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FANO 4-FOLDS WITH SCROLL STRUCTURE

ADRIAN LANGER

Abstract. We classify smooth Fano 4-folds with second betti number 62 = 2,
possesing adjunction theoretic scroll structure. These manifolds occur to be
projectivisations of coherent sheaves over Fano manifolds. The paper deals
mainly with projectivisations of non-locally free rank 2 Fano sheaves over Fano
3-folds with 62 = 1, using Mori theory. By the way, we classify nef and big rank
2 bundles over P 2 with the first Chern class O(S).

Introduction

In this paper we classsify smooth Fano 4-folds with second Betti number
b2 = 2 which possess scroll structure (in the sense of adjunction theory). It
turns out that such manifolds must be projectivisations of coherent sheaves
over some smooth Fano varieties of dimension less or equal to 3. The case
when dimension of the base is equal to 1 is very easy. The case of dimension
2 was studied in [SzW3] (let us note that P 2 is the only Fano surface with
62 = 1). Here we classify such structures over base of dimension 3, which
completes above mentioned classification. In view of the latest progress in
classification of contractions of 4-folds (see [AW2]), this can be treated as
the first step towards a classification of Fano 4-folds in general.

Our approach to the problem of classification is slightly different from
the one used until now in papers [SzWl], [SzW2], [SzW3]. We get our results
by computing possible Chern classes by means of numerical properties and
then by vanishing theorems and "sheaf" methods (using known facts about
stable sheaves and jumping lines). Such an approach also allows to obtain
known results about Fano bundles with little knowledge of stable bundles.
As an example, in appendix we compute Fano bundles of rank 2 on P 2

without using Iskovskich-Mori-Mukai list of all Fano threefolds.

The first step towards the classification, i.e. computation of Chern
classes of sheaves £, is divided into three parts according to the type of
second contraction φ of P(£). If this morphism φ is onto a variety Y of
dimension less than 4, then computation is very easy. We simply know that
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the self intersection of a pull back of an ample divisor from Y is zero, which
is nearly sufficient to compute possible Chern classes of S. The case of a
divisorial contraction is more complicated and we have to use also some well
known results of Ando [A] in order to determine good supporting divisor of
φ. The third part concerns small contractions, whose structure is known by
results of Kawamata [Ka]. Nevertheless the computation in this last case is
not obvious and easy (at least to the author). Next steps in classification
are geometrical considerations, concerning sheaves and bundles, depending
mainly on cohomology theory. We also discuss geometry of projectivisation
of obtained sheaves.

We have to deal separately with Fano sheaves on different Fano 3-folds,
according to the index of this 3-fold. The paper is divided into 9 sections.
The first two sections deal with some useful general facts and definitions.
In section 3 we classify nef and big rank 2 vector bundles over P 2 . This is
used in sections 4-6 for the classification of rank 2 Fano sheaves over P 3 .
The results concerning sheaves on other Fano 3-folds are briefly treated in
sections 7 and 8. Finally in section 9 we describe the geometry of obtained
Fano 4-folds.

Acknowledgements. I would like to thank to Prof. J. Wisniewski for
very valuable discussions, advices and for help while preparing this paper.
I would also like to acknowledge partial support from Polish KBN.

§1. Preliminaries

In this section we recall some definitions and results which will be used
later on. Notation and terminology used in this paper is consistent with
the one used in [Hal] and previous papers concerning this topic (cf. [SzWl],
[SzW2] and [BW]). The only difference is using the notation S\H for an OH-
module associated to a restriction of E to subvariety H.

Locally free sheaves and vector bundles are not distinguished, similarly
as divisors and line bundles on smooth manifolds. All varieties are assumed
to be defined over complex number field.

1.1.
Let X be a 3-dimensional smooth Fano variety with the second Betti

number &2PO — l Let us denote by H a class of the generator of Picard
group PicX. From the assumptions one can write ~Kχ — r(X) H for
some integer r(X) called the index of X. It is known by the result of
Shokurov that on every such manifold there exists at least 1-dimensional
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family of lines. By a line we mean here a smooth rational curve L such

that L H = 1. Hence H2(X,Z) is generated by the class H, HA(X,Z)

is generated by a line L and H6(X, Z) by a point P. Therefore one may

identify in the known way, Chern classes of sheaves on X with integers.

Let T be a coherent sheaf of rank r on X. From the Riemann-Roch

formula it follows that:

jkc!3tf3 - 3c l C 2 + 3c3) + -Ar{X){Cι

2Hz - 2c2)

where ci, C2, C3 stand for Chern classes of T. In what follows, we will

extensively use this formula for P 3 , so for the convenience of the reader, we

will write this formula in explicit form for sheaf T on P 3 :

= r - 1 + ( C l + 3 ) - 2c2 + 1(C3 - c l C 2 )

For ^ of rank r = 2 on P 3 we have cχc2 = C3 (mod2) and

Another simple fact which we use is the existence of an isomorphism:

for a rank 2 reflexive sheaf T.

1.2.

In this subsection we recall some results and definitions from [BW].

DEFINITION 1.2.1. A coherent sheaf E of rank r > 2 over a normal

variety Y is called Banica sheaf if its projectivization is a smooth variety.

PROPOSITION 1.2.2. If S is α Banica sheαf then it is reflexive, the

projection p :P(£) —> Y is an extremal ray contraction and Op^(l) is p-

ample.
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DEFINITION 1.2.3. We say that a coherent sheaf E over a normal

variety Y extends to a locally free sheaf T if there exists a sequence of

Όy -modules

0 —>O —> T —>S —> 0.

PROPOSITION 1.2.4. Let E be a Banica sheαf of rank n — 1 over a

smooth projective variety Y of dimension n. If H2(Y,£*) = 0, then E

extends to a locally free sheaf; in particular the sheaf E ® C~rn extends for

an ample line bundle C and m ^> 0.

THEOREM 1.2.5. Let E be a Banica sheαf of rank r on a normal

variety Y. If r > d i m F , then Y is smooth and E is locally free.

1.3.

In this paper we use the following version of the relative Kawamata-

Viehweg theorem (see [KMM, theorem 1.2.5]).

THEOREM 1.3.1. Let X be a smooth manifold and π: X —• Y be a

proper morphism onto a variety Y. Assume that D — Kx is π-nef and big

for some divisor D on X. Then Rιπ*Oχ(D) — 0 for i > 0.

In section 3 we use the following theorem (see [Re]):

THEOREM 1.3.2. Let X be a projective variety with only canonical

singularities, D G Pic X—a nef divisor and aD — Kχ—a big and nef divisor

for some a > 1. Then for m ^> 0 \mD\ is base point free and defines a

morphism φ\X—>Y on a normal variety Y such that φ*Oχ = Oγ and

there exists an ample divisor AonY such that D = φ*A. Moreover if D is

big then φ is bίrational and Y has only rational singularities.

1.4.

Let us recall a couple of theorems from Mori theory—a detailed survey

of this theory can be found in [KMM].

THEOREM 1.4.1. (Kawamata-Shokurov) For any extremal ray R on

a Q-factorial projective variety X with canonical singularities there exists

a normal projective variety Y and a surjective morphism φ:X —> Y with

connected fibers that contracts a curve C if and only if [C] G R. Such a

morphism we call an extremal ray contraction.
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PROPOSITION 1.4.2. If X is a Fano manifold, then the cone of effec-

tive curves NE{X) is a rational polyhedral cone spanned by a finite number

of extremal rays.

1.4.3. One can distinguish three types of a ray contraction φ:X -*
Y according to the dimension of the contracted set E(φ) \— {x G X:
dimφ-ι(φ(x)) >0}:

— a fiber contraction, if E(φ) = X. Then X is covered by rational
curves and a general fiber of φ is a Fano variety.

— a divisorial contraction, if codim E(φ) = 1. Then Y is a Q-factorial
projective variety with canonical singularities.

— a small contraction, if codim E(φ) > 1. In this case Y has to have
non Q-factorial singularities.

1.5.

In the present paper we will study Fano sheaves on smooth 3-dimen-
sional Fano varieties. One motivation for studying such sheaves comes from
the following. Let X be a smooth 4-dimensional Fano variety admitting a
scroll structure p: X —» Z, without divisorial fibers, over a normal variety Z.
Then from [AW, theorem 4.1 and remark 4.12] it follows that Z is smooth
and X is a projectivisation of a coherent sheaf from Z. Moreover, from
[BW, lemma 3.4] it follows that Z is a Fano variety. Now we know that p is
an extremal ray contraction, and if we assume b2(X) = 2, then b2(Z) = 1.
If the dimension of Z is at most 2, then X is a projective bundle of rank
(dimX — dim Z + 1) over Z, and Z is the projective space P 1 or P 2 . In the
first case one can easily check that X = P P i (O 4 ) or X = P P i ( O 3 Θ O(l)).
The second case was studied by Szurek and Wisniewski in [SzW3] and
completely settled. In this paper we study the case: dimZ = 3. We
will completely classify all such manifolds X, some of which occur to be
projectivisations of non-locally free sheaves.

We will divide studying of Fano sheaves on Fano 3-folds according to
the index r(X) of X. The main idea in all cases remains the same, but there
are some differences in numerical data. We use here classification of Fano
threefolds in essential way (in particular we use the bound for the degree
of Fano 3-folds of index 1). Fano threefolds of index 2 and degree d are
denoted by V^. The next section is devoted to some general facts and then
in sections 3-6 we deal with technically the most difficult case of sheaves
o n P 3 .
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§2. Ample sheaves and vanishing theorems

Let us recall that a sheaf £ is ample (resp. nef, big) if (9(1) is ample

(resp. nef, big) on P(£) .

LEMMA 2.1. Let S be a Banica sheαf over α smooth protective variety

Y and let p: P(£) ~^Y be a natural projection. Then for any coherent sheaf

T on Y and any n ^> 0 there is a natural isomorphism

and the following equality

holds for i > 0.

Proof The same as in the case of vector bundles (cf. [Ha2, lemma 3.1]).

It should be only proved that i?p*(Oχ(n)) = 0 for i > 0, n > 0. This

equality follows immediately from the theorem 1.3.1. Π

COROLLARY 2.2. Let £ be a Banica sheαf of rank 2 on P 3 . If cι(£) =

0, 1 and 8(1) is nef and big then ί P ( P 3 , £ ) = 0 for i > 0.

Proof. It follows from the lemma, Leray spectral sequence and

Kawamata-Viehweg vanishing theorem on P(£) . D

Remark. The vanishing theorem of le Potier (see [SS, theorem 5.17])

fails for non-locally free sheaves even if the sheaf is Banica with isolated

singularities, i.e., it is not generally true that if K* ® S is ample then

Hq(X,E) = 0 for q > r = rank£. A simple counterexample to this expec-

tation gives the following sheaf E of rank 2 on P 3 :

0 —> O(-l) —> O3 —• E(S) —> 0,

as K* ® E is ample but / ι 2 (P 3 ,£) = 1 / 0 .

THEOREM 2.3. Let £ be as in lemma 2.1. The following statements

are equivalent:

1) the sheaf E is ample.
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2) for any coherent sheaf T the sheaf'T'® (£ n (£))** is globally generated

by global sections for n ^> 0.

Proof. The same as the proof of [Ha2, theorem 3.2] (the assumption

on projectivity of Y is valid). Π

LEMMA 2.4. Assume that T is a coherent sheaf on P n with zero-

dimensional singular locus, n > 3 and the homological dimension of the

sheaf T is at most 1. Moreover let us assume that J~\γ>2 is a decomposable

bundle for some P 2 . Then the sheaf T is also a decomposable bundle.

Proof, (cf. [OSS, /, theorem 2.3.2] and [SRS, theorem 2.5]) For general

P n - i containing P 2 from the assumption T\-pn-\ is locally free and splits

(this needs some easy extra argument). In particular from Horrock's crite-

rion: i P ( P n - \ j η P n - i ( £ 0 ) = Ofor 0 < z <n- 1, k e Z.

Let us consider the divisorial sequence:

0 — > T ( k - l ) —> T{k) —> (f\Pn-i)(k) —+ 0.

Similarly as in [OSS] ί P ( P " , T ( k ) ) = 0 and Hτ{Pn,^*(fc)) = 0 for 2 < i <

n — 1 and k G Z. Now let us look at the spectral sequence of local and

global Ext functors:

Eψ = ίfp(Ext 9(.F, Ό)) =» Ep+q = Extp+q(T, O).

From our assumptions Ext9(jF, O) — 0 for q > 2 and Ext1(J?Γ, O) is a

coherent sheaf with support at points where T is not locally free.

It follows that Eψ = 0 for q > 2 and q = 1, p > 1. Now from the Serre

duality theorem there is the following exact sequence:

0 -> Hι(T*) — > Hn-ι(T®ω)f — > i ^ ^ , ) )

— > H2(^) — > Hn-2{T 0 ω)' -> 0.

Therefore E x t 1 ^ , O) = 0 and ̂  is locally free. Hence ^ splits. Q

We will need the following easy, technical lemma in the sequel:

LEMMA 2.4.1. Let E be a Banicά sheaf of rank 2 on P 3 . Let us

assume that hι(E) — h2(E) = 0 and for some P 2 which does not contain

singular points of E we have hι{£|P2) — 1. Let T be a non-zero element of

Ext1(E(k)\p2,OP2(k-3)), andQ be a non-zero element of'Ext1 (E(k),O(k-

3)) for some integer k. Then it follows that Q\p2 = T. If moreover T splits

on P 2 , then Q splits too.
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o.

Proof The divisorial sequence:

o—>ε(-i) — > ε —

gives an exact cohomology sequence:

o - H\ε) —• H^ε^) -^ H2(ε(-ι)) —> H2(ε) = o.

Now let us consider the following diagram:

δ'

2, e > p 2 ( - 3 + A;)) ~

Since δ is an isomorphism, δ1 is also an isomorphism, dimExt1(^(fc), O(—3+

fc)) = 1 and C/|p2 = ^". The last statement of the lemma is obvious because

of lemma 2.4. •

Suppose that ε is a vector bundle over a smooth manifold X. Then

there is a Leray-Hirsch formula allowing us to compute the intersection

product on the projectivisation P(£) . I*1 general there is no such formula

for sheaves but in the case of sheaves of rank dim X — 1 we have the following

lemma which allows us to compute intersections on P(£) . Below B*(X)

denotes the ring of algebraic equivalence classes of cycles on X and Bk(X)

stands for a group of classes of codimension k cycles.

LEMMA 2.5. Let ε be a rank r = n — 1 Banica sheαf on α smooth

manifold X of dimension n and let F\,..., F/- be the fibers ofp: P(£) —• X,

corresponding to singular points of the sheaf ε. Denote k = c n (£). Then

ΐ = l

Here R denotes the following relations: Y^I-Q(—1]

Fi, FiFj = 0 for i φ j , F? = (—l) r, Fiξ = p*(x), where x is a general point

ofX, and Fi-p*(V) = 0 for any V G B*(Y).

Proof Let p i , . . . ,p/~ denote singular points of ε and let Z = [Ji=1 i7*.,

T = Y - {pi,... ,p/c}, U = X - Z. Of course FiFj = 0 for i φ j and
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£ = p*(x), because ξ\F. = OPr(l). Denote i : Z ^ X , j : U —> X. From
[Ful, example 10.3.4] there is the following exact sequence:

(*) B(Z) —• B(X) —> B(U) —> 0

It is known that:

B(U) = B{T)[i)/(J2{-l)Ycτ{ε) • ?-* = oY

Therefore in B(X):

r k

?'* = ΣaiFi e ker f = imi*

for some α .̂ Intersecting both sides of this equation with F{ we obtain:

Now let T denote an extension of S by O(k) for some k ^> 0. We have the

following exact sequence:

0 —> NF%/p(gj —> NF./p(f) —• ^P(£:)/P(^)IF< -^ 0.

Here P(5) is a smooth divisor from the linear system
C ( ^ ) l ^ = O{1) and © ( ί O k = O, so iVP ( £ ) / P (^|F t = OF i(l). We also
know that JVF i / P(^ = Or+\ hence Nκ/X ~ ΩF,(1) and ί;2 = Cr(NFi/x) =
( - i r = αi.

Since FiΠU — h G Pic Fi generates Pic F̂  and it is algebraically equiv-
alent to subvarieties of U not intersecting ft, we see that ft = 0 in B*(X).
Now B(X) is generated by £, i<i,... ,Ffc and -B(l̂ ) as Z-algebra, so it is
straightforward that there are no other relations in B{X). Π

COROLLARY 2.6. Let E be a Bάnica sheαf of rank 2 on a Fano 3-fold

with 62 = l £e£ h be a generator of the Pίcard group and ft3 = d. Then:

HA = 0, # 3 £ = d, i ϊ 2 ξ 2 = dci, F ξ 3 = dc? - c2, ^
4 - dcf - 2cλc2 + c3,

where H denotes a pull back of h.

Proof. It is immediately obtained from the previous theorem and an
obvious remark that HA = 0 and H3ξ = d. D
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LEMMA 2.7. Let £ be a rank 2 Fano sheaf on P 3 and aH + bξ be a
nef divisor on P(£). 2/ c\ = 0 or 1, £/ien α > 0, 6 > 0.

Proof. It is easy to see that 6 > 0. So let us assume that a < 0. Then
(αiJ + &£) + (—a)H is ample, hence £ is an ample sheaf. If we restrict £ to
the general line L we obtain:

£\L = G>L(C) θ OL(d), c + d = ci, where c, d > 0,

which is impossible. D

§3. Classification of rank 2 weak Fano sheaves on P 2 with c\ = — 1

DEFINITION 3.1. A sheaf E on X is weak Fano i/P(£) zs α smooth
weak Fano variety, i.e., —Kp^ is nef and big.

This is a natural generalization of Fano sheaves. We will use it in
classification of rank 2 Fano sheaves on P 3 . It occurs that the restriction
of such sheaf to a general plane is weak Fano.

In this section the following notation is used: £ is a weak Fano sheaf
of rank 2 on P 2 , cχ{£) — — 1, X = P(£), p: X —> P 2 a natural projection,
H = p*(C?p2(l)), ξ the divisor OP(£)(1) on X, φ:X —• F a "contraction"
from theorem 1.3.2 for Z> = ξ + 2H {-Kx = 22? is nef and big, so the
assumptions of the theorem are valid), A an ample divisor on Y\ such that
φ*A - D.

THEOREM 3.2. Let £ be a rank 2 weak Fano sheaf on P 2 , cχ{£) = - 1 .
5(2) is globally generated and £ is of the form:

1. -2, O ( l ) e O ( - 2 )

2. 0, 0 Θ 0 ( - 1 )

3. 1, 0 -> O -> f -»• Jχ(-l) -»• 0, a; € P 2

or equivalently:
0 -^ O(- l ) -> C>2 Θ O(2) -^ 5(2) -»• 0

4. 1, T p 2 (-2)
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6. 3, O ^ O ( - l ) 2 3

7. 4, O^O(-l)3

8. 4, 0^O(-2)

9. 5, O ^ O ( - l ) φ

Proo/.

3.2.0. Let us recall the intersections of divisors on X:

H3 = 0, H2ξ = 1, Hξ2 = - 1 , ξ3 = 1 - c2

Since 0 < (—-Kχ)3 = 8(7 — C2), so C2 < 6. Using Kawamata-Viehweg
vanishing theorem and Riemann-Roch formula on P 2 we obtain:

A(Y,A) = dίmY + A3-h°(Y,A) = 3 + (7 - c2) - (9 - c2)

Now from the sectional genus formula (cf. [Fuj])

Naturally g(Y,A) = g(X,D) = 1 for χ(Y,tA) = h°(Y,tA) = h°{X,tD) =

Observe that F has rational singularities, so it is locally Cohen-

Macaulay. Therefore (Y,A) is a Del Pezzo variety by [Fuj, theorem 1.6.5].

In particular Bs\A\ = 0 for c2 < 5 (see [Fuj, 1.6.2]) and 5(2) is globally

generated. This will be used for the description of E if c2 ~ 4 or 5.

Now assume that i ϊ°(£( — 1)) ^ 0 and let s be a non-zero section of

£( — 1), Z = {s = 0}. \ϊ Z φ 0, then for a line intersecting Z in finitely

many points:

θ O(e) d > 1, d + e = - 3 ,

in contradiction to the ampleness of 5(3). Hence Z = 0 and 5 ~ 0(1) θ

3.2.1. Now let us assume that H°(£(-!)) - 0, iϊo(£:) ^ 0 and set

s € H°(£), Z = {s = 0}. We consider the following cases:

3.2.1.1. Z = 0 Then 5 ~ C
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3.2.1.2. Z consists of one point. In that case section s gives rise to
the sequence

o —• o —> ε —> Jx(-ι) —> o.

Observe that hl(8(l)) = 0, hι{8) = 1 and h?{S) = 0, so there exists
exactly one non-trivial extension T G Extx(5(2), O(-l)) ~ Hl(S)' of £(2)
by O(-l) . Hence i ί 2 (^(-2)) = 0, ^ ( ^ ( - l ) ) = 0 and by the Castelnuovo-
Mumford criterion T is globally generated and it is a Fano bundle on P 2 .
From [SzW3] it follows that T ~ O2 θ (9(2).

3.2.1.3. Z contains at least 2 points. We consider a line L containing
two points from Z. Of course L is not contained in Z for H°(8(—1)) = 0.
Therefore:

ε\L = O(d) θ O{e) d > 2, d + e = - 1 ,

so 5(3) is not ample, a contradiction.

Remark. In fact we proved here that if 5(3) is ample then S is of the
form 1, 2, 3 from the theorem or £ is stable (so C2 > 0). We will use this
remark in section 6.

From now on we can assume that c^ > 1, H°(8(k)) = 0 for k < 0 and
from Serre duality: H2(S(k)) = 0 for k > -2.

3.2.2. c2 = 1, 2,3 Since χ(£(l)) = 4 - c2 > 0 we have #°(£(1)) ^ 0.
Moreover for 5(2) is nef, the order of a jumping line r is < 1 (according to
Hartshorne's notation [SRS1, p. 141]). From theorem 6.2, [ibid.] we find

0ίoτ k> 1.

3.2.2.1. c2 = 1 By the Riemann-Roch formula hι(8) = χ(5) = 0
and /ι2(5(—1)) = 0. So by the Castelnuovo-Mumford theorem 5(1) is
globally generated and 5 is a Fano sheaf. Now it is easy to see that
5 ~ Γp2(—2), e.g., using the Beilinson spectral sequence cf. [Be] or [OSS,
//, theorem 3.1.3] (alternatively one can check that /ι°(5(l)) = 3, so the
kernel of natural surjection O3 —> 5 is a line bundle, which is completely
determined by its first Chern class; by Euler's sequence we get the required
isomorphism).

3.2.2.2. c2 = 2 Then h}{8) = 1, h°(8(l)) = 2, /ι°(5(2)) = 7. Now we
use the Beilinson spectral sequence for 5(2):
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0

O(-l)

0

ε

0
0

Ω(l)2

ε(i)

0

0

o7

ε(2)

So we obtained the following exact sequence:

0 —>O(-1) —> T —

Here T — O 7 /Ω(l) 2 is a rank 3 globally generated bundle with Chern classes

cx{T) = 2, c2(T) = 1. Therefore T is a Fano bundle and T ~ Ό(\f Θ Ό

(see [SzW3]). We have case 5 of the theorem.

3.2.2.3. C2 = 3 Similarly as in 3.2.2.2 we obtain 6 from the theorem.

3.2.3. c2 = 4

3.2.3.1. If h°(8(l)) = 0, then by the same method as before we obtain

the sequence

o —> o(-if —> ob —> ε{2) —> o.

3.2.3.2. Now assume that h°(£(l)) φ 0. In 3.2.0 we proved that 8(2)

is globally generated. Now let us consider the kernel T of evaluation 0 5 —>

8(2). Naturally JF* is a rank 3 globally generated vector bundle on P 2 , so

by Serre lemma ([OSS, I, 4.3.1]) we have an exact sequence:

0 O Q{2) — * 0,

where Q is a rank 2 vector bundle with Chern classes c\(Q) = — 1, C2(G) — l

In this case Q is a weak Fano sheaf, for Q(2) is globally generated. Therefore

from 3.2.2.1 it follows that Q ~ T p 2 ( - 2 ) . Because dim Ext1 (Q (2), O) =

d i m ϋ r l ( g ( - l ) ) / - dimi3 r l (T p 2 (-3)) - 1 we have JF* - O θ T p 2 or T* ~

0(2) θ T p 2 ( - 1 ) . But the first case cannot happen for E^(T) = 0, so

) Ό(—2) and we have an exact sequence:

Applying the classification of Fano bundles on P 2 we get O 5/Ω(l) ~ O ( l ) θ

O2.
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3.2.4. c2 = 5 Then h°(£(2)) = 4 and h°(£(l)) = 0 by the criterion of

Nakai-Moishezon ((£ + H)D2 = 4 — c2 < 0). Now we already know that the

bundle £(2) is globally generated, so for some bundle T we get the sequence

0 —> T{-2) —>OA —• £{2) —> 0.

As before T* is weak Fano and F - O θ O(-l).

3.2.5. C2 = 6 We will prove that this case cannot occur. On the

contrary assume it can happen. In 3.2.0 we proved that φ:X —> Y is a

crepant resolution of Del Pezzo variety of degree 1 (i.e., A3 = 1). In that

case the base scheme of \A\ is a smooth point y (cf. [Fuj, 1.6.14]). Therefore

the base scheme of | D | is also a point x (the preimage of y under φ). From

this one can easily see that £ fits into the following exact sequence:

o -> e> p 2 (-3) -U e>jL2 —> ε(2) —> Op -> o,

where P = p(x). The inclusion i is given by three forms 0o, 0i, </>2, of

degree 3 vanishing at P.

If we blow up X at the point x we obtain a smooth manifold Z, which

is a divisor in P 2 x P 2 given by the equation

where [#o?#i>#2] are homogeneous coordinates in the first copy of P 2 , and

[i/Oj yi> 2/2] in the second one. We will prove that there are no smooth man-

ifolds in P 2 x P 2 satisfying such equation for any forms φi having one

common zero in P 2 .

Without loss of generality we can assume that P — [0,0,1]. The singu-

lar locus of Z is given by the following system of equations:

dφ

for i = 0,1, 2. From these equations we infer that [XQ, #1, X2] = [0, 0,1], and

the system is equivalent to

2 r, 1

^•(0,0, l)yj = 0 for i = 0,1, 2.
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But ^ Γ (0,0,1) — 0> s o this system has always a non-zero solution. In

particular Z has a singular point on the exceptional divisor of the blow up,

a contradiction.

This completes the proof of our theorem. Π

COROLLARY 3.3. Let T be a globally generated bundle of rank 2 on

P 2 with the first Chern class cι(T) = 3. Let us denote 8 = T(—2). Then

8 is of the form 1-9 from theorem 3.2 or 02(8) = 7 and 8 can be put in the

form:

(3.3.1) 0 —> C>(-3) —> O3 —> 8(2) —> 0.

Proof At first let us remark that —Kp^ — 2£jr is nef because T is

globally generated. It follows that

If 02(8) < 6, then theorem 3.2 implies that 8 is a bundle of the form 1-

9, theorem 3.2. So we can assume 02(8) = 7. As in 3.2.4 we prove that

h°(8(l)) = 0. Because 8(2) is globally generated so the maximal rank of

the jumping line r < 1 (see 3.2.2). Using [SRSl, theorem 6.2] we obtain

hι(8(2)) < 1. Now the Riemann-Roch theorem implies:

From this it can be easily seen that 8 is of the form 3.3.1. Π

Remark. Using corollary 3.3 one can easily describe globally generated

bundles of rank r > 2 with c\ = 3 on P 2 . The structure of such bundles

can be described using [SzW3, lemma 3.1]; all of them are extensions of the

bundles of the same type but of the lower rank. Unfortunately there are

already 38 such bundles of rank 3.

§4. Divisorial contractions

THEOREM 4.1. If φ:X —> Y is a divisorial contraction, X is smooth,

E is an exepctional divisor of φ, dim φ(E) — dimE — 1, C is a general fiber

of φ\E: E -» φ{E), then C ~ P 1 and C E = -I, Kx C = - 1 . Moreover

if X is Fano and p(X) = 2, then ~Kχ + E is a good supporting divisor for
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Proof. This is an immediate consequence of [A, theorem 2.1]: there

exists a Cartier divisor L on X such that (C, L\c) — (P 1 ,Opi( l ) ) and

ω c = oc((-p-q)L), where Oc(-Kχ) ~ Oc(p£) and OC(~E) ~ Oc(?i),

p, g > 1. Since α pi ~ Opi(—2), p = g = 1 and we have the first part of

theorem. The other one is obvious for (~Kχ -f E) C = 0. Q

Remark. The following more general theorem is also valid: if C is a

one-dimensional fiber, then in some neighborhood of C, φ is the blow down

of smooth divisor E to a smooth subvariety of Y (cf. [A, theorem 2.3] and

[AW1]). But we will use only this simple version of this theorem.

THEOREM 4.2. Let ε be a rank r > 2 Fano sheaf on Pn, n > 2 and

assume that the "other" contraction φ:X = P(£) •—• Y is diυisorial, E, C

are as above. Then k = H C is positive and divides ( r +^~2) In particular

for r = 2 it follows that H C = 1 and — Kx — H is a good supporting

divisor for φ.

Proof. We have the following equalities:

-Kx = rξ + [n + 1 - ci)£Γ, ci = ci(f)

E = aξ + bH, a,be Z.

If we apply theorem 4.1 we obtain:

-Kx • C = 1

for general fiber C of morphism φ\g. Let A; = H • C > 0. We set Z)R :=

—Kx — TH- This is a good supporting Q-divisor for φ, because DR • C = 0.

One can also see that E + —H is also a good supporting divisor for φ.
rZ

Therefore comparing coefficients with ξ, we get

(4.2.1) E+\H = -DR.
k r

Now if we compare coefficients with H we get:

(4.2.2) l^jn + l-ή-Jj-ieZ.

Hence k divides j ^ = —Mτ^ττfr ~" T^r)(n + 1 ~ ci)]> where (α,r) stands
for the greatest common divisor of a and r. Naturally we have also the
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following equalities: Hn+ι = 0 and Hnξr~ι = 1. Moreover we know that
1-cycle Dr^n~2E is numerically trivial. Hence by (4.2.1) we get:

D -
r R k

(4.2.3) -D = -HD
v ) r R k R

If we multiply both sides of (4.2.3) by ^ r and substitute DR = rξ + (n +
1 - ci - \)H, we get:

(the sum of ξpHq with integral, divisible by &, coefficients I

_
((n + 1 - Cl)k - l ) - i

+ (the sum of 2ξpHq with integral, divisible by & coefficients).

From this equality it follows that φ^ divides ( ^ " ^ ( ( n + 1 - ci)fc - l ) n .

Now we can choose r\ and r<ι such that: τ\T2 — T^\-> ri divides ((n + 1 —

cλ)k - l)n and r2 divides f ^ " 1 ) . Then

- 2

so

Because k divides P=^ and (ri,fe) = 1 it follows that k divides (r+^~2)
The last statement of the theorem is obvious for k must be equal to 1 and
DR = -Kx -H, D

From now on in the next two sections we will consider the following
situation: E is a rank 2 Fano sheaf on P 3 , normalized in such a way that
c\ — 0 or —1 and φ: X — P(£) —> Y is the "other" contraction. In this
section we will assume in addition that φ is divisorial. Let E denotes the
exceptional divisor for φ.

LEMMA 4.3. Let E be as above. Then cs = 0, C2 < 1 or the Chern

classes of the sheaf E are of one of the following types: (—1,2, 2), (—1,3, 5),

(-1,3,7), (-1,4,10), (-1,4,12), (-1,5,17), (0,1,2), (-1,1,3).



152 A. LANGER

Proof.

4.3.1. Let us assume that dimφ(E) = 2. First observe that c\{£) =

— 1, because otherwise P(£) would be a Fano 4-fold of index 2 and then

this type of contraction can not occur. Next, applying theorem 4.2 we get

that — Kx — H = 2(ξ + 2H) is a good supporting divisor for φ. Then by

(4.2.2) we know that 6 = 2α - 1 and by (4.2.3):

It is easy to see that a > 0 for otherwise —H — E+(—a)(ξ + 2H) is effective.

Since φ is divisorial:

0 < (ξ + 2Hf = 15 - 6c2 + c 3

0 < H(ξ + 2 ί ί ) 3 = 7 - c2

and from the above equalities:

(4.3.1.1) α(15 - 6c2 + c3) - 7 - c2

Now we claim that 2 < c2 < 6: this is straightforward consequence of

(4.3.1.1). Besides cic2 = c3 (mod 2) (see [OSS]) and £ |̂P2 is weak Fano.

If we take it into account we obtain the following possibilities:

a) c2 = 2, c3 = 2, a = 1

b) c2 = 3, c3 = 5, a = 2 or c 3 = 7, α = 1

c) c2 = 4, c3 = 10, α = 3 or c3 = 12, a = 1

d) c2 = 5, c3 = 17, α = 1

4.3.2. Now assume that dim φ(E) < 1. Then the 1-cycle Z?|,E is

numerically trivial. DR and E are positive multiples of (£ + zxiί) and (ξ +

i>ίf), respectively, where ϋ, υ E Q. So we have the following equalities:

c2 + 2ci^i + u2

c 3 + 2(ci2 - c2)t6 + c\u2 + (ci2 - c2 + 2cii6 + u2)v
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Comparing these two formulas we get the following equality, involving only

ci5 C2> c 3 and u:

(4 3 2 1) ( C χ C2

( + 2 O ( 3 - 2cχc2 + c3 + 2(ci2 - c2)u + ciix2) = 0

Therefore u is an integer (for Z is integrally closed in Q). Now let us

write — Kx by means of DR and H:

-Kx = 2(£ + 2H) + (4 - a - 2u)iϊ

For — ϋΓx is ample, so 4 — c\ — 2u > 0 and by lemma 2.7 we have the

following possibilities:

a) if c\ = 0, then u = 0 or t£ = 1

b) if ci = —1, then τz = 1 or ι/ = 2

We will consider each of these cases separately, taking into account the

following inequality:

(4.3.2.2) D4

R = (ξ + uH)4>0.

4.3.2.3. (ci = 0, u = 0) Then by (4.3.2.1): c2 = 0, C3 = 0, but £ 4 = 0,
which contradicts (4.3.2.2).

4.3.2.4. (ci = 0, u = 1) By (4.3.2.1): 2c3 = (1 + c 2 ) 2 . Then ξ + H is

nef, so P(5|p2) for a general plane is Fano. Therefore by [SzW2] we have

the following possibilities:

a) c2 = - 1 , c3 = 0, {ξ + i f ) 4 - c3 - 4c2 + 4 = 8

b) c2 = l , c 3 = 2,(ξ + # ) 4 = 2

c) c2 = 3, c3 = 8, (ξ + H)4 = 0 — in a contradiction to (4.3.2.2).

4.3.2.5. (ci = 0, u = 1) By (4.3.2.1): 2c3 = c | Then P ( £ | p 2 ) is Fano

and by Nakai-Moishezon criterion: (ξ + H)SH = 1 - c2 > 0, so c2 < 0. As

above the only case is:

c2 = 0, c3 = 0, (ξ + H)4 = 1

4.3.2.6. (ci = - 1 , u = 2) By (4.3.2.1): 3c3 = (c2 + 2)2, P ( f | p 2 ) is

weak Fano, so by theorem 3.2 we get:
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a) c 2 = - 2 , c 3 = 0,

b) c 2 = 1, c 3 = 3,

c) c 2 = 4, c 3 = 12.

D

THEOREM 4.4. A classification of a rank 2 Fano sheaves E on P 3

with a divisorial contraction:

N o . C\ C2 C3 £

1. -1 0 0 Oeθ(-l)
2. 0 - 1 0 0 ( l ) φ O ( - l )
3. -1 -2 0 O(l)9θ(-2)

5. -1 4 12 0—>O(-2)—>O{l)®O2—• £(2)—>0

8 . - 1 3 5 0 —> O(-l) —> Ω(2) —
or

9 . - 1 3 7 0—>θ\-l) 2 —>O(1)ΘO 3 —> f(2)—>0
lo. - l 4 lo o—>e>(-i) 3—>o 5—>ε{2)—^o

Proof

Remark. Proofs of theorems 4.4, 5.2 and 6.2 are not independent: we
prove only that if the contraction is divisorial (respectively: fiber, small),
then there are only the following possibilities. The fact that the con-
traction of the sheaf is exactly of such type as we suppose follows from
computations—we obtain either different Chern classes or this can be eas-
ily seen.

First note that there does not exist Fano sheaf with Chern classes
(—1, 5,17) (we use notation: (ci, C2, C3)). It can be easily seen that h°(E(l))
= χ(8(l)) = l/2(c3 + 10 — 5c2) = 1. But from the divisorial sequence:

(4.4.1) 0 —• ε —> ε{i) —> £(i)|P2 —> o

and from theorem 3.2 it follows that /ι°(£(l)) = 0, a contradiction.
Cases C3 = 0, C2 < 1 are simple and done in [SzWl] (one can also obtain

them by restriction to P 2 ) . Next, we consider remaining cases:
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4.4.2. (0,1, 2) By fact 1.2.4 one should only prove that £(1) extends

(which is the case if ίί 2((£(l))*) = 0) and use the classification of numeri-

cally effective bundles with first Chern class equal to 2, see [PSW1], From

a long exact cohomology sequence for (4.4.1) twisted by Ό{—1) we get:

H\ε\v,) —> H2(ε(-i)) = H2((ε(i))*) -^ H\ε) = o

Since £|p2 is Fano bundle: Hι(£\γ>2) — 0.

In the remaining cases the sheaf £|P2 is a weak Fano, since 8(2) is nef

by theorem 4.2.

4.4.3. (—1,4,12) Applying (4.4.1), theorem 3.2 and lemma 2.4.1 we

know that there exist non-trivial extension T\

0 —• O(-2) —> T —> 5(2) —> 0

such that T ~ (9(1) Θ 0 2 .

4.4.4. (—1,1,3) We know S\pi and by Serre construction:

0 —> O —+ S —> J L (-1) —> 0,

where L is a line in P 3 . Now we can use lemma 2.4.1 to get a non-trivial

extension T\

o —> σ ( - i ) —• T —• ε(2) —> o,

where T ~ O(2) 0 O2. This gives case 6 of our theorem.

In the remaining cases we compute cohomology of £ using known co-

homology of £|p2, divisorial sequence and the Riemann-Roch formula for

4.4.5. (-1, 2, 2) Observe first that #2((£(2))*) = # 2 ( £ ( - 1 ) ) = 0, so

by fact 1.2.4 there exists non-trivial extension T of £(2) by 0, where T is

locally free. From cohomology exact sequence we get:

H2(S(-2)) - ^ ii3(e>(-4)) —> H3(F(-4)) —> ϋ r 3 (£(-2)) - 0,

so by non-triviality of δ: H3(T(—4)) = 0. One can compute the rest of

cohomology of T(—k) (k = 1,2,3,4) using cohomology of £(—k + 2). In

particular dim Ext1 [T, O) = h2(T(—4)) = 1. So there exists a non-trivial

extension Q\

0 —>O —>G — > T —> 0.
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Computing cohomology of sheaves G{k) for k = — 1 , . . . — 4 and using the
Beilinson spectral sequence for G(—l) we get:

0 —> 0(1) —+ Q —> Ω(2) —> 0.

Now because Ext1(Ω(2), O{1)) = 0, so Q ~ Ω(2) Θ Ό{\) and we get case 7.

4.4.6. (—1,3,5) From the sequence

o = SVIPO — HHεi-i)) — H\ε)
\ — H\ε(-1)) -+ #2(£) = o

and /ι1(ί) = 1 we can only deduce, that hl(E(—1)) < 1. Suppose for a
moment that hl(S(—1)) = 1. Then /ι2(£(—1)) = 2 and from the Beilinson
spectral sequence:

o —> e>(-i)2 —> T —> ε(2) —> o,

for some globally generated sheaf T with cχ(^) = 1, C2(JΓ) — 0. As
above T ~ O3 0 O(l) in contradiction to C3(£) = 7. So we proved that

(—1)) = 0, h2(ε(—1)) = 1 and from Beilinson spectral sequence:

(4.4.6.1) 0 —> O(-l) —> σ 6 /Γ p 3 (-2) =T —> £{2) —> 0,

where T is possibly non-locally free. We claim that in fact this sheaf must
be locally free. Applying to twisted (4.4.6.1) a functor Ext we get the dual
sequence:

0 — (£(3))* — (JF(1)) — JY — 0,

where Y is a finite set of points (a support of Ext1(^(3), O)). Using
Ext1(Jy, Op3) = 0 (see p. 690, [GH]) and dualizing once more we obtain
the following canonical diagram with exact rows:

(£(3))** > Ext1 (Jγ,O)

I
ε(s) > o
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By lemma about 5 isomorphisms T is reflexive. Let us now consider
the sequence:

o—>o -UT—>g —>o

For a general section s a sheaf Q is locally free besides finite number of
points, where T is singular. Similarly as above one can easily prove that Q
is reflexive, so Q ~ JV(1). Because Ext1(ΛΓ(l), Ό) = 1, T ~ JV(1) Θ Ό or

4.4.7. (—1,3,7) This can be easily obtained by the use of Beilinson
spectral sequence.

4.4.8. (-1,4,10) If h2(S) φ 0, then as in 4.4.3 we prove that E looks
like 5—a contradiction. Hence h2(S) = 0 and by Beilinson spectral sequence
we get case 10.

Let us remark that in all cases we have an exact sequence of the form:

σo —> g -% T —• ε(2) —> o,

where T, Q are locally free and the sheaf Hom(<7, T) = Q* (g> T is gen-
erated by global sections. Therefore by [BW, lemma 3.1] for generic σ G
Hom(<5, JF), S{2) is a Banica sheaf and P(£) is a smooth Fano variety. Π

§5. Fiber contractions

We use notation compatible with that before theorem 4.2 assuming φ
is a fiber contraction.

LEMMA 5.1. Let £ be as above. Then c% — 0; c<ι < 1 or Chern classes
of the sheaf E are of one of the following types: (0,2,4), (0,3,8), (—1,3,3),
(-1,3,7), (-1,1,1), (-1,5,15), (-1,7,27). Moreover ε(2) is nef

Proof. Let DR = ξ + uH denote a good supporting Q-divisor of φ.
Then Dji = 0 (see [A, lemma 1.4]). Furthermore by Nakai-Moishezon
criterion D^H > 0. Corollary 2.6 leads now to:

(5.1.1) {ξ + uHf - 0 ^ 4 t ί 3 + 6clU

2 + 4(ci2 - c2)u + C l

3 - 2cλc2 + c3 - 0

(5.1.2) (ξ 4- uHfH > 0 <=> 3u2 + 3cλu + cλ

2 - c2 > 0

By similar arguments as in divisorial case:

-Kx = 2(ξ + uH) + (4 - ci - 2u)H,
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where

(4 - ci - 2u)H > 0.

By (5.1.1), if we write u = | , (α, 6) = 1, α, b G Z, then 6 | 2. Combining

the fact that C2 > 0 or a sheaf is decomposable bundle (by classifications of

Fano bundles and weak Fano bundles on P 2 ) with lemma 2.7, (5.1.1) and

(5.1.2) we get the lemma (the last statement is obvious). Π

THEOREM 5.2. Classification of rank 2 Fano sheaves on P 3 with two

fiber type contractions:

C\ C2 C3

1. 0 0 0 O θ O

2. 0 1 O N — null correlation

3. 0 2 4 0 — > O ( - 1 ) 2 — > O 4 -

4. 0 3 8 0 —> 0 ( - 2 ) —> O3 —

5. - 1 1 1 0 — > O ( - 1 ) — > O 3 — > £ ( 1 )

6. -1 5 15 0—>O(-ϊ)®O(-2)—>O4

7 . - 1 7 27 0 —> O{-3) —> O3 —> f (2) —• 0

Proof We first exclude cases (-1,3,3) and (-1,3, 7). In case (-1,3, 7)

ξ + | i 7 is nef, so <?|P2 is Fano—this is impossible by [SzW2]. As for the

other case we have the following commutative diagram:

y
Φ'
/

Clearly on Y there exists an ample divisor A such that: φ*A = ξ + 2iί

and £ + 2.ff|x/ = (^')*^ H e n c e w e S e t : h°{Y,A) = /ι°(P2,£(2)|P2) =

/ι°(P3,£:(2)). On the other hand: /ιo(P2,f(2)|P2) = 6 and /ι°(P3,£(2)) =

χ(f (2)) = 5 from corollary 2.2 and the Riemann-Roch theorem a contra-

diction. By [SzWl] we get sheaves with c% = 0.

5.2.1. (0,2,4) It can be easily obtained by the same arguments as in

4.4.2.

5.2.2. (0,3,8) As in 4.4.3.
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5.2.3. (—1,1,1) By a similar argument as in 2.2 we prove: Hι(£(—i +

l)) = O f o r i > 0 . Hence we can use the Castelnuovo-Mumford theorem for

6(1) to derive theorem in this case.

Remark. It is known that every stable reflexive sheaf with Chern

classes (—1,1,1) derives from sequence 0 •—> O(—2) —> Os —» £(1) —» 0 (see

[SRS1, lemma 9.4]).

5.2.4. (-1,5,15) Then if0 (£(2)) = χ(£(2)) = 4. Let us consider a

sequence:

0 -> ker(e^) —> O 4 -^> £(2) —• coker(e^) -+ 0

A sheaf ker(e^) is reflexive (see [OSS, II, lemma 1.1.16]) and coker(e^) is

concentrated in the singular points of £(2), for £(2)|P2 is globally gener-

ated (a weak Fano sheaf on P 2 ) . On the other hand theorem 3.2 yields

ker(eϋ)|p2 ~ O ( - l ) Θ O(-2) . Therefore coker(β'u) = 0 (see [SRS1, lemma

2.7]).

5.2.5. (-1,7,27) It is easy to see that diml" = 2 (see [A, p. 356]).

There exists an ample divisor AonY such that ξ + 2H — φ*A. We know

that A2 < (ξ + 2H)2H2 = 3, Y is smooth by [AW, theorem 1.4.1] and

p(Y) = 1, hence A2 — 1. Moreover it is immediate that Δ(Y, A) = d i m F +

A2-h°(A) = 0, so (Y,A) - ( P 2 , O p 2 ( l ) ) by [Fu]. Therefore £(2) is globally

generated (cf. [BW, p. 18]). This leads to the sequence 7. Q

§6. Small contractions

We use notation from the last section; besides let E denotes excep-

tional set. In this case [Wl, lemma 1.1] implies C\(S) = —1. By [Ka, theo-

rem 1.1] we know that E is the disjoint sum of E{ cr: P 2 , NEijx ~ OP2 (—I)2

/X—a normal bundle E{ in X).

LEMMA 6.1. In the situation as above:

Proof. Considering the above remarks it is sufficient to show that E

is irreducible. On the contrary let us suppose that E±, E2—two disjoint
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components of E. Let C = p{E\) Π p ^ ) , C—the normalization of C.
Then we have a diagram:

Y 4 X
u

P ( £ | c )

z = P ( ( % Γ )

>

π

p3

u
c
ΐ
c

Let Ci = g 1(-E'i), C2 — q 1(-EI2) be curves in Z contracted by ψ = φq
to 2 different points and dimψ(Z) = 2. Then we have:

C12 < 0, C 2

2 < 0, Ci C2 > 0

There exist α, 6 > 0 such that aC\ — bC2 would be equivalent with a multiple
of fiber 7r, so (αCΊ — bC^)2 — 0, a contradiction. •

THEOREM 6.2. There is only one rank 2 Fano sheaf S on P 3 with a
small contraction. It has Chern classes c\{S) = — 1, C2(β) = 2, cs(£) = 4

£ is 0/ the form:

0 —• O(-l) —> O(l) 2 Θ (9 —• 5(2) —• 0.

Moreover DR = ξ + 2ίf and i? = (ξ + i ί ) 2 i5 ί/ie intersection of two divisors
from H°(ξ + H) = H°(E(l)).

Proof First notice that 02(6) > 0 (cf. the remark in 3.2.1).

6.2.1. Now we will compute in two ways Chern classes of the bundle
TP(JΓ)\EJ where T is locally free and such that:

0 —> O(k) —>F—>ε' —> 0,

and Sr — £(2), k G Z, see fact 1.2.4. Let us assume that:

and

I method:
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There are following exact sequences on E:

0 —> NE/p(£) > NE/p(jr) > Nτp(εyp(jη\E —> 0

and

0 ^ T P 2 —> TP(F)\E -^ NE/P(r) - 0.

Since P(£) is a smooth divisor from linear system |Op(jr)(ξjr ~ kH)\, so

NP(£)/P(F)\E - Op{r)(& - kH)\E ~ O(a - kd). We know that NE/P{ε) ~

O(-l)2, hence:

c(TP(T)\E) = c(TP2)c(NE/P{ε))c(NP{ε)/P(τ)\E)

= (l + 3h + 3/ι2)(l - /ι)2(l + (α - kd)h)

= 1 + (1 + a - kd)h + (a - kd - 2)h2

II method:

We have the relative Euler sequence for T, which we restrict to E:

p ( ) v{τ){ξr)\E n τ ) / Ψ \ E ^ 0

and the sequence:

0 - TP{τ)/p3\E —> TP(T)\E -^ p*(TP3)\E - 0,

where p: P(J?Γ) —> P 3 is a natural projection.

Remark. The same relative Euler sequence exists for a sheaf E on

P(S).

From these sequences it is easy to compute that:

= 1 + (d(4 - ci - fc) + 3α)ft + (3α2 - 2(cx +

+ (c2 + cxk)d2 4- 4d(3α - d(cλ + fe))

If we compare obtained Chern classes we get:

and

3α2 - 2(ci - 6)αd + (c2 - 4ci + 6)d2 + 2 - a = 0.
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If we take into account that c\ = 3 we obtain:

d = 1 - 2a

and

(4c2 - 33)α2 + (29 - 4c2)α + c2 - 4 = 0.

For Δ = 313 — 36c2 is a square of integer we reduce the problem to two

cases:

a) c2(£) = 2, α = 0, d = 1,

b) C 2 (£) = 6, α = -4 , d = 9.

6.2.2. Since Op(£)(iϊ) |£ = OP2(d) and the length of ray R equals

to 1, as a good supporting divisor DR one can take 2ξ + (5 — \)H. By

lemma 2.5 J5 G A 2 (P(^)) can be represented as:

E = bξH + cH2 + αiFi + ... + akFk,

where k = c% and a,i = E - Fi > 0. Next, we have the following equalities:

E • {-Kxγ = 1,

because of adjunction formula: — Kχ\β = (—Kβ) ® Λ

E-E = c2(NE/x) = 1

Hence one can easily obtain:

(6.2.2.1) αi + . . . + ak = ^((4c2 + 15)d2 - 8d

(6.2.2.2) αi 2 + . . . + ak

2 = 4d4 - d3 + 1

6.2.2.3. (c2(£) = 2) Then f is stable, so by [SRSl, theorem 8.2]

C3 < c 2

2 = 4. From (6.2.2.1) and (6.2.2.2) we obtain c 3 = 4, αi = . . . =
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α4 = 1. In this case E = (ξ + H)2. Applying corollary 2.2, theorem 3.2 and
lemma 2.4.1 we get desired sequence:

0 —> O(-l) —> O(l)2 ®O —> 8(2) —> 0.

6.2.2.4. (c2(8) = 6) Then:

αi + ... + ak = 772

αi2 + ... + ak

2 = 25516

We now apply the inequality between arithmetic and quadratic means:

(αi + ... + α/c)2

23 < —= 7r < k = C3
aιz + ... + akz

Hence c^ > 24. It can be easily proved, by the Nakai-Moishezon criterion
on P ( £ | p 2 ) , that iJ 0 (£(l) | p 2 ) = 0 and H°(8(l)) = 0.

By [SRS1, theorem 6.2] we get u r l(£:(2)|p 2) = 0; also we know that
# 2(£(2)|P2) - 0, hence #°(£(2)|P2) - χ(£(2)| p 2) = 3. On the other hand
[SRS3, theorem 1.1] yields H2(8(2)) < 1 and by Riemann-Roch theorem:

5 < χ(£(2)) = ^(28 + c3 - 42) < h°(S(2)) + 1

and
0 = H°(S(1)) — H°(S(2)) —> tf°(£(2)|p2),

we get /ι°(f(2)) < /ι°(£(2)|P2) — 3, a contradiction. Therefore this case
cannot occur. Q

§7. Fano sheaves on 3-dimensional quadric

Now we will be occupied with the case of Fano sheaves over the 3-
dimensional quadric. The following result may be proved in much the same
way as theorem 4.2 and lemmas 4.2, 5.1, 6.1 and theorem 6.2:

LEMMA 7.1. Let £ be a Fano sheaf of rank 2 on Q3 with c\ = 0
or —1. // the other contraction of P(£) is- fiber then either £ = O2 or
£ = S (the spinor bundle) or 8(1) is nef and 8 has Chern classes (0, 2, 0);

(0,4,8), (0,6,16) or ( — 1,2,2). If this contraction is diυisorial then either
8 = O® O(-ΐ), O(-l) Θ O(ΐ) or 8(1) is nef and 8 has Chern classes
(0,2,4), (0,1,1), (0,2,2) or (0,3,5). The small contraction does not occur.
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THEOREM 7.2. Classification of rank 2 Fano sheaves on Q3;

No. c\ C2 C3 8

1. 0 0 0 O®O

2. 0 - 2 0 O(-l)φO(l)

3.-1 0 0 oeo(-i)
4. —1 1 0 S—£/ιe spinor bundle

5. 0 2 0 τr*(N), w/iere π: Q3 —> P 3 is ίfee double cover

6. 0 4 8 0—• O(-l)2—> O4—> 8(1)—>0

8 . - 1 2 2 0—>O(-1)—> O3

9. 0 2 4 0—> O(-l)—> O2

10. 0 3 5 0 — > O ( - 1 ) — > O -

11. 0 2 2 0 — > O — > S ( 1 ) Θ

12. 0 1 1 0 — > o — • o ( i ) φ S ( i ) — > ε ( i ) — > o

Proof. To prove this theorem we will extensively use [AO, theorem 6.7].

We will consider some cases according to the Chern classes of the sheaf 8.

7.2.1. In cases (0, 2,0), (0,4,8), (0, 6,16) and (-1, 2, 2) it can be easily

proved by lemma 8.1 and considerations similar to those in 3.2.0, that 8(1) is

globally generated. In case (0, 2,0) we can now use [SzWl, proposition 3.2].

From the remaining cases we will prove the theorem only for the most

difficult case: (0,4,8).

First let us remark that /ιo(£(l)) = 4 and hi{E{ΐ)) = 0 for i > 0. One

can also prove, using divisorial sequence, that /ι1(£(—1)) = 0. So there

exists a bundle T such that we have the following sequence:

o —> T —> oA —> ε(i) —> o.

So it follows that ^(^(-ί)) = 0 for i = 0,1, 2. Now using [AO, theorem 6.7]

we easily prove that T = O{—I)2,

7.2.2. (0,1,1) From the Kawamata-Viehweg vanishing theorem hι{8)

— 0 for i > 0 and so h°(ε) = 1. The section of 8 vanishes along a line L

and we have the following exact sequence:

0 —>O —>8 —> JL —• 0.

From this sequence /ι2((£(l))*) = 0, so 8(1) extends to a sheaf T.

One can easily prove that K{T(—i — 1)) = 0 for i = 0,1,2, so from [AO,

theorem 6.7] it follows that T = S(l) ® O(l).
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7.2.3. (0, 2,4) Quite similarly as above we can show the existence of
the sequence:

0 —>O —>S —> Jc —> 0,

where C is a smooth conic. From this dim Ext1 (£(2), C>) = h?(£(-l)) = 1
and therefore there exists a non-trivial extension T\

0 —> O —> T —> 5(2) —> 0.

Because /ι°(^Γ(—2)) = 1 we have the sequence:

0 —> Ό —> ^(-2) —> g —> 0,

for some sheaf Q. Now because hι(G(—ϊ)) — 0 for i = 0,1,2, we have

g = o(-i)2.
7.2.4. (0, 2, 2) The spectrum of S is {-1, -1}, so /ι2((£(l))*) = 0 (see

[ES]) and £{l) extends to T, such that KΪ{T{-i - 1)) = 0 for i = 0,1, but
h2{T{—3)) = 1. Hence there exists a non-trivial extension g G Ext1(^Γ, O).
Now \i\g\-i - 1)) = 0 for i = 0,1, 2 and from [AO, theorem 6.7] it follows
that g = S ( l ) θ S ( l ) .

7.2.5. (0,3, 5) Similar to 7.2.4.
This finishes a proof of theorem 7.2. Q

§8. Fano sheaves on other Fano 3-folds

This is quite similar to the considerations in the last section.

LEMMA 8.1. Let E be a Fano sheaf of rank 2 on V^ with c\ — 0
or 1. Then E is nef Moreover if the other contraction ofP(E) is fiber
then E has Chern classes (0, 0, 0) ; (1, d, d) or d = 4 and (1,2, 0), or d = 5
and (1,3,1). // this contraction is divisorial then the Chern classes are as
follows: (l,c, c), where c>0, or d — 5 and (1,2,0). Small contractions do
not occur.

Proof. Proof is similar to that of lemma 8.1, but if c\ = 0 one can
simplify computations using [BW, lemma 4.6]. Because £(1) is ample then
from this lemma for any line L:

2 = L det£(l) > rank£ + (number of singular points of £ on L).
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Because Vd is covered by lines it follows that 8 is locally free. First we show

that 8 is nef. Then it is easy to see that C2 > 0, for from the Hodge index

theorem (see [Fu, theorem 0.4.6]) we have:

(d - c2)d = ξ2(ξH) H2(ξH) < (ξ2H2)2 = d2.

Then one can easily compute Chern classes of E. Q

THEOREM 8.2. Classification of rank 2 Fano sheaves on Vd:

No.
1.

2.

3.

0

0

1

C2

0
1

d

0

0

d
Oθθ(l)
o —> o(-ι) —> o3 —• ε —> o
For d = 4 we have also the following bundles:

4. 1 2 0 8—stable bundles (see [SzW4])

For d = 5 we have also the following sheaves:

5. 1 2 0 T—the only stable bundle with these Chern classes

(see [SzW4])

6. 1 3 1 0 —> ^ ( - 1 ) —> O4 —> 8 —> 0,

where T is the bundle from 5.

Proof First, we show that for 8 with Chern classes (l,c, c) we have

8 = O © 0(1). Let us remark that by Kawamata-Viehweg theorem and

Riemann-Roch formula we have h°(8(—l)) — 1 and h2(8*) = 0. It follows

that 8 extends to a locally free sheaf T such that T is nef, c\(J-) = 1 and

h®(T(—1)) = 1. If the section of T(—l) vanishes in some points then we

can take a conic C, which meets the zero locus of this section in a finite

number of points. Then:

T(-l)\c = O(a) ® O(b) ® O(c),

where a + b + c = —4, a > 0 and 6, c > —2 (because T is nef). So we get

a contradiction and this section vanishes nowhere. Hence we get an exact

sequence:

0 —>O —• T(-l) —> g —> 0,

where Q is locally free. One can check that <?(1) is nef and c\(Q) = 0, so

Q = O(—I)2 and therefore 8 — O @ Ό(\). In all remaining cases one can

show that 8 is globally generated and computing hP(8) one easily shows

the theorem. Π
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Let us also remark the following fact about uniform vector bundles with

ci = 0 on Vd (cf. [OSS, theorem 3.2.1]):

PROPOSITION 8.3. Let £ be a vector bundle on Vd such that c\ — 0

and for any line L: £\L = θ θ 0 0 . Then C2(E) = 0. Moreover if£ has

rank. 2, then it is trivial.

Proof. Let Γ be a scheme parametrizing a family of lines on Vd and

let S be an incidence variety of lines on 1^. T is known to be a smooth

surface. We have natural projections p: S —> Vd and q: S —> T. Let L be

a general line on Vd and C = ςf(p~1(L)) be a curve, parametrizing lines

meeting line L. Now let us take a normalization Co of some irreducible
q'

1-dimensional component Co of C and the pull back F —* Co of universal

P1-bundle q~ι{C) -H> C. Then we have the following diagram:

C 5 - ^ Vd

ϊq' ϊq

Co —+ C C Γ

Let us remark that q1 is a P 1 -bundle, so F is a smooth surface. It is

also easy to see that q' has a section s, which sends a point of Co to a

point of intersection of corresponding line with L (this is well defined over

open subset of curve Co and so can be extended to a section on the whole

curve). Let us denote p1 — rp:F —> Vd and consider bundle T — p'*(£).

This bundle is trivial over fibers of qβ, so there exists a bundle Q on Co such

that T — qf*(G)- We claim that now Q is trivial. Indeed, we have (compare

with [OSS, theorem 3.2.1]):

It follows that T is trivial and from the projection formula (because pβ(F)

is a generator of Pic(V^)) we get C2(£) = 0.

If the rank of sheaf £ is two then one can easily see that if £ is non-

trivial then hP{£) = hP(£*) — 0. Indeed, otherwise the section of £ would

be non-vanishing in all points (because of the splitting type on lines) and

we would get trivial subbundle of £. Now from the Bogomolov inequality

for rank 2 stable bundles on Vd (see [L]) we have C2 > 0, a contradiction.

So the theorem is proved. Π
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Now we will study Fano sheaves on Fano threefolds of the first kind
(i.e., such that -Kx = H and PicX = Z[H]).

THEOREM 8.4. If £ is a Fano sheaf of rank 2 on X, then it is just

Ό2.

Proof. First let us remark that if c\ = — 1 then by [BW, lemma 4.6] the
number of singular points on any conic is equal to 0. Because X is covered
by conies it follows that £ is locally free. Then as before we show that £
is nef. Now by the same argument as in lemma 8.1 one can show that if
ci = 0 then c^ — 0. It makes easier computations, that the Chern classes
of £ must be (0, 0, 0) and the other contraction of P(£) is fiber. Now it is
straightforward that £ = O2. •

§9. The geometry of P(£)

In this section we study geometry of X — P(£), where £ always denotes
a rank 2 Fano sheaf. Firstly, let us remark that for locally free sheaves T
and Q a manifold P(^"0 Q) is a joint of manifolds P(JΓ) and P((7). In our
situation we usually obtain a sequence of the form:

0 —>g —> F —>S —• 0,

where T is a sum of some bundles, whose projectivisations we know. Hence
P(£) can be embedded into P(JΓ) "by means of Q" and P(^Γ) is easy to
describe. Moreover we already know the good supporting divisor DR and we
know that it is globally generated. Hence it defines a morphism, which in all
our cases occurs to be the contraction φ (usually even if DR is generated by
global sections one has to take its Stein factorization to obtain a contraction
of extremal ray). These remarks allow us to give a completes description of
P(£) and the contraction φ.

For the convenience of the reader we give here a complete description
of projectivizations of Fano sheaves over P 3 and more interesting examples
among others.

9.1. Complete description of P(£) for sheaves on P 3 .
We use here notation from theorems 4.4, 5.2 and 6.2.

9.1.1. (Divisorial contractions) In this case one can easily compute
all important invariants of contraction and of manifolds X and Y. Basic
informations are gathered in the following table (numbers in the table are
the same as that from theorem 4.4):
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No.

1

2

3

4

5

6

7

8

9

10

DR

i + H

ξ + 2H
ξ + H

ξ + 2H
ξ + 2H
ξ + 2H
ξ + 2H
ξ + 2H
ξ + 2H

E

ξ
ξ-H
ξ-H

ξ
ζ + H

ξ
ξ + H

2ξ + 3H
ξ + H

3ξ + 5H

A4

1

8

27

2

3

12

5

2

4
1

A(Y,A)
0

1

7

0

1

4
1

0
1

0

dim φ(E)
0

0

0

1

1

1

2

2

2

2

deg φ(E)
1

1

1

1

1

1

2

5
1

6

h°(DR)
5

11

21

6

6

12
8

6

7

5

Because in all cases Δ(Y, A) = g(Y, A) in the table there is no separate
place for g(Y, A).

A description of the manifold P(£):

1. A blow up of P 4 along a point, Y = P 4 ,

2. A blow up of the cone Y in P 1 0 over Veronese embedding P 3

along its vertex (a point),

3. A blow up of the cone Y in P 2 0 over Veronese embedding P 3

along its vertex (a point),

4. A blow up of Y = Q4 along a line P 1 ,

5. As one can easily see P(O(1) Θ O2) is also a Fano manifold, which
contains P(£) as a divisor of type (2,1) (i.e. P(£) G |£(o(i)ee>2) + 2iί|).
P(O(1) 0 Ό2) is a blow up of P 5 along a line L. Because the trace of
linear system |£(o(i)eo2) +2ϋ"|p(£)| is a complete linear system \DR\,
so the restriction of a contraction φ': P(O(1) Θ O2) -> P 5 to P(f) is
also a contraction: φf\p^s) ~ Φ The image φ(Y) is a hypercubic in
P 5 (see the table) and the exceptional divisor E of φ is contracted
onto a line L (because it is 1-dimensional). Because DREH2 = 2 it
follows that all fibers of map Φ\E are 2-dimensional quadrics (possibly
singular).

6. P(£) is a divisor of type (1,1) in P(O(2) Θ O2) (a blow up of the cone
in P 1 1 over P 3 °-> P 9 along a "vertex" L = P 1 ) . Similarly as above

\Ό{2)\
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one can see that Y is a divisor in this cone, containing line L, as an
image of the exceptional divisor E.

7. A complete intersection of two divisors of types (0,1) in T = P(Ω(2)©
0(1)). This last manifold Γ is a Fano variety—a resolution of a ratio-
nal map q: G(l, 4) —> P 3 . If we fix a hyperplane H in P 4 then the map
q can be easily described: it sends a line / to its intersection with this
hyperplane. T admits two contractions: one onto P 3 and the other
(which is a blow up along G(1,H) = 4-dimensional quadric) onto a
Grassmanian G(l,4). Now it is easy to see that E is contracted onto
2-dimensional quadric in Y and all fibers of φ\β are just P 1 . It follows
that φ is a blow up of a smooth linear section of Grassmanian G(l, 4)
along a smooth 2-dimensional quadric.

8. It is convenient to look at the cases a) and b) from theorem 4.4 at
the same time. In both cases P(£) is an intersection of two divisors
Dx G |£Ω(2)Θol and D2 e | £ Ω ( 2 ) Θ σ + H\ in P(Ω(2) θ O). P(Ω(2) θ O)
is a joint of P 3 and the incidence variety of lines in P 3 . The linear
system |£Ω(2)ΘOI defines a contraction of P(Ω(2) θ O) to a cone over
4-dimensional quadric G(l, 3) (the section F corresponding to a trivial
factor of Ω(2) 0 O is contracted to a vertex P, while rest of fibers are
lines). The restriction of the morphism defined by this system to X
gives us contraction φ: X —> Y.

If D\ contains F, then we obtain case b). In this case Ό2 cuts out a
plane on F, which is contracted to P, and Y is a cone over a smooth
3-dimensional quadric. φ has one 2-dimensional fiber and the rest
of non-trivial fibers are lines. One can also prove that the image of
exceptional divisor φ(E) is a smooth surface of degree 5.

If Ό\ does not contain F, then we obtain case a). The other divisor Ό2
cuts out line in F, so all non-trivial fibers are 1-dimensional. It follows
that φ is a blow up of smooth quadric Y along a smooth surface of
degree 5.

One can show that this surface is a Del Pezzo surface embedded by
its anticanonical system into P 5 .

9. A complete intersection of two divisors of type (1,1) in P(C?(1) 0 O3)
(a blow up of P 6 along a plane P 2 ) . One can easily see that there
are no 2-dimensional fibers and φ is a blow up of a smooth complete
intersection of two hyperquadrics in P 6 along the plane.
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10. P(£) is a complete intersection of three divisors of type (1,1) in P 3 x P 4

and φ is a projection onto the second component Y — P 4 . In this case
one can easily describe situation: X is given by three equations:

where X{ are coordinates in P 3 , yj are coordinates in P 4 and
are general coefficients. Over point [j/o> >2/4] there is generically
one point (an intersection of three hyperplanes in P 3 ), but if these
equations (*) are dependent, then we get P 1 . This last condition is
described by 4 equations of degree 3 in P 4 :

°» / = l , . . . 4.

Now it is easy to see that the surface φ(E) is a blow up of P 2 in 10
points and φ is a blow up of P 4 along this surface.

9.1.2. (Fiber contractions) In this case all necessary informations
can be read off the form of sheaf 6. Numbers coincide with that from
theorem 5.2.
A description of the manifold P(£):

1. P 1 x P 3 ; Y = P \

2. A divisor of type (0,1) in the incidence variety P(Ω(2)); Y = Q3—
a complete description of this contraction can be found in [SzWl,
pp. 202-203],

3. An intersection of two divisors of types (1,1) in P 3 x P 3 ; φ: X —> Y =
P 3 is the projectivisation of a sheaf of the same form as £,

4. A divisor of type (2,1) in P 3 x P 2 . Contraction φ: X -> Y = P 2 is a
quadric bundle.

5. A divisor of type (1,1) in P 2 x P 3 ; φ: X —>• Y = P 2 is a projectivisation
of the bundle Γ p 2(-1) θ Ό on P 2 (see [SzW3, p. 89]),

6. An intersection of two divisors of types (1,1) and (2,1) in P 3 x P 3 .
Contraction φ: X —> Y = P 3 is a projection onto the second factor
and it is a conic bundle.
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7. A divisor of type (3,1) in P 3 x P 2 ; all fibers of contraction φ:X —•>
Y = P 2 are cubics in P 3 .

9.1.3. (Small contractions) From theorem 6.2 we have only one such
sheaf that the other contraction φ: X —> Y is small. In this case P(£) is a
divisor of type (1,1) in P((9(l)2 Θ O). This last manifold is Fano—it is a
blow up of the cone in P 8 over embedding P 1 x P 3

(which is a point).

9.2. Some other examples of scrolls

P along the vertex

9.2.1. Here we will study geometry of Fano sheaves over quadric Q3.
This is very easy for sheaves 1-8 from theorem 7.2, so we omit it. For others
cases we have the following table (numbers in the table correspond to these
from theorem 7.2):

No.

9

10
11

12

DR

ξ + H
ξ + H

E

ξ
3ξ + 2H
2ξ + H

ξ

A4

4

1

1

5

A(Y,A)
1

0

0
1

dim φ(E)
1

2

2

2

degφ(E)
1

8

4
1

h°(DR)
7

5

6

8

A description of the manifold X = P(£):

9. X is a divisor of type (1,1) in M = P(O 2 0 O(l)). Manifold M is
Fano and has an extremal ray contraction (given by a linear system
£e>2Θθ(i)) o n t o a cone with vertex L = P 1 over 3-dimensional quadric
Q3. A restriction of this contraction to X is again a contraction.
X is contracted onto the intersection of two quadrics in P 6 and the
exceptional divisor is contracted onto the line L. All non-trivial fibers
of φ are quadrics (because DREH2 — 2).

10. X is a divisor of type (1,1) in P(O Θ S(l)) (i.e. X e |ξσΘs(i) +
H\). This last variety has a contraction given by the linear system
|£(90S(i)| This contraction has one 3-dimensional fiber corresponding
to the trivial factor of O 0 S(l) whereas all other fibers are lines. The
restriction of this contraction to X gives us contraction φ of X. It
is a divisorial contraction with one 2-dimensional fiber (all other non-
trivial fibers are lines). This 2-dimensional fiber is a quadric, which
is either smooth or singular (a cone over plane conic). Moreover both
this cases occur as can be seen by considering a degeneracy locus. In
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this case the exceptional divisor is contracted onto a singular surface
(non-normal) of degree 8.

First we will prove that in cases 11 and 12 there are no 2-dimensional
fibers. Let's on the contrary assume that there is such fiber F. In
both these cases we have exact sequence of the form:

0 —>O —>T —>£ —> 0,

for some bundle T. Then we know all the possibilities for F (see
[AW2]). Equality H C — 1 for curves contracted by φ then implies
H\p = Op{l) and so p\p: F —> p(F) is an isomorphism. Because there
are no P 2 's in Q3 we conclude that F is a quadric (possibly singular).
Moreover there exists a section of P\F, which corresponds to a bundle
epimorphism:

F\p(F) -> °p(F) ~> 0.

But J7* \P(F) h a s n o sections so our assuption was false.

We proved that there are no 2-dimensional fibers, so φ is a blow up of
a smooth 4-fold along a smooth surface. Now we will study cases 11
and 12 separately.

11. X is a blow up of a smooth 4-dimensional quadric along a surface of
degree 4. One can also prove that this surface is an intersection of two
quadrics naturally embedded in Q4.

12. One can easily see that X is a blow up of a smooth linear section of
Grassmanian G(l, 4) <̂-> P 9 along a plane P 2 (see the table). It is also
a smooth divisor from the linear system |£e>(i)es(i)l ^n P(C?(l)θS(l)).

9.2.2. Among all other scrolls the only non-trivial case is case 5 from
theorem 8.2. The geometry of this last scroll is fairly complicated and
partially described in [SzW4]. In this case P(.F) is a blow up of P 4 along
a Veronese surface. One can also find the normal bundle of this surface in
P 4 (using classification of weak Fano bundles on P 2 ; see theorem 3.2). It
is {O(l) 0 O2)/O(—2). Projectivisation of this bundle is the exceptional
divisor, which occurs to be the incidence variety of lines in V̂

Appendix: Fano bundles of rank 2 on P 2 and on Fano threefolds.

A.I. Let S be a Fano bundle of rank 2 on P 2 and let φ: P(£) -> Y be the
"other" contraction of an extremal ray. Set DR — ξ + uH = φ*A, u G Q—a
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good supporting divisor and assume that cχ(£) = 0, 0 < 02(8) < 6—we can

do that because otherwise we use [SzW2, fact 2.3]. It can be easily proved

that u > 0—compare with lemma 2.7. Write the table of intersections on

H3 = 0, H2ξ = 1, Hξ2 = 0, £ 3 = - c 2 .

Then:

D3

R = 3u2 -c2.

We know that φ is either fiber or divisorial (small contractions do not occur

for smooth 3-folds). We will consider these two cases separately:

a) φ is of fiber type. Then D\ = 0, 0 < c2 = Su2 < 6, hence u = 1

and C2 = 3. Since D2

RH — 2 we have d i m F = 2 and Y is a smooth surface,

by classification of contractions from smooth 3-folds. But p(Y) = 1 and

A2 < D2

RH = 2, so A2 = 1 and Δ(F, A) = d i m F + A2 - Λ°(y, A) = 0.

Hence [Fuj, theorem 1.5.10] implies that Y = P 2 and A = C?p 2(l). Then

£(1) is globally generated and it comes from the sequence:

0 —> C7P2(-2) —• OjU —> 5(1) —• 0.

Remark. It is convenient but not strictly necessary to use classification

of contractions from smooth 3-folds. Instead it is sufficient to remark that

if A2 = 2 we have Δ(Y, A) = 1 and as above A is globally generated. Then

ε is as above, which is impossible.

b) φ is divisorial. Let E be the exceptional set of φ\ E is a positive

multiple of ξ + iλff, v ^ Q .

1. dim φ(E) = 0. Then DRE = 0, so C2 = —^2 > 0, a contradiction.

2. diτnφ(E) = 1. Applying theorem 4.2 we obtain it = 1 and from

D3

R = 3 - c2 > 0, c2 < 2. This case is easy—see [SzW2, 2.3].

A.2. Classification of rank 2 Fano bundles on P 3 follows from the-

orems 4.4, 5.2 and 6.2 in proofs of which we used only "easy" part of

classification of these bundles—when £ is normalized and c2 < 1. Note

that in fact proofs can be simplified in case of bundles. Namely, divisorial

and fiber contractions can be obtained only by computing Chern classes

and small contractions can be derived only from equality (6.2.2.2), which

reduces to the equality 4d4 — d3 + 1 = 0 which does not have integral solu-

tions. Also classification of Fano bundles on Q3 is much easier than that of
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bundles: we can easily compute all possible Chern classes (note that it was
really the problem when only vector bundle techniques were used—[SzWl]).
The classification of other ruled 4-folds is described in the paper (relevant
computations are much easier than for sheaves).
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