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TRANSFORMATIONS ON WHITE NOISE FUNCTIONS
ASSOCIATED WITH SECOND ORDER

DIFFERENTIAL OPERATORS OF DIAGONAL TYPE

DONG MYUNG CHUNG1, UN CIG JI AND NOBUAKI OBATA2

Abstract. A generalized number operator and a generalized Gross Laplacian
are introduced on the basis of white noise distribution theory. The equicon-
tinuity is examined and associated one-parameter transformation groups are
constructed. An infinite dimensional analogue of ax + b group and Cauchy
problems on white noise space are discussed.

Introduction

During the recent development of infinite dimensional analysis much
attention has been paid to roles of differential operators, in particular, of
infinite dimensional Laplacians. Among many variants of Laplacians on an
infinite dimensional space, the Gross Laplacian, the number operator (or
the Beltrami Laplacian) and the Levy Laplacian have been studied exten-
sively. Based on an abstract Wiener space, Gross [9] introduced an infinite
dimensional Laplacian (presently called the Gross Laplacian) and studied
differential equations in infinite dimension. The number operator being a
central object in quantum physics, the associated Cauchy problem was dis-
cussed by Piech [22], [23]. It is also noteworthy from harmonic analysis that
the number operator appears as a limit of the spherical Laplacians as the
dimension tends to the infinity [24], [25]. As for the Levy Laplacian [17]
a series of new interesting features has been investigated recently [1], it is
still somehow beyond our discussion of this paper.

It was Kuo [13] who first made an attempt to understand these Lapla-
cians in a unified manner, namely, as operators acting on white noise func-
tions [10]. Later on it was proved that the Gross Laplacian AQ and the
number operator N are in essence the only operators which are rotation-
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invariant [18]. On the other hand, a linear combination of ΔQ and N
occurs as an infinitesimal generator of the Kuo-Fourier-Mehler transform
[14], [15], and various one-parameter transformation groups are discussed
[4], [11], see also [16]. White noise approach to infinite dimensional dif-
ferential equations is also very interesting to study: the Cauchy problems
associated with a certain generalized Gross Laplacian is discussed in [8] and
those problems associated with aN + bΔG and their powers in the recent
papers [4], [5]. Moreover, these Laplacians have been also studied toward
de Rham-Hodge-Kodaira theory in infinite dimension, see e.g., [2], [7].

Using the standard notation in white noise calculus [12], [16], [19], the
Gross Laplacian and the number operator are respectively expressed as

ΔG = / a^dt, N = / a\at dt,
JT JT

where at and α£ are respectively the annihilation and creation operators at a
point t E T,T being a certain parameter space but later taken to be T = R.
Since at is a directional derivative (see (2.1)), the above operators are viewed
as infinite dimensional (or to be more precise, continuous) analogues of finite
dimensional Laplacians:

These operators are identical up to ±1 on the Euclidean space with Lebesgue
measure; however, their infinite dimensional analogues ΔQ and N are known
to be completely different from each other. The purpose of this paper is to
study their generalizations:

N(f) = / f{t)a*tatdt, ΔG(g) = ί g(t)a2

tdt,
JT JT

which are referred to as second order differential operators of diagonal type.
Obviously, N(ί) = N and ΔQ{1) = ΔQ- It is interesting to construct one-
parameter transformation groups of which infinitesimal generator is N(f) +
Δc(g). In fact, employing the idea of an equicontinuous generator [20], [21],
we shall discuss such a question in terms of power series expansion. The
difficulty appearing here does not occur in the case of bounded operators
on a Banach space but is typical for a nuclear Frechet space.

The paper is organized as follows: In Section 1 we assemble standard
notations used in white noise calculus and in Section 2 we make a quick



TRANSFORMATIONS ON WHITE NOISE FUNCTIONS 175

review of an integral kernel operator which is a central concept in the opera-
tor theory on white noise functions, for further details see [19]. In Section 3
we introduce second order differential operators of diagonal type. Section 4
surveys some basic properties of an equicontinuous generator and contains
a criterion in the white noise case. In Section 5 we investigate conditions
for second order differential operators of diagonal type to be equicontinu-
ous. We then discuss some applications. Section 6 is devoted to a study
of representation of an infinite dimensional analogue of ax + b group and
Section 7 discusses the associated Cauchy problems.

Acknowledgements. The present joint work was started during the
third named author's stay at Sogang University in November 1995. He is
most grateful to the Department of Mathematics, in particular to Professor
D. M. Chung for their kind hospitality.

§1. White noise functions

The whole discussion is based on the special choice of a real Gelfand
triple:

(1.1) E = <S(R) CH = L2(R, dt) C E* = <S'(R).

However, R can be replaced with R n with no essential change (sometimes
more interesting for applications); furthermore, a more axiomatic approach
[12], [19] is also possible with simple modification. It is noteworthy that
the Gelfand triple (1.1) is constructed from the differential operator A =
1 + t2 - d2/dt2. In fact, E = <S(R) is identified (up to null functions)
with the space of functions ξ G H such that | £ | = | Apξ | 0 < oc for any
p G R , where | | 0 stands for the norm of ϋ", and the topology of E is given
by the norms | | , p G R. Since A is a positive selfadjoint operator with
Hilbert-Schmidt inverse, E becomes a countable Hubert nuclear space. By
definition E* is the strong dual space of E. The canonical bilinear form on
E* x E and the real inner product of H are denoted by the same symbol
( , •) because they are consistent.

The Gaussian measure μ is by definition a unique probability measure
on E* of which characteristic function is
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The probability space (£/*, μ) is called the white noise space or the Gaussian

space. With each ξ G EQ we associate a function on E* defined by

x G E*

which is called an exponential vector. In particular, φo is called the vacuum

vector. The correspondence

is uniquely extended to a unitary isomorphism between L2(i?*,μ) and the
Boson Fock space over He, denoted by Γ(Hc) > which is the celebrated
Wiener-Itό-Segal isomorphism. If φ G L2(i?*,μ) and (fn) G Γ(Hc) are
related, we write (/> ~ (/n) simply. In that case,

(1.2)

For any p G R we put

oo oo

(1.3) || </> Hj = Σ n\ I /„ \2

p = ̂ n ! | (Λ®")P/n \l Φ ~ (/n)
n = 0

Let (£") be the subspace of functions φ G L2(E*, μ) such that || φ || < oc

for all p. Then (J51) becomes a nuclear Frechet space with the defining

seminorms || || , p G R. the dual space (£")* consists of all elements Φ ~

(Fn) such that Fn G (^cn)sym a n d II φ II-p < °° f o r s o m e P > 0. We thereby
obtain a complex Gelfand triple:

(1.4) (E)cL2(E*,μ)c(E)*.

Elements in (E) and (E)* are called a test (white noise) function and a

generalized (white noise) function, respectively. We denote by ((•, •}} the

canonical bilinear form on (E1)* x (E). Then we have

! (Fn, fn), Φ~ (Fn) € (E)*, φ ~ (/„) €

where the canonical bilinear form on (E^ny x (E^n) is denoted also by
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§2. Integral kernel operators

Based on the Gelfand triple (1.4) Fock space operators have been stud-

ied in detail [19], where a central role is played by integral kernel operators.

Unless otherwise specified, (£/)* is equipped with the strong dual topology.

Let C((E), (E)*) and C((E), (E)) denote the spaces of continuous opera-

tors from (E) into (E)* and those from (E) into itself, respectively. These

spaces are equipped with the topology of uniform convergence on every

bounded subset. Then the natural inclusion C((E), (E)) -» C((E), (E)*) is

continuous, and by adjoint £((ϋ7), (E)) and £((£")*, (E)*) are isomorphic.

With each y G EQ we may associate an annihilation operator Dy G

£((E),(E)) which is uniquely determined by Dyφζ = (?/, ξ) φξ, £ G EQ.

Since δt G E* for any t G R,

at — Dβt, t G R,

belongs to C((E), (E)). This is called the annihilation operator at a point

t G R. In some literatures at is also denoted by dt and is called Hida's

differential operator. It is known that at is a differential operator along the

direction δt, namely,

(2.1) atΦ(x) = lhnφ{x + θδtJΦix\ φe(E), t e R, xeE*.
θ—>0 u

The creation operator at a point is by definition the adjoint a\ G C((E)*,

(E)*). We have then the so-called canonical commutation relation:

(2.2) [as,at} = 0, [a*s,a*t}=0, [as,a*t] = δs(t)I, s,teK,

where the last relation is understood in a generalized sense.

For any K G (£!®(z+m))* there exists an operator 5/,m(/c) G C({E), (E)*)

uniquely determined by

(2.3) ((Ξι>m(κ)φζ, φη)) = ( K , η & ® ξ®m) e « ' " > , ξ,η €

In that case we also employ a formal integral expression:

/ί(si, , s/ , t i , , ί m ) α
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We call Ξιim(κ) an integral kernel operator with kernel distribution K. The
kernel distribution is uniquely determined whenever taken from the sub-
space

V^C Jsym(Z,m)

where s/m is the symmetrizing operator with respect to the first / and
the last m variables independently. By definition £?o,o(ft) = ft/ is a scalar
operator.

Integral kernel operators in £((£"), (E)) will be particularly important
in the operator theory on white noise functions, see also [19]. Recall the
canonical isomorphism (E®ι)®(E®m)* ^ C(E^m,E®1), which follows from
the kernel theorem.

LEMMA 2.1. Let K G (E®{l+m))\ Then Ξhπι(κ) e £((E), (E)) if and
only if K e (E®,1) ® (J5gm)*. In particular, ΞQim(κ) G C((E), (E)) for any

§3. Second order differential operators of diagonal type

Let T E (Ec <S> ECY be defined by

(3.1) <τ,77®0 = <£>*7)> ξ^eEc.

In fact, r G -Ec ® £̂ c s i n c e r corresponds to the identity operator under
the canonical isomorphism EQ 0 EQ = C(Ec^Ec)- Thus by Lemma 2.1,

TV — Ξi i(r) = / τ(s,t)a*satdsdt I = / a\atdt for simplicity )
J R 2 \ JR /

belongs to C((E), (E)). This is called the number operator. On the other
hand,

Ξo2(r) = / τ(t\,t2)atlat2dt\dt2 ( = / α^dί for simplicity I
J R 2 \ J R /

also belongs to £((£'), (E1)) and is called the Gross Laplacian. Having some
typical properties of a finite dimensional Laplacian, N and ΛQ are consid-
ered as natural infinite dimensional (or continuous) analogues of a finite
dimensional Laplacian [18], [19].

To introduce their generalizations we need notation. Let Λ4(EC,EQ)

be the space of C-valued measurable functions / on R such that the multi-
plication operator Mf defined as Mfξ = /£, £ G E'c, belongs to
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We identify Λ4(EQ,EQ) with a subspace of C(EQ^EQ) by the injection
/ ι-+ Mf. Put

M(EC,EC) = M{EC,E*C) Π £(EC,EC).

LEMMA 3.1. (1) M*f = Mf for any f G M(EC,E£,).

(2) // / G M(Ec,Ec), Mf is continuously extended to an operator
from EQ into EQ.

(3) Λ4(Ec,Ec) is an abelian subalgebra of C(Ec,Ec)-

The proofs are straightforward. For / G M(EQ,EQ) we denote by
τ(/) G (EQ ® £"c)* the distribution uniquely determined by

(3.2) (τ(f),η®ξ) = (Mfξ,η), ξ,η £ Ec.

In other words, the relation between Mf and τ(/) follows from the canonical
isomorphism C(EC,E^) = (£"c ® £"c)* It is obvious that / = Mi G
M(Ec,Ec). In that case r(l) = r, see (3.1) and (3.2). We understand
that τ(/) is a distribution concentrated on the diagonal of R x R. Now for
f eM(Ec,E^) we define

ΔG(f) =S0,2(r(/))= [ f(t)a*dt,.
(3.3) h

N(f) =ΞlΛ(r(f))= / f(t)a*tatdt.
Jn

These are called generally second order differential operators of diagonal
type. Note also that Δc(f) and N(f) are obtained by smearing the Gross
Laplacian density a\ G C((E), (E)) and the number density a*at G £((E),
(-B)*), respectively.

By a general theory of integral kernel operators (see §2) one can imme-
diately deduce the following

PROPOSITION 3.2. If f e M{EC,E^), then ΔG(f) G £((£),(£))

and N(f) G C((E),(E)*). In particular, ΔG(l) = ΔG and N(l) = N.

Moreover, N(f) G £((£)> (^)) */ α n ί ί onlV tf τ(f) e Ec ® #c> ^ e ^ *
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§4. Equicontinuous generators

Being motivated by the standard terminology [26, Chapter IX], we have

introduced in [20] the concept of an equicontinuous generator to construct

one-parameter subgroups in GL ((£")), and in [21] we have discussed it in

a more general situation. Here we recall the generality. For the moment

let X be a barreled locally convex Hausdorff space (what we need here is

the Banach-Steinhaus theorem) with defining seminorms {|| \\a}a which

are assumed to be directed without loss of generality.

DEFINITION 4.1. A one-parameter subgroup {Ωz}zecCGL(X) is called

holomorphic if there exists an operator Ξ G C(X,X) such that

(4.1) lim
Ωzώ-

z
= 0 for all φ G X and a.

In that case Ξ is unique and is called the infinitesimal generator of {Ωz}.

If {Ωz}zec C GL(X) is a holomorphic one-parameter subgroup, for

any Φ G X* and φ G X the complex function z \-> ((Φ, β^}) is entire

holomorphic. Moreover, as is easily seen,

(4.2) ^ «#, Ωzφ)) = ((Φ, ΩzΞφ)) = ((Φ, ΞΩzφ)) , ΦeX*, φ G X.

In particular, note that [Ξ', J? ]̂ = 0.

LEMMA 4.2. ([21]) For Ξ G £(X,X) t/ιe following four conditions are

equivalent:

(i) there exists some R > 0 SΪ/C/I £/ια£ { ( ί ϊ Ξ ) n / n ! ; n = 0 , 1 , 2 , •••} is

equicontinuous;

(ii) {(RΞ)n jn\ n = 0,1, 2, •} i«s equicontinuous for any R > 0;

(iii) Ξ is the infinitesimal generator of some holomorphic one-parameter

subgroup {Ωz}zec C GL(X) such that {Ωz |^| < R] is equicontinuous

for some R > 0.

(iv) Ξ is the infinitesimal generator of some holomorphic one-parameter

subgroup {Ωz}zec C GL(X) such that {Ωz \z\ < R} is equicontinuous

for any R > 0.
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DEFINITION 4.3. An operator Ξ E £(X, X) satisfying the condition

mentioned in Lemma 4.2 is called an equicontinuous generator.

If Ξ G £(X, X) is an equicontinuous generator, the corresponding holo-

morphic one-parameter subgroup of G?L(X) is also denoted hyfexp(zΞ)}zς.c

It is known that

n=0

where the right hand side converges in £(X, X) with respect to the bounded

convergence topology.

In this paper we are mostly devoted to the case of X = (E). In that case

the characterization theorem of an operator symbol [19, §4.4] is particularly

useful.

PROPOSITION 4.4. Let Ξ e C((E), (£?)) and {Ωz}zeC C GL((E)) be

a one-parameter subgroup. Assume that for any p > 0 and e > 0 there exist

q > 0 and a function C(z) defined on C with linx^o C(z) = 0 such that

ξ,η & Ec.

Then {Ωz} is a holomorphic one-parameter subgroup of' GL((E)). If in ad-

dition C(z) is bounded on every compact subset ofC, then Ξ is an equicon-

tinuous generator.

Proof. For simplicity we put

~ Ωz-I „
z £ C,

Then by the assumption we have

\((Ξzφξ, φη))\ < C(z)expe ( | ξ \2

p+q + \ η | 2 _ p ) , ξ,η € Ec.

Applying a general result [19, Corollary 4.4.11], we obtain

(4.3) II Ξzφ | | p _ 1 < C(z)M(e, q, r) \\ φ \\p+q+r+ι, Φ E (E),
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where M(e,q,r) is a constant determined for e < (2e3<52)-1, r > ro(q) > 0.

Hence {Ωz} is a holomorphic one-parameter group. Moreover, from (4.3)

one can deduce

(4.4) || Ωzφ Up,! < \\φ\\p_1 + Nil Ξφ\\p_λ

+ \z\C(z)M(e,q,r)\\φ\\p+q+r+1.

Since Ξ € C((E), (E)), we may choose C > 0 and s > q + r + 1 such that

ll^llp-i<cμ||p + β, φe(E).

Then (4.4) becomes

II Ωzφ | | p _ 1 < II </» | | p + s + C\z\ || <̂» | | p + s + \z\C(z)M(e, q, r) \\ φ \\p+s

= (l + C\z\ + \z\C(z)M(e,q,r))\\φ\\p+s.

Therefore, if C(z) is bounded on every compact subset of C, the above

inequality implies that {Ωz \z\ < R} is equicontinuous for any R > 0.

Hence by definition Ξ is an equicontinuous generator. Π

During the above proof we have established the following result which

is also useful.

COROLLARY 4.5. Let {Ξi}ieI be a subset of £((E),(E)). If for any

e > 0 and p > 0 there exist q > 0 and C > 0 s?ic/i

«~^, ^)) I < Cexpe (j ξ |J+ q + | η |^ p) , ^,η

the family {Ξi}iej is equicontinuous.

§5. Equicontinuity

We first prove the following general result.

LEMMA 5.1. For any K G (EQ

^0,2 («) = / κ{tι,t2)atlat2dtιdt2

Z5 an equicontinuous generator.
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Proof. For simplicity we put Ξ = Ξb,2(ft). Suppose p > 0 and q > 0.

Then direct application of [19, Theorem 4.3.9] leads us to

where p = inf Spec (A) = 1/2. By | K \_tp+q\ < p2q | ft | we obtain

where φ G (£7) and n = 0,l,2, . In view of the simple identity

(2n)» , i n / p* V n-^i 1
(5.2)

n\ -2eglogp

>se q > 0 ί

from the Stirling formula that

n\e\en
—q\ogp

for any p > 0 we choose g > 0 such that pq \ K \ < — q log p. It then follows

n\
< oo.

Hence (5.1) becomes

1

n\
<p-*'2M\\φ\\ , , φe(E).

Namely, {Ξn/n\ n = 0,1, 2, •} is equicontmuous. Consequently, we see

from Lemma 4.2 that Ξ = ΞQ^{K) is an equicontmuous generator. Q

THEOREM 5.2. For any f e

ΔG{f) = Ξofi

is an equicontmuous generator.

= [ f(t)a2

tdt

Proof. Recall that τ(f) G {EC®ECY whenever / <G M{EC, E%). The

assertion is then immediate from Lemma 5.1. D

For K e C(EC,EC) we define Γ{K), dΓ(K) G C((E), (E)) by

(5.3) Γ(K)φ - (if®n/n), dΓ{K)φ
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where φ ~ (fn) E (E). If K and K E EQ ® E^ are related by the kernel

theorem, i.e.,

(5.4) (Kζ,η) = (κ,η®ξ), ξ,η E £ C ,

then dΓ(ίf) = Ξi,i(«).

LEMMA 5.3. Let {Sz}zec C GL(EQ) be a holomorphic one-parameter

subgroup with an equicontinuous generator K^JC(EC^EQ)- Then {Γ(Sz)}z^c

is a holomorphic one-parameter subgroup of GL((E)) with equicontinuous

generator dΓ(K). Conversely, if dΓ(K) is an equicontinuous generator,

then so is K.

Proof. The first part has appeared in [21]. As for the second part we

need only to note that the action of dΓ(K) on the one-particle space is the

same as K, see (5.3). Q

Then the next is a simple consequence.

LEMMA 5.4. Assume that K E EQ ® EQ an^ K ^ £ ( £ c , ^ c ) are

related as in (5.4). Then the integral kernel operator

κ(s,t)a*atdsdt

is an equicontinuous generator if and only if so is K.

It can be proved easily that if | K \1 λ = \ (Ap ® A~p)κ | 0 < oo for

all p > 0, the corresponding operator K E £(Ec,Ec) is an equicontinuous

generator. This occurs, for example, when K is a finite linear combination of

eigenvectors of A ® A. On the other hand, the case of K = τ or equivalently

of K = I is included in Lemma 5.4. The following result generalizes this

point, the proof of which follows immediately from Lemma 5.4.

THEOREM 5.5. Let f E Λ4(EC,EC) If Mf is an equicontinuous

generator, so is

= / f(t)a*tatdt.
JR

As for a concrete example of an equicontinuous generator on E — <S(R)

we only mention the following results of which proofs are easy and omitted.
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LEMMA 5.6. Let f be a C°°-function on R whose derivatives f^ are
slowly increasing, a = 0,1, 2, . Then f E ££. and Mj E C(EQ, EC), that
is, f eM(Ec,Ec)

LEMMA 5.7. Let f be a C°°-function on R. If every derivative f(a) is
bounded, the multiplication operator Mf E £(Ec, Ec) is an equicontinuous
generator.

Combining Theorem 5.5 and Lemma 5.7, we immediately obtain

PROPOSITION 5.8. N(f) is an equicontinuous generator for any f E

Ec.

§6. An infinite dimensional analogue of ax + b group

We shall first prove the commutation relation among second order dif-
ferential operators of diagonal type. Recall that N(f) E C((E), (E)) for any
/ E Λf (Ec, Ec) and that ΔG(g) E £((£), (E)) for any g E M(EC, E&).

THEOREM 6.1. Let f1J2j£M(Ec,Ec) and gug2igeM(Ec,E&).
Then the following commutation relations holds:

(6.1) [N(f1),N(f2)} = 0,

(6.2) [ΔG(gi),ΔG(g2)} = 0,

(6-3) [N(f),ΔG(g)] = -2ΔG(fg).

Proof In general, Ξo^(^) with
K, E (Ec ® EQ)* involves only annihilation operators, and so they com-

mute each other, see also [20, Theorem 3.3]. Then (6.2) is a particular case.
As for (6.3), since both sides are continuous operators, it is sufficient to
check the identity for a function of the form φ ~ (0, , 0, £®n, 0, •). The
verification is a simple computation. The proof of (6.1) is given below. •

Suppose Si E C(EC,EC) and S2 E C(EC,E^). Let /i E Ec ® £ £
and /2 E (Ec®Ec)* be the corresponding elements, respectively, see (5.4).
Then we denote by f2 * /i the element of (Ec Θ Ec)* corresponding to
S2Si E C(EC,E%). It is noted that

f2*fi(s,t)= / f2(s,u)f1(u,t)du

in a generalized sense.
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LEMMA 6.2. The convolution (/2, /i) •—» /2 * /i gives a separately con-
tinuous bilinear map from (EQ ® EQ)* X {EQ ® EQ) into (EQ ® EQ)*, and
from {Ec ® E%) x ( £ c ® ££) into

Proof. It is known that the composition of operators (S2, *SΊ) '—̂  S^SΊ
gives a separately continuous bilinear map from C{EQ,,EQ) x £{EQ,EQ)

into C{Ec,E^) and from £{EC,EC) x C{EC,EC) into C(EC,EC), which
follows from the definition of the topology. Our assertion is then immediate
from the kernel theorem. Q

LEMMA 6.3. It holds that

[Si,i(/i), £1,1 (/2)] - SΊ,i(Λ * Λ - /2 * /1), Λ, f2eEc® £7£.

Proof. Let 5 G £(Ec,Ec) be the operator corresponding to /. To
prove the assertion it is sufficient to show the identity for </> ~ (0, , 0,
• ® ίn? 0j ' O βy a direct computation we see that

Ξl,l(f)φ ~ ί 0, , 0, ] Γ ξ i ® ® &_! ® 5ίife ® ® ίn, 0, J .

The assertion follows by the repeated application. Q

Proof of (6.1). We see from Lemma 6.3 that

[N(f),N(g)] = [Ξi,i(r(/)), Ξ1Λ(τ(g))] = Ξ1Λ(τ(f) * r( 5 ) - τ(g) *

By definition τ(/) * r(^) and τ(g) * r(/) correspond respectively to MfMg

and MgMf under the canonical isomorphism. Since Λ4(ECJEC) is an
abelian algebra, we have τ(f) * τ(g) — r(g) * τ(/), which completes the
proof. Π

In view of Theorem 6.1 we obtain the commutation relation among
transformations obtained by exponentiating N(f) and Δc(g). By Theorem
5.2, Δc(g) is an equicontinuous generator for any g G EQ> On the other
hand, it follows from Theorem 5.5 that N(f) is an equicontinuous generator
for any / G EQ.

THEOREM 6.4. For any /, g G EQ it holds that

(6.4) expiV(/) ΔG(g) exp(-7V(/)) =

(6.5) exp7V(/)expzAG(^)exp(-7V(/)) = expΔG(e-
2f g).
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Therefore

(6.6) exp iV(/i) exp ΔG(gi) exp N(f2) exp ΔG(g2)

= expiV(/i + 2 /

Proof. Since [iV(/), As(fl)] = -2ΔG(fg), we have

= ] Γ —[N(f), [N(f), • • • [N(f), ΔG{g)}
n=0 n' V '

n times

Then (6.5) follows immediately. Here we note that e$g G EQ for any
f,geEc. (In fact, e ' - 1 E E c . ) D

In [20] we discussed relation between the complex ax + b group (of 2
dimension) and the Lie group generated by the Gross Laplacian ΔQ and the
number operator N. We here discuss an infinite dimensional generalization.
For (/i,5i), C/2,02) € «S(R) x 5(R) = E x E we define their product by

(/i,Si) (/2,Λ) = (Λ + f2,eh

9l + (»).

It is then easily verified that E x E becomes a topological group under
the above multiplication rule, which we denote by G from now on. It is
a semidirect product of E and E. The complexification is discussed in a
parallel way. Let a G C be fixed. We put

7Γα(/? ff) = e x P 2 ^ ( / ) ' e x P ^cKsO, f,9 ^ E-

PROPOSITION 6.5. π α is a continuous representation of G for any a G
C. // a φ 0, τrα is faithful For α,/3 G C OT£/I α/3 7̂  0? π α and πβ are
conjugate in GL((E)). In particular, if \a\ — \β\, two representations πa

and πβ are unitarily equivalent.

Proof That τrα is a continuous representation of G follows from (6.6).
By a straightforward computation we obtain

π β(2/, g)φi, φη)) = e«^,ί)+</e,r,) {{φξj φη)) 5 ξ ; η
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Hence πa(2f,g) = / if and only if e ° ^ , 0 + < / ^ } = i for any ξ,η <E Ec,

hence, if and only if

exp {az2 (gξ, ξ) + * </£, v}} = 1, ^ C , £, ry e EC

Differentiating with respect to z, we obtain

(6.7) a(gξ,ξ) = (fξ,η)=0, ξ,η e EC-

If a Φ 0, then (6.7) is equivalent to / = g = 0, that is, π α is a faithful
representation.

For α, β G C with α/3 φ 0 choose 7 E C such that e2ja = β. Then we
see that

In particular, if \a\ = |/3|, the above 7 is a pure imaginary. Namely ejN is
a unitary operator on L2(JB*, μ). Π

§7. Cauchy problems

Finally we consider a Cauchy problem associated with N(f) + Δc(g),
i.e., given ψ, we study the initial value problem:

(7.1) ^ = (N(f) + ΔG(g))φ, φ(0,x)=φ(x), t > 0, x e E\

More generally, given Ξ E C((E), (E)) we consider

(7.2) jt; = ΞΦi φ(p,x)=ψ(x), ί > 0 , x e £ * .
at

If Ξ is an equicontinuous generator and ^ £ (̂ )> the solution of (7.2) is
obtained by

0 0 tn

φ(t, x) =

where the right hand side converges in (E). Moreover, φ(t,x) is extended
to C x E* and becomes holomorphic in t E C. Therefore we do not
need to distinguish equations of heat type and Schrodinger type. Thus,
if N(f) + Λc{g) is an equicontinuous generator, the solution of (7.1) is
immediately obtained. For example, Theorems 5.2 and 5.5 describe the
condition for Δc{g) and N(f) being equicontinuous generators. For their
linear combination the situation becomes much more complicated.



TRANSFORMATIONS ON WHITE NOISE FUNCTIONS 189

PROPOSITION 7.1. Let f e M(EC,EC) and g e M(EC,E^). As-

sume that Mf is an equicontinuous generator. If fg = ag for some Q G C ,

then N(f) + Δc(g) is an equicontinuous generator.

Proof. It follows from a general theory established in [21] that N(f) +

Δc{g) is an equicontinuous generator if so are both N(f) and Δc(g) and

if

(7.3) [N(f), ΔG{g)} = aΔG{g) for some a G C.

In view of Theorem 6.1 we see that (7.3) occurs if and only if —2fg — otg

for some a G C. Π

In particular, if both / and g are constant functions, N(f) + Δc(g)

becomes an equicontinuous generator and the associated Cauchy problem

(7.1) is solved by power series. This case was discussed in [4] by a different

method. The case oΐ N(f) and Δc(g) commuting is included in Proposition

7.1 since [N(f),Δc(g)] = 0 if and only if fg = 0. A particular case is

the adjoint of Kuo-Fourier-Mehler transformations of which infinitesimal

generator is iN + (i/2)Δc>

We have another type of result based on the following rather obvious

fact.

LEMMA 7.2. Let X be an arbitrary barelled locally convex space as in

§4- If Ξ £ £(£,X) is an equicontinuous generator, so is G~λΞG for any

GeGL(X).

Hence, if we find G G GL{{E)) such that G~ιN{f)G = N{f) + ΔG(g),

we can immediately conclude that N(f) + Δc(g) is an equicontinuous gen-

erator whenever so is N(f). In case of / = g = 1 such G is found in [3] and

[15, §5.4].

PROPOSITION 7.3. Let Mf G Λ4(Ec,Ec) be an equicontinuous gen-

erator and let MgeM(Ec,E^,) be arbitrary. If there exists M G £(Ec,E^)

such that MMf = Mg, then N(f) + Δc(g) is an equicontinuous generator.

Proof. In general, for any M G C{EQ,EQ) there exists a unique oper-

ator G G £((£), (E)) such that

(7.4) Gφξ = exp (~ (MC, ξ)) Φξ, ί G Ec.



190 D. M. CHUNG, U. C. JI AND N. OBATA

This is verified by a simple application of the characterization theorem of
an operator symbol [19, §4.4]. Moreover, G G GL((E)) since G~ι is defined
by a similar formula as in (7.4) obtained by replacing the minus sign with
the plus sign. Now suppose / and g are as stated in the assertion. Then
we have immediately
(7.5) GΔG(g) = ΔG(g)G.

While, by a straightforward computation based on the Wiener-Itό expansion
we obtain

(7.6) GN(f)φζ = - (MMfξ, 0 Gφξ + N(f)Gφζ, ξ € Ec.

We take M G C(Ec, EQ) as described in the statement. Then (7.6) becomes

GN(f)φξ = - {Mgξ, 0 Gφς + N{f)Gφξ

= -ΔG{g)Gφξ + N(f)Gφζ, ξ € EC.

Hence
(7.7) GN(f) = (-ΔG(g) + N(f))G.

In view of (7.5) and (7.7) we obtain GΔG(g) + GN(f) = N(f)G, that is

Since N(f) is an equicontinuous generator by Theorem 5.5, it follows from
Lemma 7.2 that N(f) + Δc(g) is also an equicontinuous generator. Q

It is not known whether or not N(f) + Δc{g) is an equicontinuous gen-
erator for an arbitrary / with Mf G Λ4(Ec,Ec) being an equicontinuous
generator and for arbitrary g with Mg G M(EQ, E^).

On the other hand, the case of / = g is interesting from another aspect.
In view of x(t) = at 4- α£ we obtain

N(f) + ΔG{f) = / f(t)(a*t + at)at dt = ί f{t)x{t)at dt.
JK JK

This is a first order differential operator with distribution coefficients dis-
cussed in [19, §5.1]. Hence the corresponding one-parameter subgroup is
related to a one-parameter transformation group on the infinite dimen-
sional space E*. For example, for f(t) = 1 we know that iV + ΔQ is the
infinitesimal generator of a homogeneous dilation: x ι—> eθx for x G E* and
S E R , and the lift to (E) admits a holomorphic extention (with respect to
θ). Further study in this direction will appear elsewhere.
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