terms [X;, X;];

(X5, Y] = [ X5, Xo] + ZP:[XZH,X]

—[X:, X +Z[

and ,
(X5, Y] = [Xi, Xj] + Z o X
=1
Any other relation has no terms of [Xi,Xj]. Therefore, the coefficient of
[X;, Xj]in 77 is

%([wi,%‘] — [, wj] + [, wi]) = %[w]ij-

If HiNH; = 0, then there is no such relation. The coefficient of [X;, X;]
is only %[Xi, X;]. Consequently we can write

T T = Z [W]ZJ[X“X +Z ”[YZ’Y]

1<j 1<J

+2.5 {w}zJ{XZ>X}+Z {n}U{Y;,Y}JrZ {wi, meH{ X3, Vi)

Z<] l<j
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Thus 4[wlij, 5[n]ij, 5{ , }isindependent in H'® H'. Since dim(H?*(M)) =
mn, it is a basis of K whose dimension is (m + n)? — mn.

a

Then {(y — 1)|y € BH;} is a basis of J/J? = H; and BH' is its dual
basis of (J/J?)* = H'. Moreover BKj is a basis of K = (J?/J3)*. Set

[ —1,05—1] 1Si<j<n
Bi—1,0—1 1lsi<js=m
{a;—1l,a;—1} 1Si<j<n
{as—1,8;—1} 1£i<n,1<j<m

BEK} =

LEMMA 2.4. BK) is a dual basis of J2)J3 = Ky.

Proof. Since «;, 3; are dual of w;, 1); respectively, it is enough to prove

the following lemma.

LEMMA 2.5. Let M be a smooth manifold, 11, 7o smooth 1-forms on
M and 71, v2 loops based at x € M. Then

1) <fnr, m=D-1)>=[,n-[,7m.

2) < [3lrml s n-Lye-U>= [ n [,n-[,mn [, 7.

B) <S3lmn}, In-Le->=[nf,n+[,n [, 7.

4) < [3lm,m) , fn—-Ln—1} >=<[3{rn,m} , [n—-1,72-1>=0.

Proof. (1) See [H1; (2.13) (b)].
(2) Using (1), we get

1 1
</§[71>T2],[71—1,72—1]>=§{/ Tl-/ 7‘2—/ 72~] 71}
71 Y2 Y1 Y2

Also we obtain (3) and (4) in the similar way. 0
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It is note that BKg is not a basis of K;. Though we can choose the
following basis of Kz. Set

w,,_{wiwj_nkwj+77kwi if 0 # H;NH; C Gy,
ij =

wle lfHZmH]:‘D
Mg = Th"N;5-
COROLLARY 2.6.
Wij 15i< 7 <n
iy lsi< J § m
{w}i]’ 1<5i< 7 <n
BEKy = q {n}y lsi<jsm

Wy = WiWw; 1§z§n

L i =M 1StSm

is a basis of K. And also

aj—l)(ai—l) 1£1<j3<n
BE: =

)
(8 —1) <
a;—1)(a;—1) 1<i<n
Bi—1(Bi—1) 1Zi<m

is its dual basis of K.

Proof. From Proposition 2.3 it is clear that BKj is a basis of Kz.
Using lemma 2.5, we can check its duality. For example,
/ wj =1
@

</wij,[ai—1,aj—1]>:/wi/ w]‘—/ Wy
o a a

7 3
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Consequently, for (A,b), we give the description of 1 ((J/J®)*) by

b((J)TP)) = Y. Ix:v) x® (v — 1) mod(K* ® H{)z
x€BK} ~yEBH,;

€ (K*® H})c/(K* ® H})z = Hom(K, H')c/Hom (K, H');

where, since a dual of x is x* € BKz, we define
I(x:v) = / X"
%

83. The cross ratio equivalence
We compute the description of ¥((J/J?)*) for (A,b). First we prepare
the following lemma.
LEMMA 3.1. Set
1 dz 1 dz
T/ dz-am 0 e/ li-z

Suppose that, for i = 1,2, ~; is a loop based at zy in C anti-clockwisely

T1

around z; which is nullhomotopic in C — {z;}, j # 1. Then

1

1
= ——log(\
3l = = los Y

log((1 = X2)71).

/ L 1
—|n, ] = ——
20 T o /T

Here \ is the cross ratio

20 — 22
A= [ZO>217227OO] = )
. g1 — 22
and also s
- 2~ <1
(1 — )\) 1 = [22,20,21,00] = —.
20 — 21

Proof. Since

d -
/ dz 2 o /Tq log(ZO 22)
M

Z— 212 — 29 21 — 29

and

/ dZ dZ :27(\/—_]_10g(21_22),
i

g & — 21 2 — 22 20 — 29
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then
1 zZ0 — %2 Z1 — 29
= ———(1 -1
[ ol = g tos(2 )~ log(C—2))
1 20 — 229
= ———(1
27r\/—1(0g(21 '—22) )
1 20 — %92
=2- lo .
271'\/—1 & 21_22)
From [ry, 7] = —[rp, 7], we get
/ [7—1,7-2] = _/ [7-277-1]
Y2 Y2
1 20 — 21
=—-2- 1
271’\/—1 Og(Zg—-Zl)

z22 — 21

1
=92. 1 .
2my/—1 Og(zo — z1)

COROLLARY 3.2. Let aj,as # 0 and

1 aldz 1 ale
T1 = ) T2 = :
LT gy laiz+ b 2 2my/—lazz + b
b1

And 71 is a loop based at zy anti-clockwisely around (_E) which is nullho-
motopic in C — {—2—2}. Then

AT ——,
2 R arby — brag

Proof. Set zy = —by/ay , zo0 = —bg/ay. Applying to Lemma 5.1, we
obtain

1 20 — 22 20 + ba/az ai(az20 + ba)
ex 27r\/——1/ —|11,72]) = = = .
o 71 [m, 7)) z1—2zp  —bi/ar +ba/ay ai1by — bras
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Using this lemma, we can get the following proposition.

PROPOSITION 3.3.

(1) For each1<i< j<n and~y € BHy,

l()\i]) if’y = Oy

/EM.. U= iy =

20 I My — 1)) if0# HiN Hj C Gy and v = B
0 otherwise .

(2) For each 1 <i<j<m and~y € BHy,

[ s =1 1@ =X =5
v 0 otherwise .

(3) Foreach1 <i<j<n,1<k<!l<m and~y € BHy,

[)’%{w}ij = {

/ L {- if k=1 andy = By

otherwise .

ifi=j and v = o
otherwise

O o=

O ol

Foreach1<i<n,1<j<m and~y € BHy,

1
_{wian'} =0.

Here
1
l(z) = ——==log(z),
() = g Tos(2)
y]
Yo, Yi, Yj ,OO]
= ! Yi — v
and
p— [0, 4, zj,00] = To— %

w T —xj
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Proof. (1) §lwl,; with H;NH, =0. Foreach1<s<n,

/ " / dy — dh;(x) dy — dh;(x) / dy dy
Wi = = .
a 7 Jay y—hi(z)  y—hy(z) Y=Y —Y

Applying to Lemma 3.1, we get

/a %[w]m = ([yo, Yi, yj,00]) = l(Ay)

and

[ 3l = g0, 91006) = (1 = )™,

7

(1) %[w]i]— with 0 # H, N H; C Gy. For each 1 < s,t < n and each
1 £ u £ m, since

/ [wt,nu]:/ wmu—/ nu,wtzf wz—/ wy =0,
Qg Qg [e %3 Qg Qs
/ [w]ij:/ [wi, wj].

Applying to Lemma 3.1, we obtain

we get

/a ’;‘[w]i] = 1([yo, ¥i, yj,0]) = U(Aij)

and

/a é[w]z‘j = Uly;, 0, yi,00]) = 1((1 — Aij)_l).

J
For each 1 <1 < m,

/ﬁ Ty = /ﬁ T ] + /ﬁ oy ]+ ) = /ﬁ T + /B T

and for [ # k
[w],; = 0.
i

Then it is enough to compute
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Set
H,: y=ax+0b;
Hj: y=a;x+b;
Gy : (ai—aj)a:—i-(bi—bj) =0.
By means of Corollary 3.2 we get

(a; — aj)dx 1 a;dx

1 1 1
/ﬁk 5[%’%] N /gk 5[277\/—1 (a; — aj)z + (bi — b;)’ 27/—1 a;z + b; — yol

_ v (a, — aj)(a;xo + b; — yo)
= 21 =) — o) it~ )

1 (ai — a;)(yi — wo)
= 1 J
271'\/—-1 Og( aibj — (ai — aj)yo ’

and, in the same way,

1 1 (a;i — a;)(yj — yo)
=Nk, w;| = lo .
./k 2[77k i) 21/ —1 & a;b; — (a; — a;)yo

Consequently we obtain

/ lw- = (a; — a;)(yi — yo) ) ab; — (a; — aj)yo
B 2" a;b; — (a; —aj)yo  (a; — a;)(ys — vo)

= l(zj—:%) = l([yiaymyj,oo]) = l(A;jl(Aij - 1))

(2) %[n],J We apply 7;,7;, 5, 3; to Lemma 3.1 and then get

1

and

*/ﬁj %nij = l([xj’x()?xhoo]) = l((l - /\gj)ﬁl)'

(3) 2{, }. In general, the shuffle formula of iterated integrals (see

[H1; (2.11)]) gives
L{w,n}=/7wn+/7nw=LwLn.
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By the duality between w;, nx, and [a,], [Gk], for any braces basis %{w, n}
of K with w # n and [y] € {[a], [Bk]}, we get

L%{w,n} =0.

For any braces base %{w,w} of K and a dual base [v] of w, we get

[ et =50f @i =3

[Y, %{w,w} = 0.

And also for [+'] # [v],

0

COROLLARY 3.4. The extension isomorphism 1 associated with the
mized Hodge structure on (J/J3)* is

(TP = D M)l =1 a5 = 1] @ (en = 1)

(3,5,k)eC
+ U1 = Agg) i — Ly = 1] ® (@ — 1)*
+ 1 iy — D)o — 1,05 = 1] @ (B — 1)°
+ Z L(Xij)[es — 1,5 — 1] @ (0 — )7
(¢,5)eP
F U1 =) Do = Ly — 1] @ (o = 1)
+ ) B -LE—1e B —1)

1<i<jSm

+ U= M) DB - 1,8 -1 @ (8 — 1)
mod(K* ® H{)z

where
C=C(A)={(,5,k1<i<j<n0+#H NH; CGy}

and
P=PA) = {(i,j)1<i<j<nHnH =0}
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Proof. In order to prove this we compute its motif. According to §2,
there is an extension

0 ——— HY (M) ——— (J(M,b)/J>)* K 0

of (J(M,b)/J3)*. Since H!(M) is a pure Hodge structure of weight 2 its
motif is

p: Kz — H([l:(M)/Hzl(M)
The exponential map gives a canonical identification
He(M)/Hy (M) — (C*)" x (C*)™
Z a;w; + Z bjn; — (exp 2wy —1la;, exp 2wy —1b,).
Thus, for z; ® z9 € K and [y] € H{ (M),

p(z1 ® z2)[y] = exp 27r\/—1/ 2129.
v

iy = { %{w]ij + 5{w}ij + 3{wnm} + 3{w), m} if0# HiNH; C Gy
21wl

Jij + 3{w}i if BN H; =0
and . .
mij = ki + 5 {nki-
Then, using the proposition 3.3, we can compute values of a basis BKy of
K obtained in §2. 0
Remark 3.5. Using
Jem+ [no=[w]n
%l gl v Iy
we get
figon=[on=5 [ [
—[w,n=[wn—=[w|[ eta
v 2 ¥ 20y Jy
It leads

1
/ w,-wj :/ ~[wi,w]] = '—/ iji-
QU (% 2 Qy

From this fact and the above proposition we also obtain the corollary.

This corollary leads the following definition and theorem.
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DEFINITION 3.6. Let A be a fiber type 2-arrangement and b a base
point of M(A). A pair (A,b) is called a pointed fiber type 2-arrangement.
Two pointed fiber type 2-arrangements (A,b) and (A’, V') are cross ratio
equivalent if there is a one-to-one correspondence between A and A’ satis-
fying following conditions (1), (2) and (3); suppose that

A={H, - H, Gy, -, Gn}
and
Al ={H}, + Hy, Gy, G
where H], G'; are corresponded to H;, Gj, respectively.
(1) HiNHj =0+ HNH; =0
(2) 0# H,NH; C G <= 0# H;NH; CGy
(3)
Aij (A, b) = A (A V)
and
,\;j (A, b) = )\;j(A',b')
Consequently we obtain the following theorem.

THEOREM 3.7. Let (A,b) and (A',b') be pointed fiber type 2-arrange-
ments. If there is a ring isomorphism

@ : Zmy (M(A),b)/J> — Zm (M(A),b)/J?

which induces an isomorphism of mized Hodge structures, then (A,b) and
(A" V') are cross ratio equivalent.

Proof. The isomorphism ¢ of mixed Hodge structures induces an iso-
morphism of Hodge structures on W_;/W_y = J/J2 >~ H;, on H' and
on K = Ker(H! ® H' — H?). Thus there is a one-to-one correspondence
between A and A’ satisfying conditions (1), (2). And also it induces a
congruent class of extensions

0 HY M) —— (JJ*)* K 0
of K by H'. Hence, according to Corollary 3.4, we get \;; (A, b) = A\;; (A", V)
and A (A, b) = Aj; (A", b'). 0
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