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Abstract. Let K be a field and let / 6 K[[xι,x2, . ,xr]] and g 6 #[[2/1,2/2, ,
ys]] be non-zero and non-invertible elements. If X (resp. Y) is a matrix factor-
ization of / (resp. g), then we can construct the matrix factorization X §> Y of
/-+• g over K[[xiyX2, - > ,xr,yi,y2, - ,ys]]i which we call the tensor product of
X and y .

After showing several general properties of tensor products, we will prove
theorems which give bounds for the number of indecomposable components in
the direct decomposition of X <§> Y.

§0. In t roduct ion

Let K be a field and let if [[x]] be the formal power series ring in the

variables x = x\, X2,...,x r and if [[?/]] the formal power series ring in

V — Vi, V2-> >2/s And let / G if [[x]] and g G if [[2/]] be non-zero and non-

invertible elements. We consider the problem how one can relate MCM

modules (= maximal Cohen-Macaulay modules) over R\ = K[[#]]/(/) and

over R2 = K[[y]]/(g) with MCM modules over R = K[[x,y]]/(f + g). Ac-
tually if Λ2 = K[[yι])l{yl) or if R2 = K[[yuy2]]/(yiy2), then the problem
was considered by Knόrrer [Kl], [K2], and a certain periodicity theorem
for MCM modules is known in this course, (cf. [K2, Theorem 3.1].) On
the other hand, Herzog and Popescu [HP] had considered the same prob-
lem for the particular case R2 = K[[yι]]/(yl) and they call the problem
"Thom-Sebastiani problem".

In this paper, we will present a method of tensor products of matrix
factorizations to relate those objects. More precisely, if we have two MCM
modules M and N respectively on the rings i?χ and i?2, we can construct
a new MCM module M ® N over R by means of tensor product. In such
a construction, it may happen that even if M and N are indecomposable,
the tensor product M ® N might be decomposable. Thus it will be a
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40 Y. YOSHINO

major problem to find the condition for the indecomposability of the tensor

modules, which is one of the main purposes of this paper.

In §1, we shall give a definition of the tensor product of matrix factor-

izations. Because every MCM module over a hypersurface ring is given by

a matrix factorization, this formation will give the tensor product for MCM

modules.

In §2, we give some functorial properties of tensor products, all of which

are just machineries from the definition, however they will be useful for a

practical computation.

In §3, we will find some of the criteria for the indecomposability of the

tensor product. More precisely we will find some bounds for the numbers

of indecomposable summands in the tensor product. See (3.3) and (3.4).

Moreover, as one of the main theorems of this paper, we will show in (3.7)

that if a matrix factorization X of size one is not isomorphic to its first

syzygy, then the tensor product by X preserves the indecomposability.

In §4, an application of this theorem will be given, where we can claim

that certain syzygy modules over a hypersurface ring are indecomposable.

§1. Definition

First we recall some of the basic facts about the relationship between

MCM modules and matrix factorizations. Let /£UΓ[[a:]]=ίΓ[[α;i, x2> > %r]]

be a non-zero and non-invertible element. A pair (</>, ψ) of n x n-matrices

over K[[x]] is called a matrix factorization of / of size n if φφ = φφ — f l n .

If (</>, φ) is a matrix factorization of / of size n, then Eisenbud [E] shows

that the module M given by the exact sequence

0 > K[[x]]n —^-> K[[x]]n > M > 0

is always an MCM module over K[[x]]/(f). Conversely every MCM mod-

ule over ϋf[[x]]/(/) is given in this way. More precisely, there is a stable

equivalence of the category of MCM modules with the category of matrix

factorizations. (See [E] or [Yl, (7.4)].)

We denote the category of matrix factorizations of / by MF^[[x]j(/)

which is defined as follows: The objects of M J F W X ] ] ( / ) are the matrix

factorizations of /, and the morphisms from (φi,ψi) to (Φ21Φ2) are the
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pairs of matrices (α, β) which make the following diagram commutative:

K[[x]]m JL^ K[[x]r ^_> K[{x]]m

K[[x\]n* —

We quote the following fact from Solberg [S, Prop. 1.3].

LEMMA 1.1. The category MF^[uj(/) is equivalent to the category of
MCM modules over a certain (noncommutative) order on K[[x]]. In partic-
ular, MFχ[[x}](f) is an additive category with splitting idempotent property.
Therefore the Krull-Schmidt theorem holds in MFχπχ-n(f).

Since, in this paper, we only consider MCM modules over hypersurface
rings, we mainly concentrate on the matrix factorizations.

Now to define the tensor products of matrix factorizations, as in the in-
troduction let / G AΓ[[a;]]=JK'[[α:i,a:2,...,a;r]] and g G K[[y]]=K[[yuy2,...,
ys]] be two formal power series that are non-zero and non-invertible.

In the following X = (φ,ψ) (resp. X' = (φ^φf)) is always an object in
MFK[[x]](f) (resp. MFκ[[y]](g)) of size n (resp. m).

DEFINITION 1.2. Since φ and ψ (resp. φ' and ψf) are matrices over
K[[x]] (resp. UΓ[[i/]]), they can be considered as matrices over S := K[[x,y]]
of size n (resp. m). Then the tensor product X (g> X1 is given by

®lm - I n
n®φf Φ ® . .

where each component is an endomorphism on Sn <S>s Sm. It is easy to
verify that X ® X' is in fact an object of MFs(f + g) of size 2nm.

For a morphism ξ — (a,β):Xι = (φi,ψι) —> X2 — {Φ2^2) in
), we also define ξ ® X1 by

®lm 0 \ ίβ®lm 0

0 /3®i

Actually ξ § X' is a morphism Xi ® X1 -> X2 § X' in MFs(f + g).
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Similarly, if ξ' = (a',β'):X[ = (φ'^ΨΊ) -* X'2 = (φ'2,φ2) is a morphism
in MFjζityv(g), then X ®ξ' is defined to be

In® a' 0 \ / l n ® α ' 0

0 1«®WI 0 ln®

Thus for fixed X and X', the tensor product X ® ( ) (resp. ( ) ® X') defines
the functor MFκ[[y]]{g) -> MFs(f + g) (resp. M F % ] ] ( / ) -> MFs(f + g)).

Remark 1.3. («) If 5(2/1) = 2/i and X ' = (3/1,2/1) or if g(y) = 2/u/2 and
X' = (2/1,2/2)) then the tensor product ( ) <8> X' coincides with the functor
defined by Knόrrer [K2, §2 and §3].

(it) If both / and g are quadratic forms, then the above formation of
tensor products just corresponds to the tensor products of Clifford modules.
See [BEH] or [Yl, Chap. 14].

EXAMPLE 1.4. Suppose we have three matrix factorizations in one
variable: X = (x,x2) € MFκ[[x]]{x3), X' = (y2,y3) € MFκ[[y]](y5) and
X" = (z3, 24) 6 MFκ[[z]](z7). Setting Y = X ® X', we have

Y -

X

-y3

-y*

Therefore we get a matrix factorization Y ® X" G
described as follows:

Y § X" =

/

V 0

y z"
x 2 o
o

4

0 \ /x2

~3

— Z

x 2 - z / 2

t/3 x

X

0

0

x

,y,z]](χ3+y5 + z7)

3 0 \ \

y2

We shall show in (3.7) that Y V is indecomposable.

Z 4 - J / 3 X 2

§2. Functorial properties

We show in this section the basic properties of tensor products. As in
§1, X = (φ,rl>) e MFκ[[x]](f), X' = {φ\ψ) e MFκ[[y]](g) always denote
the matrix factorizations of size n and m respectively and set 5 = [

LEMMA 2.1. (Commutativity) There is a natural isomorphism X
X1 ^X'%X inMFsU + 9)'
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-001 -100'

10V/ 001

Proof. This is obvious from the following commutative diagram:

001 100'\

o2nm ^ ) o2nm ^ ^ o2nm

1 0

0 - 1

D

By virtue of this lemma, if we prove some claim for the variable X, the
same will be valid for the variable X1. (E.g. Lemmas (2.2), (2.3), (2.8),
(2.11) and (2.12) below.)

LEMMA 2.2. (Additivity) There is a natural isomorphism ( X i θ X 2 ) Θ

Proof. Let Xi = (φi,ψi) and X 2 = {Φ21Ψ2) be of size rt\ and 712
respectively. Then we have

(X 1 ΘX 2 )§X /

-02(8)1

and

') θ (X2

\

0201 100'

' -0201/

10-0' 0101

\

^201 -100'

0201 /

From these equalities the lemma follows easily. D

A matrix factorization X G MFfζ^xj^(f) is called trivial if X is a direct
sum of copies of the matrix factorizations (/, 1) and (1, / ) .
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LEMMA 2.3. (Preserving triviality) If X is a trivial matrix factoriza-

tion in MFjζπxr\(f), then X ® X' is also a trivial matrix factorization in

MFsU + 9)-

Proof. If X = (1, / ) , then we see that

hence X ® X' = (f + g, l ) m Θ (1, / + 5 ) m is trivial. The same is true for
X = (/, 1) and the lemma follows from (2.2). Q

From (2.2) and (2.3) we have the additive functor between stable cat-
egories

(2.4) ( ) § X':MHκ[[x]](f) - MFs(f + g).

See [Yl, Chap. 7] for the definition of the stable categories.
For a matrix factorization (</>, Ψ), the syzygy Ω(φ,ψ) is defined to be

the matrix factorization (ψ,φ). Notice that Ω defines the endo-functor on
the category of matrix factorizations and satisfies Ω2 = 1.

9):

LEMMA 2.5. (Syzygy property) There are isomorphisms in MFs(f +

ΩX ' £ X f ^ Ω(X § X1) ^ ΩX ® X1.

Proof. The first isomorphism follows from the following commutative

diagram:
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We omit the proof of the rest because they are just the consequences of

direct computations similar to this. Q

Note in general Ω(X ® X') ψ X ® X'.
For a matrix factorization X = (φ, φ) we define the dual X* of X by the

transposes of matrices; X* = (0*, ?/>*)• Note that this operation corresponds
to the canonical dual in the category of MCM modules.

By a similar computation as in the previous lemma, we can show the
following

LEMMA 2.6. (Dual) There is an isomorphism (X ® X')* ==! X* ® X'*.

LEMMA 2.7. (Associativity) As before let X = (φ,φ) G MFK^(/)
and X' = (</>',φ') e MFK[[y]](g). Further suppose X" = (φ"\φ") is in

) . Then we have an isomorphism in MF(f + g + h):

(X ® X') (X' ® X")

Proof. For simplicity we denote φ^> = φ <g> 1 ® 1, φ^ = 1 <g> φ' <g> 1,

φ(3) = 1 <g> l ® <£", and similarly ^ ( 1 ) = V" ® 1 ® 1, ^ ( 2 ) = 1 ® 0 ' ® 1,

= 1 ® 1 ® ip". Then an easy computation shows that

0 \

-Φ{2)

V> ( 2 )

•0(2)

V o

and

X")

\\-

o

Vv ( 3 )

Then changing rows and columns results the isomorphism in the lemma.

We say that the matrix factorization is reduced if no entries of the

matrices are units.
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LEMMA 2.8. (Exactness) // (i) 0 —• X\ -> X2 —> X3 —> 0 is an exact

sequence in MFjζπxr\(f)y then it induces the following exact sequence in

MFs(f + g):

(ii) 0 X2®X' X, ® X' 0

Furthermore if the sequence (ii) splits and if X' is a reduced matrix factor-
ization, then the first sequence (i) also splits.

Proof Let £ = (α, β) G E x t 1 ^ , X\) = Hom(X3, ΩΛΊ) be an element
corresponding to the extension (i). Then the matrix factorization of / given

by E = f ( . 1 , I , represents X2 in (i). Thus X2 ® X ;

is represented by

\ \

\ \

-^301/ \

\

α01

-0301 100'

α 0 1

-"0301 -

-10-0' -0301 /

This shows that the sequence (ii) is an extension represented by ξ ® X ' G
® X'), in particular it is exact.

If (ii) splits, then (ii) <S>s S/(y) also splits, and we can use the next
lemma 2.9 to get the following sequence splits in MFχ[[x]](f):

0 >(X1®ΩX1)
m -

Therefore (i) also splits.

(X2 Θ (x3

D

DEFINITION AND LEMMA 2.9. (Reduction) IfY = (Φ,Φ) € MFs(f +
g)} then the pair of matrices (Φ ®s S/(y),Ψ (8)5 S/(y)) gives a matrix
factorization of f in MFjζ^x^(f). Thus ( ) (8)5 S/(y) defines a functor
MFs(f + g) —> MFjζ[[x]](f)f which we call the reduction to S/(y) and de-
note by ()y.
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Under this notation, if X1 is a reduced matrix factorization of size
m, then we have a functorial isomorphism (X ® Xf)y — (X Θ ΩX)m in
MFKM]{f).

Similarly if X is reduced of size n, then the reduction to S/(x) gives
the isomorphism (X ® X')x 9* (X' φ ΩX')n

Proof. The first part of the lemma is obvious. For the second, notice
that φ1 ® S/(y) = ψf ® S/(y) — 0, therefore we have the following equalities
for an object X — (φ,ψ) in MFjζ[[x]](f)'

φ®l

The lemma follows from this equality. •

LEMMA 2.10. Let X1 be a reduced matrix factorization in MF(g) as
above and let ξ be a morphism X\ ® X' —> X2 Θ X1 in MF(f + g). Then
we can describe ξ as follows:

a β\ (a1 βf

Ί

where a, cJ, β etc. are nm x nm matrices over S. In this case if we take the
reduction to S/(y), we have the morphism ξy: Xψ φ ΩXψ —> X™
described as

(a,a% {β,β%
(7,Y)y (δ,δ%

Similarly, let X 6 MF(f) be reduced and let η be a morphism X®X[
X <g> X'2 in MF(f + g). As above, if we write η as

a β\ (a1 β'
' δ'

then taking the reduction to S/(x) we have a morphism ηx: X'\
described as
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Proof. We prove the lemma only for η. From the definition we know
the equality

a β\ ί 0®1 ln® 4

as matrices over 5. Note that (φ <g> l)x = (ψ ® l ) x = 0, ( l n <g> (% = ( m for
any matrix ζr over if [[y]], where ζ/ n denotes the direct sum of n copies of £'.
It hence follows that ^ ( 0 ^ ) = (φ'2

n)δ'x, -βx(φ[n) = ( ^ K Ϊ **Wn) =
(/027l)^L a n < i 7χ(^in) = ~(Ψ2

n)βχ* This shows that we have the morphisms
Q, 0 ) x \ Λ i —> A 2 5 vM? ~ T )x> ΛIΛ i —> Λ 2, ^0, Of )# : 1ZA ^ —> IIΛ 2 a n d

D
As an application of Lemma (2.9) we see the following

LEMMA 2.11. (Faithfulness) // X' is α reduced matrix factorization,
then the functor ( ) ® X' in (2.4) is faithful, that is, the induced map
Hom(Xi, X2) —v Hom(Xi ® Xf, X2 ® X') is injective.

One has to notice that the functor is far from "full."

Proof Let ξ:X\ —> X2 be a morphism in MFκ^(f) and suppose
that £® X ; factors through a trivial matrix factorization y G MFs(f + g)>
Note that 1^ is also a trivial matrix factorization in M F ^ j f / ) , and we
see from (2.9) that (ξ ® A";)y = (ξ ® Ω£)m also factors through a trivial
matrix factorization. Thus (f 0 Ωξ)m = 0 in M£κ[[a;]](/)> a n (^ C = 0 in

M £ ( / ) D
LEMMA 2.12. Suppose that X' G M J F ^ O ( ^ ) is reduced.

{%) For a morphism ξ in MFκ[[x]](f), if ζ ® Xf is an isomorphism in
MFs(f + g), then ξ is also an isomorphism.
(ii) For indecomposable objects X\ and X2 in MFjζ[[x]](f), if Xi ® X1 —
X2 ® X' in MFs(f + g), then X1 ^ X2 or Xλ ^ ΩX2 in MFκ[[x]](f).

Proof, (i) If ξ § X' is an isomorphism, then (f § X')y = (C ® Ω 0 m i s

also an isomorphism, hence is ξ.
(ii) It follows from the assumption and from (2.9) that (Xλ @ΩXι)m ^

(X2 Θ ΩX2)
m. Since Xi and X2 are indecomposable, from (1.1) we have

either Xx ^ X2 or AΊ ̂  ΩX2. Π

Remark 2.13. There is an example satisfying X ψ ΩX and I § Γ =
ΩX ®X'. For example, X = (xux2) € MF(xix2) and X ; = (y,τ/) G
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§3. Decomposition of Tensor Products

In the rest of the paper we use the following

NOTATION 3.1. Let X = (φ,ψ) G MFκ^(f) and X1 = (φ',ψ') e
MFjζ[[yr\(g) be indecomposable reduced matrix factorizations of size n, m
respectively. We denote the number of indecomposable summands in the
direct decomposition of X 0 X' by # ( X 0 Xf). And let r = (n,ra) be the
greatest common divisor of n and m.

Under these notation, we are interested in how the tensor product X ®
X1 decomposes or when it is indecomposable. We begin with the following
fact.

LEMMA 3.2. Suppose the characteristic of the field K is unequal to
2 and that K contains the square root i of —1. And assume that X =
(0, φ) and X' — (φ', φ') (so that ψ = φ, ψ' — φf or equίvalently ΩX — X,
ΩX' = X'.) Then X 0 X' is decomposable as X 0 X' ^ Y Θ ΩY where
Y = (φ (g) l m - i ( l n 0 φ'), φ®lm + i(ln 0 φ')).

Proof. This is clear from the following equality:

i\ ( φ®l I® φ'\ ( \
• i l l ^ ιi i I I i

z / \ ' ' / \ z

_ (φ®\ - i ( l 0<£7) 0
0 ώ® 1 + i(

D
For the number of indecomposable factors we have the following rather

rough estimation.

THEOREM 3.3. There is an inequality #(X § X') ^ 2r.

Proof. We claim that any summand Y of X ® X1 has size at least
nm/r. If we have shown this, then since X 0 X1 has size 2nra, it has at
most 2r summands.

To prove the above, notice from (2.9) that Yy is a direct summand of
(X Θ ΩX)m. Since both of X and ΩX are indecomposable, it follows from
(1.1) that Yy ^ Xk Θ ΩX^ for some 0 ^ k,ί ^ m. Since the reduction does
not change the size of a matrix factorization, we can write the size of Y as
(k+ί)n. Similarly, considering the reduction to S/(x), we have that the size
of Y equals to (p + q)m for some 0 ^ p, q ^ n. Hence (k + ί)m — (p + q)n
which must be ^ lcm(n,m) — mn/r. Π
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Under a certain assumption one can get more precise bound for
X1) as follows.

THEOREM 3.4. IfΩX^X and if ΩX' φ X1, then #(X § X1) ύ r.

To prove this we need a lemma.

LEMMA 3.5. Let C be a Krull-Schmidt category with splitting idempo-

tent property. Furthermore let A and B be indecomposable objects in C and
a 6'

X = An Θ Bm. Suppose e = I J £ End(X) - End(An Θ Bm) is an

idempotent.
(i) // A is not isomorphic to B, then be £ radEnd(An) and cb £

rad End(Bm).
(ii) If be £ rad End(An) and cb £ rαdEnd(i? m ), then there are idempo-

tents ei £ End(An) and e2 £ E n d ( £ m ) such that af:=a-eλ £ radEnd(An),
d' := d - e2 £ rαdEnd(J3m) and e(X) ^ ei(An) 0 e2(Bm), where e(X) de-
notes the direct summand of X given by the idempotent e.

Proof. The first claim is obvious because be: An —> Bm —> An and A,
B are nonisomorphic indecomposable objects.

For the second, we notice first that e2 = e implies a2 + be = a and
d2 + cb — d, hence

a2 = a (mod rαdEnd(An)), d2 = d (mod radEnd(Bm)).

Thus by the assumption, we can lift a and d to the idempotents e\ and e2

in End(An) and End(i?m) respectively. Setting e = ( * ) and 7 :=

°
e — 6 = I „ 1, we see that

V c d'

ca! + d'e c6 + dί2-/. ^ , /̂2 i -™dEnd(X),

since α',6c £ radEnd(An) and d;,c6 £ r α d E n d ( 5 m ) . Hence 1 - j 2 =
(1 + 7)(1 - 7) is invertible in End(X). Since (1 + j)e = (e + 7)6 = ee =
e(e — 7) = e(l — 7), we have e = (1 + 7)e(l — 7 ) " 1 . It then follows that
e(X) = e(X) = eι(An) Θ e2(jBm), which completes the proof. Q

Now we can prove Theorem 3.4.
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Proof. Suppose we are given an idempotent e G End(X ® X'). Then
we can write

where α, c/, β etc. are nm x nm matrices over S. Considering the reduction
to S/(j/), we have from (2.10) that ey G E n d ( ( X § X % ) = E n d ( X m θ Ω X m )
is an idempotent and we can describe ey as

(a,a')y (β,β')y

Since X ψ. ΩX, it follows from Lemma 3.5 that there are idempotents
eλ = (ei,6i) G End(X m ) and e2 = (62,e

/

2) G End(ΩXm) such that e y ((X ®
X')^) ^ e i (X m ) 0 e 2 (ΩX m ) that is isomorphic to Xk θ ΩX^ for some
0 ^ fc, ί ^ ra, because X and ΩX are indecomposable. Note that by taking

a suitable basis we may write e\ = I as a morphism X m —>• X m

and e2 = I I as a morphism ΩX m —• ΩX m , where 1& (resp. 1̂ )

denotes the identity morphism on Xk (resp. ΩX^). Since Lemma (3.5)

shows that (a,a')y — e\ G radEnd(Xm), further change of basis makes

) for some A G rαdEnd(X m ~ f c ). Similarly we may get

we can(δ,δf)y = (^ ° J for some D G rα<f E n d ( Ω X m ^ ) . Thus finally

make ey into the following form as a morphism from Xk Θ Xm~k φ

ΩX m into itself:

U 0 0 0\

0 A 0 J3

0 0 It 0

\0 C 0 DJ

for some β and C. Therefore we have ey((X § X')y) —

Image I ), hence I J = 0. This shows that (a, a')y itself is an
\C DJ \C DJ

epimorphism from Xm to a direct summand Xk of X m , hence

(i) rank(α ®5 K) = rank(o;/ ®s K) = nk.
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Likewise we see

(ii) rank(6 ® 5 K) = rank(<5' ®s K) = nL

Now considering the reduction to S/xS, we have

_

and e^((X <g> X % ) - X'P ® ^ x ' q for s o m e ° S VΛ S n. Thus by the same
argument as above we have

(iii) rank(α <8>s K) — rank(<5' ®s K) — mp.

and

(iv) rank(£ (8)5 K) = rank(c/ (8)5 K) = mq.

Therefore from (i) to (iv) above we see that nk = mp = ni = mq, hence

k = i and p — q. As a consequence the size of the matrix factorization

e(X Θ X!) is nk + n£ = 2nk which also equals to mp + mq = 2rap, hence

it is ^ lcm(2n,2ra) = 2nm/r. Since we have shown that every direct

summand of X ® X' have size at least 2nm/r and since the size of X (g) X'

is 2nra, we have # ( X ® X') ^ 2nm/(2nm/r) = r a s desired. Π

COROLLARY 3.6. Suppose r = 1.

(ΐ) X ^ X ' is either indecomposable or decomposed into two indecomposable
factors.
(i) If ΩX ψ- X and if ΩXf ψ X', then X ® X1 is indecomposable.

If one of X and X ' has size 1, then we have a stronger claim for the
indecomposability of X ® X1 than Theorem 3.4.

THEOREM 3.7. Adding to the assumption in (3.1), suppose m = 1 and

Ω(X') ψ X1. Then the tensor product X ® X1 is also indecomposable. In

other words, the functor ( ) ® X1 preserves the indecomposability.

Proof. Since X' has size one, we may write X1 = (u, v) for some u, v G
K[[y}}. Then the assumption Ω(X') φ X' means exactly that uϋί[[$/]] φ

]. In the following we assume

(i) u t vK[{y)\.
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(In case of υ £ uK[[y]], an argument similar to below will prove the the-
orem.) First we remark that for any morphism (α, b):X/n —» Ω(X') n and
(c,d):Sl(X')n -+Xln, we have

(ii) a ®κ[[y]] K = d <S>κ[[y}] K = 0.

To show this, supposed a ® K φ 0. Then α would be a matrix over !f[[t/]]
containing at least one unit element. Since au = υb, we would have u G
vϋf [[y]] contradicting (i).

'a β\ fa' /
Now let Y — X ® X1, and suppose that e = ^ ι ι,. , ,

is an idempotent in End(Y). We want to show that e = 1 or e = 0. Note
first that we may assume that X = Ω(X), since otherwise we have already
shown in (3.6) that Y is indecomposable.

As in the previous proof consider the reduction to S/xS, and we see

from (2.10) that ex = ( ( α '*' ) x (/3'~7')aΛ i s a n idempotent on Yx £ Xιn ®

Ω(X')n, where (β, -Ί')x: Ω(X')n -+ X'n and (7, -β%: Xιn -> Ω(X7)n It
then follows from (ii) that 7^ ® UΓ = jf

x <g> K = 0, that is,

(iii) all entries of 7 and 7' are non units in S = K[[x,y]].

Considering the reduction to y we see that ey = ( , ' /Λ

y \ ' A

 y 1 is
\(7>7)ι/ V°i°)yJ

an idempotent on 7 y = I φ Ω(X) since m — \. Setting Λ = End(X) =
End(Ω(X)) that is a local ring, we see from (iii) that (β, β^y^iΊ^y —
(βΊ,βfΎf)y £ rαdΛ, and (ΊiΊ')y(β,β')y € r a ^ A. Then Lemma 3.4 implies
that (α, c/)y and (<5,6')̂  will give idempotents in A/radA. Since Λ is local,
we see that (α, a')y is either an automorphism on X or an element in radA,
and the same is true for (δ,6f)y.

For the first case to be considered, assume (α, af)y is an automorphism
on X. In this case, a and α/ are invertible matrices on 5. Since (α, <5% is
a morphism X / n —• X / n , we have α^t/ = uδf

x hence δf

x is also an invertible
matrix on if[[y]]. Therefore δ' is also invertible as a matrix on 5. Similarly
considering (δ,ar)x, we see that δ is an invertible matrix on 5. Combining

these result with (iii) we show that the matrices ( r I and [ . c,

are invertible. Then it follows that the idempotent e is an automorphism,
hence e = 1.

In the case that (<5, δ')y is an automorphism, the similar argument as
above leads e = 1.
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Finally consider the case that both of (α, a')y and (£, δ')y are in radA.

In this case we have from (Hi) that ey ®Λ A/radA = I ' y 1 is an

idempotent, hence (/?, β')y G radA. As a consequence we have ey = 0, from
which we see that all the entries of α, /?, α/ etc. are in τ/5. Since e is an
idempotent, it then follows that e = 0. This completes the proof. Q

EXAMPLE 3.8. Let K be an algebraically closed field of characteristic
Φ 2 and let n{ — r\ + S{ (i = 1, 2,. . . , ̂ ) be natural numbers. Then F =
( ( a ^ 1 , ^ 1 ) ® ••• ® (x^,α^)) is a matrix factorization in MF(x'Ί1+.. ,+x"').
Putting the integer part of \#{i\ri = Si} as ^, we have # ( F ) = 2W.

§4. An application

In this section let R = K[[x]]/(f(x))=K[[xux2,..., xs}}/{f(xux2,
xs)) be a hypersurface ring. For a given sequence of integers {ni, τi2,..., nr}
we may consider the ring Rr = K[[x, 3/1,3/2, ? ϊ/r]]/(/(^) +2/Γ +^2 2 + * +
y™r). Of course there is a natural ring homomorphism Rr —• R (sending
yi to 0), through which every R-module can be regarded as an βp-module.
Particularly, for any MCM module over iϊ, we can take the r-th syzygy
Vίr

Rr(M) of M as an i?r-module, which is an MCM module over Rr. If M
is indecomposable and if n\ = n2 = . . . = nr = 2, then Knόrrer [K2] shows
how Ω-^(M) decomposes. To the contrary, if all of Ui are greater than 2,
then we can show that the functor Ω ̂  preserves the indecomposability.

THEOREM 4.1. Under the above notation, assume that U{ ^ 3 for 1 ^
i ύ r. If M is an indecomposable MCM module over R, then the syzygy
module Ωr

R (M) is also indecomposable.

We denote the minimal CM approximation of M as an i?r-module by
XRr(M) which was defined by Auslander and Buchweitz [AB]. Notice that,
in our case, XRr(M) ^ Ω ^ ( M * ) ; where ( )* (resp. ( )') denotes the .R-dual
(resp. i?r-dual). Since the duality preserves the indecomposability of MCM
modules, the above theorem is equivalent to the following one.

THEOREM 4.2. Assume Πi^3 for 1 ^ i ^ r. Then XRr(M) is inde-

composable, whenever M is an indecomposable MCM module over R.

Proof First we consider the case r = 1.

Since M is an MCM module, as we remarked in the beginning of §1,
there is a matrix factorization (φ,ψ) G MF(f) such that M has a minimal
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i?-free resolution of the form:

(i) ..

Note that R = R\/(yι) and that y\ is a non-zero divisor on R\. And we
can consider a lifting problem of complexes over R onto R\. In this case,
since φ ψ = ψ>φ = f = — ̂ /1(y^1~1) in i?i, we see that the Eisenbud
operator of the complex (i) with respect to R\ —> R is given by — y™1" .
See [Y2] for the definition and the properties of Eisenbud operators. Then
the L-complex defined in [Y2] is

fψ y^'Λ U y?Λ
(ϋ) y/i -Φ J χyi -Φ ) (2/1 -Φ)

> κλ > κλ > κλ

which actually resolves the module M over R\ as proved in [Y2, Lemma
(2.3)].

Putting Z := (ψ,φ) G MF(f) and Z1 := {yi^y™1 1 ) E MF(y^1)^ we
deduce from (ii) that Ω^ (M) is given by the matrix factorization Z ® Z'.

Notice that Ω(Z/) ^ Z ; since ni — 1 > 1 and we can conclude from
Theorem 3.7 that Z ® Z', hence Ω^^X 7), is indecomposable.

Thus the proof of Theorem (4.1), hence (4.2), is completed for the case
r = 1.

The rest of the proof will be done by the induction on r. Now let
r > 1 and set X — XRr(XRr~1(M)). By the induction hypothesis, X is
indecomposable. Therefore if we show X = X β r ( M ) , then it completes the
proof. By the definition of CM approximation we have the exact sequences:

0 —• Y := YRr(XRr-ι(M)) —> j Λ x ^ - ^ M ) —> 0,

where Y (resp. Y β r ~ 1 (M)) is of finite projective dimension over Rr

(resp. over Rr-i ) Notice that YRr~1(M) has also finite projective di-

mension regarded as a module over i? r, since Rr-\ = Rr/(yr) and yr

is a non-zero divisor on i? r . Now let Z be the kernel of the composite

p q:X —> M and one can show that there is an exact sequence 0 —» Y —>

Z —» Y j R r- 1(M) —> 0. Therefore Z is a module of finite projective dimension

over i? r. Hence the sequence 0 —•> Z —> X ^ M —>• 0 is a CM approximation
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of M. It then follows from the definition that XRr (M) is a direct summand

of X. Since we know that X is indecomposable, we have XRr(M) = l a s

desired. Π

Remark 4.3. The same argument as in the above proof can be applied

in several other cases. For example one can prove the following claim:

Let R = K[[xu . . . , xr, 3/0, ϊ/ i , . . . , y8]] I (/Of) + Vog(y)) and let # =

R/(yo). Suppose that an MCM module M over R is indecomposable. Then,

in general, Ω^(M) decomposes into at most two factors. If yoK[[y\] Φ

then Ω^(M) is indecomposable.

It is also easy to see that the same is true for XR(M) instead of
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