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PESIN'S ENTROPY FORMULA FOR
ENDOMORPHISMS

PEI-DONG LIU

Abstract. In this paper we prove Pesin's entropy formula for general C2

(or C1+Oί) (non-invertible) endomorphisms of a compact manifold preserving a
smooth measure.

§1. Introduction

Let M be a C°° compact Riemannian manifold without boundary, and

let / : M —> M be a C 1 map. The Lyapunov exponents of the map / are

defined by Oseledec's theorem which states that, for any /-invariant Borel

probability measure μ on M, for almost every point x E M there exists a

unique family of numbers

-oo < \W(x) < \W(x) < < λ^\x) < +oo

(the Lyapunov exponents of / at x) and a unique sequence of subspaces of

TXM

{0} = y(°)(x) C V^(x) C C V^\x) = TXM

such that

lim -log|ΓxΓξ| = λ«(x)
n—>+oo Π

for all ξ G V^(x) \ ^^"^(x) , 1 < i < r(x). For any such a system

/ : (M, μ) <—̂, the entropy hμ(f) and the Lyapunov exponents can be

connected by Ruelle's (or Margulis-Ruelle) inequality ([R]i)

(1.1) hμ{f)<

where α+ = max{α,0} and rrii(x) = dim VW(α ) — dijnV^~1\x) (the mul-

tiplicity of \(ι\x)). Pesin's entropy formula ([Pe]) states that, when / is a
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C2 (or C 1 + α ) diffeomorphism and μ is absolutely continuous with respect
to the Lebesgue measure on M, then (1.1) is an equality

(1.2) M / ) = / Σ λW (*)+**(*) dμ.

Such a result has played a fundamental role in smooth ergodic theory and
related fields.

Various extensions of Pesin's above result have been made for (essen-
tially) invertible systems (see [LeSt], [KSt], [LeY]i, [LeY]2, [LiQ] etc. and
see [M]i for an alternative proof of Pesin's above result). But in the case of
non-invertible systems, extensions have been so far restricted, as far as the
author knows, to one-dimensional maps ([Le]), expanding maps ([M]2 Sec-
tion IV.5, [H], [B]) and Axiom A endomorphisms ([QZ]). In this paper we
aim to extend Pesin's above result to general C2 (or C 1 + α ) non-invertible
endomorphisms, that is, to prove the following theorem (the Lebesgue mea-
sure on M will be denoted by λ throughout this paper).

THEOREM 1.1. Let f : M —* M be a C2 endomorphism and μ an

f -invariant Borel probability measure on M. If μ ^ X, then there holds

Pesin's formula

(1.3) hμ(f)= I Σ\®{x)+mi{x)dμ.
J M i

Remark 1.1. Actually Theorem 1.1 can be proved for C1+a (a > 0)
endomorphisms. But for simplicity of presentation we confine ourselves to
the case of C2 endomorphisms.

Remark 1.2. Under the conditions formulated in Theorem 1.1, it can
be verified that log\detTxf\ G L1(M, μ) (see Subsection 2.2), and hence
λ^1)^) > —oo for μ-a.e. x G M by Oseledec's theorem. This was indicated
to the author by J. Bahnmϋller after he read the first draft of the paper,
in which the integrability of log | detTxf\ was stated as a condition in the
theorem.

Theorem 1.1, among other things, allows us to compute the entropy of an
endomorphism via its Lyapunov exponents. For example, the following two
results, which have been proved in other ways, can be obtained as natural
corollaries of the theorem.
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COROLLARY 1.1. ([M]2 Section IV. 5) Let f be a C2 expanding en-

domorphism of M and let μ be the unique f -invariant probability measure
which is absolutely continuous with respect to the Lebesgue measure on M.
Then one has

(f)= ί Γ λ ^ x K W ψ ^ /
JM i JM

COROLLARY 1.2. ([W] Section 8.4) Suppose that A : Kp —> Kp is a
surjective (group) endomorphism of p-dimensional torus. If m is the Haar
measure on Kp, then

hm{A) =

where λi, , λp are the eigenvalues of the linear transformation A : R p —>
Rp that covers A.

In the rest of this paper we shall address ourselves to the proof of
Theorem 1.1. In view of Ruelle's inequality, it remains to prove

(1.4) hμ(f)> ί

under the conditions presented in the formulation of Theorem 1.1. Since
maps considered here are non-invertible and unstable foliations are not
available for such maps, we will make use of stable foliations instead. Many
ideas used in this paper go back to [Pe], [LeSt] and [LeY]2

§2. Proof of Theorem 1.1

2.1. Technical preliminaries
In the remaining part of this paper we will always assume that / :

(M, μ) «—> satisfies the conditions of Theorem 1.1. Denote by Γ the set of
critical points of /. By Sard's Theorem, λ(/nΓ) = 0 and hence μ(fnT) = 0
for all n > 1 since μ < λ . Put g — dμ/dλ and Γ' = {x : g{x) — 0}. Write
Γ = Όt=i /feΓ and f = [)+™J-n(T U Γ). Clearly μ(f) = 0 and /- χ f C f.
Choose a Borel set Λ C M \ Γ such that μ(Λ) = 1, /Λ C Λ and every point
x G Λ is regular in the sense of Oseledec. It is easy to see that every x £ A
is both a regular point and a regular value of fn for all n > 1. Hence for
every x G Λ and an arbitrarily fixed natural number n, there is an open
ball V centered at x such that (fn)~1V has a finite number of connected
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components {Ui} and fn\iji Ui -—> V is a C 2 diίfeomorphism for each L .̂

From this there follows readily the following simple fact.

LEMMA 2.1. Lei n be an arbitrarily fixed natural number. If W is a

k-dimensional (0 < k < dimM) C1)6> (0 < θ < 1) embedded submanifold of

M, then there exists a k-dimensional C1 ' embedded submanifold W1 of M

such that W C {fn)'ιW and

(fn)-ιW Π Λ - W Π Λ.

Set / = {x G Λ : λW(x) > 0 for all 1 < i < r(x)} and Δ = Λ \ /.

Clearly f i d and /Δ C Δ. For x G Δ, write E s(x) = UAW(X)<O ̂ W ( ^ )

and define the stable manifold of / at x as

Ws{x) = {yeM: limsup - log d(fnx, fny) < 0}.

The arguments of Sections 1-3 of [LiQ, Chapter III] restricted to the de-

terministic case show that, for μ-a.e. x G Δ , there exists a sequence of C 1 ' 1

embedded /c-dimensional discs {Wn(x)}^^0 (where k = dimEs(x)) such

that fWn(x) C Wn+i(x) for all n > 0 and

(see also [R]2 or [RSh]). For x G /, define VFs(x) = {x}.

Let Bμ(A) denote the completion of the Borel σ-algebra of Λ with re-

spect to μ. Then (Λ,Z3μ(Λ),μ) is a Lebesgue space. Since /Λ C Λ and

μ(Λ) = 1 we have hμ(f) = hμ(f\\). Hence, in order to prove Theorem 1.1,

it is sufficient to prove (1.4) for the map / |Λ : (Λ, /3μ(Λ),μ) <-̂ . Through-

out what follows we will consider exclusively this map and we will denote

it also by the notation / for simplicity. We now state our main result of

this subsection as follows.

LEMMA 2.2. Let f : (Λ, Bμ(A),μ) <—> be as given above. Then there

exists a measurable partition η of Λ which has the following properties:

(1) Γlη < η;

(2) For μ-a.e. xGΛ, there exists a dim Es(x)-dimensional C1'1 embedded

submanifold Wx of M such that Wx C Ws(x), η(x) C Wx and η(x)

contains an open neighbourhood of x in Wx Π Λ (with respect to the

induced topology of Wx Π Λ as a subset of M);
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(3) For every Borel set B C Λ the function

= λs

x(η(x)nB)

is measurable and μ almost everywhere finite, where λ | is the Lebesgue

measure on Wx induced by its inherited Riemannian structure as a

submanifold of M (Xx — δx ifWs(x) = {x});

(4) Let {μΐ}χek be a canonical system of conditional measures of μ asso-

ciated with η. Then

μη

x < K μ- a e χ-

This lemma is similar to [LiQ] Proposition IV.2.1 (restricted to the deter-

ministic case), which is a variant of [LeSt] Proposition 3.1. A detailed proof

of that proposition in [LiQ] is given in [LiQ, Section IV.2] with the needed

properties of local stable manifolds being worked out in [LiQ, Chapter III].

The difference between our present situation and that of [LiQ] lies in that

we are dealing with a non-invertible endomorphism rather than a diffeo-

morphism. But one can check that this deficiency can be overcome by the

local diffeomorphism property of / (as far as points in Λ are concerned) and

Lemma 2.1. That is to say, Lemma 2.2 can be proved by almost the same

arguments as the corresponding proof in [LiQ] with some slight modifica-

tions caused by applying the local diffeomorphism property and Lemma 2.1

instead of the diffeomorphism property. Here we omit presenting the long

arguments and refer the reader to [LiQ] for details.

The conclusion (3) of Lemma 2.2 allows one to define a σ-finite Borel

measure λ* on Λ by

\*(B) = Jλs

x(η(x)ΠB)dμ

for each Borel set B c Λ . Prom Lemma 2.2 (4) it follows that μ « λ*.
Define

ί2 11 h- dμ

Then one has the following

LEMMA 2.3. For μ-a.e. x e A,

7 dμη

x

dXx

Xx almost everywhere on η(x).
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See [LeSt] Proposition 4.1 or [LiQ] Proposition IV.2.2 for a proof.

2.2. Proof of (1.4)
Let r/bea measurable partition of Λ as introduced by Lemma 2.2. Let

{βx η}xeA be a canonical system of conditional measures of μ associated
with the partition f~λη. Then

hμ(f)>hμ(f,η) = Hμ(η\ V/Λ)
ra=l

= Hμ(η I Γ'η)

= - flogμζ'\η(x))dμ.

JA

So, in order to prove (1.4), it suffices to show

(2.2) - f]ogμΓ\η{x))dμ> IV λ«(x)mi(x) dμ
Ji Ji Y

(this is actually an equality) and

(2.3) - / logμf lη(η(x))dμ> [ V λ«(^)+m,(x) dμ.

We first prove (2.2). The proof of (2.2) presented below is due to
F. Ledrappier and L.-S. Young and was communicated to the author by
Bahnmύller [B].

We begin with the Jacobian of / : (Λ, μ) ^-J>. Since Txf is nondegenerate
and g{x) > 0 {g = dμ/d\) for every x G Λ, one can easily choose a countable
measurable partition a = {Ai} of Λ such that / restricted to each A^
written /^., is injective and μ(fj^i(B)) = 0 if B is a Borel subset of A{ and
μ(B) = 0 (f(B) is clearly Borel if B is Borel). By this we can define a
measure μ^. on each Ai by

μAί(B) = μ(fAι(B)) for Borel set B C Ai

which is clearly equivalent to μι (μi = μ\Axi the restriction of μ to Ai).
Define a measurable function «/(/) : Λ —> R + by
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It is easy to see that J(f) is independent of the choice of partition a. We
call J(f) the Jacobian of / : (Λ,μ) <->. By Radon-Nikodym Theorem, one
can easily compute that

(2.4) J(f)(x) = ( \ JJ\detTxf\, xeλ.

We now proceed with the proof of (2.2) and, at the same time, prove
that logldetTJr/l G Lλ(M,μ). Suppose that K C Λ is a measurable set
such that fK C K and μ(K) > 0. Let Bμ(K) be defined analogously to
Bμ(A) and let e be the partition of K into single points. Since (if, Bμ{K), μ)
is a Lebesgue space (maybe μ(K) < 1), by an interesting result of Parry
([Pa] Lemma 10.5) one has

- l o g μ f le(e(z)) - log J(/)(.x), μ-a.e. xeK.

By (2.4), for μ-a.e. x G Λ

log J(f)(x) - log ^jΦ + log I detΓ x/| > 0

since J(f) > 1 μ-a.e. on Λ. This yields that

log- — > — log+ I detTxf\, μ-a.e. x £ A

which, by [LeSt] Proposition 2.2 and the integrability of log+ | detT x/|,
implies that

/
JK

log ^ - dμ = 0
K 9

(note that fKcK). Hence

0<- ί logμζ~le(e(x))dμ= ί log\detTxf\dμ
JK JK

by Oseledec's theorem. By taking K = I and K = Λ respectively, this
proves (2.2) (since η(x) — {x} for μ-a.e. x E I) and log IdetT^/l G Lι(M,μ).

Now we proceed to the proof of (2.3). We may assume that μ(Δ) = 1
and even Δ = Λ without any loss of generality. So in what follows we take
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this assumption. We first introduce the following measurable functions on
Λ:

W(z) = μΓ^η(z)),
z) Hf(z))

X(z) =
9(f(z)) h(z)

Y{Z)- \detTJ\ '

where h is defined by (2.1). We now present several claims, whose proofs
will be given a little later.

CLAIM 2.1. W = XY, μ almost everywhere on Λ.

CLAIM 2.2. logY e Lι(A,μ) and

- ί \ogYdμ =
JJA i

CLAIM 2.3. logX G Lι(λ.,μ) and JlogXdμ = 0.

Then (2.3) follows immediately from Claims 2.1-2.3. This completes the
proof of Theorem 1.1.

In the sequel we give proofs of Claims 2.1-2.3. In order to prove
Claim 2.1, we need the following two lemmas.

LEMMA 2.4. Let A C Λ be a Borel set such that μ(A) > 0 and f\&

A —> f A is injective. Then for μ-a.e. a G Λ one has

(2.5) / J{f)dμΓ^μη

frJfA).

Proof. Let F(x) and G(x) denote respectively the function at the left
hand and that at the right hand of the equation (2.5). By the uniqueness
of canonical systems of conditional measures one has

G(x) = μζ~lr>(f-\fA)), μ-a.e. x € A.

Let B(f~λη) denote the σ-algebra generated by f~ιη. Clearly F{x) and
G{x) are both measurable with respect to B(f~ιη). So, in order to prove
(2.5), it suffices to show that for any C G B(f~1η)

(2.6) / F(x) dμ= f G(x) dμ.
Jc Jc
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Note that, since C G B{f~ιη),

[ F(x) dμ = f xc [ XAJ(f) dμ{~^ dμ
C JA J(f"1η){x)

= / Af)dμ
JAfλC

= μ(f(AΠC))

and

/ G(x)dμ= Xc
JC JK J(f-i

=

(f-iη)(x)

= μ(f-\f(AΠC)))

= μ(f(AΠC)).

This proves (2.6) and completes the proof of Lemma 2.4. Π

LEMMA 2.5. Let A be as given in Lemma 2.4- Then for μ-a.e. x G A
one has

dη

for any Borel set B C (f~lrη)(x) Π A, where fA = f\A' A-* f A.

Proof Put ξ = η\fA and ( = / J 1 ^ = (/~^)U Write v = μ\A,
v — μ\fA and let measure vA on A be defined by dvAJdv = J(/). It is easy
to see that a canonical system of conditional (probability) measures of v
associated with ζ is given by

C
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Then, by [KSt] Proposition II. 11.1, a canonical system of conditional mea-
sures of UA associated with ζ is

: d(uA)i =
Iζ(x)

Since /^ : (A, VA) —> (fA, V) is measure-preserving, f^ζ — ζ and a canonical
system of conditional measures of v associated with ξ is given by

then, by the uniqueness of canonical systems of conditional measures, one
has for μ-a.e. x ζ A

if β C C(x) is a Borel set. Therefore, for μ-a.e. x G A and any Borel
β C ζ(x),

μζ'\B) = μf~\A) - ^(B)

= μΓ\A) • ί J(f) dui • [ -L. d{vA)i
Jc(χ) JB

 JU)

B 7(7)

by Lemma 2.4. This completes the proof of the lemma.

Proof of Claim 2.1. It suffices to show that for μ-a.e. x G Λ one has

W(z)=X(z)Y(z), /4-a.e. z.

Let α = {A }̂ be the partition of Λ introduced above. Then for μ-a.e. x G Λ
we have for any Borel set B C η(x)
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( b y L e m m a 2 ' 5 )

and, on the other hand,

μη

x(B) = [ h(z)dXs

x.
JB

Since Borel set B is arbitrarily chosen, we have

for λj-a.e. z G η(x). Since W(z) = W(x) for any z G r (x), it follows then
that

= X(z)Y(z), μη

x-n.e.zeη{x).

Then there follows the claim. Q

Proof of Claim 2.2. Noting that for μ-a.e. z G Λ

we have log^ \Tzf\Es^\ G L1(Λ,μ). By Oseledec multiplicative ergodic
theorem we have

(2.7) [\og\detTzf\dμ= f Σ\®(z)mi(z)dμ
JA JAA
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and

(2.8) ί log\det(Tzf\Bs{z))\dμ= ί "£ \^(z)~mi(z) dμ.
JA J k i

Since log|detΓ^/| G Lι(A,μ), one has Σiχ{ί)(z)mi(z) ^ ^(A.μ) and
hence Σi X^(z)-rrii(z) e Lι(A,μ). So, by (2.8), it follows that

Thus, log Y is integrable and

- flogYdμ= ίγ^λ^(z)mi(z)dμ- ί ^ \®(z)-mi(z) dμ

which proves Claim 2.2. Q

Proof of Claim 2.3. By Claim 2.1,

log W = log X + log Y < 0, μ-a.e.

Hence, by Claim 2.2, Iog+X G ̂ (A.μ). Then, by [LeSt] Proposition 2.2,
we know that logX is integrable and J log X dμ = 0. Q
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