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GREEN'S FUNCTIONS OF FREE PRODUCTS OF
OPERATORS, WITH APPLICATIONS TO GRAPH

SPECTRA AND TO RANDOM WALKS

EUGENE GUTKIN1

Abstract. We systematically develop an algebraic technique of free products
of operators and their Green's functions. We apply this framework to obtain, in
a simple and uniform fashion, several results on the spectra of graph Laplaceans
and random walks.

Introduction

Let X, Y be discrete groups, and let X * Y be their free product. Let
A, B be bounded operators on £2(X), £2(Y) respectively. Their free product,
A * £?, is an operator on £2(X * Y). The pairing A, B ι—» A * B is a natural
operation. If A and B are convolution operators, then A*B is a convolution
operator. Let S and T be generating sets of the groups X and F, and let A
and B be the corresponding incidence operators. Then A*B is the incidence
operator on X *Y corresponding to the generating set S U T.

The Green's functions of A, B and A * B satisfy a system of algebraic
equations. If A and B are selfadjoint convolution operators, the system
yields considerable information about the spectrum of A * B [7]. For in-
stance, A * B has no singular continuous spectrum. If crp(A) and crp(B)
are the point spectra of A and B, then σp(A * B) C σp(A) + σp(B). The
(absolutely) continuous spectrum of A * i? is a union of a finite number of
intervals.

The present work is rooted in the observation that the group structure
is largely irrelevant for these results. Let X and Y be arbitrary countable
sets, each with a marked element, the root We say that X, Y are rooted
sets. Their free product, X * Y, is a rooted set, as well. Let A and B be
operators on £2{X) and £2(Y), respectively. We define the free product
operator, A * B, on £2(X * Y). If X, Y are groups, and the roots are the
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94 E. GUTKIN

respective identity elements, then X * Y is the free product of groups, and
A* B coincides with the free product operator in the group sense.

Our construction extends to an arbitrary number of factors, yielding
the free products A = *™=1^. Let G ,̂ 1 < i < n, and Q be the Green's
functions of Ai, 1 < i < n, and A, respectively. We obtain a system of
n-f-1 algebraic equations on Gι, and Q (see Theorem 1 and Corollaries 1-3,
especially Corollary 3). This system is a source of information about Q. If
the operators Ai are selfadjoint and invariant with respect to groups Γ̂ ,
transitively acting on X^ 1 < % < n, then Q determines the spectrum of A.

The system of equations of Corollary 3 can be explicitly solved only in
very special cases. In Section 3 we investigate two such cases. In Section
3.1 we consider the free products A*B where each of the operators AyB
has two distinct eigenvalues (with arbitrary multiplicities). By Proposition
1, the Green's function of A * B is single-valued on a double covering of
C, given by ΊZ = {(t,w) : w2 = R(t)}, where R(t) is a quartic polynomial.
In particular, TZ is an elliptic curve. In Section 3.2 we obtain the Green's
function of any *nA, if A has two eigenvalues (Proposition 5).

Explicit expressions for the Green's functions yield the spectra of the
corresponding free product operators (Proposition 2, Theorems 2 and 3).
The absolutely continuous spectrum consists of one or two intervals, whose
endpoints are algebraic functions of the parameters involved (Theorems 2
and 3). The point spectrum is more involved. We completely determine
the point spectra of *nA (Theorem 3), and get a good bound on the point
spectra of A * B (Proposition 2). We will report more comprehensively on
this subject elsewhere [5].

There has been much interest in the spectra of graph Laplaceans, and,
more generally, in the random walks on graphs [12]. In particular, there is
considerable literature on random walks on free group products, and the
spectra of related graphs (see the references in [12]). Several seemingly
unrelated techniques have been used to calculate explicitly these spectra in
special cases [1, 2, 3, 6, 7, 8, 10, 11].

The approach developed here allows to obtain these results in a simple
and uniform way. Let Kn be the complete graph on n + 1 vertices. In
Section 4.1 we calculate the spectra of Km * Kn and *nKr for arbitrary
m,n,r (Theorems 4 and 5). In Section 4.2 we determine the spectra of
the product random walks on Km * Kn, and of the simple random walks
on *nKr, for arbitrary m,n,r (Theorems 6 and 7). We use the results of
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Section 3, and exploit the elementary fact that the spectrum of a complete

graph consists of two numbers.

We thank B. Simon for fruitful discussions and for providing the refer-

ence [9]. We also thank the anonimous referee for asking the right questions.

§1. Preliminaries

A rooted set, (X, e), is a countable (at most) set with a distinguished el-

ement, the root. We denote by £2(X) the Hubert space of square summable

functions on X. There is a natural correspondence between operators and

kernels:

(Af)(x) = ΣA{x)y)f{y).
yex

If A(x, y) Φ 0, we write x ^^ y. If x ^ y and y ^ x, we say that x, y are

neighbors, and write x ~ y.

CONDITION 1. i) For all x e X, we have \{y : x ~ y}\ = q(x) < q(A) —

q < oo; ii) m a x ^ \A(x,y)\ = p(A) = p < oo.

EXAMPLE. The set X is a regular graph of degree q (i.e., q neighbors

of a vertex), and A is the incidence operator: A(x,y) = A{y,x) — 1 if x

and y are connected by an edge, and A{x, y) — 0 otherwise.

In what follows we assume Condition 1 (unless stated otherwise). Then

A is bounded, ||Λ|| < pq (by Schwarz' inequality). Set

)y), n > 0, A°(x,y) = δx^y,

and define

(1)
n>0

By Condition 1, the series converges for sufficiently small |t |, and Fx^y(t) =

(1 — tA)~1(x,y). We set Fx(t) = FX)X(t), and call it the return function for

x. The first return function, fx(t), is defined by

(2)
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and we have
(3) Fx(t) =

We denote by Gx^y(t) the kernel of the resolvent, R(t) — (t — A)~λ. For \t\
sufficiently large

(4) Gx,y(t) = ^ ^ ( ί - 1 ) .

We set Gx(t) = GXiX(t). In what follows we assume that A(x, y) = A(y, x) E
R. Then A is a bounded selfadjoint operator. The formulas above provide
a connection between the return functions and the spectrum of Λ.

EXAMPLE. For \X\ — n < oo, let λi < < λn be the eigenvalues
of A, and let φi(x) be the corresponding orthonormal (real) eigenfunctions.
Then

(5) GXty(t)

is rational, with the simple poles at the eigenvalues of A.

If A is the incidence operator of a graph X, the return functions have
a geometric interpretation: An(x, y) is the number of walks on X of length
n starting at y and ending at x. Thus Fx(t) is the counting function for the
closed walks starting at x, and fx(t) counts the closed walks that do not
come back prematurely.

DEFINITION 1. Let A be an operator on £2(X). We say that A is
invariant if there is a group, Γ; acting transitively on X, and A(gx,gy) ~
A(x,y) for g G Γ. If X is a graph, and its incidence operator is invariant,
we say that the graph is symmetric.

If A is invariant, then Fx(t), / x(t), and Gx(t) do not depend on x. Let
\X\ < oo, and let A be an invariant operator. In the preceding example,
for any x

Denote by Λ the set of eigenvalues of A, and let ra(λ) > 1 be the multiplic-

ity, Σ\mW = \X\> Since ΣχΦΊ(x) ~ 1 f°r a n y *? w e have

λGΛ ' ' λ£Λ
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Let the notation be as above. If Gx(t) does not depend on x G X, or if

x is a distinguished element (see Section 2 below), we say that Gx{t) = G{t)

is the Green's function.

§2. Free Products of Operators and Green's Functions

Let (Xi, e^), 1 < i < n,n > 2, be arbitrary rooted sets. Identifying the

roots in the union, UiXi, we obtain the bouquet, (#^Xj,e), of the sets Xi,

where the root e is the image of the points β{. The notation (#^/-Xi,e),

where / C {1,. . . , n}, is self-explanatory. We will now define the free prod-

uct, *?=1(Xi,ei) = (Λf,e).

Set Xi = Xτ\{et}, and Xλ = #?=1Xi Then Xλ = {e} U Xλ U U X n ,

a disjoint union. Let xG AΊ, x φ e. There is a unique ί G {1,. . . , N}, such

that x £ X{. We identify x with the root of the bouquet # j ^ X / . After

having done this for all x G AΊ, we obtain a new rooted set, A2, where

e G AΊ C Λ2. Continuing this process indefinitely, we obtain the increasing

tower {e} C Xι C A"2 C ••• C Xm C . The union, A - U^=QXk, is

the free product of Xi, 1 < i < n. For any point (x) G A*, (x) Φ e, there

is a unique sequence, i i , . . . , i m of indices i^ G { l , . . . ,n}, î . 7̂  ik-i f° r

all A:, and for each i& there is a unique X{k G Xifc so that (x) is coded by

the sequence (x^, . . . , Xim). The correspondence between X and the set of

such sequences is one-to-one. We think of elements (x) G X as words, and

of m = | 0 ) | as the "length" of (x). Then Xm = {(x) : \(x)\ < m}, and

(x)\ — 0 if and only if (x) — e.

The construction of *^r=1Xi does require the sets X{ to be rooted, but

nothing else. If each X{ is the vertex set of a graph with a distinguished

vertex, ê , then *^=1X^ is the free product of the graphs X{, 1 < i < n. If

each Xi is a group, and ê  G X^ is the identity, then *™=1Xi is the free

product of the groups Xi, 1 < i < n, and e is the identity element.

Let the notation be as above, and let Ai(x,y) be operators on £2(Xi),

1 < i < n. We will define operators Λi on ί2{X) via their kernels Λi{{x), (y)).

Let, for simplicity of notation, i = 1. Let (x) = x^ Xik and (y) =

2/ji ' ' 'Vji ̂ e i n ^ If fc = 0 then (x) = e, and we set Λι(e, (y)) — A\[e\,y\),

if Z = 1 and j \ = 1, and ̂ 4χ(e, (y)) = 0 otherwise. For k > 0 we set

4i(0*0>(2/)) = Aι{xik,yjk), if Z = fc, x^ •••^_1 = y^ "-yjk^ and ife =

jit = 1. Otherwise Λi((x), (y)) = 0. If all of Ai satisfy Condition 1, then

Λi satisfy it as well, and p(Λi) = p(Ai),q(Λi) = q(A{).

DEFINITION 2. Let the notation be as above. The operator Y^=1 Λi on
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ί2(*f=ιXi) is the free product of the operators A\,..., An. We denote it by
Λ = *i=ιA{.

EXAMPLES. 1. Let Xi,l < i < n, be rooted graphs, and let Ai be
the incidence operator of X{. Then *™=1Ai is the incidence operator of the
graph *2=ιXi- 2. Let Ai be the transition operator for a random walk on
XiΛ < i < n. Let μι > 0,Σ7=i M = l ^he o P e r a ^or *™=1μ^ is the
transition operator for a random walk on ^2=i^i-

For i e {l,...,n} we denote by X^ C A7 the set of words (x) =
Xix Xifc such that ii = i, and, by convention, set e G λfW. Then X^ are
rooted sets, and X = #,n

=1A'(i). Set j W = φjφiχl3)m

In what follows we consider various rooted sets. The root will always
be clear from the context, and we suppress it from notation. For 1 < i < n
we denote by (fi(z)) Fi(z),Gι(z) the (first) return function and the Green's
function for A^ and by (φi(z)) Φi(z) the (first) return function for Λi on
χ(τ\ In the formula below the "hat" above a symbol means the symbol is
deleted.

THEOREM 1. Let the setting be as above. Then, for 1 < i < n,

(7) F
l\l-φι(z) φi φn(z)J

_ 1 - φi(z) φj φn(z)

Proof. We will use the language of graphs in the argument, linking the
vertices x,y whenever C(x,y) φ 0, for a suitable kernel. Set, for simplic-
ity of notation, i = 1, and compute the series φι(z). Let Γ be any loop
contributing to φi(z). The first move of Γ is from e to some x\ G l i At
Xi there is a subset of X, isomorphic to y^\ "attached" by its root to X\.
From x\ the "walk" goes into y^\ and makes a loop, /3χ, in y^\ which ends
upon return to x\ for the last time. After that Γ moves to another vertex,
X2 £ X\ - Repeating this construction, we obtain a unique decomposition:

Γ : e -> xi,/?i,xi - • X2,β2, ,Xk-i,βk-i,Xk-i ~* e-

The points xχ5... ,x/c-i are in Xi, and are all different from e. Thus e —*
xλ —> —>. Xk-ι —> e is a first return loop, 7, in XL, and βι,... ,βk-i are
(rooted) closed walks in y^\ The contribution of Γ to φι(z) factorizes in
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an obvious way. To write it down, we use the general notation h(z\a) for
the contribution of a to a counting function, h(z). Denote by (ψi(z)) ^i(z)
the (first) return function for the operator Λ restricted to ̂  Then

k-1

The correspondence Γ = (7; β\..., βk-i) is one-to-one. Fixing 7 and sum-
ming up over all β\... ,/3/c_i, we obtain an expression for the contribution
to φι(z) from all loops Γ corresponding to the same 7 = Γ, |7| = k > 0:

(8) Σ φ1(z\Γ) = Λ(z|7)Φi{z)k~ ι = Λ(zΦi(s)|7)/Φi (*)•
Γ = 7

Since y(χ) - # < # i # « , w e have Φ^z) - (l -

Substituting this into eq. (8), summing up over all 7, and replacing fV with
an arbitrary i:

Expressing fi in terms of F^ by eq. (3), we obtain the claim. Q

Remark. The argument above does not use all of our assumptions on
Xi and Ai, only that %(#) is finite for any x £ X{.

We denote by Q{z) and ^Γ(^) the Green's function and the return func-
tion for the operator Λ on 2

COROLLARY 1. (see ([7, 8] in the group case) Let the notation be as
above, and set

Si{w) - W{φλ{w-1) + + ̂ {W1) + '" + φniw'1))-

Then, for 1 < i < n,
g(w) = Gi(w-Si(w)).

Proof. By the proof of Theorem 1

(10) Γ(z) = ( l \
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Substituting this into eq. (7), and using eq. (4), we obtain

(11) £(-) = Gi ^ j .

With z~ι = w, this implies the claim. D

Remark Specializing Corollary 1 to the case when A{ are convolution

operators on the groups Xι, and n — 2, we obtain a known result ([7],

Theorem 5.1). If Aι are the incidence operators of Cayley graphs (here

n is arbitrary), then Corollary 1 (equivalently, Theorem 1) is also in the

literature ([8], Theorem 4.9).

COROLLARY 2. Let the notation be as above, and set, for 1 < i < n

(12) ξi(z) = 1 ~ ΦΛZ) ~ ~J>i Φn(z)_

Then eq. (7) is equivalent to the system (1 < i < n)

(13) Gi(ξi(z)) = ™~z)

l_ z_χ.

The Green's function of (X, e) satisfies

n-l
(14) Q{z) =

Proof Straightforward computation, using eq. (11). Q

We put Corollary 2 in a form more suitable for our applications.

COROLLARY 3. Let (JQ,ei),l < i < n, be arbitrary rooted sets, let

Ai be operators on £2(Xi), and let Gi(z) be their Green's functions. Let

xi = xι(t) be the solutions of the system (1 < i < n)

(15) Gi(xi) n 1

/ • I Xi\Zj — I

Then the Green's function of the free product operator, A = *i=ιAi, is given

by

g(t) = ^n

n~^ .
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The following is known in the group case (compare with [7], Corollary 5.2).

COROLLARY 4. Let (Xi,ei) be finite rooted sets, and let A{ be (selfad-

joint) operators on £2(X^), 1 < i < n. Then the Green's function of the

free product, rf—iAi, is algebraic.

Proof. The Green's functions Gι are rational, hence the solutions of

the system (15) are algebraic functions. Eq. (16) implies the claim. Π

§3. Explicit Green's Functions and Spectra

The system (15) can be explicitly solved only in special cases. We

will do this for two classes of examples. As a benefit, we will completely

determine the spectra of certain free product operators.

Let G be a Green's function of a selfadjoint operator L. That is, for

ί G H , the upper half-plane, G(t) = < f\(t — L)~1f >, for a certain vector /.

Note that our definition of the resolvent, R(t) = (t — L ) " 1 , agrees with the

one in [4, 7], and differs by sign from the one in [9]. The spectral measure

of L is determined by limG(x + ze), as e —> 0. We say that a Green's

function is algebraic, if its analytic continuation is an algebraic function

on a Riemann surface, 1Z, which is a finite-sheeted branched covering of

the Riemann sphere, p : 1Z —> C The following problem typically arises

in this situation. Given G(t) as a function on TZ, and r G 7£, such that

p(r) G R C H, determine whether r belongs to the 'physical sheet' of 1Z.

We will use a well known fact, which we formulate as a lemma, for future

reference.

LEMMA 1. Let G be an algebraic Green's function, and let p : 1Z —>• C

be the corresponding branched covering. Let t G R be a point, which is not

in the branch locus of p, and let r ^TZ be a point above t.

1. If G has a pole at r, and Res rG < 0, then r is not in the physical

sheet.

2. Let G{r) be finite. If G(r) G R and G'{r) > 0, then r is not in the

physical sheet.

3.1. Free products of two operators
Throughout this subsection we consider invariant selfadjoint operators

A and B on £2(X) and £2(Y) respectively, where X and Y are countable (e.

g., finite) sets. Then A * B is an invariant selfadjoint operator on £2(X*Y).

We are interested in the Green's function and the spectrum of A * B. The
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standing assumption will be that the spectrum of each of the operators A, B

is pure point, with two distinct eigenvalues.

By the preceding material, the Green's functions satisfy

It 1) Ύ* Q

(17) GA(z) = + -, GB(z) = +
z — a z — b z — c z — d

where a < 6, c < d, and u, v,r,s > 0, see eq. (6). Set

g = (2u - 1)6 + (2v - l)α, h = (2r - l)d + (2s - l)c, S = α + 6 + c + c?,

Σ = g + h, A = g-h, T = (α + 6)(c + d) + 2(ab + cd),

and define the following polynomials:

(18) M(ί) = -2 ί + 5,

(19) N(t) = -Σt2 + SΣt - ]-[ΣT + g(c - d)2 + h{a - 6)2],

(20) D(t) = {t-{a + c))(t - (α + d))(t - (6 + c))(t - (b + d)),

(21) E(t) = ght2 - Sght + -[g2{c - d)2 + h2(a - b)2 + 2ghT\.

PROPOSITION 1. Let A and B be operators, satisfying the standing

assumptions. Let the notation be as above, and set R(t) = D(t) + E(t).

Then the Green's function of A* B satisfies

Proof. Set x = xι(t),y — X2(t)> By Corollary 3

u v r s
i r —- ix — a x — b y — c y — d x + y — t

This is equivalent to the system (here we use u + v = r + s = 1, see eq. (6))

xy = (t + -(g-a- b))x + -(g + a + b)y + (--((s + a + b)t + αδ),

xy = -(h + c + d)x + (t + -(h-c- d))y + (--((h + c + d)t + cd).
Δ Δ Δ
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We separate the variables to arrive to two quadratic equations on x, y with
polynomial (in t) coefficients. Solving them, and using eq. (16), we obtain
the Green's function of A * B:

( 2 3 ) 2(
N(t) + M(t)y/R(t)

Multiplying the numerator and the denominator in eq. (23) by N(t) — M(t)
y/R(t), we get in the denominator:

N2(t) - M2(t)[D(t) + E(t)} = [N2(t) - M2(t)E(t)} - M2(t)D(t).

We will prove the identity

N2(t) - M2{t)E{t) = Δ2D(t).

Set N2(t) - M2(t)E(t) = X(t) = Σ t o X ^ % a n d D(t) = Σ t o A**. The
coefficients Xi,D{ are polynomials in a^b^c^d^g^h^ and the identity above
is equivalent to the system (0 < i < 4)

(24) Xi(α,6,c,d,^,/ι) = Δ2A(α,6,c,rf).

These identities are verified directly from eqs. (18-21). For i = 4, 3 the
verification is very simple. To sketch a proof of eq. (24) for i = 2,1, 0, we
will use a self-explanatory notation for the coefficients of the polynomials
N(t),M(t). Then, by eqs. (18-21)

X2 = -2ΣΛΓ0 - 4£ 0 + S2Σ2 - 5S2gh = -2ΣN0 - 4£ 0 - S2gh + A2S2.

By eqs. (19,21)
-2ΣJV0 - 4£ 0 - S2gh = Δ2T,

hence X2 = Δ 2 (S 2 + T). By eq. (18), D2 = S2 + T, which proves eq. (24)
for i = 2. The identity X\ = Δ2Z?i is equivalent to the one we have just
proved (note that D\ — —ST). For i — 0 eq. (24) becomes

iV0

2 - S2E0 = Δ2(α + c)(α + d)(b + c)(b + d).

This is proved directly from eqs. (19,21), and we leave it to the reader.
Our identity and eq. (18) yield

(25) N2(t) - M\t)R(t) = 4(ί + i(Δ - 5))(-ί + \{A + S))D(t)

which proves the claim.
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Proposition 1 means, in particular, that the Green's function of A * B

is algebraic on the Riemann surface ΊZ = {(t,w) : w2 = R(t)}, which is

a 2-sheeted covering of the Riemann sphere, via p(t,w) = t. The sheets

of ΊZ correspond to the two branches of χ/R(t), where on the physical

sheet we have, asymptotically, y/R(t) ~ ί2, as t —» oc. The involution

(£, w) *—> (t, —w) interchanges the physical and the nonphysical sheets. Note

that ΊZ is an elliptic curve, since R is a quartic polynomial, and p : ΊZ —> C

is the canonical covering.

Let ΊZ- (resp. ΊZ+) be the part of the physical (resp. nonphysical)

sheet above H. Since the branch locus of p : ΊZ —> C consists of zeros of

the quartic polynomial i2, and since ΊZ- and ΊZ+ are disjoint, we conclude

that R has no roots in H. Thus, all roots of R are real, which also follows

directly from eqs. (20-21), see the proof of Theorem 2, below.

Let the notation be as above. If the inequalities

(26) a + dφ S/2,

(27) E(a + c),E(b + d),E(a + rf), E(b + c) φ 0

hold, we say that the operators A, B are in general position.

PROPOSITION 2. Let the operators A and B satisfy the standing as-

sumptions. If they are in general position then the point spectrum of A* B

consists of at most two eigenvalues; One of them is contained in {a+c, b+d],

and the other in {a + d,b + c}.

Proof By the preceding discussion and eq. (22), the poles of Q on the

Riemann surface ΊZ = {(£, w) : w2 — R(t) — 0} are contained in the set

p~1({α + c, b + d, α + oZ, 6 + c}), where p : ΊZ —> C is the canonical projection.

By eqs. (26-27), \p~x({a + c, b + d, a + d, b + c})\ = 8. Let ί0 be any of the

four numbers a + c, a + d, b + c, fe + d, and let po> Π) £ ^ be the two points

above it. Note that if po — Ofo? wo)> then ΓQ = (to? ~^o) Since, by eq. (25)

(N(t0) - M(to)wo)(N(to) + M(to)wo) = 0

and

N(tQ) + M(to)wo = 0, iV(t0) - M(to)iϋO = 2N(t0) φ 0,

the function Q has a pole at po, and ro is a regular point. Thus, <? has four

poles in ΊZ, one above each of the numbers a + c,a + d,b + c,b + d. Moreover,

the poles are simple, and the residue of Q at po is 2N(to)/D'(to) φ 0.
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By straightforward computations

N(a + c) = N(b + d) = --(b-a + d- c)[g(d - c) + h(b - α)],

N(a + d) = N(b + c) = --(b + c-a- d)[g(c - d) + h(b - a)}

and

0 < D'(b + d) = [b-a + d-c]{d- c)(b - a) = -D'(a + c),

D'(b + c) = -[b + c-a-d](d-c)(b-a) = -D'(a + d).

Thus

( 2 8 ) N(a + d) _1\ g h ] _ N(b
D'(a + d) 2 [b - a d-c\ D'(b + c)'

(29) N(a + c) = 1 Γ g | h ]_ N(b
D'(a + c) 2[b-a d-c\

Next, we invoke Lemma 1. By eq. (28) (resp. eq. (29)), at most one

of the two poles of Q above a + d,b + c (resp. above a + c, b + d) is in the

physical sheet. Π

A complete analysis of the point spectrum of A * B requires detailed

calculations. We will return to this and related questions elsewhere [5].

Next we turn to the continuous spectrum of A * B.

PROPOSITION 3. Let the operators A and B satisfy the standing as-

sumptions (we don't assume they are in general position), and let the no-

tation be as above. Then A * B has no singular continuous spectrum:

σc(A * B) = σac(A * B). If t\ < t2 < t$ < £4 are the roots of the quar-

tic polynomial R = D + E, then σc(A * B) = [£χ, £2] U [£3, £4].

Proof. Set L — A* B,Z = X *Y. Then L is an invariant selfadjoint

operator on £2(Z). Let Qz{t\z G Z, £ G H be the Green's function of L,

corresponding to <5X G £2(Z) [4]. By invariance of L, we have 5^(£) = {5e(£)>

where e is the root of Z. Let μ be the spectral measure, corresponding to <5e,

and let μf be the one corresponding to / G ̂ 2(Z) [4]. Then, by invariance

of L, the measure μf is absolutely continuous with respect to μ [7], hence

μ is the spectral measure of L.

Let μ = μac + μ s c + μp p be the standard decomposition of μ. Using that on

the physical sheet Qe — Q, which is algebraic, by eq. (22), and the standard
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characterization of the singular continuous spectrum, [9] Section 1.1, we

obtain that μsc — 0. Thus μ = μac + μpp.

Let t = x+ie, and for any function on H set f(x+iθ) = lime_+o

if the limit exists. Then (see [9], Theorem 1.6)

πdμac(x) = \ξSQ(x + iθ)\dx.

Eq. (22) implies the claim. Π

Remark. The fact that A * B has no singular continuous spectrum,

probably, is quite general. For instance, μsc(A * B) — 0 if A and B are

arbitrary (right) convolution operators on discrete groups [7].

LEMMA 2. Let A and B be a pair of operators, satisfying the standing

assumptions, and let the notation be as above. Set

a = -{b + d — a — c)2 + -(a + d — b — c)2 — gh,

7 = (α - 6)2(c - df + g2h2 - g2(c - d)2 - h2(a - b)2.

Then 0 < -y/7 < a. The equality a = ^/j holds if and only if b — a = d — c

and u = r,v = s (see eq. (17) for notation).

Proof. Substituting the expressions for g and h in terms of the spectral

data of A, B into the formulas above, we obtain

(30) 2a = [(a -b)-(c- d))2 + 2[(6 - a)(d - c)[l - (u - υ)(r - s)],

(31) 7 = (α - b)2(c - d)2[l -(u- v)2}[l - ( r - s)2}.

Since \u — f|, \r — s\ < 1, we have

0 < [(α - 6) - ( c - d)]2 <2a< [(a -b) + (c- d)}2,

and 7 > 0. The inequality a > ^/η follows from

[1 - (u - v)(r - s)}2 > [1 - (u - v)2][l - (r - s)2}.

The equality a = ^/η holds if and only if (a—b) — (c—d) = 0 and u—v = r — s.

Since u + υ = r + s = 1, the latter equation is equivalent to u = r. Π
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Recall that S = a

=-(g- h)[g(c - df - h(a
4

bf] d-a- c)2(a + d-b- c)2.

, and set

—(
16

LEMMA 3. Let the setting be as above. Then the quartic polynomial R

(see Proposition 1) satisfies

(32) R(w + 5/2) = wA - aw2 + β.

Proof. By eqs. (20-21), D(t) and E(t) are invariant with respect to

t —> S — t. Hence R(w + S/2) is an even polynomial in w. The claim follows

by a direct computation. Π

DEFINITION 3. Let A{ be bounded linear operators on Hilbert saces

Hi, i = 1,2. They are essentially unitarily equivalent if there exist Hilbert

spaces .Mi, ΛΊ2 such that the operators A{ ® ld^i on Hi ® Mi, i = 1, 2 are

unitarily equivalent.

THEOREM 2. Let the operators A and B satisfy the standing assump-

tions, and let the notation be as above.

1) Suppose that A and B — XId are not essentially unitarily equivalent for

any X. Then the continuous spectrum of A * B is a union of two disjoint

intervals:

σc(A *B) =

U

S_

'2"

2) If there exists λ such that A and B — \Id are essentially unitarily equiv-

alent, then the continuous spectrum of A* B is a single interval:

5
-

ΪS
σc(A*B)= - _

Proof. By Lemma 2 and Lemma 3, all roots of R are real. They are

s Γ^r ^ s FT
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If a > y/η, then the roots are distinct, and Proposition 3 applies. If a =
then

v/β(t) = it - S/2)^J(t - S/2 + y/a)(t - S/2 - </a).

The argument of Proposition 3 applies and shows that σc(A * B) = [S/2 —

It remains to show that the dichotomy a > yfη versus a — y^y is
equivalent to the dichotomy of the Theorem. By Lemma 2, α = yjη if and
only if there exist p, q > 0,p + q = I, and λ E R such that

(33) GA(z) =-P- +-«-, GB(z) = ^
z — a z — 6 ' z — a — λ z — b — λ

Equivalently, the eigenvalues of A (resp. B) are a < b (resp. α + λ < 6 + λ),
with the same relative multiplicities p and q. Let m, n be natural numbers
such that ra|X| = n|Y| = h. Setting Λί = Cm,Λ/" = C n , we obtain that
A 0 /c?Λ4 and (J3 — λ) (8) Idj\f are selfadjoint operators, acting on the same
space Ch, with the same eigenvalues a < 6, of the same multiplicities.
Hence, they are unitarily equivalent. We leave the proof of the opposite
implication to the reader. Π

Using eqs. (30-31) we can directly express the intervals comprising the
continuous spectrum of A * B in terms of the spectral data of the operators
A and B. Leaving the general case to the reader, we will restict ourselves to
the case when σc(A * B) is a single interval. The following is an immediate
corollary of Theorem 2 and its proof.

COROLLARY 5. Let the operators A and B satisfy the standing assump-
tions, and let the notation be as above. Then the set σc(A* B) is connected
if and only if A and B are essentially unitarily equivalent.
Let this be the case, and let α, 6, λ,p, q be as in eq. (33). Then

σc(A*B) = [a + b + X-2(b-a)^/pq,a + b+X + 2(b-a)^/pq] C [2α + λ,26+λ].

The inclusion is strict (on both ends), unless p = q — 1/2.

3.2. Free powers of an operator

In this subsection we consider arbitrary 'free powers' of a single operator
A on £2(X), where (X,e) is a rooted set. Let G(t) be the Green's function
of A, based at e. For n > 1 we denote by *nA the n-th free power of A,
i.e., *nA = tf^Ai, where A{ = A for all i.



FREE PRODUCTS OF OPERATORS 109

PROPOSITION 4. Let Qn{t) be the Green's function of *nA, n > 1.

Then

where x = x(t) satisfies

(35) G(x) =
m

nx-t
Proof. This is a special case of Corollary 3, where we have, by sym-

metry, xι = Xj for all i, j . Π

From now until the end of Section 3 the standing assumption will be

that |X| < oo and that A is invariant and selfadjoint. In addition, we

assume that A has two eigenvalues. Thus G(z) = p/(z — a) + q/(z — 6),

where a < b and p, q > 0,p + q = 1. Some of the propositions to follow

remain valid, with obvious modifications, if \X\ — oo.

PROPOSITION 5. Let A satisfy the standing assumptions, and let the

notation be as above. Set

Pn(t) = (n - 2)t + n2(pb + qa) - n(n - l)(α + 6),

Rn(t) = t2 + 2[(n - 2)(p6 + gα) - (n - l)(α + 6)]ί

- (n - l)(α + b)]2 + 4(n - l)ab.

Then the Green's function of *nA satisfies

lC m riyΉJt) - Pn(t)

2Qn{t) = (t-na)(t-nb)

Proof Specializing in eq. (35), we have

p q _ n - 1

x — a x — b nx — t

which gives a quadratic equation on x. Substituting x(t) into eq. (34) and

getting rid of the radicals in the denominator, like in the proof of Proposition

1, we obtain the claim. Π
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Proposition 5 means, in particular, that the Green's function Qn of *nA

is algebraic on the Riemann surface ΊZn = {(£, w) : w2 = Rn(t)}, which is a

2-sheeted covering of the Riemann sphere, via pn(t, w) = t. The sheets of 1Z

correspond to the two branches of ^jRn(t), where on the physical sheet we

have, asymptotically, y/Rn(t) ~ t, as t —> oo. Our considerations involving

Qn as a meromorphic function on the Riemann surface 1Zn are analogous to

those of Section 3.1, concerning the Green's function of A * B. If anything,

they are simpler in the present case. Note that 1Zn is the Riemann sphere,

since Rn is a quadratic polynomial.

THEOREM 3. Let A be an operator satisfying the standing assump-

tions, and let G(z) = p/(z — a) + q/(z — b) be its Green's function. We

consider the operators * n A,n > 1, and assume that np,nq φ 1 for any n.

1. The operator * n A has no singular continuous spectrum. Its absolutely

continuous spectrum is a single interval:

σac(*nA) = σc(*nA)

= [(1 + p(n - 2))α + (1 + q(n - 2))6 - 2(6 - a)y/(n-l)pq,

(1 +p(n - 2))o + (1 + q(n - 2))6 + 2(b - a)y/(n-l)pq] .

2. Let p < q (resp. q < p). Then the point spectrum of *nA consists of the

single point nb (resp. na), as long as n < 1/p (resp. n < 1/q). The point

spectrum is empty for n > 1/p (resp. n > 1/q)-

Proof. 1. The proof is analogous to the argument of Theorem 2 and

Proposition 3, and we leave details to the reader. The endpoints of σac[*nA)

are the two roots of Rn.

2. The argument follows the proof of Proposition 2. By eq. (36), the only

possible poles of Qn in Ίln are above na, nb G R. Denote by t any of the

two numbers. A direct computation gives

(37) Pn{na) = n(nq - l)(α - 6), Pn{nb) = n(np - 1)(6 - a).

Hence, t is not in the branch locus, and exactly one of the two points of TZn

above t is a pole of Qn. Let p(t) G TZn be the pole, and let r(t) G TZn be the

regular point (we suppress the dependence on n, to simplify the notation).

Both poles are simple, and from eqs. (36-37)

α ) £ n = 1 - nq, Resp(6)ί?n = 1 - np.
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A direct computation gives

Q'Ma)) = C(α)(l - nq), Q'n{p{b)) = φ ) ( l - np),

where c(a),c(b) > 0. Hence the sign of Q' at the regular point above a
(resp. b) is the same as the sign of 1 — nq (resp. 1 — np). Lemma 1 implies
that p(a) (resp. p(b)) is in the physical sheet if and only if 1 — nq > 0 (resp.
1 — np > 0). Since np + nq = n > 2, both p(a) and p(b) cannot be in the
physical sheet, which implies the claim. Π

§4. Applications

4.1. Graph spectra

By the spectrum of a graph, Γ, we mean the spectrum of its incidence
operator, AY. Another set, frequently associated with Γ, is the spectrum
of the graph Laplacean (see, e. g, [2]). If Γ is regular (every vertex has the
same number of edges), the two spectra are related by a translation. We
will consider only symmetric (therefore regular) graphs.

If Γi, Γ2 are two rooted graphs, we denote by Γi * Γ2 their free product.
By the construction of Section 2, this is a special case of the free product
of rooted sets. If Ai, A2 are the incidence operators, then A\ * A2 is the
incidence operator of Γi * Γ2. If Γχ,Γ2 are symmetric graphs, i.e. there
are groups, ίfχ,iί2, acting transitively on Γχ,Γ2 by automorphisms, then
Hι*U2 transitively acts on I\ *Γ2, thus Γi *Γ2 is symmetric. In particular,
Γi *Γ2 does not depend on the choice of roots in Γi, IV Everything we said
so far about the free product of two graphs extends to the free products of
any number of graphs. We will use the self-explanatory notation: *™=1Γi,
*nΓ.

We denote by Kn, n > 1, the complete graph on n + 1 vertices (any two
vertices are neighbors). It is symmetric (under the natural action of Sn+i,
the symmetric group).

THEOREM 4. Let 1 < m < n. The (absolutely) continuous spectrum
of Km * Kn is the union of two disjoint intervals:

Im,n — -\m + n — 2— yjA(yJm + \/n)2 + (m — n)2,

πι + n-2- yj^yjm - y/n)2 + {m- n)2l
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and

Jm,n = -\m + n-2 + <sjA{yJm — ΛJΠ)2 + (m — n ) 2 ,

m + n - 2 + y/4(y/m + V™)2 + ( m ~ n ) 2 J

77&e point spectrum of Km * ifn is the set {—2, ra — 1}.

Proof. The spectrum of Kn consists of two points: —1 and n. The

multiplicities are n and 1 respectively. We denote by A, B the incidence

operators of Kmi Kn) and use the notation of Section 3.1. Thus a — 1, b =

7τι, c = — l,d = n,u = 772/(771+1), v = l / (m+l) , r = n/(n+l),s = l/(n+l) .

Substituting this into eqs. (18-22), we obtain

(38) N(t) = -(m + n- 2)t2 + {m + n- 2)2t

-{{m + n + 2){mn - 7) + 24],

(39) RmAt)

771 + n v>ι Γ / x (771 — n ) 2 l , m + n x 9

= (t + l ) 4 2(m + n ) + V ; (t + l ) 2

H (m - n)2[(m + n + 4)2 — 4mn],

and for the Green's function of the graph Km * Kn:

m ' n v J 2(ΐ + 2)(t + m + n)(t - m + l)(t - n + 1)'

We use Theorem 2 to find the absolutely continuous spectrum of Km *

Kn. By eq. (39), a > 0, a2 - 4β > 0, and /? > 0 (because m <n). Thus, by

Theorem 2, the continuous spectrum of Km * i ί n is a union of two intervals,

whose endpoints are \{m + n) — 1 ± \ (\/m ± V^71)2 + (^( m "" n ) ) 2

The inequalities eqs. (26-27) hold (because TTI < n), thus A and B are

in general position. We use Proposition 2 and explicit calculations, like in

the proof of Theorem 3, to compute the point spectrum of Km * Kn. Q

EXAMPLES. 1 (see [7, 8]). Let m = l ,n = 2. From eq. (40) we obtain

the Green's function of K\ * K^

- 2t3 - 5t2 -

2 ) ( ί ( t - l ) ( ί
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By Theorem 4, the point spectrum of K\ *K2 is {—2, 0}, and the continuous
spectrum:

2. Set m = l,n > 1. By Theorem 4, the point spectrum is {—2,0}, and
σc{Kχ * Kn) = /„ U Jn, where

THEOREM 5. Lei if r,r > 1, be the complete graph on r + 1 vertices,
and let Qn be the Green's function of *nKr,n > 1. Then

( r ) _ (n - 2)t + n(r - 1) - n^/t2 - 2(r - l)t + (r + I) 2 - 4nr
n " 2(ί + ) ( ί )

For r > 1 t/ie poinί spectrum of *nKr is a single point, {—n}, if2<n<r,
and is empty if n > r. The graph *nKι has no point spectrum. The
(absolutely) continuous spectrum of *nKr:

σc(*nKr) = [r - 1 - 2yJ{n-\)r, r - 1 + 2y/(n-l)r].

Proof Straightforward from Proposition 5 and Theorem 3.

EXAMPLES. 1. The graph ^n+1Kι is the n + 1-regular tree, Tn. Spe-
cializing to r = 1 in Theorem 5, we obtain its Green's function:

T Λ )

and the absolutely continuous spectrum: σ{Tn) = [—2y/n, 2y/n\ (there is no
point spectrum). These results are well known (see, e.g., [2]). 2. Setting
r = 2, n = 2 in Theorem 5, we obtain: σc(*2

JFί2) = [1 - 2Λ/2, 1 + 2Λ/2], and
σv(*2K2) = {—2}. We leave details to the reader.



114 E. GUTKIN

4.2. Random walks on free products
A random walk on a graph, Γ, is given by the probabilities, 0 < p(e) <

1, on the edges of Γ, so that Σer^xp(e) = 1 for any vertex x £ Γ. Equiva-
lently, a random walk is determined by its transition operator, (Pf)(x) =
Σy~χP(x,y)f(y), a n d P(x,y) = p(e), where e is the edge joining x with
y. We say that a random walk on Γ is invariant if its transition operator
is invariant (under a transitive group on Γ). By the spectrum (Green's
function) of a random walk on Γ we mean the spectrum (Green's function)
of its transition operator.

An invariant random walk on a rooted graph, (Γ,e), is determined
by the probabilities of the edges of e. For the simple random walk these
probabilities are equal to l/o?, where d is the number of edges of e. Let
I\, 1 < i < n, be symmetric graphs, and let Pi be the transition op-
erator for an invariant random walk on I\, 1 < i < n. Any n-tuple,
Pi > 0, Y^l=ιPί = 1, defines a product random walk on *^=1Γ^, its transition
operator is rf^iPiPi- If the random walks on Γ̂  are simple for 1 < i < n,
and pi = = pn = 1/n, then the product random walk on *^=1Γi is also
simple.

THEOREM 6. ([3]) Let r > l ,n > 1. The (absolutely) continuous spec-
trum of the simple random walk on *nKr is ~ [r — 1 — 2^/(n — l)r, r — 1 +
2 y (n — l)r]. The point spectrum is nonempty if and only if 2 < n < r.
Then it consists of a single point, { —1/r}.

Proof The transition operator of the simple random walk on a k-
regular graph, Γ, is k~ιAγ. In our case, k = nr, and the spectrum of AY is
given by Theorem 5. D

THEOREM 7. Let 1 < m < n, and p,q > 0,p + q = 1. We assume
that (p, m) φ (q,n), and consider the product random walk on Km * Kn

defined by these data. Its (absolutely) continuous spectrum is the union of
two intervals, I,J (depending on p,q,m,n). Define £±(p,q,m,n) > 0 by

Then

1= J [ l - ( - + " ) -
2 m n

_, 1 - (-P + ! ) + 2£+].
m n
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If m < n, the point spectrum is { — (p/m + qjn\p — q/n}. If m — n > 1,

the point spectrum is { — 1/ra}. Ifm = n = l, the point spectrum is empty.

Proof. The transition operator of this random walk is the free product

m~1pArn * n~1qAn^ where Aft is the incidence matrix of the complete graph

Kg. In the notation of Section 3.1, a = —p/m, b = p,c — —q/n, d — q,u —

m/(m + l),v = n/(n + l ) , r = n/(n + 1), s = l/(n + 1). We compute the

parameters a and 7 of Theorem 2, and obtain

m 2 n 2 [α dt y/η\ = -m2n2(p — q)2 H—(pn — gm)2 + mn\pn + qm ±

It is elementary to check that pn + qm ± Apq^Jmn > 0, hence the ex-

pression above is positive (we have ruled out p = q,m = n). Thus ί± —

^J{a ± \/Ί)I^ > 0, and Theorem 2 gives the continuous spectrum.
We use Proposition 2 and explicit calculations, like in the proof of

Theorem 3, to determine the point spectrum. D

Remark. Theorems 6 and 7 together yield the spectra of all product
random walks on Km * Kn. Proposition 1 allows to find explicitly their
Green's functions. We leave this to the reader.

REFERENCES

[1] K. Aomoto and Y. Kato, Green functions and spectra on free products of cyclic
groups, Ann. Inst. Fourier, 38 (1988), 59-85.

[2] R. Brooks, The spectral geometry of k-regular graphs, J. Analyse Math., 57 (1991),
120-151.

[3] D. I. Cartwright and P. M. Soardi, Random walks on free products, quotients and
amalgams, Nagoya Math. J., 102 (1986), 163-180.

[4] N. Danford and J. T. Schwartz, Linear Operators, Interscience, New York, 1963.

[5] E. Gutkin, Point spectra of free products of operators, in preparation.
[6] G. Kuhn, Random walks on free products, Ann. Inst. Fourier, 4 (1991), 467-491.
[7] J. C. McLaughlin, Random walks and convolution operators on free products, Doc-

toral Dissertation, New York University, 1986.
[8] G. Quenell, Combinatorics on free product graphs, Geometry of the Spectrum,

pp. 257-282.
[9] B. Simon, Spectral analysis of rank one perturbations and applications, CRM Pro-

ceedings and Lecture Notes, pp. 109-149.
[10] D. Voiculescu, Addition of certain noncommuting random variables, J. Funct. Anal.,

66 (1986), 323-346.



116 E. GUTKIN

[11] W. Woess, Nearest neighbor random walks on free products of discrete groups, Boll.
U.M.I., 5-B (1986), 961-982.

[12] W. Woess, Random walks on infinite graphs and groups - a survey of selected topics,
Bull. London Math. Soc, 26 (1994), 1-60.

Mathematics Department
University of Southern California
Los Angeles, CA 90089-1113
U.S.A.
egutkinOmath. us c. edu




