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ON THE DETERMINISM OF THE DISTRIBUTIONS OF
MULTIPLE MARKOV NON-GAUSSIAN
SYMMETRIC STABLE PROCESSES

KATSUYA KOJO

Abstract. Consider a non-Gaussian Sa.S process X = {X(t);t € T'} which is

expressed as a canonical representation X (t) = fu <twer F(t,u)dZ(u), t € T,

and is continuous in probability. If X is n-ple Markov, then X has determinism
of dimension n + 1. That is, any SaS process X = {X(t);t € T} having the
same (n + 1)-dimensional distributions with X is identical in law with X.

§1. Introdution

In this paper we consider the determinism of the distribution of an SaS
(= symmetric a-stable) random field (0 < a < 2) in the following sense.

DEFINITION. We say that an Sa.S random field X = {X(s);s € S} has
determinism of dimension n if any Sa.S random field X = {X(s);s € S}

having the same n-dimensional distributions with X is identical in law with
X.

In this definition, “X and X have the same n-dimensional distributions”
means that (X (s1), X (s2), -, X (s,)) and (X(s1), X(s2), -+, X (s,)) have
a common distribution for any choice of distinct s1, s2,---, s, € S. “X and
X are identical in law” means that they have the same finite-dimensional
distributions of all dimensions. Obviously, if X has determinism of dimen-
sion n, then X has determinism of dimension m for m > n. A centered
Gaussian random field is symmetric stable with the index o = 2 and has
determinism of dimension 2 because any finite-dimensional distribution is
expressed by its covariance function. On the other hand, it is not easy
to answer a question whether a particular non-Gaussian SaS random field
(0 < a < 2) has determinism of a given dimension or not. However, the
determinism of some non-Gaussian SaS random fields has been studied.
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Y. Sato ([5], Theorem 1) proved that any finite-dimensional distribution
of a non-Gaussian Sa.S random field on R? of Chentsov type is determined
by its own (d + 1)-dimensional marginal distributions. Her proof tells us
that this random field has determinism of dimension d + 2. Y. Sato and
S. Takenaka ([6], Propositions 3.1 and 3.3) gave two concrete examples of
self-similar Sa.S random fields of exponent H (0 < a < 2,0 < H < a™!) of
generalized Chentsov type, which have the same 2-dimensional distributions
and have different 3-dimensional distributions. This fact means that these
two random fields do not have determinism of dimension 2 (in fact, it can
be proved that one of these has determinism of dimension 3 and the other
has determinism of dimension 5). T. Mori ([4], Theorem 6.1) showed that
there exists a one-to-one correspondence between stochastically continuous,
linearly additive non-Gaussian SaS random fields on R? and locally finite,
bundleless measures on the space of all (d — 1)-hyperplanes in R%. This
fact implies that each of these random fields has determinism of dimension
d+1.

Inspired by these results, in this paper we discuss the determinism of
a multiple Markov non-Gaussian SaS process with a canonical representa-
tion. We obtain the fact that this process has determinism of dimension
n + 1 where n is the multiplicity of multiple Markov property of the pro-
cess (Theorems 3.1 and 3.2). However, it is a much harder problem to
find the smallest number d (> 2) such that this process has determinism of
dimension d. We further investigate the special case where the process is
stationary and its canonical representation is in the form of moving aver-
age. In this case the representation kernel is a solution of a linear differential
equation with constant coefficients (Proposition 4.1). We obtain a sharper
result on the determinism of some of these processes (Proposition 4.3).

§2. Preliminaries

For fixed & (0 < a < 2), an R-valued random variable X is called sym-
metric a-stable (in short, SaS) if X satisfies that Elexp(izX)]=exp(—c|z|¥),
z € R, for some ¢ > 0. Especially, if « = 2, X is centered Gaussian. For
0 < a < 2, an R™valued random variable X is called SaS if there exists
a symmetric finite measure I' on the (n — 1)-dimensional unit sphere S™1
such that Elexp(izX)] = exp(— f£=(§1,§z,~~,§n)esn*1 | 3271 2€5|°T(de)), 2 =
(21,22, +,2n) € R™. This I is uniquely determined by the distribution of
X and is called the spectral measure of X.
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From now on, the time parameter space 7' is an interval in R. A
stochastic process X = {X(¢t);t € T'} is called SaS if any finite-dimensional
distribution of X is SaS. We assume that any process presented in this
paper is separable. The notation o(X(s);s < t) denotes the o-field gen-
erated by X(s), s < t. If an SaS process Z = {Z(t);t € T} has in-
dependent increments, then there exists a unique measure p such that
Elexp(iz(Z(t) — Z(s)))] = exp(—u((s,t])|z|*), 2 € R, for any s, t € T
(s <'t). This p is called the control measure of Z.

DEFINITION. Let X = {X(t);¢t € T} be an Sa.S process (0 < a < 2).
Let us assume that X is expressed as

(1) X(t):/q _Ftwaz@),  teT,

where

(i) Z = {Z(t);t € T} is an SaS process with independent increments
(with control measure p) and

(if) F'(t,-) is a Borel measurable function on {u € T;u < t} and satisfies
that f(_oo gor |F(E,-)[*dp < oo for any t € T.

Then the formula (1) is called a causal representation of X.
Especially, the representation (1) is called canonical if (X (s);s < t) =
o(Z(s2) — Z(s1);81 < s2 <t) for any t € T

DEFINITION. Assume that a causal representation of an Sa.S station-
ary process X = {X(t);t € R} is expressed as follows:

t
(2) X(t) = / F(t—u)dZo(u), teR,
where Zy = {Zy(t);t € R} is an Sa.S process with independent stationary
increments and F is a Borel measurable function such that [° |F(z)|* dz <

co. Then the formula (2) is called a causal moving average representation
of X.

T. Hida [1] gave a notion of multiple Markov property for Gaussian pro-
cesses with continuous time parameter. The author (K. Kojo [3]) extended
the notion to general stochastic processes with continuous time parameter
-as follows.
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DEFINITION. A stochastic process X = {X(t);t € T'} is called n-pee
Markov of linear combination type (in short, LC n-ple Markov) if X satisfies
the following three conditions:

(i) For any fixed tg,t1, -,t, € T (inf(T) < to < t1 < -+ < tp), there
exists an n-tuple of coefficients (a1, a2, -, a,) € R™\{0} such that

p[i 4 X (t;) € B|X(s),s < to] - P[iaj)((tj) = B'X(to)]

for any Borel set B in R.
(ii) For any fixed to,t1, -+ ,tn—1 € T (inf(T) < tp < t1 < -++ < tp-1),
there exist no (n — 1)-tuples (a1, as, -+, an—1) € R*1\{0} such that

n—1

P[Z a; X (t;) € B‘X(s) s < to] [Z a; X (t;) € B‘X(tO)}
= for any Borel set B in R.

(iii) For any fixed to,t1, -+ ,tn, € T (inf(T) < to < t1 < -+ < ty), there
exist no n-tuples (a1, az, -, a,) € R"\{0} such that >\, a; X(¢;) is
independent of o (X (s); s < o).

83. Multiple Markov property and determinism

For an SaS process (0 < a < 2) with a canonical representation, we
have the following theorem concerning the multiple Markov property.

THEOREM 3.1. (Kojo [3]) Assume that an SaS process X = {X (t);t €
T} (0 < a < 2) is expressed as a canonical representation

X(t)z/q L Ftwdz@w,  teT,

and is continuous in probability. Then X is LC n-ple Markov if and only
if F' is expressed as

n
3) I CUCIECIES

where p is the control measure of Z and g;, f;, 1 < j < n, satisfy the
following conditions:
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(i) g5, 1 < j < n, satisfy f(_oo T lgj|*dp < oo and are linearly indepen-
dent on (—oo,t|NT for any fizedt € T (t # inf(T)).

(ii) det(fi(tj))lgi’jgn # 0 for any t1,to, -+, t, € T (inf(T) <t <ty <
e <L tn)-

A kernel F(t,u), which is expressed as the formula (3) where g;, f;,
1 < j < n, satisfy the conditions (i) and (ii), is called a Goursat kernel of
ordern. In non-Gaussian case, we obtain that this process has the following
determinism.

THEOREM 3.2. Let X = {X(t);t € T} be a non-Gaussian SaS process
(0 < v < 2) which is expressed as a causal representation

X(t) :/ Fltu)dZ(w), teT,
u<t,ucT

where F(t,u) is a Goursat kernel of order n and p({u € T;u < t, F(t,u) =
0}) =0 for anyt € T. Then any SaS process X = {X(t);t € T} having
the same (n + 1)-dimensional distributions with X is identical in law with
X.

Before we start to prove this theorem, we state two important properties
on non-Gaussian Sa.S random variables.

(i) The consistency condition between a multi-dimensional non-Gaussian
SaS distribution and its marginal distribution is translated into the con-
sistency condition between their spectral measures as follows: Let I'” be the
spectral measure on S™ of (n + 1)-dimensional non-Gaussian Sa.S random
variable Y/ = (Y7,Ys, -+, Y,11) and T be the spectral measure on S™~! of
its n-dimensional marginal Y = (Y1,Y2,---,Y,). Then I and T satisfy the
formula

I'(B) = (1 — €ns12)*/?T" (d)

/s=(51,£z,~--,£n+1)6p;1(B)
for any Borel set B in S*1,

where the function p,: S™\{(0,---,0,+1)} — S™! is defined as

pn((élvg% e 7€n+1))
= (61/(1 = &ns1D)Y2,&/(1 = Ent V2, 6 /(1 = Enn D)V,
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(ii) The spectral measure I' on S"~! of an n-dimensional random vari-
able ( fT p1dZ, fT podZ,---, fT ©n dZ) is concentrated on the symmetric
set

{an(cpl(u),goz(u), e ,wn(u));u € Ta Z‘p]'(u)z 75 0}
j=1

= {(51)£2a' "’gn) € Sn_l;ﬁl E SRR
= p1(u) : pa(u) : -+ : pp(u) for some u € T},

where the correspondence o,,: R*\{(0,---,0)} — S™"! is defined as

O-n(xlaw% te 71:11) ==+

This is because

and thus T is expressed as

- [ " (; mxﬁ)a/zy(dx)

for any symmetric Borel set B in S"71,
where C(B) = {z € T;0n(p1(x), p2(x), -+, pn(z)) € B}.

Proof of Theorem 3.2. We will show that any (n + 2)-dimensional dis-
tribution of X coincides with the corresponding (n + 2)-dimensional dis-
tribution of X using the consistency conditions for specific two of their
common (n + 1)-dimensional marginal distributions. In a similar way we
can show that X and X have the same higher-dimensional distributions.
This proves the theorem.

Firstly let us calculate the spectral measure on S™ of an (n + 1)-
dimensional distribution of X (thus, of X). Let I' be the spectral measure
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of (X(tl),X(tQ), cee ,X(tn+1)) for ti,ta, -+, thy1 € T(tl <t <o < tn+1).
Define symmetric sets A; (C S™), 1 <j<n+1, as

Ay = {opp1 (F(t1,u), Fta,u), -, F(tny1,u));
n+1

u<ty,u€T,y  Flt,u)® #0}
k=1

= {(517527' o 7€n+1) € Sn,
E1:6: &1 = F(ty,u) : Fta,u) -+t Ftpyr,u)
for some u(u < t1,u € T)},

A] = {Un+1(0a e >0a F(t]7u)7 F(tj-{—lau)v U 7F(tn+17u));
n+1

i1 <u<ty, F(ty,u)? # 0}
J J

= {(0”"70a£j>§j+1'“,én-l-l) € Sn;
& &1 b = F(tj,u) t Ftjen,u) oot Ftpgr,u)
for some u(t;j—1 < u <tj;)}

for 2 < j <mnand
Apt1={(0,---,0,£1) € S"}.

Then T is concentrated on U"HA Since u({u € Tyu < ¢, F(t,u) = 0})
=0foranyt €T, A4;,1 < ] < n, are disjoint except I'-null sets and we
have

I'(B)) /C(B (%F(tk, ) /2#(dU)

for any symmetric Borel set B; C A;

for 1 <j <nand

Mdnir) = [ (b, )| a(du),
tn<u<tnii
where

Cl(Bl) = {u <tnhueT; 0n+1(F(t1>u)7F(t27u)a e aF(tn-i-l)u)) € Bl}’
Cj(Bj) ={tj-1 <u <ty
Un-i-l(O’"')O) F(tj’u)aF(tj-I—bu)" F( n+1, U )) € B; }
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for 2 < j <n.

Now we investigate where the spectral measure on S™t! of an
(n 4 2)-dimensional distribution of X is concentrated. Let I be the spec-
tral measure of (X (t1), X (t2), -+, X (tnt2)) for t1,ta, - tnia € T(t; <

ty < -+- < tpyg). The distribution of (X (t1), X (t2), -, X (tn42)) satisfies
the consistency condition with its (n + 1)-dimensional marginal, the distri-
bution of (X (1), X (t2), -+, X(tns1)). Therefore I is concentrated on the
disjoint union of the following n + 2 symmetric subsets of S™+1:

Bi,i = ppi1(A1)
= {(5175%' o ,£n+2) € Sn+1\{(0" o ’Oail)};
&1:& 1 1 &py1 = F(t1,u) s Fto,u) : -+t Ftnt1,u)
for some u(u < t1,u € T)},

B = ppyi(4;)
= {(Oa T ,0,6]'7 £j+l> te 7£n+2) € Sn+1\{(0’ T 0) il)}’

gj :£j+1 LI €n+1 = F(tj,u) : F(tj+1,u) M EF(tn+1,U)
for some u(tj—1 < u < t;)}

for 2 < j <mn,

Bipnt1 = ppiq (Ang1) = {(0,+++,0,&nt1, €nr2) € SPTN{(0, - +,0,£1)}}

and
Bint2 ={(0,---,0,£1) € "}

On the other hand, by the consistency condition with the distribution
of (X(t2), X (t3), -, X (tnt+2)), I is concentrated on the disjoint union of
the following n + 2 symmetric subsets of S™*1:

Byy = {(€1,€2,  €nt2) € STN\{(£1,0,--+, 0)};
Er: &3 &pya = Fto,u): F(ts,u): -+ : Ftny2,u)
for some u(u < to,u € T},

BQ,j = {(617 07 Y 0»£j+17£j+2) e 7§n+2) € Sn+1\{(i17 07 e ,0)}7
Eir1: &z s énva = Ftjy1,u) : F(tjqo,u) oo 1 Ftaro,u)
for some u(t; < u <t;jy1)}
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for2<j<n,

B2,n+1 = {(éla 07 T 07€n+2) € Sn+1\{(i11 07 U ,O)}}

and
B2,n+2 = {(:tlv 0,--- 70)}'

Therefore T is concentrated on (n + 2)2 subsets of S™*1, By ; N By,
1<j,k<n+2 Since p{u€eT;u<t,F(t,u) =0})=0foranyteT, I
is concentrated on By 1N By, B1;NByj_1,2<j<n+2.

Define a symmetric set A) as

All = {(611527”' ’€n+2) S Sn+1;
£1:6: - €ppa = F(ty,u) s Ftg,u): - : F(tpy2,u)
for some u(u < ty,u € T)}.

Let us prove By N By; = Al except a [-null set. We can easily see
Bii N Byy D Aj. Let us show By N By C A}]. Suppose that £ =
(€1,€2,++,&nt2) € B11 N Ba1. Then there exist u; (< ¢1) and ug (< t)
such that

&1:& &1 = F(ty,ur) : Fta,ur) : -+ Ftnt1,u1)
and
€ :&3 1+ Epyo = Fto,uz) : Fts,uz) : -+ : F(tnyo,us).
Thus we have
F(to,u1) : F(ts,u1): - : F(tnt1,u1)
= F(tg,us) : F(ts,ug) : -+ : F(tps1,us).

Here, let us recall that F' is a Goursat kernel of order n. Then F(tp42,u)
can be expressed as

n

F(tnyo,u) = Z i (tn+2)gj (u)

Jj=1
= (Ailtns2), - Frltns2)) ((Fj (big1) )1<ig<n)
t(F(t27u)7 e '7F(tn+1au))a u < to,

where *v denotes the transposed of a row-vector v. Thus we have

F(tz,ul) : F(tg,’u,l) MR F(tn+1,u1) : F(tn+2,u1)
= F(ta,u2) : F(ts,ug) : -+ : F(tnt1,u2) 1 F(tngo,u2)
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for almost all such vy and ug. This implies that almost all £ satisfies
§1:8 &ttt ns
= F(tl,ul) : F(tz,’u.l) e F(tn+1,u1) : F(tn+2,u1)

and thus £ € A]. Now we have By,; N Bg,; = A] except a [-null set.
Define a symmetric set A/, as

A/2 = {(0’ §2a§37 Tt 7§n+2) S Sn+1;
Ea:&3 1 bppa = Fta,u) : Ftz,u) : -+ : F(tny2,u)
for some u(t; < u < t3)}.

Then we have By 2 N By; = A, except a I["-null set by a similar argument.
Define A}, 3<j<n+2as

AL ={(0,--+,0,&, €541, Eny2) € S™T
& &1 bnpa = F(tj,u) t F(tjpr,u) - 0 Ftpyo, u)
for some u(tj_1 <u <t;)}
for3<j<n+1
and

Al o =1{(0,---,0,£1) € S"*1}.

We easily obtain that By j N By -1 = A;-, 3 < j <n+2. Thus we find that

I is concentrated on the disjoint union U;‘+12A;~.

Now let us consider what measure lies on A|. We recall again that, if
uy, Uy < tg satisfy

F(tg,u1): F(ts,u1) : -+ : F(tny1,u1)
= F(ta,ug) : F(ts,ug) : -+ : Ftny1,u2),
then
F(ta,uy) : F(ts,uy): -+ : Ftny1,u1) : Ftnio, ur)
= F(tz,uz) : F(ts,u2) : -+ Ftny1,u2) : Fltni2, u2).
Consider the following correspondence 9 : A3 — Al:
Y€ = (&,8&, - ,&+1) which satisfies & 1 €31 -+ 1 €t
= F(t1,u) : F(to,u): - : F(tpt1,u) for some u(u < t;,u €7T)
= & = (€1,&,+, €nyp) which satisfies & 1 €5 -+ 1 &y 1 Enyn

= F(t1,u) : F(to,u) : -+ : F(tnt1,u) : F(tnyo,u).
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Let ¢ : A; J~ — A}/~ be the correspondence induced by @ where the
equivalence relation 7 ~ n’ denotes ' = n or B’ = —n. Then 1,!) is one-
to-one except a I'-null set. For any symmetric Borel set Bj(C A}), let
B, = Pn+1(31) By the consistency condition between the distributions of

(X(t1), X(t2),, X(tn4)) and (X (1), X(t2), -, X (tns2)),

I(B)) = / (1= Eny2?)*/2F(de).
&€py 11 (Br)

Since p({u € T;u < ¢, F(t,u) = 0}) = 0 and 1,[1 is one-to-one, we have
pri1(B1) N (U?;.?A;) = Bj. Therefore

0B = [ (=)

Since 1) is one-to-one, we have

ff(B;)le(Bl)O—%)_%(g (t;,) )a (du)

n+2

/01(191 (ZF (t,u) ) p(du).

C{(Bi) = {U <tj,ue Ta Jn+2(F(t1au)’F(t2au)7"'7F(tn+2au)) € Bi,

n+2
> P(ty,u)® # 0}.
k=1

We can easily see that Cf(B}) = C1(B1) except a p-null set. Thus we have

(B, /ch/ (nfpt,, ) 1u(du)

Now we conclude that the measure on A is uniquely determined by the

Let

consistency conditions.
It is easy to see that the measures on A;, 2 < 7 £ n+2, are uniquely de-

termined by the consistency condition between the distributions of (X (t2),
X(t3), -, X (tns)) and (X(t1), X (t2), - -, X (tns2)). Hence we obtain that
T” is uniquely determined by the con51stency conditions, that is, I coincides
with the spectral measure of (X (t1), X (t2),- -+, X (tn+2)). Now we conclude
that X and X have the same (n + 2)-dimensional distributions. U
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84. The case of causal moving average processes

In this section we confine our arguments to SaS stationary processes
represented by causal moving averages.

PROPOSITION 4.1. Assume that an SaS process X = {X(t);t € R}
(0 < a < 2) is represented by a canonical moving average

¢
X(t) = / F(t —u)dZo(u), te R,
and is continuous in probability. Then X is LC n-ple Markov if and only
if F' is expressed as

T
(4) F(z)= Z(bjﬂnj*lmmj—l + bj,mj—Qmm]—z t+ot bj,O)e_)‘jmv x>0,
Jj=1

where 0 < Ap < g < -+ < Ay, Z;zlmj:n, bjm;—1 #0(1<j<r).

In Gaussian case (o = 2), this proposition is included in T. Hida’s paper
([1], Theorem II.3).

Proof. By Theorem 3.1, we have only to show that F'(t—u) is a Goursat
kernel of order n if and only if F'(x) is expressed as the formula (4).

‘only if” part: By the assumption, for any t € R, F(t — u) can be
expressed as F'(t —u) = 3_7_; fj(t)g;(u) for almost all u < t. Firstly we
prove that f;, 1 < j < n, are continuous. Suppose that there exist jg
(1 < jo <m)andty € R such that fjo is discontinuous at tg. This means
that there exist € (> 0) and a sequence {t;}=12.. such that t; — to as
k — oo and |fj,(tk) — fjo(to)| > € for any k. Since X is continuous in
probability,

to—1
/ |F(ty, —u) — F(to— u)|“du — 0 as k — oo.

—o0

On the other hand we have
F(ty —u) — F(to — u)

=3 (f5(tk) — F5(t0))g;(w)
J=1
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— (Xt - s )" 3o B Ao
= = (L - A)?)

=1

u < tg A tg.

Therefore we have
/to -1
—0o0

Since the sequence {((f1(tx)— f1(0))/ (i1 (fi(tk) = fi(t0))*)/%, - - -, (fu(ts)
— fnlt0))/ (O (filte) — fl(to))z)l/z)}kzl’gf.. is in 8?1, there exist a sub-
sequence {t, }m=12.. and (c1,c2, --,c,) € S ! such that (fj(tk,.) —
Fi(t0))/ (Lt (filthn,) — filto)))? — ¢j, 1 < j < n, as m — co. By
Lebesgue’s convergence theorem, we have f_tfgl | Z?:l cjgj(uw)|*du = 0.
This is contradictory to the linear independence of g;, 1 < j7 < n. Now we

«@

du — 0 as k — oo.

- Fi(te) — f5(¢

Z.l _ (tx) 3(0)2>

= (fi(te) — filto))
( - JANZ. \to

l=

1/2 gJ(u)

conclude that f;, 1 < j < n, are continuous.

Next we prove that F' is continuous on [0, 00). Since f;, 1 < j < n, are
continuous, the set {(u,t) € R%u <t, F(t—u) # > 51 fi(t)gj(u)} is Borel
measurable and by Fubini’s theorem, this set is null. Applying Fubini’s
theorem again, there is a subset A of [0, 00) such that [0,00)\A4 is null and
the set {y;y € R, F(z) # 2?21 fi(x+y)g;(y)} is null for any =z € A. Now,
for any zp € A and any sequence {zy € A}k=12.. which tends to zo as
k — oo, we can choose y € R such that F(zx) = Y 7, fj(zx + y)g;(y) for
~any k =1,2,---. Since f;, 1 < j < n, are continuous, F' is continuous on
A. Since A is dense in [0,00), F' is continuous on [0,00). We can easily
see that g;, 1 < j < n, are also continuous on (—o0,00), using that F' is
continuous and det(f;(t;))1<sj<n # 0 for any distinct ¢;, 1 < j < n.

Let us prove that f;, 1 < j < n, are differentiable on (—o0,00). We first
show that, for any fixed to € T, we can choose s1, 82, -, $p (< o) such that
det(fé_o gidu)1<i j<n # 0. We can choose s1 (< tg) such that fstf girdu # 0, if
otherwise, g1 = 0 on (—00, tp] and this is a contradiction. Suppose that we
choose s1,89,---, 8k (< tg) (1 <k < n) such that det(f:]‘_) gidu)i<; j<k 7 0.

If de’r;(fst‘_J gidu)i<; j<k+1 = 0 for any spyq (< to), then there exist functions
; <i,j<
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pj: (—=o0,t0) VT — R, 1 < j < k such that

t to to
</ g1 dua Ty / Ik+1 du)
Sk+1 Sk+1

to
_ ( / o du) pr(sken)s -+ s Pr(s41)).
s 1<i<k+1,1<j<k

Since det(fst; gidu)1<i j<k # 0, we have

t(131(Slc+1)» o Pr(Skt1))

to -1t to to
:((/ gz-du) ) (/ guau:-, [ gkdu).
Sy 1<4,5<k Sk+1 Sk+1
Therefore

to to
/ Gk+1du = / Gk+1 du, - / Gk+1 du) Y(p1(Skt1) - Pr(SE41))
Skt1 s

k

to
( Gk+1du, / Ik+1 du)
sk
-1t to to
1<4,5<k Sk+1 Sk+1

for any sg+1 (< to). ThlS is contradictory to the linear independence of g;,
1< j <k+1, and thus for any fixed tg € T, we can choose s, 82, -, Sp
(< to) such that det fto gidu)1<i j<n 7 0. Therefore the formulas fstl F(t-

u)du =) 0 T fit f gj(u)du, 1 < i < n, imply that
S(frt), s fal?))

(o)) UL rome [ ree)

holds in a neighborhood of ¢t = ty3. Since the right hand side is differentiable
at t = to, fj, 1 < Jj < n, are differentiable at t = t;. Now we conclude that
fj» 1 < j < n, are differentiable.
It is easy to see that F' and f}, g;, 1 < j < n, are infinitely differentiable.
Moreover the formulas
dk o

= — k 8k
otk

Ft-w)| = (-1 5F(t—u)

u=0

n dk
183 550 G

., t>0, 0<k<n,

u=0
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imply that F satisfies a differential equation > j_, qx(d*/dtF)F(t) = 0,
t > 0, for some constants gx, 0 < k < n.

Suppose that F is also a solution of 3>7=0 g} (d*/dt*)F(t) = 0, t > 0, for
some ¢;, 0 < k < n—1. Then F is a Goursat kernel of order n—1 and thisis a
contradiction. Suppose that the characteristic equation Y ;_, grz® = 0 has
an imaginary solution A+ 1. Then we have f;,(t) = e cosnt and fj() (t) =
e* sin nt for some jo, 55 (1 < jo, jo < n). It follows that det(fi(t;))1<ij<n =
0 for t; = 2mj/n, 1 < j < n, and this is a contradiction. Suppose that
> r_oakz® = 0 has a non-negative solution . Then we have gj, (u) = e~
for some jg (1 < jop < n). It follows that fi)oo |9j0|* du = oo and this is a
contradiction. Hence we find that all the solutions of >_7_, gxz® = 0 are
negative, so that F' can be expressed as the formula (4). We finish the proof
of ‘only if” part.

It is easy to prove ‘if’ part and so we omit the proof. 0

Remark 4.2. Let X = {X(t);t € R} be an SaS process (0 < a < 2)
defined as a causal moving average (2) where F' is expressed as (4). In non-
Gaussian case (0 < a < 2), the representation (2) of X is always canonical
(Kojo [2]). Therefore X is LC n-ple Markov by Proposition 4.1 and has
determinism of dimension n + 1 by Theorem 3.2.

On the other hand in Gaussian case (o = 2), this representation (2) is
not always canonical. For example, let X = {X(¢);t € R} be a centered
Gaussian process defined as X (t) = ffoo(3e”(t’”) —4e2=w)dBy(u),t € R,
where By is a Brownian motion on R. This representation of X is not
canonical because ffoo e?“dBy(u) is independent of o(X (s);s < t). In fact,
X has a canonical representation X (t) = fioo e_(t_“)dfj’o(u), t € R, where

By is another Brownian motion.

We know that a Gaussian process has determinism of dimension 2.
Obviously, 2 is the smallest such dimension for the process. This fact is
independent of whether the process is multiple Markov or not. However
in this paper, even if a non-Gaussian SaS process X = {X(¢);t € T} is
multiple Markov, we cannot yet find the smallest number d (> 2) such that
X has determinism of dimension d. But, for some restricted classes, we can
show that the smallest number is less than or equal to 3. For these processes,
this is a better result than what we have obtained in Theorem 3.2.

PROPOSITION 4.3. Let F be a function on [0,00) which satisfies the
condition (i) or (ii):
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(i) F(z) #0 for z > 0 and F(z + h)/F(z) is strictly monotone in x for
any fized h > 0.

(ii) F is expressed as F(x) = e 2% (by + bie % + boe™2*%) for some Ao,
A >0, by, by, by #0.

Let us define a non-Gaussian SaS process X = {X(t);t € R} (0 < a < 2)
as a causal moving average representation X (t) = f F(t — u)dZp(u),

t € R. Then any SaS process X = {X(t);t € R} having the same 3-
dimensional distributions with X is identical in law with X.

For example, let F'(z) = 3%, bje %% where A; > 0,b; > 0,1 < j <n.
Then F(x) # 0 for x > 0 and

(F(z+h)/F(z))
- F(m)‘2(F'(sc +h)F(z) — (a: + h)F'(z))

= F(x)~ ( Zb Aje (@+h) Zb e~
+ Z bje_)‘j (z+h) Z bkAk:e—)\km>
j=1 k=1

=F(z)? Y bibr(he — Ay)em o tT(e b — e Akhy 5 g,
1<j<k<n

Thus F satisfies the condition (i). In the case (ii) we already know that X
has determinism of dimension 4 by Theorem 3.2.

Proof. Firstly let us calculate tkle spectral~ measure I' on S? of 3-
dimensional random variable (X (¢), X (¢t + h1), X (¢t + h1 + h2)) (t € R,
hi, ha > 0). Define symmetric sets A;, Az, Az (C S?) as

= {o3(F(z),F(z + h1),F(z 4+ h1 + h2));0 < z < o0}
={(€1,62,6) € 5% 61:&: & =F(2): Fz+ hy) : F(z+ hy + hy)
for some z(0 < z < o0)},
Ay = {03(0, F(z), F(x + h2));0 <z < hy}
= {(0,&,&3) € S%; &5 : €3 = F(z) : F(x + hy) for some 2(0 < z < hy)}

and
Az = {(0,0,£1)}.
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Then I is concentrated on A; U A2 U A3. The set {z > 0; F(z) = 0} is null
under the condition (i) or (ii) and thus we have

I'(By) = / (F(z)? + F(z + h1)?* + F(z 4 hy + hg)?)*? dz
C1(B1)
for any symmetric Borel set B; C A;,
I(By) = / (F(z)? + F(z + ha)?)*? do
Co(Bg3)
for any symmetric Borel set By C Ao

and
ho
I(43) = / |F(2)|*dz,
0

where

Ci1(B1) ={0 <z < 00;03(F(z), F(z + h1), F(z + h1 + hg)) € By},
02(32) = {O S X < h1;0'3(0,F(.’12),F(1‘ + hz)) € BQ}

Let I be the spectral measure on S° of 4-dimensional random variable

(X(t), X(t + h1),X(t + h1 + h2), X(t + h1 + hy + h3)) (t € R, hy, ha,
hs > 0). The consistency conditions with its four 3-dimensional marginal
distributions imply that I is concentrated on symmetric sets

G1={(é1,6,8,&) € S5
€r:&3: &= F(x1): F(z1 + hg) : F(z1 + ha + h3)
for some z1(0 < z7 < 00),
&1:€3: 84 = F(x2): F(zg + h1 + h2) : F(xz2 + h1 + ha + h3)
for some z2(0 < z3 < 00),
§1:6: €= F(x3): F(zz + hy) : F(x3 + h1 + ha + ha)
for some z3(0 < z3 < 00),
§1:62: 83 =F(z4) : F(za + h1) : F(za + b1 + h2)

for some z4(0 < z4 < 00)},

G2 = {(0,&2,&3,€4) € S,
§3:83: 84 = F(x1): F(xy + hg) : F(zy + ha + h3)

for some z1(0 < 27 < 00),



194 K. KOJO

€3: & = F(za+ ho) : F(xz2 + ho + h3)

for some z2(0 < 23 < hy),
& : & = F(z3) : F(x3 + ha + h3) for some z3(0 < z3 < hy),
& : & = F(z4) : F(xg4+ h2) for some z4(0 < x4 < h1)},

é = {(0?0a€27£3) € 53,
& : &3 = F(z): F(z + h3) for some (0 < z < hg)},

A} ={(0,0,0,£1)},

and that the measures on A5 and A/ are uniquely determined.
Here we note the following fact: If F' is expressed as (i), there are no
solutions (y1,y2,y3) € [0,00)3\ {(¥,v,);0 < y < oo} of the equations
F(y2)F(ys + h1) = F(y3)F(y2 + h1)
F(y3)F(y1 + h1+ h2) = F(y1)F(ys + h1 + ho)
F(y1)F(y2 + h1 4+ ha + hs) = F(y2)F(y1 + h1 + h2 + hs)
for any fixed hy, hg, hg > 0. If F' is expressed as (ii), the above equations

have at most six solutions (y1,¥y2,ys3) € [0,00)%\ {(v,9,9);0 < y < oo}.
Therefore the measure on G is concentrated on symmetric set

A ={(61,62,63,6) €561 : &6 &
=F(z): F(x+hy): F(z+ h1 + ha) : F(x 4 hy + ha + h3)

for some z(0 < z < 00)}.

Define the correspondence ¢: A; — A} as

V&= (1,€2,63)
which satisfies &1 : &2 : €3 = F(z) : F(z + h1) : F(x + h1 + ho)
for some z(0 < z < o)
= & = (61,63, €5,€4) which satisfies £ : 65 : 631 &)
=F(z): F(z+ hy): F(zx+ h1 + ha) : F(z + hy + ha + h3).

Then the induced correspondence P A /~ — A/~ is one-to-one except
finite points of A} /~.
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Let us consider what measure lies on A). Let B} be a symmetric Borel
set in A} and set B; = py(B}). Since 1 is one-to-one, the measure on A/ is
uniquely determined by the consistency condition between the distributions
of (X(t), X (t+h1), X (t+hy+hy)) and (X (t), X (t+h1), X (t-+h1+hg), X (t+
hi 4+ ha + h3)) as follows:

I'(By)

IR

—/ (1_ F(x + hy + ha + hg)? >—
oy \ F(2)2+F(z+h)>+F (z+hi+hy)>+F (z-+hi+hot+hs)?

X (F(J;)2 + F(z + h1)2 + F(z+ hy + h2)2)a/2da:,
= / (F($)2+F($+h1)2+F(:C+h1+h2)2+F(33+h1+h2+h3)2)a/2dx.
C1(By) ‘

Let

Ci1(B}) = {0 <z < o0;
04(F(z), F(z + hy), F(x 4 hy + hy), F(z 4+ hy + hy + h3)) € BL}.

Then we have C{(B]) = C1(B1) except a null set and thus

(B)) = /C @+ Flet m)? + Fle+ b+ o)
(B +F(2 + by + hy + hg)?)*? da.

This implies that the measure on G4 is uniquely determjned by the consis-
tency condition between the distributions of (X (¢4 h1), X (t+h1+ha), X (t+
hy+ ho + hg)) and (X(t),X(t + hl),X(t +h1 + hz),X(t + hy + hy + h3))

In fact, this measure is concentrated on

A’Z = {(0751752763) € 52;51 1€y 183 = F(l') : F(l’+ hQ) : F(.’E + ho —|—h3)
for some z(0 < z < hy)}.

Hence we find that I” is uniquely determined by the consistency conditions.
Now we conclude that X and X have the same 4-dimensional distributions.
We apply the similar arguments as above or Theorem 3.2 in the case (i) or
(ii) respectively and obtain that X and X have the same finite-dimensional
distributions. O
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