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ON THE DETERMINISM OF THE DISTRIBUTIONS OF
MULTIPLE MARKOV NON-GAUSSIAN

SYMMETRIC STABLE PROCESSES

KATSUYA KOJO

Abstract. Consider a non-Gaussian SaS process X = {X(t); t £ T} which is
expressed as a canonical representation X(t) — f <t τF(t,u)dZ(u), t £ T,
and is continuous in probability. If X is n-ple Markov, then X has determinism
of dimension n + 1. That is, any SaS process X — {X(t); t G T} having the
same (n + l)-dimensional distributions with X is identical in law with X.

§1. Introdution

In this paper we consider the determinism of the distribution of an SaS
(= symmetric α-stable) random field (0 < a < 2) in the following sense.

DEFINITION. We say that an SaS random field X = {X(s); s e S} has
determinism of dimension n if any SaS random field X — \X(s)\ s G S}
having the same n-dimensional distributions with X is identical in law with
X.

In this definition, UX and X have the same n-dimensional distributions"
means that (X(si),X(s2), * * ,X(sn)) and (X(si),X(s2), * ,-X"(sn)) have
a common distribution for any choice of distinct s\, 52, , sn G S. UX and
X are identical in law" means that they have the same finite-dimensional
distributions of all dimensions. Obviously, if X has determinism of dimen-
sion n, then X has determinism of dimension m for m > n. A centered
Gaussian random field is symmetric stable with the index a — 2 and has
determinism of dimension 2 because any finite-dimensional distribution is
expressed by its covariance function. On the other hand, it is not easy
to answer a question whether a particular non-Gaussian SaS random field
(0 < a < 2) has determinism of a given dimension or not. However, the
determinism of some non-Gaussian SaS random fields has been studied.
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Y. Sato ([5], Theorem 1) proved that any finite-dimensional distribution
of a non-Gaussian SaS random field on R of Chentsov type is determined
by its own (d + l)-dimensional marginal distributions. Her proof tells us
that this random field has determinism of dimension d + 2. Y. Sato and
S. Takenaka ([6], Propositions 3.1 and 3.3) gave two concrete examples of
self-similar SaS random fields of exponent H (0 < a < 2, 0 < H < α" 1 ) of
generalized Chentsov type, which have the same 2-dimensional distributions
and have different 3-dimensional distributions. This fact means that these
two random fields do not have determinism of dimension 2 (in fact, it can
be proved that one of these has determinism of dimension 3 and the other
has determinism of dimension 5). T. Mori ([4], Theorem 6.1) showed that
there exists a one-to-one correspondence between stochastically continuous,
linearly additive non-Gaussian SaS random fields on Rd and locally finite,
bundleless measures on the space of all (d — l)-hyperplanes in Rd. This
fact implies that each of these random fields has determinism of dimension

Inspired by these results, in this paper we discuss the determinism of
a multiple Markov non-Gaussian SaS process with a canonical representa-
tion. We obtain the fact that this process has determinism of dimension
n + 1 where n is the multiplicity of multiple Markov property of the pro-
cess (Theorems 3.1 and 3.2). However, it is a much harder problem to
find the smallest, number d (> 2) such that this process has determinism of
dimension d. We further investigate the special case where the process is
stationary and its canonical representation is in the form of moving aver-
age. In this case the representation kernel is a solution of a linear differential
equation with constant coefficients (Proposition 4.1). We obtain a sharper
result on the determinism of some of these processes (Proposition 4.3).

§2. Preliminaries

For fixed a (0 < a < 2), an R-valued random variable X is called sym-
metric a-stable (in short, SaS) if X satisfies that E[exp(izX)]=exp(— c\z\a),
z E R, for some c > 0. Especially, if a = 2, X is centered Gaussian. For
0 < a < 2, an Rn-valued random variable X is called SaS if there exists
a symmetric finite measure Γ on the (n — l)-dimensional unit sphere Sn~1

such that E[exp(izX)} = exp(- /ξ =(ξ l i 6 i...,ξ n ) e S»-i I Σ?=i z&\°T(dt)), * =
(zij 2̂> *'' > zn) G Rn. This Γ is uniquely determined by the distribution of
X and is called the spectral measure of X.
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From now on, the time parameter space T is an interval in R. A

stochastic process X = {X(t)\ t G T} is called SaS if any finite-dimensional

distribution of X is SaS. We assume that any process presented in this

paper is separable. The notation σ(X(s);s < t) denotes the σ-field gen-

erated by X(s), s < t. If an SaS process Z = {Z(t);t G T} has in-

dependent increments, then there exists a unique measure μ such that

E[exp(iz(Z(t) - Z(s)))] = exp(-μ((s, t])|z|α), z G R, for any s, t e T

(s < t). This μ is called the control measure of Z.

DEFINITION. Let X = {X(t);t G T} be an SaS process (0 < a < 2).

Let us assume that X is expressed as

(1) X(t) = ί F(ί, u) άZ{u\ t G Γ,
Ju<t,ueτ

where

(i) Z = {Z(t)]t G T} is an SaS process with independent increments

(with control measure μ) and

(ii) F(ί, •) is a Borel measurable function on {u £ T u < t} and satisfies

that J^^φT \F(t, -)\adμ < oo for any t G Γ.

Then the formula (1) is called a causal representation of X.

Especially, the representation (1) is called canonical if σ(X(s); s <t) =

σ(Z(s2) - Z(sλ); Si < s2 < t) for any t G Γ.

DEFINITION. Assume that a causal representation of an SaS station-

ary process X = {X(t);t G R} is expressed as follows:

(2) X(t)= F(t-u)dZQ(u), teR,
J—oo

where ZQ = {Zo(t);t G R} is an SaS process with independent stationary

increments and F is a Borel measurable function such that Jo°° |F(x) | α dx <

oo. Then the formula (2) is called a causal moving average representation

oϊX.

T. Hida [1] gave a notion of multiple Markov property for Gaussian pro-

cesses with continuous time parameter. The author (K. Kojo [3]) extended

the notion to general stochastic processes with continuous time parameter

-as follows.
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DEFINITION. A stochastic process X = {X(t)\t G T} is called n-pte
Markov of linear combination type (in short, LC n-ple Markov) if X satisfies
the following three conditions:

(i) For any fixed t o ,t i, , t n G Γ (inf(Γ) < t0 < h < < t n ), there
exists an n-tuple of coefficients (αi, α2, , αn) G i2n\{0} such that

G BX(S),S < t0] = ^ j i j ) G

3=1

for any Borel set B in

(ii) For any fixed to,^i, Λn-i G Γ (inf(T) < t 0 < ti < < ^n-i),
there exist no (n — l)-tuples (αi, α2, , ̂ n-i) £ ί?n~1\{0} such that

n—1 n—1

| ( S ) , 5 < to] =\

for any Borel set B in R.

(iii) For any fixed £0,ίi, * * * >*n ^ Γ ( i n f ( Γ ) < ίo < *i < < *n), there
exist no n-tuples (αi, α2, , αn) G i?n\{0} such that ^ ^ = 1 ctjX(tj) is
independent of σ(X(s); s < to).

§3. Multiple Markov property and determinism

For an SaS process (0 < a < 2) with a canonical representation, we
have the following theorem concerning the multiple Markov property.

THEOREM 3.1. (Kojo [3]) Assume that an SaS process X = {X(t); t G
T} (0 < α < 2) is expressed as a canonical representation

X(t)= ί
A<ί,ιteτ

F{t,u)dZ{u), t € Γ ,

is continuous in probability. Then X is LC n-ple Markov if and only
if F is expressed as

n

(3) F(t,u) = Σfj(t)gj(u) μ-a.e., u < t,

where μ is the control measure of Z and gj, fj, 1 < j < n, satisfy the
following conditions:
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(i) gj, 1 < j < n, satisfy J(_oot]ΠT \9j\adμ < oc and are linearly indepen-

dent on (-00, t] Π T for any fixed t <E T (t φ inf (Γ)).

(ii) detifiitj^iKijKn φ 0 for any t i , t 2 , ,*n G T (inf(Γ) < h < t2 <

A kernel F(£, ?/), which is expressed as the formula (3) where #j, / j ,

1 < j < ?7,, satisfy the conditions (i) and (ii), is called a Goursat kernel of

order n. In non-Gaussian case, we obtain that this process has the following

determinism.

THEOREM 3.2. Let X = {X{t)\ t e T} be a non-Gaussian SaS process

(0 < a < 2) which is expressed as a causal representation

X(t)= ί F(t,u)dZ(u), teT,
Ju<t,ueτ

where F(t, u) is a Goursat kernel of order n and μ({u E Γ; u < ί, F(t, u) =

0}) = 0 for any t G T. T/ien any SaS process X = {X(ί);ί G Γ} ftαwnflr

ί/ie same (n + 1)-dimensional distributions with X is identical in law with

X.

Before we start to prove this theorem, we state two important properties

on non-Gaussian SaS random variables.

(i) The consistency condition between a multi-dimensional non-Gaussian

SaS distribution and its marginal distribution is translated into the con-

sistency condition between their spectral measures as follows: Let Γ ; be the

spectral measure on Sn of (n + l)-dimensional non-Gaussian SaS random

variable Y' = (YΊ, I2, , Yn+i) and Γ be the spectral measure on S71'1 of

its n-dimensional marginal Y = (Yί, Y25 ? Yn) Then Γ' and Γ satisfy the

formula

for any Borel set B in

where the function pn: Sn\{(0, , 0, ±1)} -* S12'1 is defined as

, , W(l -
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(ii) The spectral measure Γ o n S n x of an n-dimensional random vari-
able (JτφιdZ, Jτψ2 dZ, - - -, Jτ φn dZ) is concentrated on the symmetric
set

ί n \
1 3=1 J

= φι(u) : ψ2{u) : : ψn{u) for some u G Γ},

where the correspondence σn\ i2n\{(0, , 0)} —• Sn~ι is defined as

1/2'

\ xi=i

1/2' ' / n

3=1

This is because

and thus Γ is expressed as

= e x p ( -

ΐ
= {zι,z2,'",zn) e

for any symmetric Borel set B in Sn

, ,¥?n(x)) e B}.where C(B) = {x G

Proof of Theorem 3.2. We will show that any (n + 2)-dimensional dis-
tribution of X coincides with the corresponding (n + 2)-dimensional dis-
tribution of X using the consistency conditions for specific two of their
common (n + l)-dimensional marginal distributions. In a similar way we
can show that X and X have the same higher-dimensional distributions.
This proves the theorem.

Firstly let us calculate the spectral measure on Sn of an (n + 1)-
dimensional distribution of X (thus, of X). Let Γ be the spectral measure
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of (X(h),X{t2), •••, X(tn+ύ) for tι, t2, , tn+1 G Γ ( ί i < t2 < • • • < t n + 1 ) .

Define symmetric sets Aj (c Sn), 1 < j < n + 1, as

n + 1

fe=l

ξi : & : ••• :ξn+ι = F(tuu) : F(t2,u) : ••• : F ( t n + i , τ x )

for some ?i(i/ < ί i , u G Γ ) } ,

{σ n + 1 (0 , , 0, F(tj,u), F{tJ+1,u), , F ( t n + i , τ x ) ) ;

n+l

fc=j

= F(tj,«) : F( ί i + i , u) : • • • : F(ί n + 1 ,« )

for some u(tj-ι < u < tj)}

for 2 < j < n and

Then Γ is concentrated on U^Aj. Since /X({IA e T u < t,F(t,u) = 0})

= 0 for any t E T, Aj, 1 < j < n, are disjoint except Γ-null sets and we

have

C iBΛ \ /
= i 7 for any symmetric Borel set βj C

for 1 < j < n and

T(An+i)= f \F(tn+ι,u)\aμ(du),
Jtn

where

C1(B1) = {u<ίi,«eΓ;σn+i(F(ίi,u),F(ί2,«), ,̂ (<n+i»«)) €

σn+i(0, - ,0,F(ί i,U),F(ί i+1,u), ,F(ίn+1,«))eJB j}
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for 2 < j < n.

Now we investigate where the spectral measure on Sn + 1 of an

(n + 2)-dimensional distribution of X is concentrated. Let Γ7 be the spec-

tral measure of (X(tι),X(t2), ,X(t n + 2)) for *i,*2> * >*n+2 G T(ti <

t2 < < £n+2) The distribution of (X(tι),X(t2), , X(£n+2)) satisfies

the consistency condition with its (n + l)-dimensional marginal, the distri-

bution of (X(ti),X(t2)) ' ' ,X(tn+i))' Therefore Γf is concentrated on the

disjoint union of the following n + 2 symmetric subsets of 1

ξi • 6 : •• : ξn+i = F(tuu) : F(t2,u) : •• : F(tn+1,u)

for some u(u < t\,u € Γ)},

= {(0,--.,0,ξj,ξj+1,- -,ξn+2)eSn+1\{(0,---,0,±l)};

P P IΛ' ' P ι i — /*Ύ/ 77^) * F Γ / 1 1 Ίl\ ' ' ' * FY/" . 1 7/Ί
C ϊ̂ V^ <Ί . I 1 ( ri I I J. I ϋ n W/ / JL \ ϋ o 1. I CX/ / _£. I Ύh ί X } ^ ^ /

for some u(tj-\ < u < tj)}

for 2 < j < n,

-Bl,n+1 — P n + l ( ^ + l ) ~ {(^' ' ' * ? ̂ 5 ̂ n+1 ? ̂ n+2) ^ ^ \{(0? * * * > 0? ϋ ) } }

and

On the other hand, by the consistency condition with the distribution

of (X(t2),X(t%),''', X(tn+2))? Γ' is concentrated on the disjoint union of

the following n + 2 symmetric subsets of S'n + 1:

B2A = {(ξuξ2,---,ξn+2)eSn+1\{(±ι,o,- -,o)h

& : & : • • • : U+2 = F[t2, u) : F(t3, u) : • • • : F(tn+2, u)

for some u(u < t2,u G T ) } ,

2 j = {(£i,0, • ,0,e i + i ,e i + 2 , ,ξ n + 2) G 5"+ 1\{(±l,0, ,0)};

ξ j + i • ξ j + 2 •••••• ξ n + 2 = F ( t j + 1 , u ) : F ( t j + 2 , u ) :•••: F ( t n + 2 , u )

for some u(tj < u <
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for 2 < j < n,

52,n+i = {(ίi, 0, , 0, ξn+2) e S n + 1 \ { ( ± l , 0 , , 0)}}

and

B2,n+2 = {(±1,0, •••,())}.

Therefore f' is concentrated on (n + 2)2 subsets of 5 n + 1 , B i j Π B2,k,

1 <j,k <n + 2. Since μ({u e Γ ; i i < t,F(t,u) = 0}) = 0 for any t E Γ, f

is concentrated on B\^ Π i?2,:b -61 ,j Π -B2J-I) 2 < j < n + 2.
Define a symmetric set Â_ as

6 : 6 : : ξn+2 = F(tuu) : F(t2,u) :

for some u(u < ti, u G T)}.

Let us prove β i ; i Π ^2,1 — Ά!\ except a Γ'-null set. We can easily see

B\,i Π .62,1 D -Ai Let us show Bi^i Π J32,i C Af

v Suppose that ξ —

(Ci,^2, * * ,£n+2) G JBI,I Π β2,i Then there exist u\ (< t\) and 1x2 (< 2̂)

such that

i,ui) : F ( t 2 ,

and

Thus we have

u2) :F(t3,u2) : ••• : F(tn+1,u2).

Here, let us recall that F is a Goursat kernel of order n. Then

can be expressed as

F(tn+2,u) =

- (Λ(tn+2), , /n(*n+2

where *v denotes the transposed of a row-vector v. Thus we have
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for almost all such u\ and U2. This implies that almost all ξ satisfies

ξl - %2 - '" ζn+l - ζn+2

and thus ξ E A[. Now we have B\,\ Π J32,i = A[ except a Γ'-null set.

Define a symmetric set Af

2 as

£2 : 6 : : £n+2 - F(t2, u) : F ( ί 3 , u) : : F ( t n + 2 , u)

for some u{t\ < u < ί 2)}.

Then we have I?i52 Π B2)χ = Af

2 except a Γ'-null set by a similar argument.

Define Aϊ , 3 < j < n + 2 as

A = {(0,. ,0,0,0+1, ,£n+2) e s n + 1 ;

0 : O+i : * * * : £n+2 = F(tj,u) : F(tj+ι,u) : : F(ίn+2,ifc)

for some u(tj-\ < u < tj)}

for 3 < j < n + 1
and

We eεtsily obtain that B\j Π B2J-1 = Ar^ 3 < j < n + 2. Thus we find that

f7 is concentrated on the disjoint union U^L^A7-.

Now let us consider what measure lies on A[. We recall again that, if
ui 5 U2 ^ 2̂ satisfy

then

F ( ί 2 , u i ) : F(tz,ux) :•••: F(tn+1,u1) : F(tn+2,uι)

= F{t2,u2) : F(t3,u2) :•••: F(tn+1,u2) : F(tn+2,u2).

Consider the following correspondence φ : A\ —> A'x:

Ψ • ξ = (Ci, 6 , , Cn+i) which satisfies ξi : ^ 2 : : ξ n + i

= F(tι,u) : F(t2,u) : ••• : F ( ί n + i , t ί ) for some u( u <tι,uE T)

^ ? = (&,&,••-, ξ'n+2) which satisfies ξ[ : ξ'2 : • : ξ'n+i • C+2

- F(tuu) : F(t2,u) :•••: F(tn+1,u) : F(tn+2, u).
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Let φ : A\j~ —» A[/~ be the correspondence induced by φ where the
equivalence relation η ~ ηf denotes 7/ = η or ηf — —η. Then φ is one-
to-one except a Γ'-null set. For any symmetric Borel set B[(c A^), let
JE?I = pn+ι(B[). By the consistency condition between the distributions of

) , X ( t 2 ) , , X ( t n + ι ) ) a n d ( X ( h ) , X ( t 2 ) , •••, X ( t n + 2 ) ) ,

= f
Since μ({u G Γ; u < t, F(t, u) — 0}) = 0 and φ is one-to-one, we have

Π (U^+μ;.) = B'v Therefore

Since φ is one-to-one, we have

n + 2 \ f
2 μ{du)

Let

n+2

i f e = l

We can easily see that C[(B[) = Ci(J5χ) except a μ-null set. Thus we have

Now we conclude that the measure on A[ is uniquely determined by the
consistency conditions.

It is easy to see that the measures on A1 A, 2 < j < n+2, are uniquely de-
termined by the consistency condition between the distributions of (X(t2),
X(£3), , X(tn+2)) and (X(h), X(t2), , X(t n + 2 )). Hence we obtain that
Γ; is uniquely determined by the consistency conditions, that is, Γ' coincides
with the spectral measure of (X(ti), X(t2)> * * * ? ̂ (^+2))- Now we conclude
that X and X have the same (n + 2)-dimensional distributions. D
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§4. The case of causal moving average processes

In this section we confine our arguments to SaS stationary processes
represented by causal moving averages.

PROPOSITION 4.1. Assume that an SaS process X = {X(t)\t G R}
(0 < a < 2) is represented by a canonical moving average

X(t)= F(t-u)dZo(ύ), teR,
J—oo

and is continuous in probability. Then X is LC n-ple Markov if and only
if F is expressed as

r

(4) F(x) = Σfami-ix™*-1 + bjimj-2Xm>-2 + '- + bjfi)e-XjX, * > 0,
3=1

where 0 < λi < λ2 < < λr? Σr

j=1 rrij = n, 6j,mj—l φ 0 (1 < j < r).

In Gaussian case (α = 2), this proposition is included in T. Hida's paper
([1], Theorem II.3).

Proof By Theorem 3.1, we have only to show that F(t—u) is a Goursat
kernel of order n if and only if F(x) is expressed as the formula (4).

''only if part: By the assumption, for any t G i£, F(t — u) can be
expressed as F(t — u) — Σ™=1 fj(t)gj(u) for almost all u < t. Firstly we
prove that /j, 1 < j < n, are continuous. Suppose that there exist jΌ
(1 < jo ^ n) a n d to £ R such that fj0 is discontinuous at to- This means
that there exist ε (> 0) and a sequence {tk}k=ι,2, - such that t^ -^ to as
k —> oo and \fjo(t^) — fj0(to)\ > ε for any k. Since X is continuous in
probability,

/ \F(tk - u) - F(t0 -u)\αdu-+0 as k -> oo.
J—oo

On the other hand we have

F(tk - u) - F(t0 - u)

3=1
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ί = l

u < ίo Λ

Therefore we have

pto — l

J—oo

Since the sequence {((/i(t*)-/i(*θ))/(ΣΓ=i(/ί(*fe)-/i(<θ))2)1/2, , (/«(<*)
- /n(*o))/(Σ?=i(/i(*fc) - //(ίo))2)1/2)}fc=i,2,... is in Sn~\ there exist a sub-
sequence {ί/em}m=i,2, and (ci,c2) ,cn) € S™"1 such that (fj(tkm) -
fj(to))/(Σ?=Λfι(tkm) ~ //(ίo))2)1/2 - c, , 1 < j < n, as m - oo. By
Lebesgue's convergence theorem, we have J J ^ | Σj=i ci5fi('α)|α ^ = 0
This is contradictory to the linear independence of gj, 1 < j < n. Now we
conclude that /j, 1 < j ' < n, are continuous.

Next we prove that F is continuous on [0, oo). Since /j, 1 < j < n, are
continuous, the set {(u,t) G β 2;it < t,F(t — u) Φ Σj=i fj{t)9j{u)} i s Borel
measurable and by Fubini's theorem, this set is null. Applying Fubini's
theorem again, there is a subset A of [0, oo) such that [0, oo)\^4 is null and
the set {y, y E fi, F(x) φ Σ]=i fj(x + v)9j{y)} i s n u l l for anY ^ ^ Now,
for any XQ G A and any sequence {x^ G A}jt=i,2, which tends to XQ as
/c —> CXD, we can choose y £ R such that F(xk) = ΣjLi /j(̂ fc + y)9j{y) for
any fc = 1, 2, . Since fj, I < j < n, are continuous, F is continuous on
A. Since A is dense in [0, oo), F is continuous on [0, oo).- We can easily
see that #j, 1 < j < n, are also continuous on (—oo,oo), using that F is
continuous and det(fi(tj))ι<ij<n Φ 0 for any distinct tj, 1 < j < n.

Let us prove that /j, 1 < j < n, are differentiate on (—oo, oo). We first
show that, for any fixed to G T, we can choose si, S2, , sn (< to) such that
det(/s° gidu)ι<ij<n φ 0. We can choose s± (< to) such that Js° g\du φ 0, if
otherwise, g\ = 0 on (—oo,to] and this is a contradiction. Suppose that we
choose si, S2, , Sk (< to) (1 < k < n) such that det(J5° gidu)i<ij<k φ 0.

If det(J5° gidu)ι<ij<k+ι = 0 for any s^+i (< to), then there exist functions
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ji (-00, to) Π T -> β, 1 < j < k such that
t / rto rto \

ί / gλdu,- , I gk+ι du \

Since det(/s° gidu)ι<ij<k φ 0, we have

9idu
1

g1dur

Therefore

S i

z ίo \

9idu
1

gι du,

for any s^+i (< ίo) This is contradictory to the linear independence of
1 < j < Λ: + 1, and thus for any fixed to £ T, we can choose si, $2, ,
(< to) such that det(Js° gidu)ι<ij<n φ 0. Therefore the formulas Js. F(t

u)du = Σ?=i Λ'W /5 9j{u)du, 1 < i < n, imply that

" 1 * rt-sn \

Jθ /

holds in a neighborhood of t = to. Since the right hand side is diίferentiable
at t = to, /j? 1 ̂  j ^ ?̂ are differentiable at t = to- Now we conclude that
fj, 1 < j' < ̂ > are differentiable.

It is easy to see that F and /j, gj, I < j < n, are infinitely differentiable.
Moreover the formulas

dk dk ftk

u=0 u=0

dk

t > 0, 0 < k < n,
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imply that F satisfies a differential equation ^ ^ L o Qk{dk /dtk)F(t) = 0,
t > 0, for some constants (/&, 0 < k < n.

Suppose that F is also a solution of Y%1Q q'k(dk/dth)F(t) = 0, t > 0, for
some qf

k, 0 < k < n—1. Then F is a Goursat kernel of order n—1 and this is a
contradiction. Suppose that the characteristic equation Y^.=o qkχk — 0 has
an imaginary solution λ + ir\. Then we have fj0 (t) = eλt cos ηt and fy it) =
eλt sinηt for some j 0 , Jo ί1 ^ Jo, Jo < n)- It follows that det(/;(ίj))i<^j<n =
0 for ίj = 2πj/?7, 1 < j < n, and this is a contradiction. Suppose that
Σfc=o ^ χ f c ~ ^ ^ a s a non-negative solution λ. Then we have gjo(u) = e~λw

for some jo (1 < jo ^ n)- It follows that ^ ^ | ^ 0 | α du = oo and this is a
contradiction. Hence we find that all the solutions of X^^=o Qkχk — 0 a r e

negative, so that F can be expressed as the formula (4). We finish the proof
of 'only if part.

It is easy to prove 'if part and so we omit the proof. Π

Remark 4.2. Let X = {X(t)\t G R] be an SaS process (0 < a < 2)
defined as a causal moving average (2) where F is expressed as (4). In non-
Gaussian case (0 < a < 2), the representation (2) of X is always canonical
(Kojo [2]). Therefore X is LC n-ple Markov by Proposition 4.1 and has
determinism of dimension n + 1 by Theorem 3.2.

On the other hand in Gaussian case (α = 2), this representation (2) is
not always canonical. For example, let X = {X(t);t G R} be a centered
Gaussian process defined as X(t) = f_^{?>e-^-u^-Ae-2^-u">)dBQ{u),t G R,
where BQ is a Brownian motion on JR. This representation of X is not
canonical because J^ e2udBo(u) is independent of σ(X(s); s <t). In fact,
X has a canonical representation X(t) = f_oQe~(t~u^dBo(u), t G ϋ , where
BQ is another Brownian motion.

We know that a Gaussian process has determinism of dimension 2.
Obviously, 2 is the smallest such dimension for the process. This fact is
independent of whether the process is multiple Markov or not. However
in this paper, even if a non-Gaussian SaS process X = {X(t);t G T} is
multiple Markov, we cannot yet find the smallest number d (> 2) such that
X has determinism of dimension d. But, for some restricted classes, we can
show that the smallest number is less than or equal to 3. For these processes,
this is a better result than what we have obtained in Theorem 3.2.

PROPOSITION 4.3. Let F be a function on [0, oo) which satisfies the
condition (i) or (ii):
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(i) F(x) Φ 0 for x > 0 and F(x + h)/F(x) is strictly monotone in x for
any fixed h > 0.

(ii) F is expressed as F(x) = e~x°x(bo + bιe~Xx + b2e~~2Xx) for some λ0,
λ > 0 , bo, bl9 b2φ0.

Let us define a non-Gaussian SaS process X = {X(t);t G R} (0 < a < 2)
as a causal moving average representation X(t) — J_OQF(t — u)dZo(u),
t G -R. Then any SaS process X = {X(t)]t G JR} having the same 3-
dimensional distributions with X is identical in law with X.

For example, let F(x) — X^= 1 bje~~xJx where λj > 0, bj > 0, 1 < j < n.
Then F(x) φ 0 for x > 0 and

= F(x)-2(F'(x + /ι)F(x) - F(a: + h)Ff{x))

- e~Xkh) > 0.

Thus F satisfies the condition (i). In the case (ii) we already know that X
has determinism of dimension 4 by Theorem 3.2.

Proof Firstly let us calculate the spectral measure Γ on S2 of 3-
dimensional random variable (X(t),X(t + hι),X(t + hi + ft^)) (£ ^ R,
hi, /i2 > 0). Define symmetric sets Λi, A2, As (C S'2) as

= {σs(F{x),F(x + hi), F(x + hi + Λ2)); 0 < x < 00}
= {(&,&, 6 ) € 52; 6 : 6 : 6 = F(x) : F(x + /H) : F(x + hλ + h2)

for some x(0 < x < oo)},

= {σ3(0, F(x), F(x + h2)); 0 < x < hx}

= {(0, ξ 2 ,6) e 5 2; 6 : 6 = F(x) : F(x + Λ2) for some x(0 < x < /iχ)}

εmd
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Then Γ is concentrated on A\ U A2 U A3. The set {x > 0; F(x) = 0} is null
under the condition (i) or (ii) and thus we have

(F(x)2 + F{x + hλ)
2 + F(x + hλ + h2)

2)al2 dx

for any symmetric Borel set Bi C Ai,

(F(x)2 + F(x + h2)
2)a/2dx

for any symmetric Borel set B2 C A2

and

Γ(A3)= [2\F(x)\«dx;
Jo

where

Cι(Bι) = ίO<CχKoo'(j3(F(x) Fix + h\) F(x-\-h\-\-

C2{B2) = {0<x<h1;

Let Γ7 be the spectral measure on S3 of 4-dimensional random variable
(X(t),X(t + /ii),X(ί + hχ + h2),X(t + hx + h2 + h3)) (t G β, Λi, /ι2,
/13 > 0). The consistency conditions with its four 3-dimensional marginal
distributions imply that Γ' is concentrated on symmetric sets

= F(xi) : F{xx + h2) : F{xλ + h2 + h3)

for some arχ(O < xi < oo),

Λi + /»2) : ̂ (^2 + Λi + h2 + h3)

for some x2(0 < x2 < oo),

Λi) : ̂ (^3 + hx + h2 + /ι3)

for some £3(0 < X3 < 00),

hx) : F(x4 + hi + h2)

for some ^4(0 < X4 < 00)},

: F[xx + h2) : F{xx + h2 + h3)

for some xi(0 < x\ < 00),
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6 : & = F(x2 + h2) : F(x2 + h2 + Λ3)

for some #2(0 < #2 < î)>

£2 £4 = ^(^3) : F(x3 + h2 + Λ3) f°r some 2:3(0 < x3 < hi),

£2 £3 = ^(#4) : F(^4 + h2) for some £4(0 < X4 < hi)},

: ξ3 = F{x) : F(x + h3) for some x(0 < x < /ι2)},

and that the measures on Af

3 and A4 are uniquely determined.
Here we note the following fact: If F is expressed as (i), there are no

solutions (yi, y2, j/3) e [0, ex))3 \ {(y,y,y);0 <y < 00} of the equations

F{y2)F{y3 + /n) = F(y3)F{y2 + J^)

F(ys)F{yι + hλ + h2) = F(yi)F(y3 + hx + h2)

,F(yi)F(y2 + Λi + Λ2 + Λ3) = F(y2)F(yι + hλ + /ι2 + Λ3)

for any fixed hi, h2, h3 > 0. If F is expressed as (ii), the above equations

have at most six solutions (j/i, y2, y3) G [0, oo) 3 \ {(y,y,y);0 < y < 00}.

Therefore the measure on G?i is concentrated on symmetric set

= F(x) : F(x + /ii) : F(x + hλ + h2) : F[x + hλ + h2 + h3)

for some x(0 < x < oo)}.

Define the correspondence ip: A\ —> A'x as

which satisfies ξi : ξ2 : 3̂ = ^(^) : ^ ( ^ + ^1) : F(x + hx + h2)

for some x(0 < x < 00)

^ ξ' = (^,^2^3,^) which satisfies ξ[ : ξ'2 : ξ'3 : &

- F(x) : F(x + Λi) : F(x + hi + /ι2) : F(x + /tx + h2 + hΆ).

Then the induced correspondence -φ : Ai/~ —> A'x/~ is one-to-one except
finite points of A'^/r*.
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Let us consider what measure lies on Af

v Let B[ be a symmetric Borel
set in A[ and set B\ = p4(B[). Since ψ is one-to-one, the measure on A[ is
uniquely determined by the consistency condition between the distributions
of (X(t), X{t+hι), X(t+h1 + h2)) and (1(£), X(t+h1),X(t+h1 + h2), X(t+
hχ+ ti2 + hs)) as follows:

F(x Jrhi+h2

Jr /13)
1 zz~.

x (F(x)2 + F(x + hi)2 + F(x + h± + h2)
2)a/2dx,

= ί (F{x)2+F(x+hι)2+F{x+hι+h2f+F{x+hι+h2+hzfyl2dx.
JCΛ (BΛ )

Let

C[(B[) = {0 < x < 00;

σ±(F(x),F(x + hι),F(x + hx + h2), F(x + hλ + h2 + h3)) €

Then we have C[(B[) = Cι(Bι) except a null set and thus

\2f{B'1) = ί (F(x)2 + F(x + /n) 2 + F(x + hί + h2f
[{B[) +F(x + hι + h2 + hs)2)*/2 dx.

This implies that the measure on G2 is uniquely determined by the consis-
tency condition between the distributions of (X(t+hι),X(t+hι + h2)->X(t+
hι + h2Λ- h3)) and (X(t),X(t + hλ),X(t + hλ + Λ2), X(t + hτ + h2 + h3)).
In fact, this measure is concentrated on

A2 = {(0,6,6,6) e 5 2 ;6 : 6 : 6 = F{x) : F(x + /ι2) : F(x + h2 + /ι3)

for some x(0 < x < hi)}.

Hence we find that Γr is uniquely determined by the consistency conditions.
Now we conclude that X and X have the same 4-dimensional distributions.
We apply the similar arguments as above or Theorem 3.2 in the case (i) or
(ii) respectively and obtain that X and X have the same finite-dimensional
distributions. D
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