THE EXISTENCE OF SYMMETRIC RIEMANN SURFACES DETERMINED BY CYCLIC GROUPS

GOU NAKAMURA

Abstract

Let $n>1, m \geq 1, g \geq 3$ and γ be given integers. The purpose of this paper is to determine the relations of n, m, g and γ for the existence of the symmetric Riemann surfaces S of type (n, m) with genus g and species γ. If n is an odd prime, the relations are known in [3]. In the case that n is odd, we shall show the analogous result when $E(S)$ is isomorphic to a cyclic group $\mathbf{Z}_{2 n}$ and when the quotient space $S / E(S)$ is orientable.

§1. Introduction

Let S be a compact Riemann surface. We denote by $E(S)$ the group of analytic homeomorphisms and anti-analytic homeomorphisms of S onto itself and by $A(S)$ its subgroup of analytic homeomorphisms. If $A(S)$ is isomorphic to a cyclic group \mathbf{Z}_{n} of order n and the quotient space $S / A(S)$ is of genus m, then S is called a Riemann surface of type (n, m). An element T in $E(S) \backslash A(S)$ is called a symmetry on S if $T^{2}(=T \circ T)=I_{S}$ (the identity map). A compact Riemann surface with symmetries is said to be symmetric. For a symmetry T on S the quotient space $S /\langle T\rangle$ is a Klein surface. Let k be the number of boundary components of $S /\langle T\rangle$. Then we define the species $\operatorname{sp}(T)$ of T by

$$
\operatorname{sp}(T)= \begin{cases}k & (\text { if } S /\langle T\rangle \text { is orientable) } \\ -k & \text { (if } S /\langle T\rangle \text { is non-orientable })\end{cases}
$$

In this paper we suppose that $E(S)$ is isomorphic to a cyclic group $\mathbf{Z}_{2 n}$ of order $2 n$. Then for such a symmetric Riemann surface S, the symmetry T on S is uniquely determined. Hence we define the species of S by that of T.

Let $n>1, m \geq 1, g \geq 3$ and γ be given integers. The purpose of this paper is to determine the relations of n, m, g and γ for the existence of the

[^0]symmetric Riemann surfaces S of type (n, m) with genus g and species γ. If n is an odd prime, the relations are known in [3]. In the case that n is odd, we shall show the analogous result when $E(S)$ is isomorphic to a cyclic group $\mathrm{Z}_{2 n}$ and when the quotient space $S / E(S)$ is orientable.

§2. Non-Euclidean crystallographic groups

Let $H=\{z \in \mathbf{C} \mid \Im z>0\}$ be the upper half plane. With each matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a, b, c, d \in \mathbf{R}$ and with $\operatorname{det} A= \pm 1$, we associate the mapping

$$
f_{A}: H \rightarrow H ; z \mapsto \begin{cases}\frac{a z+b}{c z+d} & \text { if } \operatorname{det} A=1 \\ \frac{a \bar{z}+b}{c \bar{z}+d} & \text { if } \operatorname{det} A=-1\end{cases}
$$

Then $E(H)=\left\{f_{A} \mid \operatorname{det} A= \pm 1\right\}$ and $A(H)=\left\{f_{A} \mid \operatorname{det} A=1\right\}$. We regard $E(H)$ as a topological space by means of the inclusion $E(H) \hookrightarrow P G L(2, \mathbf{R})$. A discrete subgroup Γ of $E(H)$ is called a non-Euclidean crystallographic group (shortly an NEC group) if the quotient H / Γ is compact. An NEC group Γ is called a Fuchsian group if $\Gamma \subset A(H)$, and a proper NEC group otherwise. For a proper NEC group $\Gamma, \Gamma^{+}=\Gamma \cap A(H)$ is called the canonical Fuchsian group of Γ.

In general, each NEC group Γ is formed by the generators

$$
\begin{array}{llll}
x_{i} & \in \Gamma^{+} & ; & i=1, \cdots, r \\
e_{i} & \in \Gamma^{+} & ; & i=1, \cdots, k \\
c_{i j} & \in \Gamma \backslash \Gamma^{+} & ; \quad i=1, \cdots, k, j=0, \cdots s_{i}, \\
a_{i}, b_{i} & \in \Gamma^{+} & ; \quad i=1, \cdots, g \text { if } H / \Gamma \text { is orientable, } \\
d_{i} & \in \Gamma \backslash \Gamma^{+} & ; \quad i=i, \cdots, g \text { if } H / \Gamma \text { is non-orientable, }
\end{array}
$$

satisfying the relations

$$
\begin{array}{ll}
x_{i}^{m_{i}}=I_{H} & ; i=1, \cdots, r, \\
e_{i}^{-1} c_{i 0} e_{i} c_{i s_{i}}=I_{H} & ; i=1, \cdots, k, \\
c_{i, j-1}^{2}=c_{i j}^{2}=\left(c_{i, j-1} c_{i j}\right)^{n_{i j}}=I_{H} & ; i=1, \cdots, k, j=1, \cdots, s_{i}, \\
x_{1} \cdots x_{r} e_{1} \cdots e_{k}\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]=I_{H} & \text { if } H / \Gamma \text { is orientable } \\
x_{1} \cdots x_{r} e_{1} \cdots e_{k} d_{1}^{2} \cdots d_{g}^{2}=I_{H} & \text { if } H / \Gamma \text { is non-orientable },
\end{array}
$$

where $\left[a_{i}, b_{i}\right]=a_{i} b_{i} a_{i}^{-1} b_{i}^{-1}$. We call x_{i} an elliptic element, $c_{i j}$ a reflection of Γ. Then the signature $\sigma(\Gamma)$ of Γ is written by
(1) $\sigma(\Gamma)=\left(g ; \pm ;\left[m_{1}, \cdots, m_{r}\right] ;\left\{\left(n_{11}, \cdots, n_{1 s_{1}}\right), \cdots,\left(n_{k 1}, \cdots, n_{k s_{k}}\right)\right\}\right)$,
where " + " means that H / Γ is orientable, and "-" means that H / Γ is non-orientable. This " + " or "-" is called the sign of $\sigma(\Gamma)$ and denoted by $\operatorname{sign}(\sigma(\Gamma))$. We call g the genus, m_{i} the proper periods, $n_{i j}$ the periods, and $\left(n_{i 1}, \cdots, n_{i s_{i}}\right)$ the period-cycles of $\sigma(\Gamma)$. If there are no proper periods, we write [-] in place of $\left[m_{1}, \cdots, m_{r}\right]$. If there are no periods in the period-cycle, we write (-) in place of $\left(n_{i 1}, n_{i 2}, \cdots, n_{i s_{i}}\right)$. If there are no period-cycles, we write $\{-\}$ in place of $\left\{\left(n_{11}, \cdots, n_{1 s_{1}}\right), \cdots,\left(n_{k 1}, \cdots, n_{k s_{k}}\right)\right\}$.

For an NEC group Γ with signature (1), the Gauss-Bonnet theorem shows that the non-Euclidean area $\mu(F)$ of a fundamental region F of Γ is given by

$$
\mu(F)=2 \pi\left(\alpha g+k-2+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)+\frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{s_{i}}\left(1-\frac{1}{n_{i j}}\right)\right)
$$

where $\alpha=2$ if $\operatorname{sign}(\sigma(\Gamma))=$ " + ", $\alpha=1$ if $\operatorname{sign}(\sigma(\Gamma))=$ " - ". This does not depend on the choice of fundamental regions. We define the area of $\sigma(\Gamma)$ by $\mu(F) / 2 \pi$ and denote it by $\mu(\Gamma)$.

Let Γ^{\prime} be an NEC group and Γ a subgroup of Γ^{\prime} with finite index. Then Γ is an NEC group, and the following formula (called the Riemann-Hurwitz relation) is fulfilled:

$$
\frac{\mu(\Gamma)}{\mu\left(\Gamma^{\prime}\right)}=\left[\Gamma^{\prime}: \Gamma\right]
$$

§3. The main result

Let $m_{1}, m_{2}, \cdots, m_{k}$ be integers. We denote the least common multiple of $\left\{m_{1}, m_{2}, \cdots, m_{k}\right\}$ by l.c.m. $\left\{m_{1}, m_{2}, \cdots, m_{k}\right\}$.

Theorem 1. Let $n>1$ be an odd integer and $m \geq 1, g \geq 3$ and γ integers. Then there exists a symmetric Riemann surface S of type (n, m) with genus $g(S)=g, s p(S)=\gamma, E(S) \cong \mathbf{Z}_{2 n}$ and with the orientable quotient $S / E(S)$ if and only if:

There exist non-negative integers r, t and divisors $d_{1}, \cdots, d_{r+t}(\neq 1)$ of n and an integer $k \geq 1$ such that:
(a) If $m=1$, then $r \geq 2$. If $m=2$, then $r \geq 1$.
(b) $g=n\left(m-1+\sum_{i=1}^{r}\left(1-\frac{1}{d_{i}}\right)\right)+1$.
(c) $m+1-k$ is even and non-negative.
(d) $0 \leq t \leq k$.
(e) $\gamma=n\left(k-\sum_{i=1}^{t}\left(1-\frac{1}{d_{r+i}}\right)\right)(\geq 0)$.
(f) If $r+t>0$, then l.c.m. $\left\{d_{1}, \cdots, d_{r+t}\right\}=$ l.c.m. $\left\{d_{1}, \cdots, d_{i-1}, d_{i+1}, \cdots\right.$, $\left.d_{r+t}\right\}$ for every i.
(g) If $k=m+1$, then l.c.m. $\left\{d_{1}, \cdots, d_{r+t}\right\}=n$.

We note that the divisors d_{1}, \cdots, d_{r+t} are not necessarily distinct.
If n is an odd prime p, our theorem is reduced to the following
Corollary 1. [3; Theorem 2.1] There exists a symmetric Riemann surface S of type (p, m) with $g(S)=g$, sp $(S)=\gamma, E(S) \cong \mathbf{Z}_{2 p}$ and with the orientable quotient $S / E(S)$ if and only if:
There exist non-negative integers r, t and an integer $k \geq 1$ such that:
(a) If $m=1$, then $r \geq 2$. If $m=2$, then $r \geq 1$.
(b) $g=p(r+m-1)-r+1$.
(c) $m+1-k$ is even and non-negative.
(d) $0 \leq t \leq k$.
(e) $\gamma=p(k-t)+t$.
(f) If $r+t>0$, then $r+t \geq 2$.
(g) If $k=m+1$, then $r+t \neq 0$.

§4. The proof of our theorem

We shall use the following lemma (see [4; Lemma 3.1.1]).
Lemma 1. Let $m_{1}, m_{2}, \cdots, m_{k}>0$ be odd integers and N a (positive) multiple of $M=$ l.c.m. $\left\{m_{1}, m_{2}, \cdots, m_{k}\right\}$. Then the following conditions are equivalent to each other.
(1) There exist ξ_{1}, \cdots, ξ_{k} in \mathbf{Z}_{N} such that $o\left(\xi_{i}\right)=m_{i}$ and $\xi_{1}+\cdots+\xi_{k}=0$ in \mathbf{Z}_{N}.
(2) For every i, l.c.m. $\left\{m_{1}, \cdots, m_{i-1}, m_{i+1}, \cdots, m_{k}\right\}=M$.

Proof of our theorem. First we shall show the "only if" part. By our assumption $g \geq 3, H$ is the universal covering surface for S, so that there exists a torsion-free Fuchsian group Γ_{S} satisfying $S \cong H / \Gamma_{S}$. Then the signature of Γ_{S} is $\sigma\left(\Gamma_{S}\right)=(g ;+;[-] ;\{-\})$. We denote by N_{S} the normalizer of Γ_{S} in $E(H)$. We shall show that the signatures of N_{S} and $N_{S}^{+}\left(=N_{S} \cap\right.$ $A(H))$ have the following forms with some non-negative integers $r, k(1 \leq$ $k \leq m+1)$ and divisors d_{1}, \cdots, d_{r} of n :

$$
\begin{aligned}
\sigma\left(N_{S}\right) & =(\frac{m+1-k}{2} ;+;\left[d_{1}, d_{2}, \cdots, d_{r}\right] ;\{\overbrace{(-), \cdots,(-)}^{k}\}) \\
\sigma\left(N_{S}^{+}\right) & =\left(m ;+;\left[d_{1}, d_{1}, d_{2}, d_{2}, \cdots, d_{r}, d_{r}\right] ;\{-\}\right) .
\end{aligned}
$$

We note that d_{1}, \cdots, d_{r} are not necessarily distinct. Since $S / E(S) \cong$ $\left(H / \Gamma_{S}\right) /\left(N_{S} / \Gamma_{S}\right) \cong H / N_{S}$ is orientable, we get $\operatorname{sign}\left(\sigma\left(N_{S}\right)\right)="+"$. Let r be the number of elliptic elements in canonical generators of N_{S}. The orders of elliptic elements are divisors $(\neq 1)$ of n. We write them d_{1}, \cdots, d_{r}. Let k be the number of period-cycles of N_{S}. Since there exists a symmetry on S, N_{S} contains reflections. Hence it follows that $k \geq 1$. Since $N_{S} / \Gamma_{S} \cong E(S) \cong \mathbf{Z}_{2 n}$, there exists an epimorphism

$$
\eta: N_{S} \rightarrow \mathbf{Z}_{2 n}
$$

with $\operatorname{ker}(\eta)=\Gamma_{S}$. For every element u of order 2 in N_{S}, we get $\eta(u)=n$. Thus, for u, v in N_{S} of order $2, \operatorname{ker}(\eta)$ contains $u v$. Since Γ_{S} is a torsionfree group, $u v$ is not an element of finite order >1. Hence there are no periods in any period-cycles of $\sigma\left(N_{S}\right)$. Since $S / A(S) \cong H / N_{S}^{+}$and $S / A(S)$ has genus m, the genus of $\sigma\left(N_{S}^{+}\right)$is equal to m. By Corollary 2.2.5 in [4], we get the required forms of $\sigma\left(N_{S}\right)$ and $\sigma\left(N_{S}^{+}\right)$.

We shall show the assertion (a). First we assume $m=1$. The signature of N_{S}^{+}is of form

$$
\sigma\left(N_{S}^{+}\right)=\left(1 ;+;\left[d_{1}, d_{1}, \cdots, d_{r}, d_{r}\right] ;\{-\}\right)
$$

The area of $\sigma\left(N_{S}^{+}\right)$is given by

$$
\mu\left(N_{S}^{+}\right)=2 \sum_{i=1}^{r}\left(1-\frac{1}{d_{i}}\right)
$$

From $\mu\left(N_{S}^{+}\right)>0$ it follows that $r \geq 1$. All signatures with respect to maximal Fuchsian groups are known in Theorems 1, 2 and 3 in [8]. From these known results it follows that in the case of $r=1, N_{S}^{+}$is not maximal, because $\sigma\left(N_{S}^{+}\right)=(1 ;+;[d, d] ;\{-\})$ for some divisor $d(\neq 1)$ of n. Hence, by Theorem 1 in [8], there exists a Fuchsian group $\Gamma^{\prime} \supset N_{S}^{+}$satisfying

$$
\left[\Gamma^{\prime}: N_{S}^{+}\right]=2 \text { and } \sigma\left(\Gamma^{\prime}\right)=(0 ;+;[2,2,2,2, d] ;\{-\})
$$

so that the generators of Γ^{\prime} is represented by y_{1}, \cdots, y_{5} with the relations

$$
y_{i}^{2}=I_{H}(1 \leq i \leq 4), y_{5}^{d}=I_{H} \text { and } y_{1} \cdots y_{5}=I_{H}
$$

We see that Γ^{\prime} includes Γ_{S} as a normal subgroup by the following way.
Let D_{n} be the dihedral group of order $2 n$, namely,

$$
\left.D_{n}=\langle a, b| a^{n}=b^{2}=(a b)^{2}=e(\text { unit element })\right\rangle .
$$

Since $N_{S}^{+} / \Gamma_{S} \cong A(S) \cong \mathbf{Z}_{n} \cong\langle a\rangle$, there exists an epimorphism $\theta: N_{S}^{+} \rightarrow$ \mathbf{Z}_{n} with $\operatorname{ker}(\theta)=\Gamma_{S}$. By $\left[\Gamma^{\prime}: N_{S}^{+}\right]=2$, we can write $\Gamma^{\prime}=N_{S}^{+} \cup N_{S}^{+} \gamma_{1}$ for some γ_{1} in Γ^{\prime}. Therefore for each $y_{i}(1 \leq i \leq 4)$ there exists y_{i}^{\prime} in N_{S}^{+}satisfying $y_{i}=y_{i}^{\prime} \gamma_{1}$. We note that $y_{5} \in N_{S}^{+}$. Then We can define an epimorphism $\varphi_{1}: \Gamma^{\prime} \rightarrow D_{n}$ satisfying

$$
\begin{aligned}
& \varphi_{1}\left(y_{i}\right)=\theta\left(y_{i}^{\prime}\right) b \text { for } 1 \leq i \leq 4 \\
& \varphi_{1}\left(y_{5}\right)=\theta\left(y_{5}\right)
\end{aligned}
$$

Since $\operatorname{ker}\left(\varphi_{1}\right)=\Gamma_{S}, \Gamma_{S}$ is a normal subgroup of Γ^{\prime}. Hence $r \geq 2$ must hold because N_{S}^{+}is the normalizer of Γ_{S} in $A(H)$.

Next we assume $\mathrm{m}=2$. The signature of N_{S}^{+}is of form

$$
\sigma\left(N_{S}^{+}\right)=\left(2 ;+;\left[d_{1}, d_{1}, \cdots, d_{r}, d_{r}\right] ;\{-\}\right)
$$

By Theorems 1 and 2 in [8], N_{S}^{+}is not maximal in the case of $r=0$, because $\sigma\left(N_{S}^{+}\right)=(2 ;+;[-] ;\{-\})$. Then, by Theorem 1 in $[8]$, there exists a Fuchsian group $\Gamma^{\prime \prime} \supset N_{S}^{+}$satisfying

$$
\left[\Gamma^{\prime \prime}: N_{S}^{+}\right]=2 \text { and } \sigma\left(\Gamma^{\prime \prime}\right)=(0 ;+;[2,2,2,2,2,2] ;\{-\})
$$

so that the generators of $\Gamma^{\prime \prime}$ is represented by z_{1}, \cdots, z_{6} with the relations $z_{i}^{2}=z_{1} \cdots z_{6}=I_{H}(1 \leq i \leq 6)$. Since $\left[\Gamma^{\prime \prime}: N_{S}^{+}\right]=2$, we can write $\Gamma^{\prime \prime}=N_{S}^{+} \cup N_{S}^{+} \gamma_{2}$ for some γ_{2} in $\Gamma^{\prime \prime}$. Therefore for each z_{i} there exists z_{i}^{\prime}
in N_{S}^{+}satisfying $z_{i}=z_{i}^{\prime} \gamma_{2}$. We can define an epimorphism $\varphi_{2}: \Gamma^{\prime \prime} \rightarrow D_{n}$ satisfying

$$
\varphi_{2}\left(z_{i}\right)=\theta\left(z_{i}^{\prime}\right) b \text { for } 1 \leq i \leq 6
$$

Since $\operatorname{ker}\left(\varphi_{2}\right)=\Gamma_{S}, \Gamma_{S}$ is a normal subgroup of $\Gamma^{\prime \prime}$. Hence $r \geq 1$ must hold because N_{S}^{+}is the normalizer of Γ_{S} in $A(H)$. Thus the assertion (a) holds.

We put $g^{\prime}=(m+1-k) / 2$. Then the set of canonical generators of N_{S} is represented by

$$
\left\{a_{i}, b_{i}\left(1 \leq i \leq g^{\prime}\right), x_{j}(1 \leq j \leq r), e_{l}, c_{l}=c_{l 0}(1 \leq l \leq k)\right\}
$$

with the relations

$$
x_{j}^{d_{j}}=I_{H}(1 \leq j \leq r), e_{l}^{-1} c_{l} e_{l} c_{l}=c_{l}^{2}=I_{H}(1 \leq l \leq k)
$$

and

$$
\prod_{j=1}^{r} x_{j} \prod_{l=1}^{k} e_{l} \prod_{i=1}^{g^{\prime}}\left[a_{i}, b_{i}\right]=I_{H}
$$

We put

$$
F=\left\{1 \leq l \leq k ; e_{l} \notin \Gamma_{S}\right\} \text { and } t=\# F
$$

For each l in F we denote by f_{l} the order of $\eta\left(e_{l}\right)$ in $\mathbf{Z}_{2 n}$, which is a divisor $(\neq 1)$ of n. Then $d_{1}, \cdots, d_{r}, f_{l}(l \in F)$ are required divisors. The equality (b) is shown by the Riemann-Hurwitz relation $\mu\left(\Gamma_{S}\right)=\left[N_{S}: \Gamma_{S}\right] \mu\left(N_{S}\right)$, namely,

$$
2 g-2=2 n\left(m-1+\sum_{i=1}^{r}\left(1-\frac{1}{d_{i}}\right)\right)
$$

The assertion (c) follows from the genus of $\sigma\left(N_{S}\right)$. The assertion (d) follows from $t=\# F$.

We shall show the assertion (e). Let T be a symmetry on S. Since $\left\{I_{S}, T\right\}$ is a subgroup of $E(S) \cong N_{S} / \Gamma_{S}$, there exists a subgroup Γ_{1} of N_{S} satisfying $\Gamma_{1} / \Gamma_{S} \cong\left\{I_{S}, T\right\}$. Then $\Gamma_{1}=\eta^{-1}(\{0, n\})$. Since $H / \Gamma_{1} \cong$ $\left(H / \Gamma_{S}\right) /\left(\Gamma_{1} / \Gamma_{S}\right) \cong S /\langle T\rangle,|\operatorname{sp}(S)|$ is the number of period-cycles of $\sigma\left(\Gamma_{1}\right)$. Consequently we shall determine the signature of Γ_{1}. Since $\left[N_{S}: \Gamma_{1}\right]$ is odd, we get $\operatorname{sign}\left(\sigma\left(\Gamma_{1}\right)\right)=\operatorname{sign}\left(\sigma\left(N_{S}\right)\right)="+"([4 ;$ Theorem 2.1.2] $)$. The order of $\Gamma_{1} x_{j}$ in N_{S} / Γ_{1} is equal to that of x_{j} in N_{S}. Hence there are no proper periods of $\sigma\left(\Gamma_{1}\right)\left(\left[4 ;\right.\right.$ Theorem 2.2.3]). Since $\sigma\left(N_{S}\right)$ does not have any period in all period-cycles, neither does $\sigma\left(\Gamma_{1}\right)$. For each l in F, the order of $\Gamma_{1} e_{l}$
in N_{S} / Γ_{1} is equal to f_{l}, so that by using Theorem 2.4.2 in [4] the number k_{1} of period-cycles of $\sigma\left(\Gamma_{1}\right)$ is given by

$$
k_{1}=n(k-t)+\sum_{l \in F} \frac{n}{f_{l}}=n\left(k-\sum_{l \in F}\left(1-\frac{1}{f_{l}}\right)\right) .
$$

Hence the signature of Γ_{1} is given by

$$
\sigma\left(\Gamma_{1}\right)=(g_{1} ;+;[-] ;\{\overbrace{(-), \cdots,(-)}^{k_{1}}\}),
$$

where $g_{1}=\left(g-k_{1}+1\right) / 2$. Since $\operatorname{sign}\left(\sigma\left(\Gamma_{1}\right)\right)="+", S /\langle T\rangle$ is orientable, so that $\gamma=k_{1}$. Hence the assertion (e) holds.

If $r+t>0$, we put $M=1$.c.m. $\left\{d_{1}, \cdots, d_{r}, f_{l}(l \in F)\right\}$. Then

$$
\left\langle\eta\left(x_{j}\right)(1 \leq j \leq r), \eta\left(e_{l}\right)(l \in F)\right\rangle \cong \mathbf{Z}_{M}
$$

The canonical relation $\prod_{j=1}^{r} x_{j} \prod_{l=1}^{k} e_{l} \prod_{i=1}^{g^{\prime}}\left[a_{i}, b_{i}\right]=I_{H}$ implies $\sum_{j=1}^{r} \eta\left(x_{j}\right)$ $+\sum_{l \in F} \eta\left(e_{l}\right)=0$ in $\mathbf{Z}_{2 n}$, so that we can take elements $\xi_{j}(1 \leq j \leq r), \varepsilon_{l}(l \in$ $F)$ in \mathbf{Z}_{M} satisfying $o\left(\xi_{j}\right)=d_{j}, o\left(\varepsilon_{l}\right)=f_{l}$ and $\sum_{j=1}^{r} \xi_{j}+\sum_{l \in F^{*}} \varepsilon_{l}=0$. Therefore the assertion (f) follows from Lemma 1.

We shall show the assertion (g). If $k=m+1$ then the set of canonical generators of N_{S} is represented by

$$
\left\{x_{j}(1 \leq j \leq r), e_{l}, c_{l}=c_{l 0}(1 \leq l \leq k)\right\}
$$

with the relations

$$
x_{j}^{d_{j}}=I_{H}(1 \leq j \leq r), e_{l}^{-1} c_{l} e_{l} c_{l}=c_{l}^{2}=I_{H}(1 \leq l \leq k)
$$

and

$$
\prod_{j=1}^{r} x_{j} \prod_{l=1}^{k} e_{l}=I_{H}
$$

Since $\eta: N_{S} \rightarrow \mathbf{Z}_{2 n}$ is surjective, the image of η,

$$
\operatorname{Im}(\eta)=\left\langle\eta\left(x_{j}\right)(1 \leq j \leq r), \eta\left(e_{l}\right), \eta\left(c_{l}\right)(1 \leq l \leq k)\right\rangle
$$

contains elements of order $2 n$. Since $\eta\left(c_{l}\right)(1 \leq l \leq k)$ are elements of order 2, it follows that l.c.m. $\left\{d_{1}, \cdots, d_{r}, f_{l}(l \in F)\right\}=n$. Thus the assertion (g) holds. Hence the proof of "only if" part is completely achieved.

Conversely we shall show the "if" part. Let $n, m, g, \gamma, r, t, d_{1}, \cdots, d_{r+t}$ and k be given numbers satisfying conditions (a) to (g). We put

$$
\sigma=(g^{\prime} ;+;\left[d_{1}, \cdots, d_{r}\right] ;\{\overbrace{(-), \cdots,(-)}^{k}\}),
$$

where $g^{\prime}=(m+1-k) / 2$. By $(\mathrm{c}), g^{\prime}$ is a non-negative integer. Since the area $\mu(\sigma)=m-1+\sum_{j=1}^{r}\left(1-1 / d_{j}\right)$ is positive by (b), there exist NEC groups with signature σ. By Corollary 2.2 .5 in [4] the canonical Fuchsian groups of such NEC groups have the signature

$$
\sigma^{+}=\left(m ;+;\left[d_{1}, d_{1}, \cdots, d_{r}, d_{r}\right] ;\{-\}\right)
$$

From (a) it follows that

$$
\sigma^{+} \neq\left(1 ;+;\left[d_{i}, d_{i}\right] ;\{-\}\right) \text { and } \sigma^{+} \neq(2 ;+;[-] ;\{-\})
$$

Therefore, by Theorems 1 and 2 in [8], there exists a maximal Fuchsian group with signature σ^{+}, so that we have a maximal NEC group with signature σ. We denote it by N.

Let $\left\{a_{i}, b_{i}\left(1 \leq i \leq g^{\prime}\right), x_{j}(1 \leq j \leq r), e_{l}, c_{l}=c_{l 0}(1 \leq l \leq k)\right\}$ be the set of canonical generators of N satisfying

$$
x_{j}^{d_{j}}=I_{H}(1 \leq j \leq r), e_{l}^{-1} c_{l} e_{l} c_{l}=c_{l}^{2}=I_{H} \quad(1 \leq l \leq k)
$$

and

$$
\prod_{j=1}^{r} x_{j} \prod_{l=1}^{k} e_{l} \prod_{i=1}^{g^{\prime}}\left[a_{i}, b_{i}\right]=I_{H}
$$

Assume $r+t>0$. By the condition (f) and Lemma 1 there exist ξ_{j} in $\mathbf{Z}_{2 n}$ of order $d_{j}(1 \leq j \leq r+t)$ such that

$$
\sum_{j=1}^{r+t} \xi_{j}=0 \text { in } \mathbf{Z}_{2 n}
$$

We can define an epimorphism $\eta: N \rightarrow \mathbf{Z}_{2 n}$ satisfying

$$
\begin{aligned}
\eta\left(a_{1}\right) & =\eta\left(b_{1}\right)=2\left(\text { if } g^{\prime} \geq 1\right), \eta\left(a_{i}\right)=\eta\left(b_{i}\right)=0\left(2 \leq i \leq g^{\prime}\right), \\
\eta\left(x_{j}\right) & =\xi_{j}(1 \leq j \leq r, \text { if } r \neq 0), \\
\eta\left(c_{l}\right) & =n(1 \leq l \leq k), \\
\eta\left(e_{l}\right) & = \begin{cases}\xi_{r+l} & (1 \leq l \leq t, \text { if } t \neq 0), \\
0 & (t+1 \leq l \leq k) .\end{cases}
\end{aligned}
$$

Because η is compatible with the relations in N, that is,

$$
\begin{aligned}
x_{j}^{d_{j}}=I_{H} & \Rightarrow \eta\left(x_{j}^{d_{j}}\right)=d_{j} \xi_{j}=0(1 \leq j \leq r) \\
c_{l}^{2}=I_{H} & \Rightarrow \eta\left(c_{l}^{2}\right)=2 n(1 \leq l \leq k) \\
e_{l}^{-1} c_{l} e_{l} c_{l}=I_{H} & \Rightarrow \eta\left(e_{l}^{-1} c_{l} e_{l} c_{l}\right)=0(1 \leq l \leq k) \\
\prod_{j=1}^{r} x_{j} \prod_{l=1}^{k} e_{l} \prod_{i=1}^{g^{\prime}}\left[a_{i}, b_{i}\right]=I_{H} & \Rightarrow \eta\left(\prod_{j=1}^{r} x_{j} \prod_{l=1}^{k} e_{l} \prod_{i=1}^{g^{\prime}}\left[a_{i}, b_{i}\right]\right) \\
&
\end{aligned}
$$

We shall show that η is surjective. Since $k \geq 1, \operatorname{Im}(\eta)$ contains $\eta\left(c_{1}\right)$ of order 2. Therefore it is sufficient to show that $\operatorname{Im}(\eta)$ contains an element of order n. If $g^{\prime} \geq 1$, then $\eta\left(a_{1}\right)$ and $\eta\left(b_{1}\right)$ are of order n by the definition. If $g^{\prime}=0$, that is, $k=m+1$, then by (g) there exist elements of order n in $\operatorname{Im}(\eta)$. Thus $\operatorname{Im}(\eta)=\mathbf{Z}_{2 n}$.

We put

$$
\Gamma=\operatorname{ker}(\eta) \text { and } S=H / \Gamma
$$

Then Γ is an NEC group.
We shall show that S is a required Riemann surface. By the definition of η, there exist no elliptic elements and orientation-reversing ones in Γ, so that the genus of $\sigma(\Gamma)$ is equal to g by the Riemann-Hurwitz relation $\mu(\Gamma)=2 n \mu(N)$. Therefore Γ is a Fuchsian group of signature $\sigma(\Gamma)=$ $(g ;+;[-] ;\{-\})$. Hence S is a compact Riemann surface of genus g. Since N is maximal and includes Γ as a normal subgroup, N is the normalizer of Γ in $E(H)$. Therefore $E(S) \cong N / \Gamma \cong \mathbf{Z}_{2 n}$. We put $\Gamma_{2}=\eta^{-1}(\{0, n\})$. Since Γ_{2} / Γ is a subgroup of order 2 in N / Γ, there exists a symmetry T on S such that

$$
\Gamma_{2} / \Gamma \cong\left\{I_{S}, T\right\} \subset E(S)
$$

Thus S is symmetric. From $[E(S): A(S)]=2$ it follows that $A(S) \cong \mathbf{Z}_{n}$. The genus of $\sigma\left(N^{+}\right)$is equal to $2 g^{\prime}+k-1=m$, so that the genus of $S / A(S) \cong H / N^{+}$is equal to m. Thus S is of type (n, m). The orientability of $S / E(S)$ is derived from $S / E(S) \cong H / N$ and $\operatorname{sign}(\sigma(N))=$ "+".

We shall show $\operatorname{sp}(S)=\gamma$. Note the form of $\sigma\left(\Gamma_{1}\right)$ given in the "only if" part. Similarly we obtain

$$
\sigma\left(\Gamma_{2}\right)=(g_{2} ;+;[-] ;\{\overbrace{(-), \cdots,(-)}^{k_{2}}\})
$$

and

$$
k_{2}=n(k-t)+\sum_{l=1}^{t} \frac{n}{d_{r+l}}=n\left(k-\sum_{l=1}^{t}\left(1-\frac{1}{d_{r+l}}\right)\right) .
$$

Since $S /\langle T\rangle \cong(H / \Gamma) /\left(\Gamma_{2} / \Gamma\right) \cong H / \Gamma_{2}$, we have $\operatorname{sp}(S)=k_{2}=\gamma$. Hence S is a symmetric Riemann surface of type (n, m) with $g(S)=g, \operatorname{sp}(S)=\gamma$, $E(S) \cong \mathbf{Z}_{2 n}$ and with the orientable quotient $S / E(S)$. The proof of "if" part is completely achieved.

Corollary 2. If $\sum_{i=1}^{r}\left(1-1 / d_{i}\right)=\sum_{i=1}^{t}\left(1-1 / d_{r+i}\right)$ in the above theorem, then

$$
g(S)+k(S /\langle T\rangle)-1=\# A(S)(g(S / A(S))+k(S / E(S))-1)
$$

where $k(X)$ denotes the number of boundary components of X.
Proof. By (b) and (e), we get $g+\gamma-1=n(m+k-1)$.

§5. Examples

We shall show the simplest examples on our theorem.
Example 1. In the case of $n=9$ and $m=1$, our theorem is reduced to the following:
There exists a symmetric Riemann surface S of type $(9,1)$ with $g(S)=$ $g, \operatorname{sp}(S)=\gamma, E(S) \cong \mathbf{Z}_{18}$ and with the orientable quotient $S / E(S)$ if and only if there exist non-negative integers $r_{1}, r_{2}, t_{1}, t_{2}, \overbrace{3, \cdots, 3}^{r_{1}+t_{1}}$ and $\overbrace{9, \cdots, 9}^{r_{2}+t_{2}}$ such that:
(1) $r_{1}+r_{2} \geq 2$.
(2) $g=6 r_{1}+8 r_{2}+1$.
(3) $0 \leq t_{1}+t_{2} \leq 2$.
(4) $\gamma=2\left(9-3 t_{1}-4 t_{2}\right)$.
(5) We put $\mathbf{r}=\left(r_{1}, r_{2}\right)$ and $\mathbf{t}=\left(t_{1}, t_{2}\right)$, then
(5.1) $\mathbf{r}=(s, 0), s \geq 2 \Rightarrow \mathbf{t}=(0,2)$,
(5.2) $\mathbf{r}=(s, 1), s \geq 1 \Rightarrow \mathbf{t}=(0,1),(1,1),(0,2)$.

Then the possible genera g and species γ are listed as follows:

g	13	15	17	19	21	23	25	27	29	31	\cdots
	2	2	2	2	2	2	2	2	2	2	
		4	4		4	4	4	4	4	4	
γ			6			6	6		6	6	\cdots
		10	10		10	10	10	10	10	10	
			12			12	12		12	12	
			18			18	18		18	18	

The following figure illustrates the relation of g, γ and \mathbf{r}.

(g) $\gamma=2,4,6,10,12,18$
(4) $\gamma=2,4,10$
(9) $\gamma=2$

The following figure illustrates the relation of g, γ and \mathbf{t}.

The possible g and γ satisfying the equality in Corollary 2 are the following

$$
\begin{array}{lll}
g=15 & \gamma=4 & (\mathbf{r}=\mathbf{t}=(1,1)) \\
g=17 & \gamma=2 & (\mathbf{r}=\mathbf{t}=(0,2))
\end{array}
$$

Example 2. In the case of $n=15$ and $m=1$, our theorem is reduced to the following:
There exists a symmetric Riemann surface S of type $(15,1)$ with $g(S)=$ $g, \operatorname{sp}(S)=\gamma, E(S) \cong \mathbf{Z}_{30}$ and with the orientable quotient $S / E(S)$ if and
only if there exist non-negative integers $r_{1}, r_{2}, r_{3}, t_{1}, t_{2}, t_{3}, \overbrace{3, \cdots, 3}^{r_{1}+t_{1}}, \overbrace{5, \cdots, 5}^{r_{2}+t_{2}}$ and $\overbrace{15, \cdots, 15}^{r_{3}+t_{3}}$ such that:
(1) $r_{1}+r_{2}+r_{3} \geq 2$.
(2) $g=10 r_{1}+12 r_{2}+14 r_{3}+1$.
(3) $0 \leq t_{1}+t_{2}+t_{3} \leq 2$.
(4) $\gamma=2\left(15-5 t_{1}-6 t_{2}-7 t_{3}\right)$.
(5) We put $\mathbf{r}=\left(r_{1}, r_{2}, r_{3}\right)$ and $\mathbf{t}=\left(t_{1}, t_{2}, t_{3}\right)$, then
(5.1) $\mathbf{r}=(s, 0,0), s \geq 2 \Rightarrow \mathbf{t}=(0,2,0),(0,1,1),(0,0,2)$,
(5.2) $\mathbf{r}=(0, s, 0), s \geq 2 \Rightarrow \mathbf{t}=(2,0,0),(1,0,1),(0,0,2)$,
$(5.3) \mathbf{r}=(1,1,0) \quad \Rightarrow \mathbf{t}=(1,1,0),(1,0,1),(0,1,1)$, $(0,0,1),(0,0,2)$,
(5.4) $\mathbf{r}=(1, s, 0), s \geq 2 \Rightarrow \mathbf{t} \neq(0, u, 0), u \geq 0$,
(5.5) $\mathbf{r}=(s, 1,0), s \geq 2 \Rightarrow \mathbf{t} \neq(u, 0,0), u \geq 0$,
(5.6) $\mathbf{r}=(s, 0,1), s \geq 1 \Rightarrow \mathbf{t} \neq(u, 0,0), u \geq 0$,
(5.7) $\mathbf{r}=(0, s, 1), s \geq 1 \Rightarrow \mathbf{t} \neq(0, u, 0), u \geq 0$.

Then the possible genera g and species γ are listed as follows:

g	21	23	25	27	29	31	33	35	37	39	\cdots
	2	2	2	2	2	2	2	2	2	2	
	4	4	4	4	4	4	4	4	4	4	
	6	6	6	6	6	6	6	6	6	6	
		8	8	8	8		8	8	8	8	
γ		10	10	10			10	10	10	\cdots	
		16	16	16	16		16	16	16	16	
			18		18		18	18	18	18	
			20	20			20	20	20		
					30				30	30	

The following figure illustrates the relation of g, γ, and \mathbf{r}.

(g) $\gamma=2,4,6,8,10,16,18,20,30$
(3) $\gamma=2,4,6,8,16,18$
(g) $\gamma=2,4,6,8,10,16,20$
(g) $\gamma=2,4,6,8,16$
(3) $\gamma=2,6,10$
(9) $\gamma=2,4,6$

The following figure illustrates the relation of g, γ and \mathbf{t}.

The possible g and γ satisfying the equality in Corollary 2 are the following

$$
\begin{array}{lll}
g=23 & \gamma=8 & (\mathbf{r}=\mathbf{t}=(1,1,0)), \\
g=25 & \gamma=6 & (\mathbf{r}=\mathbf{t}=(1,0,1)), \\
& & (\mathbf{r}=(1,0,1), \mathbf{t}=(0,2,0)), \\
& & (\mathbf{r}=(0,2,0), \mathbf{t}=(1,0,1)), \\
g=27 & \gamma=4 & (\mathbf{r}=\mathbf{t}=(0,1,1)), \\
g=29 & \gamma=2 & (\mathbf{r}=\mathbf{t}=(0,0,2))
\end{array}
$$

References

[1] N. l. Alling and N. Greenleaf, Foundations of the theory of Klein surfaces, Lecture Notes in Math., Vol. 219, Springer-Verlag, Berlin-New York, 1971.
[2] E. Bujalance, Normal subgroups of NEC groups, Math. Z., 178 (1981), 331-341.
[3] E. Bujalance, A. F. Costa and J. M. Gamboa, Real parts of complex algebraic curves, Lecture Notes in Math., Vol. 1420, Springer, Berlin, 1990, pp. 81-110.
[4] E. Bujalance, J. J. Etayo, J. M. Gamboa and G. Gromadzki, Automorphism groups of compact bordered Klein surfaces, Lecture Notes in Math., Vol. 1439, Springer-Verlag, Berlin, 1990.
[5] E. Bujalance and D. Singerman, The symmetry type of a Riemann surface, Proc. London Math. Soc., 51, No. 3 (1985), 501-519.
[6] A. M. Macbeath, The classification of non-Euclidean plane crystallographic groups, Canad. J. Math., 19 (1967), 1192-1205.
[7] C. Maclachlan, Maximal normal Fuchsian groups, Illinois J. Math., 15 (1971), 104-113.
[8] D. Singerman, Finitely maximal Fuchsian groups, J. London Math. Soc., 6, No. 2 (1972), 29-38.
[9] D. Singerman, On the structure of non-Euclidean crystallographic groups, Proc. Cambridge Philos. Soc., 76 (1974), 233-240.
[10] H. C. Wilkie, On non-Euclidean crystallographic groups, Math. Z., 91 (1966), 87-102.

Graduate School of Human Informatics
Nagoya University
Chikusa-ku, Nagoya 464-8601
Japan
nakamura@math.human.nagoya-u.ac.jp

[^0]: Received June 19, 1996.
 Revised May 22, 1997.

