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MOURRE THEORY FOR TIME-PERIODIC SYSTEMS

KOICHIRO YOKOYAMA

Abstract. Studies for A.C. Stark Hamiltonian are closely related to that for
the self-adjoint operator K = *i% + H(t) on torus. In this paper we use
Mourre’s commutator method, which makes great progress for the study of
time-independent Hamiltonian. By use of it we show the asymptotic behavior
of the unitary propagator e ¥ as ¢ — +o0.

§1. Introduction

We consider the following Schrodinger equation with time-dependent

Hamiltonian on R”,

(1.1) i%u(t,x) = H(t)u(t,x), (t,z) € R x R,

(1.2) H(t) =D, + V(1)

where V(t) is a multiplicative operator by a function V (¢, ) which is peri-

odic in t with period 2m:
(1.3) V(t+2m,z)=V(tx).

As is well-known, with some suitable conditions on V'(t,z), H(t) generates
a unique unitary propagator {U (¢, s)} _—co<t,s<oo. For Ho = —A,, the asso-
ciated unitary propagator is denoted by Up(t,s) = e Ht=s)Ho A traditional
way to study the temporal asymptotics as t — +oo of Ui (¢, s) is to intro-
duce a family of operators {U(c)}yer on H = L%(T x R¥) (T = R/27Z) as
follows and to investigate the asymptotic behavior of U(o).

(1.4)  (U(0)f)(t,z) = (Ui(t,t — o) f(t— o, ))(z), for feH.
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194 K. YOKOYAMA

We write the generator of this group as —iK. Then K = —i% + H(t) is a
self-adjoint operator on H. Let
(1.5) Ky = —z'i + Hy.
dt
Then for short-range potentials, the wave operators

Qy =s— lileL_l eoKemioKo on  L2(T x RY)
o—I00

Wi(s)=s— . Iig:n Uy(t,s)*Up(t,s) on L*(RY)
are known to exist, and 21 are asymptotically complete, namely
Ran Qy = He(K)

where H,(K) denotes the absolutely continuous subspace of a self-adjoint
operator K. Moreover, the asymptotic completeness of W4 (s) holds in the

following sense.
Ran Wi (s) = Hac(Ur(s,s +2m)) forall seR

These facts were first proved by Howland [How] and Yajima [Ya] by
using the smoothness theory of Kato [Ka]. These results were extended to
the 3-body problem by Nakamura [Na]. Kuwabara-Yajima [Ku-Y] studied
the limiting absorption principle for the long-range potentials by using the
pseudo-differential calculus due to Agmon and Hérmander. The asymptotic
completeness of modified wave operator for long-range potential was proved
by Kitada-Yajima [Ki-Y].

The aim of this paper is to accommodate the commutator technique of
E. Mourre [Mo], which has brought a big progress in the spectral and scat-
tering theory to the time-periodic 2-body Schrédinger operators. It covers
almost all known results by a simpler method with weaker assumption on
the potential. More precisely, we establish the limiting absorption principle
for K and study propagation properties of e =X

Let S be the set of functions f such that f € C*°(T x R¥) and for all
a, v € N and multi index 8, |(z)*028] f(t,z)] < Capy on T x R for some
constant Cpgy > 0. Here (-) = (1+]- |2)% As the conjugate operator A,
which plays an important role in the Mourre theory, we adopt the following

one.
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DEFINITION 1.1.
1
(1.6) A:§(LD-$+ZC-LD)

where D, = %Vgc and Lp = (Lj)lgjsy with Lj = DI]. <D$>_2.

A is essentially self-adjoint on domain D = D(|z|). (See Theorem X.36 in
[R-S].)

The following assumption is imposed on V (t).

ASSUMPTION 1.2.  Let V be the operator of multiplication by the func-
tion V(t,z) on H. We assume that

(1) V, [V, A] are extended to Ko-compact operators.
(ii) [[V, A], A] is extended to a Ko-bounded operator.

We denote the extension of the form [K, A] as [K, A]°. This assumption
is satisfied in the following case. The proof is given in Lemma 2.4.

ExaMPLE 1. The potential V (¢, z) is split into two parts VL(t,z) +
V3(t,z) where VL(t,-) € C(T;C®(R")) and there exists § > 0 such that

(1.7) |02V L(t,2)| < Colz) =871 Ya.

VS(t,-) is compactly supported and VS(t,-) € C(T;LP(RY)) with p >
max{v/2,1}.

Under Assumption 1.2, we have the following results.

THEOREM 1.3.  Suppose Assumption 1.2 is satisfied. For A € R\ Z,
let d(X,Z) denote the distance from X to Z. Then,

(i) For all 0 < § < d(N\,Z) and f € C([A — 6, X + §8)), there exists a
compact operator C such that the following inequality holds:

(19 FUOK, ALF(E) 2 o2 g2 4 6,

(I,Z)+1

where [ = [\ — 6, A+ 8] and d(I,Z) is the distance from I to Z.
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(ii) Pigenvalues of K (the set of which are denoted by opp(K)) are discrete

with possible accumulation points in Z.

If X € R\ (ZUopy(K)), for each € > 0 there exists 0 < § < d(\, Z)
such that
(19) FUONE, APF(K) 2 (777552 - O ()
for all f € C(I\ — 6, + 6).
Let B(H) be the set of bounded operators on H.
THEOREM 1.4. Suppose o > 1/2.

(i) For each closed interval I C R\ (ZUoup(K)) the following inequalities

hold:
(1.10) sup  [(A)THE — 2)7HA) " lp @) < oo,
Im 2#0,Re z€1
(1.11) sup  [(z) (K — 2)"Hz) " lw @) < oo

Im 2#0,Re z€l

(ii) There exist the norm limits in B(H).

: —a A\l —a
Im z—»glzg,lRezeI<A> (K Z) <A> ’

: —« . -1 —o
Imzjfor,lﬁezel<x> (K = 2)" )™

(A)=(K - AFi0)"H{A)™ and (z) (K — A Fi0)"*z) ™ are Hélder
continuous with respect to X € R\ (Z U opp(K)).

Next we proceed to the propagation estimates. We need the following
stronger assumption on the potential.

ASSUMPTION 1.5. There exists 69 > 0 such that
(1.12)  V(t,-) € C(T;C®(RY)), |02V (t,z)| < Cyulz)~bo7lal Vo

THEOREM 1.6. Suppose Assumption 1.5 is satisfied. Let E € R\ (ZU
opp(K)), and € > 0 be given. Then there exists a small open interval I
containing E such that for any f € C(I) and s’ > s > 0,

'X(@ - F < —e) &K f(K) ()

1.13
(1.13) 402  d(1,Z)+1

B (H)
=0(c"°) as 0— ©



MOURRE THEORY FOR TIME-PERIODIC SYSTEMS 197

where x(z < a) denotes the characteristic function of the interval (—oo,a).

§2. Conjugate operator
We shall assume Assumption 1.2 throughout this section. We prove the

following Lemma at first.

LEMMA 2.1. Let A be as in 1.6. Then e leaves D(K) invariant,
i.e. for each ¥ € H
(2.1) sup ||Ke (K 4 1) 710y < oco.
la|<1
Proof. AsV is Ko-compact, it is sufficient to show 4% leaves D(Kj)

invariant. Let § be the Fourier transformation with respect to x, and we
define A by

(2.2) A=gA57".
Then ¢4 can be expressed as
iA ory, 1
(2.3) () (8, p) = | det( 5 (p)) 29t Ta(p)),
j
where To(p) = (IL(p))i<i<, is the solution of the following differential
equation
ixTa(p) = 1+ Ta(p)l?) ' Talp),
(2.4)

Lo(p) = p.

We note —i% on L%(T) has eigenvalues k € Z. Let Pj be the associated
eigenprojection. Then Ky can be decomposed as

Ko=) (k+ Ho) ® Py
kEZ
And for each ¥ € H
Koe' (Ko +1)7'®
_ ory
g .S' 1( det e —
> ldet(5

k€EZ

1
2

(k+ [P + 1)k + [Ta@)? +0) ' © Pksw)

From (2.4) it is easily seen that | |T(p)|? — |p|?| < 2||, which proves the
Lemma. 0
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Once we have proved Lemma 2.1, we can trace the Mourre theory in

the same way.
LEMMA 2.2. For K and A defined above, the following facts hold.
(i) (K —2)7! leaves D(A) invariant for all z € C\ o(K).

(i) (A+i\)~! leaves D(K) invariant for all A € R, and
lim o (K + ) iA(A +iX) "L (K +4) 10 = U for all ¥ € H.

COROLLARY 2.3. (the Virial theorem) For all ¥ € D(K),
limy |00 1K, IAA(A + X)W = i[K, A°W.

For the proof of Lemma 2.2 and Corollary 2.3, see [Mo].
Proof of Theorem 1.3. By the symbol calculus we have

i[K, A] = i[Ho, A] + 1]V, A]
= 2Hy(Ho + 1)~ + [V, A].

Let us recall the well-known formula of functional calculus [H-S]. Let
f € C*®(R) be such that for some mg € R

(2.5) [P @) < Ce(@ +[t)™7F, ke Nu{o}.
Then we can construct an almost analytic extension f(z) of f(t) satisfying

f&)=f(t), teR,
|0:f] < Cn|Im 2|V (z)™~ =N YN e N,
supp f(z) C {z;|Imz| < 1+ |Rez|}.

We remark that supp f is compact in C if f € C§°(R) (due to Appendix in
[Gé1]).
Further, if (2.5) holds with mo < 0 we have

(2.6) f(K) = L / 8:f(2)(z — K) V1 dz A dz.

_271’2 C
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We assume A € (1,1 + 1) with some [ € N. From Assumption 1.2 and
the above formula, f(K)— f(Kj) is a compact operator. Therefore we have

FK)[K, A°f(K) = 2f(K)Ho(Ho + 1) f(K) + f(K)i[V, A" f(K)

= 2f(Ko)Ho(Ho + 1) f(Ky) + (compact operator).
(k
f(Ko

By decomposing Ko as ;.7 (k + HO) ® P again

(2.7) 2f(Ko)Ho(Ho+1)"" =2 Z Ho(Ho + 1)t f(k + Ho)* ® Py

keZ

Since supp f(k+-) C [A=6—k,A+6—k] and 5
function for ¢ > 0, we have the following inequality

A—6-1
f(Ko)Ho(Ho+ 1) f(Ko) 2 Y 35—
k<l

L _dL,2)
= d1,2)+ 1
which proves(1). By shrinking supp f we also obtain (2).

is a monotone increasing

f(k+ Hop)? ® B,

f(Ko)?,

We omit the proof of Theorem 1.4. Since it follows from Theorem 1.3

by the well-known arguments.

LEMMA 2.4. Let V(t,x) be as in Example 1. Then as a multiplicative
operator, V. =V (t,z) satisfies Assumption 1.2.

Proof. As was proved by Yajima (Lemma 3.1 in [Ya]), if W(t,z) €
C(T; LP(R¥)) with p > max{v/2,1}, W is Ko-compact. Ko-compactness of
[V#, A] and Ko-boundness of [[V*, A], A] also hold as we take V*(t,z) sup-
ported in a compact set. One can also see the following fact: For any § > 0,
(z)~? is a K-compact operator. In fact, we have only to approximate (z)~°
by a compactly supported function. It indicates that VI is Ky-compact.
For the sake of convenience, we write V and D; instead of VL and D,,.
It is sufficient to show that [V, X, L;] is Ko-compact, and [[V, X;L;], XpLy]
is Ko-bounded. Here 1 < j, k < v and X; is a multiplicative operator
by a function z;. We denote z;V (t,z) as Vj(t,x). At first we split the

commutator into two parts
[V, XiLs) = [V}, Lj] + [Lj, X5]V
=1 + Is.
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From the assumption we assume in Example 1, we can easily see that
I(z)® € B(H). For I;, we split it again

Iy = (D) *{HoV;D; — D;V;HoH(Dy)~? + (D) %[V, D;){Dy) 2,
=13+ 1.

We use the Assumption for V¥ to see Iy(z)!+® € B(H). We can rewrite I3
as

(D) {(=AV;)D; = 2((VV;) - V)D; + [Vj, D;]|Ho}(Dz) .

We use the Assumption for VX again to prove that [VL, A] is Ko-compact.
As for the double commutator, we compute

[[V, Xij],XkLk] = [.[2 + I3 + I4,XkLk].

We can easily obtain the following result by using the pseudo differential
calculus, as we commute XDy with V or another PsDO.

[In, X Ly] is Ko-compact for o = 2,3, 4.

83. Propagation estimate

We shall prove Theorem 1.6 in this section. We follow the abstract
framework constructed by Skibsted [Sk|. In our case K is not a semi-
bounded operator, which introduces a slight difference in applying the
method of [Sk]. From Assumption 1.5, it follows that [K, A] is extended to
a bounded operator. We add this condition as an additional assumption in
the abstract framework.

DEFINITION 3.1. Given 8, o > 0 and € > 0, we denote by Fga. as
the set of function g of the form, g(z,7) = gg.a.c(®,7) = —77P(—z)*x(%)
defined for (z,7) € R x Rt, where x € C*°(R) and satisfies the following

properties:

x(z) =1 for x < —2¢, x(z) =0 for z > —e.

%X(az) <0 and ax(x) + x%x(aﬁ) = )Z(av)2 for some x € C*(R), x >0
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It follows from the last equation that (¢(V)(z, 7'))% is smooth. Here ¢ (z, 7)
= (8/0z)"g(z, 7). For operators P and Q, we define adoQ(P) = P and for
m € N, adgy(P) = [adg_l(P), Q] inductively.

LEMMA 3.2. Let A and P be linear operators on H. Suppose A is
self-adjoint and P-bounded. Suppose that the form ad’}(P) extends to a
bounded operator for 1 < m < n. Then for any g € C*(R) satisfying 2.5
with mg < n

(i)

L g(m)
) Pota) = 3 LB aan(p)+ ok [ 0901 ple) d 1

= m/!
where R}, 4 p(z) = (z — A)™"ad}3(P)(z — A)~L
(i)

n—1

g(A)P = adi(P)

m=0

(“l)m (m)

m!g

1 - .

(W) 5 [ ORa(IR, ap () don
(3.2)

where sz’A’P(z) = (z — A)7tad%(P)(A — 2)™™ and §(z) denotes an

almost analytic extension of g(x).

These formulas of asymptotic expansion are obtained by virtue of (2.6) and
the calculus of the commutator [(z — A)™!, P]. (See Lemma 3.3 in [Gé2].)

ASSUMPTION 3.3. Let ng € N, 09 > 0, ng — 3 > ag > 0. Let f,
fo € C§°(R) be such that fof = f and K, A(T), B be self-adjoint operators
on H. Assume that A(T) have common domain D for 7 = o+ 09 0 > 0,
D(K)N D is dense in D(K), B > I and that (Ay) 7 (B)™ 2 € B(H) with
Ag = A(og). Assume moreover

(i) With 1 <n < ng, i"ad’y(,(K) extends to a bounded self-adjoint op-
erator, and ady(, (K) = O(1) in B(H) as 7 — oo.

(ii) If A(7) is unbounded, supj,j< | K et Ay < oo for any ¢ € D(K)
and T > og.
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(i) For each 11, T2 > 00, A(11) — A(72) is a bounded operator, and the
derivative d, A(T) = & A(7) ezists in B(H). Further adzz:) (drA(T)) =
O(1) in B(H) as 7 — oo for 1 <n < ny.

(iv) Forn < ng ad)y,)(K) and adtfla_l)(dTA(T)) are continuous B(H)-valued

functions of T > oy.

(v) There exists & > 0 such that the following condition q(Bo, g, 6) holds.
q(Bo, @0, 6): Let DA(7T) denote the symmetric operator i[K, A(T)] +
d.A(T).

There exist bounded operators By(T) and By(71) on H such that

(3.3) f2(K)DA(T) fo(K) > Bi(7) + Ba(7).

|B1(T) ||y = O(77°) as T — o0, and for (8,a) = (0,1),...,(0,ap),
(Bo,a0) (o = max{m € N:m < ap}) (= (Bo,x0) #f ap < 1) the
following estimates holds:

Given € > 0 and g(z,7) € Fgue, there exists C > 0 such that with

C(0) = (W (A(r),7))ze K f(K)B~% ¢
(3.4) fo " dol(¢(o), Bar)c (o)l < Clll2, " e H,
where (-, )g = (-, -) is the inner product of H.

THEOREM 3.4. Suppose Assumption 3.3 is satisfied and in addition,

ap + 2 < By + no,

agp + 2 < ng, (if ag>1)
(3.5) @, 5 _
2 + 2 o +607
5} .
Ollo + 5 < nyp, (’Lf ap > 1).

Then for (B,a) = (0,1),...,(0,05), (8o, @) (= (Bo,a0) if ap < 1), any
€>0 and g(z,7) € Fa,aes

(3:6) [1(=g8.0,c(A(7), )2 K [(K)B™ ||y = O(1) as 7— o0
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COROLLARY 3.5. Under the same conditions in Theorem 3.4, we have
the following result:

For (8,a) = (0,1),...,(0,a(), (Bo,0), any € > 0, g(x,7) € Faae, and
1>6>0
I(=go,a(1-0),e(A(7), 7)) 27K f(K)B™2 || )

= O(rF=29/2) 45 T — 0.

We note that (3.7) is easily obtained by (3.6) and the inequality

(3.7)

-7 (67-) 90,a(1-6), 26(:1“ T) -gﬂae(x T)

Sketch of Proof. The proof of Theorem 3.4 is almost the same as that of
Theorem 2.4 in [Sk]. Let f1 € C§°(R) be real valued and satisfy fifz = fo.
We denote ¢(c) = e K f(K)B~%/?¢, and D, A(1) = d, A(7) + i[f1(K)K

A(7)]. Then (¥(0), g(A(T), 7)¥(0)) is continuously differentiable with

(3.8) zl—;(w(v),g(A(T)ﬁ)MU)) = (¥(0), Dg(A(7), 7)¢ (o)),

where

ng—1
Dg(A(r).7) = (1 A7)+ 3 )15 (A7) o (D1 A
+2—1— 9:4(z,7)(z — A(1)) "™ a dg‘; )1( 1A(T)) (2 — A(7)) "t dz A dz.
™ JC

We can then prove that (¢¥(o), Dg(A(7), T)¢(0)) is integrable with respect
to 7, which indicates the assertion of Theorem 3.4. Corollary 3.5 follows
from the same argument as in [Sk]. U

With these results, we proceed to prove the propagation estimate for
operator K with potential V satisfying Assumption 1.5.

Suppose E € R\ Z and 0 < E' < dgg?z’)zlr We choose f and f; as in
Assumption 3.3, with support in a small interval I C R\ Z. Put o¢ = 1,
Ai(1)=A—-2F'r (r=0+1), and B = (4:(1)).

By virtue of Lemma 2.1 and some elementary calculus one can prove

that Aj(7) verifies Assumption 3.3 with arbitrary ng, ag, Bp. By the same
argument, as in the proof of Corollary 3.5 we have that:

(39 (-2 (ADoK (1) B ey = O s 7 o0
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for s >

Ml»—‘

LEMMA 3.6. Fiz 0 < E" < E' < dggg@l Let fo, f, 0o, Bo and
ap as above. For an arbitrary fived €' > 0 we take g € Fo 1, satisfying
(=9(z,7)%, (—(£9)(x,7))7 € CX(R x RY). We put M(z,€) = (E" -

22 (1 1 N
1), G = (—g(~TM(%,8), 7)) _p, and set As(7) = =G*G
Then for all By, ag, ng, there exists & > 0 such that As(T) satisfies

Assumption 3.3.

Before the proof of this Lemma, we introduce a symbol class and asymptotic

expansion formulas.

DEFINITION 3.7. For I, m € R, let S(7'{¢)™) be the set of functions
ar(z,§) € C(RY x RY) such that

1020 ar(2,€)] < Copr'lel(e)mW (2,6) e RY x RY

for all multi-indexes «, (.
We write a,(z, D) € Op S(7H{D,)™), if a-(x,&) € S(H{&)™).

LEMMA 3.8. Suppose a,(z,€) € S(TH{€)™), and b, (x,€) € S(7V'(€)™).
Then a,(z,D,)* € OpS(r'(D,)™) and a,(x, Dy)b,(x,D,;) € OpS(rHV
(D)™ ™). We have the following asymptotic formulas.

N R - m—
(3.10) ar(z, Dy)* = ) JaTEag(az,S)lg:Dz € Op S(="N(D,)™ ),
laj<N

where p3) (2, €) = DgOp(z, €),
1
ar (7, Do)br(z, D) = > aaT(a)(x,§)b7(a)(x,§)[§:Dm
(3.11) jaj<n &
€ Op S(rH =N (D, ym+m'=N),
Proof of Lemma 3.6. We rewrite DAy(1) = —(d,G)*G — G*(d,G) +
i[K, A2(7)]. Let M denote M(%,€). It can be easily verified that G € S(T%)

and

. 1(, 0 B
(@:6y'6 = -3 { (o) rbt, ) - g (=rat B e,

(3.12) 2
+O0pS(r7h).
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Using the assumption for g in Lemma 3.6, we have
g~ s, = {C gk, | {50kon, )

The last term i[K, Ay(7)] has the following expression

i o Lo et L€
(K, Aa(T)] {9 (=7M,7)M 27 (€)2 }|£ D.

+i[V, Ao(7)] + Op S(t71)

(3.14)

We denote (g1 (—7M, )M‘l)%|§ p, as ga(z,D;) € OpS(1). We also
remark that % éf gu(z,€) € S(1). We can rewrite the right hand side of
(3.14) as

( 7)

500, D) (5 4 28 g (0, D)+ 1V, As(r)] + Fo(7),

where [|Ro(7)|lg @ = O(77!) as 7 — oo.
For i[V, Ay(7)], we obtain [|[V, A2(7)]llg @) = O(r7%) by computing V, V-
Ve(g(=7M,T)).

Summing up, we have
1
(3.15) DAs(1) > igH(ac, D) (——= +2(E' — E"))gy(x, D;) + Ry(7),

where 61 = min{ép, 1} and || R1(7)|ls @) = O(17%) as 7 — oo.

Since

b
—~
-y

N
—

<
~—

A (1) LB~ E") >

T T T

(3.16)

we can replace élT(—l) +2(E'—E") by Al(T)x(AlT(T ) with e = B/ — E”. Thus
it suffices to prove (— )2 (M )gy (2, Dy) foK) (g0, (A (7). 7))V
e 7K f(K)B~%/? is square integrable.

For [ € NU {0}, we put g(z,7) = (g—x)l((—g)

T

N

x(%)) and we write the
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almost analytic extension of g;(z,7) as gi(z,7). From (3.2)

Ai() 1 A(7)

-2 5P \gu (@, D2)
& (- (m)
(3.17) :Z - ad’y, (98 (2, Dz))go  (A1(7),7)
m=0

1 - _
+Zr_z' /C 355]0(2, T)RLIOyAl(T),gH(m,DI)(Z) dz /\ dZ.
By the symbol calculus of PsDO, we have
| ad’s, -y (98 (%, Da))lpmy = O(1) as 7—o0 forall 0<m <ng.

The last term in the right hand side of (3.17) is dominated from above by

r0=1(Z)=8/2-m0| 4 & d3| - | ad?? z,D
(318) /|z|2€”7' <T> I ' “ Al(‘r)(gH( -73))”

= O(r1™)
So it remains to prove that for 0 < m < ng
1 s _a
(3819)  gm(A1(r), ) f2(K) (950 (Aa(r), 7)) Fe 7K f(K) B3
is square integrable. We apply (3.2) again to see that this is equal to

no—1
(3.20) {Z ( l-l) adly, () (f2 (K))ggz)(Al(T),T)+O%(H)(Tl_”°)}

=0

X (gél,()x,e(AZ(T)7 T))%e—iaKf(K)B—% .

Here we note that 71" (gg ()1 (Aa(T), 7'))% is square integrable with respect
A
20|y = L <

to 7 because of the assumption (3.5) and the fact sup, > ||
0o. Again using (3.2) we have

Ims1(A1(7), T>(g“> (Aa(7), 7))

(SIS

no— 1
ki 1
(3.21) adl, (g5 (A2(7),7))2)g5) (Ar(7), 7)
1 ~ ! _
+é? OzGm+1(2, T)Rno,Al(T),g(l) (2)dz ANdz



MOURRE THEORY FOR TIME-PERIODIC SYSTEMS 207
We rewrite (ggzu(w,T))% as 73(~Ata=1) )(— 2)/2-1/2%(Z) and put
(3.22) he(z) = 12D (g)a/271 25 (o),

Let p(z) € C§°(R) be real valued and satisfies p(z) =1 on |z| < L+ 1.
By constructing an almost analytic extension of h.(z)p(x), which we denote
by h,(z), we have

1 ~ Aa(T)

(3:23) (g, (Aa(r),7)? = o | Oshe()(z ~ =) dz
ad’, 1) ((g5s (Aa(),7))?)
(324 - 2:” Oshr(2) add, . ((x — AQT(T))—l)dz A dz.

By induction, we can see that for Imz#0

Aa(T), _ e
(3.25) o ) ((~ 2271y < ¢y tm g,
where Cj is independent of 7. Combining (3.24) and (3.25)

(3.26) || ad’

1 Bta—
2 (05 (Aa(7), ) )y = O(rPF7D/2) as 7 — oo

Using (3.2) we compute

Ime1(A1(7),7) (g o(As(r), 7)) 27K f(K)B~%

no—1
(3.27) = O(r3(=F+a=D)y N~ gD (A (7), r)e K f(K)B~%
7=0

+O(Tl—n0+(—ﬁ+a—1)/2)e—iaKf(K)B—% .
Here we apply (3.9) with B = (A1(1))}** (k > 0). Then

(3.28) g9 (Ay(7), 7)e= K F(K)B~% = O(r—a(H+m)/2)

So we have proved

A(r) 1 A7)

T

Y9 (z, Dy) f2(K) (950, (Aa(7), 7)) 2K f(K)B™%
=O0(r7 2~ %)

)2 x(

(_

is square integrable in 7. i
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Hence the conclusions of Theorem 3.4 and Corollary 3.5 hold. i.e.

A2(7')

(3.29) lIx(

Je K F(K)(A) ™ sy = O(7°)

forall0 < s < s as T — o0

Our final aim is to change the weight in (3.29) by functions of x.
Proof of Theorem 1.6. It follows from (3.29) that

(3.30) (2T < e~ K () ) gy = O(0™) s 0 o0,

Therefore Theorem 1.6 is proved if we show for any NV € N,

=2 d(I,Z) An(r)
(3.31 Nz ~arzy 1 <M <7
. ) |x|2 d(I,Z) »
=Xz~ qrz) 41 < 9 T Oem() as o oo

Again we use an almost analytic extension of xp(denoted by x) and

AQ(T) 1 A2(T)

— Ry _ -1 5
(3.32) x( . )= 57 /C 9:x(2)(z )" dz Ndz.
We denote the symbol of A—QT(T—) as ar(z,§).
Then 1
(3.33) R.(z,¢) = ar(z,§) — :’_-g(—TM,T) e S(rHe)™h.

Asz(T)

T

We construct a parametrix of (z — ) by putting

qO("I;7€) = (_%g(_TMa T) + Z)*l
334) ¢ 4(3,8) == ysjams Z(—29(=mM,7) + 2) g 0)q0
i'<j
~ Y ttalmiot 2B gje@0 (G2 1)

Then
N

)Y 4j(z, D;) ~ 1€ OpS(rN).
j=0

Ay(T)

T

(3.35) (z—
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Moreover we have the following estimates: There exists [ > 1 such that

Ao(T)

T

N
) g — Tl < Cr V| Im 2|~V
Jj=0

(3.36) l(z —

So replacing the resolvent by the parametrix 3 ¢;(z, D;) we have

AQ(T) 1

= — v (2 z—A—Q(T—)
) A@mx

T

x( )" tdz A dz

T T 2mi
Yo
=Z—./65>Z(_z)qj(x,Dx)dz/\dZ
— 271 J¢
Jj=0
+7'_N/3;)2(7:)0(]Imzl'N—l_l)dz/\dz‘:
C

Combined with the fact that

V(B — > 0y (cgrm(Z 0,7 m) = (B - e > L)
472 737 47r27”’
this shows
x|, AT
X"~ e > ) 220
(3.37) T T af?
T _
=x(E" —€> Z;Q-)—I—O;B(H)(T N) as T — 0o.
Since N is arbitrary, we take N > s and obtain Theorem 1.6. i
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