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ONE DIMENSIONAL FIBERING
OVER tf-COMPLETE SPACES

VIOREL VAJAITU

Abstract. We show that if E —• X is a locally trivial holomorphic ίibrations
whose fiber is an open Riemann surface and X is a g-complete space, then E
is ςf-complete.

§1. Introduction

Let X and F be complex manifolds and E a holomorphic fiber bundle

over X with typical fiber F. In 1953 Serre [7] posed the following question

related to the classical Levi problem for characterizing domains of holomor-

phy:

(*) Assume that X and F are Stein. Does it follow that E is Stein,

tool

Several particular cases of this were settled (cf. [8] for summaries) until

Skoda [9] produced in 1977 a counterexample with fiber C 2 , which, however,

did not stop the interest around the problem. Mok [5] solved completely

the case when F is a complex curve. On the other hand, new questions have

appeared, e.g., to study cohomological properties of such an E as in (•). In

this direction, Jennane [4] showed that the cohomology of E with coefficients

in coherent analytic sheaves is trivial in dimensions > 2. Furthermore, we

established a general vanishing theorem for locally g-complete morphisms

over ^-complete spaces [12]. (The normalization is chosen so that Stein

spaces correspond to 1-complete spaces.)

In this paper, by reconsidering the geometrical point of view, we extend

Mok's result to the case X is g-complete by proving the following theorem

which answers a question raised to the author by Professor Takeo Ohsawa

at the Conference on complex analysis in Hayama, Japan in the spring of

1995.
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THEOREM 1. Let π: E —• X be a locally trivial holomorphic fiber space

with typical fiber F. Assume that F is an open Riemann surface. If X is

q-complete, then E is q-complete, too.

Note that for fibers of dimensions > 2 there are counterexamples [12].

In fact, for every integer q > 1 there is a fiber bundle E with fiber C 2 over a

g-complete domain in Cq+1 such that Hq(E, Όβ) does not vanish, a fortiori

E is not ̂ -complete [1].

The method we use in proving Theorem 1 yields also the subsequent

interesting criterion of ^-completeness which was suggested to me by Pro-

fessor Mihnea Colt oiu and may be viewed, in a weak sense, as a theorem of

Docquier-Grauert type [3] for g-complete manifolds.

THEOREM 2. Let X be a weakly q-complete complex space such that on

every relatively compact open subset there are continuous strongly plurisub-

harmonic functions. Then X is q-complete.

§2. Preliminaries

Throughout this paper all complex spaces are assumed to be reduced

and with countable topology. By an open Riemann surface we mean a

non-singular complex curve without compact components.

Let X be a complex space and TXX denotes the (Zariski) tangent space

of X at x. Set TX = UxeXTxX. If X = C n , TXX is canonically identified

with Cn.

A (local) chart of X at a point xG X is a holomorphic embedding

L:U —> ?7, where U 3 x is an open subset of X and U is an open subset of

some euclidean space C n . Holomorphic embedding means that ι{U) is an

analytic subset of U and the induced map t: U —> L(U) is biholomorphic.

Suppose L: U —> U is a local chart at x\ then the differential map

L*:TXX —* Cn of L at x is an injective homomorphism of complex vector

spaces.

Let D C C n be an open subset. A function φ G C°°(£),R) is said to

be q-convex if the quadratic form

has at least n — q + 1 positive eigenvalues for every z G D, or equivalently,

there exists a family {MZ}Z^D of (n — q + l)-dimensional complex vector

subspaces of Cn such that L(φ, Z)\MZ is a positive definite form for all z £ D.
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Let X be a complex space. A function φ G C°°(X, R) is said to be

q-convex if every point of X admits a local chart L: U —» U C C n such that

there is an extension φ G C°°(C7, R) of (p|^ which is g-convex on U. (This

definition does not depend on the local embeddings.)

We say that X is q- complete if there exists a g-convex exhaustion func-

tion φ G C°°(X,R).

A subset ΛΛ C TX is said to be a linear set over X (of codimension

less than q) if for every point x G X, ΛΛX := ΛΊ Π T^X C TXX is a complex

vector subspace (of codimension less than q). If W C X is an open set, we

have an obvious definition of the restriction ΛΛ\\γ. The following is due to

Peternell [6].

DEFINITION. Let X be a complex space, W C X an open set, ΛΛ a

linear set over W, and φ G C°°(W,R).

(a) Let x G W. Then we say that φ is weakly 1-convex with respect to

Mx if there are: a local chart i: V —>XJ of X with x G 1/ C W, U C C n open

set, and an extension (j? G C°°(ί7, R) of φ\u such that L(φ, L(X))(L*£) > 0

for every £ G Mj;.

We say that φ is weakly 1-convex with respect to ΛΛ if φ is weakly

1-convex with respect to Λ4X for every x G W.

(b) The function y? is said to be 1-convex with respect to Λ4 if every

point of W admits an open neighborhood U C W such that there exists a

1-convex function θ on U with (/? — θ weakly 1-convex with respect to Λ4\u-

It is not difficult to see that the extension φ of φ is irrelevant for the

above definition. In particular, if the functions φ and φ are (weakly) 1-

convex with respect to Ai, so is their sum φ + ψ.

On the other hand, a complex space X is g-complete if, and only if, there

exists a linear set ΛΛ over X of codimension less than q and an exhaustion

function φ G C°°(X, R) which is 1-convex with respect to ΛΛ.

Motivated by this observation, we call a complex space X weakly q-

complete if there exists a linear set AΛ over X of codimension less than q

and an exhaustion function φ G C°°(X, R) which is weakly 1-convex with

respect to Ad.

Here, to avoid some technical difficulties in the proofs of the theorems,

we introduce the following

DEFINITION. Let X be a complex space and ΛΊ a linear set over X. We

say that φ G C°(X, R) is (weakly) Aί-convex if, and only if, every point of X
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admits an open neighborhood D such that there are functions / i , . . . ,/& G

C°°(D, R), (weakly) 1-convex with respect to Λ4, and # i , . . . , g^ £ Psh(D)Π

C°(£>,R) with

= max{/i +gi,...,fk+ 9k}-

For instance, if φ is weakly ΛΊ-convex and φ is Λί-convex, then their

sum φ + φ is Λ4-convex. Besides, if Λ,: R —• R is given locally by max{αit-h

fei,..., α,fc£ + 6fc} with α̂  > 0 for all i, then h(φ) is again weakly ΛΊ-convex.

Remark. In [11] we introduced continuous functions φ:X —> R which

we called pseudoconυex with respect to ΛΛ, i.e., one has (•) without g^'s.

Clearly, this notion is stronger than ΛΊ-convexity.

Therefore, the following approximation result improves [11], Theorem 1.

PROPOSITION 1. Let λΛ be a linear set over a complex space X and

φ E C°(X, R) a M-conυex function. Then for every η G C°(X, R), η > 0,

there exists φ G C°°(X, R) which is 1-convex with respect to ΛΛ and

φ < φ < φ + η.

In particular, if M. has codimension less than q, then φ is q-convex.

Proof. Choose a locally finite covering {Ui}iej of X by relatively com-

pact open Stein subsets on which there are functions fij, gij, j = 1,... ,n-i,

as in (•). Then consider open sets V{ CC Ui and compact sets Ki C V{

such that {Ki}i£j is again a covering of X. Let θ{ be smooth functions on

X which equal —1 on ΘV{ and 1 on Ki. Choose Si > 0 small enough such

that f- :=δ{θi + fij, j = 1, . . . , rij, are 1-convex with respect to λΛ on Vi,

and 2δi < infy{ η for all i. Then choose smooth plurisubharmonic functions

g[ on Ui such that \g'- — gij\ < ίj on VJ. One may define φ':X —> R by:

for every x G l set

φ{x) = swp{fίj(x) + g[j(x)\ i,j such t h a t x G Vi}.

It is straightforward to see that φ' is continuous, 1-convex with respect

to Λ4 on 1 , and ψ < φ' < φ + η. The proposition follows now by [11],

Theorem 1, if we approximate ψ1 in the C°-topology by φ as required.

The subsequent is proved in [5].

THEOREM 3. // S is a connected open Riemann surface, then there

exists an exhaustion function φ E P s h ( 5 ) Π C ° ( 5 , R ) such that for every

automorphism θofS,φ — φoθisa bounded function.
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§3. The proofs of the theorems

To begin with, we state a proposition, which, by taking into account

the definition of a weakly g-complete space, gives immediately a proof of

Theorem 2.

PROPOSITION 2. Let λd be a linear set over a complex space X. Sup-

pose that:

a) There exists an exhaustion function φ G C°(X, R) which is weakly

ΛΛ-convex.

b) For every open set D CC X there exists φ G C°°(X, R) which is

1-convex with respect to λi on D.

Then there exists an exhaustion function φ G C°°(X, R) which is 1-

convex with respect to ΛΛ on X.

Proof. Without any loss of generality, we may assume that minx φ = 0.

For n = 1,2,..., we denote Kn = {x G X φ(x) < n} and Dn = {x G

X φ(x) < n + 2}. Let ̂ n € C°°(X,R) be ΛΊ-convex on Dn+i. By taking

the exponential, we may suppose ψn > 0. Set

an := max(y? + ̂ n ) > 0.

Let /ιn: R —> R be defined by hn(t) — max{ί, (1 + an)(t - n - 1)}, t G R.

Clearly, hn is strictly increasing, convex, hn(t) = t for t < n + 1, and

/ιn(n + 2) > αn. Therefore hn(φ) > φ + ψn on the set {n + 2 — ε < φ < n + 2}

for some ε > 0 sufficiently small; consequently we may define a continuous

function φn: X —• R by:

- {
on D n ,

n(ψ) on X\ Dn.

Then ψn is positive and exhaustive since φn > hn(φ), weakly ΛΊ-convex on

X, and as φn = y? + ψn on UΓn+ij ^n is a ΛΊ-convex function on the interior

Of ΛΓn+l.

Now, if the sequence {en}n of positive numbers decreases (fast enough)

to 0, we may define an exhaustion Λ4-convex function Φ G C°(X, R) by

and we conclude by Proposition 1.
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Here we start the proof of Theorem 1. First assume that the fiber F is

connected (for steps 1 and 2); second, the general case (step 3), will follow

by a canonical reduction procedure if we note some facts on g-complete

spaces.

Step 1. By Theorem 3 and standard arguments, there exists a locally

finite covering {Ui}iej of X by relatively compact open Stein subsets which

trivialize E and such that the following property holds:

(•) There are continuous plurisubharmonic exhaustion functions ψi'.Ei —>
R, Ei = π~1(ί7i), such that for every compact set K C UiΠUj-, ψi — ψj

are bounded functions on π~λ(K) for every indices i and j . Clearly,
we may suppose φι > 0.

Now consider open sets W{ CC V{ CC U{ such that uWj = X\ then
choose non-negative smooth functions p\ with compact support contained
in Vi which equal 1 on W{. Since on π~1(Wi Γ) dVj) one has: ψi — ψj is
a bounded function, p\ o π = 1, and p' • o π = 0, there are large enough
constants Q > 0 such that on π~λ(Wi Π dVj) one has:

+ Ψi> Ψj = CjPj + Ψi

for all indices i and j . Put pi := Cip'^ i G /, and define u: E —> (0, oo) by

1/(0 - max{pf (π(C)) + ^(C);"<

where for ζ £ E, Ί(ζ) :={i G /; π(£) G V }̂. One checks readily that u is
continuous and for an arbitrary compact set L C X the restriction of u to
π~λ(L) is exhaustive.

2. Let Λ4 = {Λ4Ϊ}X6X ^ e a linear set over X of codimension
less than q and </?' G C°°(X, R) an exhaustion function which is 1-convex
with respect to Λ4. Select a smooth non-negative function λ from R into
itself which is rapidly increasing and convex such that \(φf) +Pi, i G /, are
1-convex with respect to ΛΊ. Set φ:=λ(φf).

Now define a linear set λί over E by λίζ = ^li-Mπfζ)) f° r ζ € E. Here
TΓ*^ means the differential map of π at ζ" from TζE into Γπ(ζ)X. Obviously,

λί has codimension less than q.

Put σ = (/? o 7Γ +16. Then σ is weakly ΛΓ-convex on £7, and by what we

said in Step 1, σ is exhaustive.
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We claim that for every open set Ω CC E there exists a smooth function

Ψ on E which is 1-convex with respect to λί on Ω.

Indeed, we cover π(Ω) with finitely many Wi's, say .Wί, i = 1,... ,m;

then choose positive 1-convex functions i\)\ on π - 1 (ί7i) . Straightforward

computations show that there exists a constant A$ > 0 large enough such

that the function VΆ £ C°°{E, R) given by

V>A = A (<p o π) +

is 1-convex with respect to ΛΓ on Ω for every A > AQ. NOW we conclude

the proof of the theorem by applying Proposition 2.

Step 3. Here we consider the general case. In order to do this, decom-

pose F — UFj so that in Fj appear only connected components isomorphic

to each other and non-isomorphic to connected components of F 5 , for s φ j .

Each Fj is invariant under transition automorphisms of E, so that E splits

into a disjoint union of fiber bundles Ej with base X and fiber Fj. Thus it

suffices to assume that the fiber F consists of isomorphic connected com-

ponents. Then the transition automorphisms can permute the connected

components of F and we have a two-step fibration E —> X —» X where X

is a topological covering of X and the first fibration has a connected fiber.

Since X is g-complete by [2], the theorem follows now from the preceding

case.
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