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PRE-WEIGHTED HOMOGENEOUS MAP GERMS

FINITE DETERMINACY AND TOPOLOGICAL
TRIVIALITY

MARCELO JOSE SAIA1

Abstract. In this paper we introduce the notion of G-pτe-weighted homoge-
neous map germ, (G is one of Mather's groups Λ or K) and show that any
G-pre-weighted homogeneous map germ is Gr-finitely determined. We also give
an explicit "order", based on the Newton polyhedron of a pre-weighted homo-
geneous germ of function, such that the topological structure is preserved after
perturbations by terms of higher order.

The characterization of finite determinacy of map germs and of topo-

logical triviality of families of map germs are fundamental subjects in sin-

gularity theory.

An analytic map germ g:Kn,0 -» if p,0, (K. = R or C), is G-semi-

weighted homogeneous, (G is one of the Mather's groups A or /C), if it can

be decomposed in a form g = / + &, where / is weighted homogeneous,

G-finitely determined and k is a map germ with weighted filtration higher

than the weighted degree of / .

It is well known that any G-semi-weighted homogeneous map germ g

is G-finite and that any deformation of g by terms with weighted degree

higher than the weighted degree of / is topologically trivial (see [3]).

In this article we shall investigate map germs g:Kn,0 —* Kp,0 which

can be decomposed in a form g = f + /ι, where / is weighted homoge-

neous, G-finitely determined and h — (/iχ, /12,.. , hp) is a polynomial map

germ such that any monomial hij of hi has weighted degree lower than the

weighted degree of fc.

Looking for the properties of semi-weighted homogeneous map germs,

we ask the questions:

1. If a map germ g can be decomposed in a form g = / -f h as above,

is g G-finitely determined?
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2. Given a map germ of type g = / + ft, when can we find a curve α(ί),

with Qf(0) = 0, such that the family ft — f + α(ί)ft is topologically trivial

for t > 0?

3. Given a deformation gt of g, by terms with weighted degree higher

than the weighted degree of /, is the family gt topologically trivial for all

*?

In the Theorem 1.5 we show that the answer to Question 1 is affirma-

tive. In the Lemma 1.6 we show how to find a curve cv(t), such that the

family ft is topologically trivial for all t > 0, showing that Question 2 is

affirmative as well. We also give a partial answer to Question 3, i.e, for

the case p = 1, we follow the approach of Yoshinaga in [9] to give sufficient

conditions for the topological triviality of families of germs of functions

gt:K
n,0-+K,0.

§1. Pre-weighted homogeneous map germs

We consider map germs g : ATn,0 —> Kp, 0 which are either real

analytic if K = IR or holomorphic if K = C. We fix a system of local

coordinates x for Kn and y for Kp.

DEFINITION 1.1. Given ( r i , . . . ,rn;'di,-... , dp) with r;, d j G Q + ,

germ /: Kn, 0 —> ίfp., 0 is weighted homogeneous of type (τ\,..., r n ; rf

dp) if for all λ <Ξ K - {0}

DEFINITION 1.2. Given (ri, r 2 , . . . , rn) with π G Q+, the weighted de-

gree of a monomial xm = x^ x x^ 2 . . . x^ n is defined by fil(xm) = ^ = 1 m^i.

For any germ f:Kn,0 -> UΓ50, we define fil(/) = mmm{fil(xm)} with

am φ 0 in the Taylor series j°°f(x) — Σ dm^m of /. . .

For any map germ / : i i n , 0 —» ίί^jO, / — (/i, / 2 , . . . , fp) we define

fil(/) = (dχ,d2,.. . ,d p ), where ά{ — fil(/t) for all z = l , . . . , p .

DEFINITION 1.3. A map germ f:Kn,0 —• ̂ ^,0 is G-finitely deter-

mined if there exists an integer ^ such that for each map germ g with

fg(0) = j£f(O), g is G-equivalent to /.

DEFINITION 1.4. A map germ g: Kn, 0 -> Kp, 0 is G-pre-weighted ho-

mogeneous if it can be decomposed in the form g = f + h, where / is

weighted homogeneous of type (ri 5 . . . , r n ; d i , . . . , dp), G-finitely determined
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and h is a polynomial map germ with fίl(hij) < d{ for all monomials hij of

each hi.

THEOREM 1.5. Let g: Kn', 0 —> Kv, 0 be a G-pre-weighted homogeneous

map germ. Then g is G-finitely determined.

EXAMPLES.

1. Let g : C 2 —> C 2, the map germ having the form

g(x,y) = I xp + yq + ^ aabx
ayb, xy I , with gcd(p,#) = 1.

\ aq+bp<pq J

As f(x,y) = (xp + yq, xy) is *4-finitely determined [see 5, p. 466], g is

.Λ-pre-weighted homogeneous and ^4-ίinitely determined.

2. Let g : C 2 -> C 2, ff(x5j/) = (x9 - τ/6 + xτ/(x3 - y2)2,3x2y5 - ( x 3 -

y 2 ) 2 ). The germ # is of type g — f + h, where f(x,y) — (x9 - y6,3x2y5)

is weighted homogeneous of type (2, 3; 18,19) and /ι(x, y) = (xy(x3 — y2)2,

— (x3 — y2)2) is weighted homogeneous of type (2,3; 17,12). As / has iso-

lated singularity at 0 it is K-finitely determined, hence g is /C-pre-weighted

homogeneous and /C-finitely determined.

In [2] we apply Theorem 1.5 in order to give a simple and direct proof

that the set of map germs that are not contact-sufficient is of infinite codi-

mension. Similar results are obtained for the group Λ for certain pairs of

dimensions (n,p). Another application of Theorem 1.5 is given in [1].

The following lemmas are essential to prove Theorem 1.5.

LEMMA 1.6. Let f:Kn,0 —• Kp,0 be a weighted homogeneous map

germ of type ( r i , . . . , r n; d i , . . . , dp) and θij:Kn, 0 —» K, 0 weighted homo-

geneous polynomial germs of type ( r i , . . . , r n ; dij) with d{j φ di, for all

i = l ,2 , . . . ,p .

Then the family of map germs ft: Kn x E , 0 - ^ i f p , 0 ; for t > 0 defined

h + Σ t(dl~dlj) ^ ' ' fp + Σ t(dp~dpj) ΘV3 w G-tnvial.
j=ι 3=1 J

Proof. For all t>0, we let <ψt: i^,0-^U7,0, <ψt(y) = (td'yu ..., tdPyp)
and φt: K

n,0-> Kn', 0, ^(x) = ( t " r i xi , . . . , t~ r-xn).

Hence ft = Ψt°9°Φu where # = ^/i + ̂ j i z l l9ij , . . . , fp + Σf=1 θpjj

and the result follows. Π
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Lemma 1.6 does not ensure the G-finite determinacy of the map germs

gt. Indeed, let #*(x, y) = (x2 — y2)2 + t2xy(x2 — y2)2. Applying Lemma 1.6,

we see that the family gt is trivial, but gt is not finitely determined for any

teR.

LEMMA 1.7. Let /(x, t): ifn x R, 0 —• Kp, 0 be smooth with fo(x): Kn,

0 -> Kp,0 G-finitely determined, Then ft:K
n,0 -* Kp,0 is G-finitely

determined for all t sufficiently small.

Proof. See [6 p.306] for G = A, the case G = /C is easier. Q

Proof of Theorem 1.5. Any pre-weighted homogeneous map germ g can

be decomposed in the form

qp

' JP ~^~ 2 ^ pj

3=1 3=1

where / is weighted homogeneous of type ( r l 5 . . . , r n ; d\,..., dp) and

< di for all i,j. Then, according to Lemma 1.6, the family

• yf + ^ ^
3=1

is G-trivial. Now we apply the Lemma 1.7 to the family gt, and conclude

that for small values of t, gt is G-finitely determined, therefore for all t > 0

gt is G-finitely determined and g — g\ is G-finitely determined. Π

Remark. Theorem 1.5 holds only when d^ < di for all i, j (z.e, when

the map germ is pre-weighted homogeneous). If d^ > di for all i , j , following

the proof of Theorem 1.5, we have an easy way to prove that any G-semi-

weighted homogeneous map germ is G-finite. But if there exist some degrees

dij > di and some degrees dij < di in the family gt, Theorem 1.5 does not

hold.

Let g (x,y) = (x2 — y2) (x2 — y). The function g can be decomposed

in the form g = / + h + k, where /(x, y) — x 6 + y5 is weighted homogeneous

of type (5,6; 30), h(x,y) — —2x2y3 + x4y has only terms with weighted

degree lower than fil(/) and k(x,y) = —2xAy2 + x2y4 has only terms with

weighted degree higher than fil(/).
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By Lemma 1.6, the family

gt(x, y) = (χ6 + y5) + Γ2 (-2x2

y

3) + t'4 (χ4y) + t2 (-2x4

y

2) + t4 (χ2y4)

is G-trivial, but Theorem 1.5 does not apply since limt->o gt φ (x6 + y5)-

In this example / is finitely determined whereas g is not.

§2. Topological triviality of pre-weighted homogeneous germs of
functions

A deformation G : Kn x K, 0 —> K, 0 of a germ g is topologically trivial

if there exists a germ of homeomorphism ψ : Kn x K, 0 —» Kn x K, 0,

where φ(x^ t) = (ψ(x, t), t) such that G o ψ(x, t) = g{x).

We are interested in the following question:

"When is a deformation of a pre-weighted homogeneous germ g — f +

h by terms with weighted degree higher than the weighted degree of /

topologically trivial?"

In [7], following the method described by Damon and Gaffney in [4], we

have an answer to this question in the case of commode and irreducible pre-

weighted homogeneous germs g: UΓ2, 0 —» K, 0. In this section we provide an

answer for any commode pre-weighted homogeneous germ g: Kn, 0 —> K, 0,

following the method of constructing the toroidal embedding associated to

the Newton polyhedron of the germ g, as described by Yoshinaga in [9].

DEFINITION 2.1. The Newton polyhedron, Γ+(g) of a germ g : Knβ -»

K, 0, with j°°g — ̂  α m x m is the convex hull in W^ of the set

+ v : v £ R+ and am φ 0}.

We denote by Γ(^) the union of the compact faces of Γ+(g).

We define a partition into convex cones of the positive octant in the

dual Rn* of Rn. Let (au ..., an) be dual coordinates in M71*.

DEFINITION 2.2. For each a = (au . . . , an) e W\* we define:

(a) l(a) — min{(α, k) : k G Γ+(^)}, where (α, fc) —

(b) Δ(α) = {fc G Γ+G/) : <α,fc)=^(α)}.
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(c) Two vectors α, a' G iR+* are said to be equivalent if Δ(α) = Δ(α').

The vector α is called a primitive integer if it is the vector with minimum

length in C(α) Π (2Z™ — {0}), where C(α) is the half ray emanating from 0

passing through α.

It is easy to see that each (n—l)-dimensional face Δ of T(g) is associated

to a primitive integer a G M+* such that Δ = Δ(α).

Given an ^ G K+, we call Δ*(α) = {m € Γ+(g): (m, α) < £}.

For any subset D C Γ+(y) we call #£> = V^ amxm

DEFINITION 2.3. A finite subset D C T+(g) is non-degenerate if

A germ g is Newton non-degenerate if all compact faces of T(g) are

non-degenerate.

DEFINITION 2.4. For each (n — l)-dimensional compact face Δ(α 7) C

Γ(<7), we let Qj = min {ί: Δ^(α 7) is non-degenerate}.

DEFINITION 2.5. A germ g is commode if for each i = 1,... ,n, there

exists a pure term x^1' with nonzero coefficient in j°°g.

If rn = (0, . . . ,0,7ni,0,... ,0) G Γ(^), we call the monomial x™1 an

initial pure term of g.

PROPOSITION 2.6. Let g: Kn, 0 —> K,0 be a commode pre-weighted ho-

mogeneous germ of type g = f + h, such that every monomial of h is a vertex

ofT+(g).

Then deformations of g of type G(x,t) = 9(χ) + tθ(x) are topologically

trivial for all t G [0,1] if Γ+(θ) C interior of Γ+(g) ; and for small values

oftifΓ+(θ) CΓ+fo).

PROPOSITION 2.7. Let g: Kn, 0 -> K,0 be a commode pre-weighted ho-

mogeneous germ of type g = / + h, such that:

i. The germ h has only mixed terms.

ii. For each initial pure term x™{ of g, and for each (n — 1)-dimensional

compact face Δ(α 7') G T(g), Qj < rriiaj, where a3: = ( α j , . . . , α^)
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Then:

(a) J/Γ+(0) C interior of Γ+(/), the family G(x,t) = #(z) + t0(a?) is

topologically trivial for all t E [0,1].

(b) IfΓ+(θ) C Γ+(/), G(x,£) = #(x) + t0(x) is topologically trivial for

sufficiently small values of t.

EXAMPLES.

1. Let g(x,y) = x9 + y8 + xy(x2 — y2)2. The polyhedron Γ+(#) is

composed by five 1-dimensional faces Δ(α 7'), where α1 = (1,0), a2 = (0,1),

α3 = (3,1), α4 = (1,1) and α5 = (1,4) are the corresponding primitive

integer vectors. Δ(α x) and Δ(α2) are the non-compact faces in the semi-

axis, with vertices {(0, 8)} and {(9, 0)}. The compact faces are Δ(α3), Δ(α4)

and Δ(α5) with vertices {(0,8), (1,5)}, {(1,5), (5,1)} and {(5,1), (9,0)}

respectively.

The faces Δ(α3) and Δ(α5) are non-degenerate, hence Q3 = 8 and Q5 =

9, but Δ(α4) is a degenerate face of Γ(g), because the curve ψ(t) = (£, t) is a

solution for the equations I — °̂ ) (x) = — ^ ( α 4 ) (x) = 0 >. As Δs(α4) is the

first non-degenerate set associated to α4, we have Q4 = 8. Since ((9,0); α 7)

and ((0,8);α^) are both > Qj, for j = 3,4,5, we conclude that for any 0

such that Γ+(0) C interior of Γ+(/), the family G(x,t) = g(x) + tθ(x) is

topologically trivial for all t £ [0,1].

2. Let <7i(x, y) — x9 + {yA + xy) (x2 — y2)2. In this example Γ_j_(pi) =

Γ+(<7) (Ex.1), the compact face Δ(α4) is degenerate and the set D&(a4) is

degenerate as well. The first non-degenerate set associated to α4 is Dg(α4),

hence Q4 = 9. Here ((0,8);α4) = 8 < Q4. After the proof of the Proposi-

tion 2.7, we shall show that deformations by terms xm with m\ + 7712 > 9

are topologically trivial.

3. Let k(x,y) = x9 + y8 + xy(x2 + y2)2. Here Γ+(A;) = Γ+(g).

If fc is a complex germ of function, the compact face Δ(α4) is degener-

ate, as the complex curve ψ{t) — (ί, it) is a solution for the equations

I —SaΓ ) ( x) = — i ^ " ( x ) = ^ ί If ^ is a r e a l germ of function,

degenerate since there is no real solution for the equations \

=θ}, for; = 3,4,5.
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4. Let f(x, y) = x12 + y12 + z12 + xyz(x2 - y2 + z2)2. The polyhedron

Γ+(/) is composed by seven 2-dimensional faces Δ(αJ'), where α1 = (1, 0,0),

α2 = (0,1,0), α3 = (0,0,1), α4 = (1,6,1), α5 - (6,1,1), α6 = (1,1,6) and

a7 — (1,1,1) are the corresponding primitive integer vectors. Δ(α 7) is the

unique degenerate face of Γ+(/) and it is easy to check that Qγ = 12, hence

deformations of/ by terms of degree higher than 12 are topologically trivial.

2.1. Proofs of t h e Propos i t ions 2.6 and 2.7

Yoshinaga defined in [9] the gradient polyhedron associated to a germ

g\ and applied it to show the topological triviality of deformations of g.

Let \Vg\2 = Xi . For a fixed m E 2Z™ consider the following

condition:

(G) there exists a positive E — £(m) such that |V#| > £ | x m | in a neigh-

bourhood of the origin in Kn.

DEFINITION 2.8. [9, p.804] The gradient polyhedron of g, A+(g) is the

convex hull of the set' [j {m + v, m E 7L\, v E W+ : condition (G) holds}.

THEOREM 2.9. [9, p.805] Let G : Kn x K,0 -+ K,0,b e a deformation

of g of type G(x,t) = g(x) + tθ(x), such that V(g) .= {0}; where V(g) =

{xeKn:\V g\=0}.

(a) // Γ+(0) C interior of Λ+(^), then the family gt(oc) — G(x,t) is

topologically trivial for all t E [0,1].

(b) IfΓ+(θ) C Λ+(#) ; fΛen tte family gt(x) = G(x,t) is topologically

trivial for sufficiently small values oft.

Remark. Yoshinaga also proves in [9, Theorem 1.7] that Λ+(#) =

Γ+(^) if and only if g is Newton non-degenerate.

Proof of Proposition 2.6. Since # is a commode pre-weighted homoge-

neous germ, we have V(g) = {0}, hence if we prove that all the compact

faces of T(g) are non-degenerate, the result follows from the Theorem 1.7

of Yoshinaga.

Let Δ be an r-dimensional compact face of Γ(g), since every mono-

mial of h is a vertex of the Newton polyhedron of #, the face Δ is com-

posed only by their vertices, hence the set of solutions of the equations
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Γ ft β Ί

I a^"( x ) — ~ ai~( x ) ~ 0 r *s a s u bset of {xiX2 . . . x n

 = : 0} if a n d only

if the rank of the (n x r + l)-matrix i? — [6^] is maximal, where 6̂  =

(621,..., 6in) are the r + 1 vectors in Rn* defining the vertices of Δ, there-

fore they are linearly independent in lRn* and the result follows. Π

The essential tool used in proving Proposition 2.7 is the construction of

the toroidal embedding associated to the Newton polyhedron of a germ g.

The notion of toroidal embeddings was developed by Kempf et all in [6], the

procedure of constructing the toroidal embedding associated to Γ_j_(g) is a

local modification of Khovanskii's method of assigning a compact complex

nonsingular toroidal manifold to an integer-valued compact convex polyhe-

dron in Kn. This construction is due to Varchenko [8, pp. 183-184] and we

now summarize it.

Considering the equivalence relation (c) of the Definition 2.2, any equiv-

alence class is naturally identified with a convex cone with its vertex at zero

that is specified by finitely many linear equations and strictly linear inequal-

ities with rational coefficients.

We call Σo the partition into closed convex cones of the positive cone

W+ specified by the closures of the equivalence classes.

Following the algorithm described in the proof of Theorem 11 of [6

p.32], we construct on the basis of Σo, a partition Σ of the cone R™* into

finitely many closed convex cones with their vertices at zero such that:

1. Any cone belonging to Σ lies in one of the cones in Σo and is specified

by finitely many linear equalities and linear inequalities with rational

coefficients.

2. If σ\ is a face of a cone σ in Σ, then σ\ G Σ.

3. For any cones σ\ and σ^ in Σ, σ\ Π σ2 is a face of both σ\ and σ2

4. Any cone σ in Σ is simplicial and unimodular, i.e., if the dimension of σ

is g, there exist a set of primitive integer vectors αx(σ), α 2 ( σ ) , . . . , aq(σ)

in σ which are linearly independent over M and n — q primitive integer

vectors α<?+ 1(σ),..., αn(σ) such that 7Laι(σ) + ... + 7Lan{σ) = TLn.

Let σ be an n-dimensional cone in Σ and α1(σ), α 2 ( σ ) , . . . , αn(σ) the

corresponding set of primitive integer vectors of σ that has been ordered

once and for all. We associate to each such σ a copy of Kn denoted by
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Kn(σ). Let us denote by πσ:K
n(σ) —» Kn the mapping given by the

formulae
a]{σ) a?(σ)

where xi, X2, , %n are coordinates in Kn', 2/1,3/2? 5 2/n are coordinates in
Kn(σ) and α*i(cr),. ., aJ

n(σ) denote the coordinates of the vector aP(σ).
We define the following equivalence relation on the disjoint union of

the Kn{σ), let yσ G Kn(σ) and yτ G Kn(τ), then yσ - yτ if and only if
πσ(yσ) = πr(yτ). We denote by X = X(Γ+((/)) the set obtained in this
way.

It follows from the properties 1-4 of the partition Σ and Theorems 6,
7 and 8 of [6, pp. 24-26] that X is a nonsingular n-dimensional algebraic
complex manifold and that π: X —> Kn defined by π(y) — πσ(yσ) is a
proper analytic mapping onto Kn (where yσ G Kn(σ) is a representative of
the equivalence class y G X). Therefore the following equations

l |V#| > 5|xm | for all x in a neighbourhood U of 0

2. \Vg\ o πσ(yσ) > S\xm\ o πσ(yσ) for all yσ G π'^

are equivalent for any monomial x m G Kn and any n-dimensional cone
σ G Σ. We shall use the condition 2 to prove Proposition 2.7.

Proof of Proposition 2.7. If Γ(/) C Λ+(^), the statement of this propo-
sition follows from the Theorem 2.8, hence we shall show that the vertices
of Γ(/) satisfy the Q condition. As g is commode and h has only mixed
terms, the vertices of Γ(/) are the initial pure terms x™{ of g. Given an
n-dimensional cone σ, with a set of generators a x , . . . ,a n , for each point
y% G τr~1(0) there exists an n-tuple of numbers (Qι(y%),..., Qn(y£)) with
ί(aj) < Qj(yl) < Qj such that

|gradί, |oπ σ (»;) = y ? l ( Λ ) » 2

9 a ί r f ^ . . y ^ f c σ ( y ; ) w i t h \hσ(y°σ)\>0

We remark here that the first inequality £(αJ) < Qj(y%) is immediate
since we are considering monomials on or above the Newton polyhedron
Γ(#). The second inequality Qj(y&) < Qj follows from the fact that g has
isolated singularity at 0 and that ΔQ^α 7) is the first non-generate set of
α ?.

Then, for each y£ G π~1(0) there exists a neighbourhood V(y%) such
that \h{yσ)\ > 0 for all yσ G V.
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On the other side, for all yσ, we have x™* oπσ(yσ) = \y^λy^2 . . . y*fn\,

where Mj —πiia\.

Therefore, the equation 2 holds, since the inequality Qj < πiia\ — Mj

holds for all j and all n-dimensional cones σ G Σ. Π

EXAMPLES.

1. Let g(x,y) = x9 + 2/8 + xy(x2 — y2)2. Making use of the vectors a1

associated to the compact faces of T+(g), we get the 2-dimensional cones σ

and the corresponding mappings τrσ:

σi? 3 = (α1, a3) πh3(yuy3) = (2/13/3; 2/3)

03,4 = ( α 3 , α 4 ) ^"3,4(2/3,2/4) = (2/32/4; 2/32/4)

σ4,5 = ( α 4 , α 5 ) 7Γ4i5(j/4, 2/5) = (2/42/5; 3/42/f)

σ5,2 = ( α 5 , α 2 ) ^5,2(2/5,2/2) = (3/5; 3/52/2)-

As the compact faces Δ(α3) and Δ(α5) are non-degenerate, the initial

pure terms x9 and 2/8 satisfy equation 2 for the cones σχ53 and σ^^ since

{(9,0); (3,1)) = 27 > Q3; ((9,0); (1,4)) = 9 = Q5; {(0,8); (3,1)) = 8 = Q3

and ((0,8); (1,4)) = 32 > Q 5

Since Δ(α4) is a degenerate face in T(g), we need to check if the initial

pure terms x9 and y8 satisfy equation 2 for the cones σ^^ and σ^s.

We have I g r a d ^ J o T r ^ ^ , ^ ) = ί/fl/M(y!-l)| (|5!/f - 1| + |j/| - 5|).

Then for any point (^,y 4 ) such that (y§)4 = 1, |grad gAilo^σsΛy^y^) = °

and |grad ί / l o π ^ ί y " , ^ ) = 1/| (|9(i/§)27| + |(y3°)24|) Hence C^G&ίfc) = 8.

We observe here that if (7/3,2/4) is a point with (2/3)4 7̂  1?

|grad 5 Δ 4 I ° ^3,4(2/3,2/4) Φ 0 and |grad g\ o π σ 3 > 4(y 3 j 2/4) = 2/32/4%3,2/4),

with /ι(2/3,2/4) 7̂  0? then ^4(2/3,2/4) = 6 1̂  i s easy to see that the pure terms
x9 and 2/8 satisfy the Q condition and Γ+ (/) G Λ+(^).

2. Following the Example 1 above, it is easy to see that m £ Λ+(<ji) if

and only if (771, α 4) = mi + m2 > Q4 = 9. Therefore Γ+(/) 0 A+(g).

3. Let Λ, = x9 + ys + xy(x2 + y2)2. In the complex case, the results

are similar to example 1, i.e, Γ+(/) G A+(y), since the initial pure terms

x 9 and 2/8 satisfy the equation 2 for any cone σ. In the real case, as h is
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non-degenerate, we conclude from Theorem 1.7 of Yoshinaga that Γ+(</) =

Acknowledgements. The results of the Section 1 are part of the
author's Thesis [7], written under the supervision of M. A. S. Ruas and
the second part was written while the author was visiting the Department
of Pure Mathematics at University of Liverpool, partially supported by
FAPESP. The author thanks these institutions for their support.

REFERENCES

[1] J. W. Bruce, Euler characteristics of real varieties, Bull. London Math. Soα, 22,
n. 6 (1990), 547-552.

[2] J. W. Bruce, M. A. S. Ruas and M. J. Saia, A note on determinacy, Proc. Amer.
Math. Soc, 115 (1992), 865-887.

[3] J. N. Damon, Finite determinacy and topological triviality I, Invent. Math., 62
(1980), 299-324.

[4] J. N. Damon and T. Gaffney, Topological triviality of deformations of functions and
Newton filiations, Invent. Math., 72 (1983), 335-358.

[5] T. Gaffney and D. M. Q. Mond, Weighted homogeneous maps from the plane to the
plane, Math. Proc. Camb. Phil. Soc, 109 (1991), 451-470.

[6] G. Kempf, F. Knudsen, D. Munford and B. Saint-Donat, Toroidal embeddings, Lec-
ture Notes in Math., 339 (1973), Springer-Verlag.

[7] M. J. Saia, Poliedros de equisingularidade de germes pre-quase homoge- neos, Thesis,
ICMSC-USP S. Carlos (1991).

[8] A. N. Varchenko, Newton Polyhedra and estimation of oscillating integrals, Funct.
Anal. Appl., 10 (1977), 175-196.

[9] E. Yoshinaga, Topologically principal part of analytic functions, Trans. Amer. Math.
Soc, 314, N. 2 (1989), 803-814.

I.G.C.E.-UNESP
Campus de Rio Claro
C.P. 178, R. Claro
S. P. Brasil
13500-230
mj saiaQigce.unesp.br




