ON A TYPE OF SUBGROUPS OF A COMPACT LIE GROUP

YOZÔ MATSUSHIMA

Let G be a connected compact Lie group and H a connected closed subgroup. Then H is an orientable submanifold of G and we may consider H as a cycle in G. In his interesting paper on the topology of group manifolds ${ }^{1)} \mathrm{H}$. Samelson has proved that, if H is not homologous to 0 , then the homology ring ${ }^{2}$) of the coset space G / H is isomorphic to the homology ring of a product space of odd dimensional spheres and the homology ring of G is isomorphic to that of the product of the spaces H and G / H. On the other hand, in a recent investigation of fibre bundles ${ }^{31}$ T. Kudo has shown that, if the homology ring of the coset space G / H is isomorphic to that of an odd dimensional sphere, then \boldsymbol{H} is not homologous to 0 .

In the present paper we shall consider those connected closed subgroups of a connected compact Lie group G such that the homology rings of the coset spaces are isomorphic to that of odd dimensional spheres. We shall first show that the problem to find all such subgroups of G may be reduced to the case where G is a simple group. The determination of such subgroups of the rotation groups of spheres (simple Lie groups of types B and D) is contained essentially in a paper by D. Montgomery and H . Samelson on the transformation groups of spheres." Hence we shall consider here the above problem for simple Lie groups of the other types. The writer is grateful to Mr. M. Kuranishi for his friendly cooperation during the preparation of this paper.

I.

1. All groups considered in the following are compact Lie groups and sub-

Received July 29, 1950.
${ }^{1)}$ H. Samelson, Beiträge zur Topologie der Gruppen-Mannigfaltigkeiten, Ann. of MathVol. 42 (1941) ; Satz VI. We refer to this paper as [S].
2) The coefficients of the homology ring are rational numbers.
${ }^{3)}$ T. Kudo, On the homological properties of fibre bundles, forthcoming in Journ. of the Institute of Polytechnics, Osaka City University.
4) D. Montgomery and H. Samelson, Transformation groups of spheres, Ann. of Math. Vol. 44 (1943). We refer to this paper as [M-S].
groups are always taken as closed.
a) The homology ring ${ }^{21}$ of an orientable manifold M is denoted by $R(M)$ and S^{n} denotes the n-sphere. The homology ring $R(G)$ of a compact Lie group G is isomorphic to $R\left(S^{m_{1}} \times \ldots \times S^{m_{r}}\right)$, where m_{i} are odd and r is the rank $r(G)$ of $G .{ }^{5)}$
b) A connected subgroup H of a compact connected Lie group G is said to be an S-subgroup, if $R(G / H)$ is isomorphic to $R\left(S^{m}\right)$, where m is odd. If H is an S-subgroup, then $r(H)=r(G)-1 .{ }^{6)}$
c) Let G_{1}, \ldots, G_{k} be (compact connected) Lie groups and let N be a finite normal subgroup of $\bar{G}=G_{1} \times \ldots \times G_{k}$. We say that the factor group $G=\bar{G} / N$ is essentially the product of G_{1}, \ldots, G_{k} and we denote $G=G_{1} \circ \ldots \circ G_{k}$. Every compact connected Lie group G is essentially the producted of some simply connected simple groups and a toral group. If G_{1} is a connected normal subgroup of a compact connected Lie group G, then there exists a connected normal subgroup G_{2} of G such that $G=G_{1} \circ G_{2} .^{7}$
d) Let G be a Lie group and H a subgroup and let $W=G / H$. Then we may consider G in a natural way as a transitive transformation group of W. The set of all elements $g \in G$ for which $g(x), x \in W$, are identity transformation of W form a normal subgroup G_{0} contained in H. If G_{0} is a finite group, then G is said to be almost effective on W.
2. We prove now a theorem on the structure of S-subgroups. Let R_{1} be the rotation group of 1 -sphere and \tilde{R}_{2} the simply connected covering group of the rotation group R : of 2 -sphere.

Theorem I. Let G be a compact connected Lie group, H an S-subgroup of G, and let G_{2} be the maximal connected normal subgroup of G contained in H. Further, let G_{1} be a connected normal subgroup of G such that $G=G_{1} \circ G_{2}$. Then $H=H_{1} \circ G_{9}$ and H_{1} is an S-subgroups of G_{1} and G_{1} is simple or essentially the product of two simple groups one of which is R_{1} or \tilde{R}_{2}.
3. To prove Theorem I we need some lemmas.

Lemma 1. If H is a connected normal subgroup of G, then $H \not+0$.
Proof. Let K be a connected normal subgroup of G such that $G=H \circ K$

[^0]and let $\bar{G}=H \times K$. Then H is obviously +0 in \bar{G}. But the natural homomorphism π of \bar{G} onto G induces the isomorphic mapping of the homology group $B(\bar{G})$ of \bar{G} onto the homology group $B(G)$ of G. From these facts we conclude without difficulty that $H+0$ in G.

Lemma 2. Let $G=G_{1} \circ G_{2}, \bar{G}=G_{1} \times G_{2}$ and let π be the natural homomorphic mapping of \bar{G} onto G. Further let H be a connected subgroup of G and \bar{H} the connected component containing the identity of the group $\pi^{-1}(H) . H$ is an S-subgroun of G if and only if \bar{H} is an S-subgroup of \bar{G}, and $R(G / H)$ $\cong R(\bar{G} / \bar{H})$.

Proof. π induces the isomorphic mapping of the homology group $B(\bar{G})$ of \bar{G} onto the homology group $B(G)$ of G. The same holds for $B(\bar{H})$ and $B(H)$, since $\pi(\bar{H})=H$ and π is locally isomorphic. Let $V(\bar{H})$ be the additive subgroup of $B(\bar{H})$ composed of all minimal elements of $B(\bar{H})^{\beta)}$ and let $\bar{v}_{1}, \ldots, \bar{v}_{k}$ be a basis of $V(\bar{H})$. Then $\pi\left(\bar{v}_{1}\right), \ldots, \pi\left(\bar{v}_{k}\right)$ is also a basis of the group $V(H)$ of the minimal elements of $B(H) .^{s)}$ Assume $H+0$. Then $\pi\left(\bar{v}_{1}\right), \ldots, \pi\left(\bar{v}_{k}\right)$ are linearly independent also when we consider $\pi\left(\bar{v}_{i}\right)$ as homology classes in $G .{ }^{9)}$ If $\bar{H} \sim 0$, then $\bar{v}_{1}, \ldots, \bar{v}_{k}$ would be linearly dependent considered as homology classes in \bar{G}, and the same for $\pi\left(\bar{v}_{1}\right), \ldots, \pi\left(\bar{v}_{k}\right)$ considered as the homology class in G. Hence $\bar{H}+0$. Conversely, if $\bar{H}+0$, then $H+0$. Since $\boldsymbol{r}(\dot{H})=r(\bar{H}), r(G)=r(\bar{G})$ and $r(H)=r(G)-1$, we have $r(\bar{H})=r(\bar{G})-1$. Hence $R(\bar{G} / \bar{H}) \cong R\left(S^{m}\right)$. Further since $\operatorname{dim} G / H=\operatorname{dim} \bar{G} / \bar{H}$ we have clearly $R(G / H) \cong R\left(S^{m}\right)$.
4. Proof of Theorem I. ${ }^{10}$, Let $\bar{G}=G_{1} \times G_{2}, \pi$ be the natural homomorphism of \bar{G} onto G and let \bar{H} be the connected component of the group $\pi^{-1}(H)$. Since $\bar{H} \supset G_{2}$, we have $\bar{H}=H_{1} \times G_{2}$, where H_{1} is a connected subgroup of G_{1}. By Lemma $2 \bar{H}+0$ in \bar{G}, hence $H_{1}+0$ in G_{1} and H_{1} is clearly an S subgroup of G_{1} containing no connected normal subgroup of G_{1} (different from the group consisting only of identity of G_{1}). We shall prove that G_{1} has the structure stated in Theorem I. For simplicity we write G and H in place of G_{1} and H_{1}. Then H is an S-subgroup of G containing no connected normal subgroup of G. Let $W=G / H$ and $R(W)=R\left(S^{m}\right)$ (m being odd). Then G is almost effective on W. If $G=G_{1} \circ G_{2}$, then we show that one of G_{i}, say G_{1}, is transitive on W. For this purpose let $\bar{G}=G_{1} \times G_{2}$, let, as above, \bar{H} be the connected component

[^1]of $\pi^{-1}(H)$ and $\bar{W}=\bar{G} / \bar{H}$. Then $R(\bar{W})=R\left(S^{m}\right)$ and \bar{G} is also almost effective on \bar{W}. If we can show that G_{1} is transitive on \bar{W}, then we see easily that G_{1} is also transitive on W. Let Γ_{i} be the image of \bar{H} under the natural homomorphism $g_{1} \cdot g_{2} \rightarrow g_{i}$ of \bar{G} onto G_{i} and let $\Gamma=\Gamma_{1} \times \Gamma_{2} . \quad \Gamma_{i}$ are connected and $\Gamma \supseteqq H$. Let H_{i} be the intersections $\bar{H} \cap G_{i} . H_{i}$ are normal subgroups of Γ_{i}. Then, as in the proof of Theorem I b) in [M-S], the spaces $\Gamma / \bar{H}, \Gamma_{1} / H_{1}, \Gamma_{2} / H_{2}$ are homeomorphic. Consider the space Γ_{1} / H_{3}. As H_{1} is a normal subgroup of Γ_{1}, it is a compact connected Lie group. If $\Gamma_{1}=H_{1}$, then $\Gamma_{2}=H_{2}$. If follows that $\bar{H}=H_{1} \times H_{2}$ and $\bar{G} / \bar{H}=G_{1} / H_{1} \times G_{2} \times H_{2}$. But since $R(\bar{G} / \bar{H})=R\left(S^{m}\right)$, the space \bar{G} / \bar{H} can not be decomposed into a direct product of two manifolds of positive dimensiens. Hence one of the spaces G_{i} / H_{i}, for example G_{2} / H_{2}, must be a point. This means that $G_{2}=H_{2}$ and hence \bar{H} must contain the normal subgroup G_{2}, which is impossible. Hence $\Gamma_{1} \neq H_{1}$. Since $r(\bar{H})=r(\bar{G})-1$, we can show that $r\left(\Gamma_{1} / H_{1}\right)=1$. Therefore Γ_{1} / H_{1} is homeomorphic with one of the three following manifolds : the 1 -sphere S^{1}, the 3 -sphere S^{3}, and the projective 3 -space P^{3}. We shall show that one of Γ_{i} is equal to G_{i}.
i) First let $\Gamma / \bar{H} \approx \Gamma_{i} / H_{i} \approx S^{3}$.

Since S^{3} is simply connected, H_{i} are connected. Clearly $r(\bar{G})=r(\Gamma)$ and $r(\bar{H})=r(\bar{G})-1$. As H_{i} are the normal subgroups of $\bar{H}, H_{i}+0$ in \bar{H} by Lemma 1. Since $\bar{H}+0$ in \bar{G}, it follows that $H_{i}+0$ in $\bar{G},{ }^{\text {(1) }}$ whence $H_{i}+0$ in G_{i}. Let $\Delta=H_{\mathrm{s}} \times H_{2}$. Then $\Delta+0$ in \bar{G} and since $r\left(H_{i}\right)=r\left(\Gamma_{i}\right)-1, r(\Delta)=r(\bar{H})-1$. Hence Δ is an S-subgroup of \bar{H}. Then, from the relations $R(\bar{G})=R(\bar{G} / \bar{H} \times \bar{H})$ and $R(\bar{H})=R(\widetilde{H} / \Delta \times \Delta),{ }^{12}$) we obtain $R(\bar{G})=R(\bar{G} / \bar{H} \times \bar{H} / \Delta \times \Delta)$. But since $R(\bar{G})=R(\bar{G} / \Delta \times \Delta)$, it follows that $R(\bar{G} / \Delta)=R\left(G_{1} / H_{1} \times G_{2} / H_{2}\right)=R(\bar{G} / \bar{H}$ $\times \bar{H} / \Delta)$. However, \bar{H} and Δ are S-subgroups of \bar{G} and \bar{H} respectively, and therefore $R(\bar{G} / \bar{H})=R\left(S^{m}\right)$ and $R(\bar{H} / \Delta)=R\left(S^{k}\right)$ (m and k being odd). Hence $R\left(G_{1} / H_{3}\right.$ $\left.\times G_{2} / H_{2}\right)=R\left(S^{m} \times S^{k}\right)$. Then it follows that $R\left(G_{1} / H_{1}\right)=R\left(S^{m}\right)$ and $R\left(G_{2} / H_{2}\right)$ $=R\left(S^{k}\right)$. On the other hand $R\left(G_{2}\right)=R\left(H_{2} \times G_{2} / H_{2}\right)=R\left(H_{2} \times S^{k}\right)$ and $R\left(\Gamma_{2}\right)$ $=R\left(H_{2} \times \Gamma_{2} / H_{2}\right)=R\left(H_{2} \times S^{3}\right)$. But since $\operatorname{dim} \Gamma-\operatorname{dim} \Delta=6$ and $\operatorname{dim} \Gamma-\operatorname{dim}$ $\bar{H}=3$, we have $\operatorname{dim} \bar{H}-\operatorname{dim} \Delta=3$. Hence $k=3$. This shows that $\operatorname{dim} G_{2}$ $=\operatorname{dim} \Gamma_{2}$ and hence $G_{2}=\Gamma_{2}$.
ii) Next let $\Gamma / \bar{H} \approx \Gamma_{i} / H_{i} \approx P^{3}$.

In this case H_{i} need not be connected. But if $H_{i}{ }^{0}$ are the connected components of H_{i}, then $\Gamma_{i} / H_{i}{ }^{0}$ are the covering spaces of P^{3}, whence homeomorphic to S^{3}. So, replacing H_{i} by $H_{i}{ }^{0}$, if necessary, we obtain $G_{2}=\Gamma_{2}$ by the same argument as in i).

[^2]${ }^{18)}$ See, [S], Satz VI.
iii) Finally let $\Gamma / \bar{H} \approx \Gamma_{i} / H_{i} \approx S^{1}$.

Let $H_{i}{ }^{0}$ be the connected components of H_{i}. Then $\Gamma_{i} / H_{i}{ }^{0}$ are also homeomorphic to S^{1}. Hence we may assume that H_{i} are connected. In this case $\bar{H} / \Delta=S^{1}$ and by the same argument as in i), we have $R\left(G_{3} / H_{3} \times G_{2} / H_{2}\right)$ $=R(\bar{G} / \bar{H} \times \bar{H} / \Delta)=R\left(S^{m} \times S^{1}\right)$. Hence $R\left(G_{1} / H_{1}\right)=R\left(S^{m}\right)$ and $R\left(G_{2} / H_{2}\right)$ $=R\left(S^{1}\right)$. It follows that $\operatorname{dim} G_{2}-\operatorname{dim} H_{2}=\operatorname{dim} \Gamma_{2}-\operatorname{dim} H_{2}=1$. Hence $G_{2}=\Gamma_{2}$.

Thus we have proved that $G_{2}=\Gamma_{2}$. Then we may show as in [M-S] that G_{1} is transitive on W and that $r\left(G_{2}\right)=1$ i.e. G_{2} is R_{1} or R_{2} or \tilde{R}_{2}. Theorem I will be proved, if we show that G_{1} is simple. Since G_{1} is transitive on W, there exists a subgroup H_{1} of G_{1} such that $W=\mathrm{G}_{1} / H_{1}$, where $H_{1}=G_{1} \cap H_{\text {. }}$ Let $H_{1}{ }^{0}$ be the connected component of H_{1}. Then $H_{1}{ }^{9}$ is a normal subgroup of H. Hence $H_{1}{ }^{0}+0$ in H. Then, by the same argument as above, $H_{1}{ }^{0}+0$ in G_{1}. Moreover, we may easily verify that $r\left(H_{1}{ }^{0}\right)=r\left(G_{1}\right)-1$, whence $H_{1}{ }^{0}$ is an S subgroup of G_{1} and $R\left(W_{1}\right)=R\left(S^{m}\right)$. Clearly $H_{1}{ }^{0}$ contains no connected normal subgroup of G_{1} different from the identity. Suppose that G_{1} is not simple and let $G_{1}=G^{\prime} \circ G^{\prime \prime}$. We use for $G_{1}, H_{1}{ }^{0}$ and W_{1} the same argument we used for \boldsymbol{G}, H and W and find that G^{\prime} is transitive on W_{1} and $G^{\prime \prime}$ is R_{1} or R_{2} or \widetilde{R}_{2}. Then $\boldsymbol{G}=G^{\prime} \circ\left(G^{\prime \prime} \circ G_{2}\right)$. Since the rank of the group $G_{3}=G^{\prime \prime} \circ G_{2}$ is 2 , it must be transitive on W. By the same argument as above, there exists in G_{3} an S subgroup H_{3} such that $R\left(G_{3} / H_{3}\right)=R\left(\mathrm{~S}^{m}\right)$ and H_{3} contains no connected normal subgroup of G_{3}. Then $G^{\prime \prime}$ or G_{2} must be transitive on G_{3} / H_{3}. This is impossible if $m>3$. The cases $m=1$ and 3 may be treated easily for themselves. Thus Theorem I is proved.
5. By Theorem I the problem to find all S-subgroups of a compact connected group G is reduced to the cases where G is a simple group or a direct product of two simple groups one of which is of rank 1. The latter case may be reduced to the former case. So we consider in the following the S-subgroups of a simple group.

II.

1. If G and G^{\prime} are locally isomorphic compact simple groups, then, as we may easily see from Lemma 2, the S-subgroups of G and G^{\prime} correspond to each other. Hence we have only to consider one respresentative from each class of locally isomorphic groups. In particular, if we can show that the S-groups of a simple group G are conjugate to each other, then the same folds for every simple group locally isomorphic to G.
2. First we consider the case $G=R_{n}$, the rotation group of n-sphere. We denote by Q_{n-k} the subgroup of R_{n} composed of all elements of R_{n} which leave
fixed the unit point on the first k of $n+1$ axis of Euclidean $(n+1)$-space E_{n+1}. Clearly Q_{n-k} is isomorphic to R_{n-k}.
i) $n:=2 m-1$.

Then $R_{n} / Q_{n-1}=S^{2 n-1}$ and hence $Q_{n-1}+0$ in $R_{n} .{ }^{13)}$ By Lemma 7 of [M-S] we see that every S-subgroup of R is conjugate to Q_{n-1} except for a finite number of n 's.
ii) $n=2 m$.

In this case $Q_{n-2}+0$ in R_{n}. By the proof of Theorem IV of $[M-S]$ we see that every S-subgroup of R_{n} is conjugate to Q_{n-2} except for a finite number of n 's.

III.

1. Here we consider the group $G=A_{n}$, the unimodular unitary group in $n+1$ variables. We denote by A_{n-1} the subgroup of $G=A_{n}$ consisting of all elements of G which leave fixed the unit point on the first of the $n+1$ axis of unitary $(n+1)$-space. Then $G / A_{n-1}=S^{2 n+1}$, whence $A_{n-1}+0 .^{13)}$

We prove the following
Theorem II. Every S-subgroup of $G=A_{n}$ is conjugate to A_{n-1} for $n \geqslant 8 .{ }^{14}$
2. Let U be an S-subgroup of G. Then $R(G / U)=R\left(S^{m}\right)(m$: odd) and $R(G)=R(G / U \times U)$. Hence $R(G)=R\left(U \times S^{m}\right)$. The homology ring of G is

$$
R(G)=R\left(A_{n}\right)=R\left(S^{3} \times S^{\top} \times \ldots \times S^{2 n+1}\right) \cdot .^{15)}
$$

Hence $m=2 k+1$ and

$$
\begin{equation*}
R(U)=R\left(S^{3} \times \mathrm{S}^{5} \times \ldots \times S^{m-2} \times \mathrm{S}^{m+2} \times \ldots \times S^{2 n+1}\right) \tag{1}
\end{equation*}
$$

U is simple, for in (1) S^{3} appears only once. ${ }^{16)}$ As we may easily verify the group A_{n} can not contain the exceptional groups of rank $n-1$. Hence U is a classical simple group. Then (1) is possible for $m<2 n+1$ only when $n=3$, $m=5$, and $R(G)=R\left(S^{3} \times S^{5} \times S^{7}\right)$ and $R(U)=R\left(S^{3} \times S^{7}\right)$. Hence if $n>3$ then $m=2 n+1$ and $R(U)=R\left(S^{3} \times S^{5} \times \ldots \times S^{2 n-1}\right)$. This shows that U is a simple group of type $A_{n-1} \cdot{ }^{15}$)
${ }^{13)}$ See, [S], Satz IV.
14) The writer ean not decide whether Theorem II is also valid for $n<8$ or not. Since every subgroups of rank 1 is not homologous to 0 . Theorem II is not valid for $\boldsymbol{n}=\mathbf{2}$ as we may show by an example. Cf. J. L. Koszul, C. R. Paris 225, p. 477 (1947), and H. Samelson, C. R, Paris 228, p. 630 (1949).
${ }^{15)}$ See, L. Pontrjagin, Homologies in compact Lie groups, Rec. Math. N. S. Vol. 6 (1939) or [S].
16) For, by a theorem of E. Cartan, the 3-dimensional Betti number of any semi-simple group is not equal to 0 .
3. Let \mathscr{C}_{c} be the Lie algebra of G and \mathfrak{U}_{c} the subalgebra of \mathscr{G}_{c} corresponding to the subgroup U. By taking a suitable conjugate group of U, we may assume that a maximal abelian subalgebra \mathfrak{l}_{c} of \mathfrak{u}_{c} is contained in a fixed maximal abelian subalgebra $\mathscr{F}_{2} c$ of $\left(\mathbb{G} c^{17)}\right.$ We denote by $(\mathbb{B}$ and \mathfrak{l} the Lie algebras obtained from \mathscr{G}_{c} and \mathfrak{H}_{c} respectively by extending the domain of coefficients to the complex number field K 。 $\sqrt{ }$ and \mathfrak{h} may be defined analogously. Then as is well known, \mathscr{G} is the Lie algebra consisting of all matrices of degree $n+1$ with complex numbers as coefficients whose traces are 0 . Let $e_{i k}(i, k=1, \ldots$, $n+1$) be the matrix whose (i, k)-element is 1 and others are all 0 and $h_{i}=e_{i i}$. Then (8 has the following basis:

$$
\begin{gathered}
\mathfrak{B}=\mathfrak{S}+\sum_{i, n=1}^{x+1} K e_{i k},(i \neq k) ; \mathfrak{S}=\left\{\lambda^{1} h_{1}+\ldots+\lambda^{n+1} h_{n+1}\right\}, \sum_{i=1}^{n+1} \lambda^{i}=0 ; \\
{\left[\sum_{j=1}^{n+1} \lambda^{j} h_{j}, e_{i k}\right]=\left(\lambda^{i}-\lambda^{k}\right) e_{i k_{0}}}
\end{gathered}
$$

The real Lie algebra \mathscr{G}_{c} is obtained from \mathbb{B}_{6} by the so called "unitary restriction." Since \mathbb{U} is of type A_{n-1}, \mathfrak{U} has the following basis:

$$
U=K \widetilde{h}_{1}^{\prime}+\ldots+K \widetilde{h}_{n-1}^{\prime}+\sum_{i, k=1}^{n} K u_{i k}, \quad(i \neq k)
$$

where $\widetilde{h}_{1}^{\prime}, \ldots, \widetilde{h}_{n+1}^{\prime}$ is a linearly independent basis of \mathfrak{h} and

$$
\begin{aligned}
& {\left[\sum_{j=1}^{n-1} \mu^{j} \widetilde{h}_{j}^{\prime}, u_{i k}\right]=\left(\mu^{i}-\mu^{k}\right) u_{i k},(i, k \leqq n-1)} \\
& {\left[\sum_{j=1}^{n-1} \mu^{j} \widetilde{h}_{j}^{\prime}, u_{i n}\right]=\left(\mu^{i}+\mu^{1}+\ldots+\mu^{n-1}\right) u_{i n}} \\
& {\left[\sum_{j=1}^{n-1} \mu^{j} \widetilde{h}_{j^{\prime}}, u_{i n}\right]=\left(-\mu^{i}-\mu^{1}-\ldots-\mu^{n-1}\right) u_{n i} .}
\end{aligned}
$$

Now, let \widetilde{h}_{n} be an element of $\mathscr{\delta}$ which is not contained in \mathfrak{h} and let $\widetilde{h}_{i}=\widetilde{h}_{i}^{\prime}+\widetilde{h}_{n}$ for $i=1, \ldots, n-1$. Then $\mu^{1} \widetilde{h}_{1}^{\prime}+\ldots+\mu^{n-1} \widetilde{h}_{n-1}^{\prime}=\mu^{1} \widetilde{h}_{1}+\ldots+\mu^{n} \widetilde{h}_{n}$ and $\mu^{1}+\ldots+\mu^{n}=0$. Hence \mathfrak{h} is the set of all elements $\lambda^{\prime} \widetilde{h}_{1}+\ldots+\lambda^{n} \widetilde{h}_{n}$ such that $\sum_{i=1}^{n} \lambda^{i}=0$. We have

$$
\left[\sum_{\jmath=1}^{n} \lambda^{j} \widetilde{h}_{j}, u_{i k}\right]=\left(\lambda^{i}-\lambda^{k}\right) u_{i k}
$$

[^3]for $1 \leqq i, k \leqq n$.
Clearly $u_{i k}$'s are linear combinations of $e_{r s}$'s. A $u_{i k}$ is said to be singular if it is a linear combination of at least two $e_{r s}$'s. We shall prove that no $u_{i k}$ is singular for $n \geqslant 8$.
4. Let $\tilde{h}_{i}=\sum_{k=1}^{n+1} \mu_{i}^{k} h_{k}$, where $\sum_{k=1}^{n+1} \mu_{i}^{k}=0$. Since $\tilde{h}_{1}, \ldots, \tilde{h}_{n}$ are linearly independent elements of $\xi_{\text {, }} \operatorname{det}\left(\mu_{i}^{k}\right)_{i, k=1}, \ldots, n \neq 0$. Let $\mu^{i}=\left(\mu_{1}^{i}, \ldots, \mu_{n}^{i}\right)$ for $i=1, \ldots, n+1$. Then the vectors μ^{1}, \ldots, μ^{n} are linearly independent and $\mu^{n+1}=-\mu^{1}-\ldots-\mu^{n}$. Hence n vectors taken from $\mu^{1}, \ldots, \mu^{n+1}$ are all linearly independent. Now $\left[\sum_{j=1}^{n} \lambda^{j} \tilde{h}_{j}, e_{i k}\right]=\left(\sum_{j=1}^{n} \lambda^{j}\left(\mu_{j}^{i}-\mu_{j}{ }^{k}\right)\right) e_{i k}$ and $\left[\sum_{j=1}^{n} \lambda^{j} \widetilde{h}_{j}, e_{r s}\right]$ $=\left(\sum_{j=1}^{n} \lambda^{j}\left(\mu_{j}^{r}-\mu_{j}^{s}\right)\right) e_{r s}$. If $\sum_{j=1}^{n} \lambda^{j}\left(\mu_{j}^{i}-\mu_{j}^{k}\right)=\sum_{j=1}^{n} \lambda^{j}\left(\mu_{j}^{r}-\mu_{j}^{s}\right)$ for every λ^{j} such that $\sum_{j=1}^{n} \lambda^{j}=0$, then, as we may easily verify, $\mu^{i}-\mu^{k}=\mu_{r}^{r}-\mu^{s}+\xi\binom{r s}{i k}$, where $\boldsymbol{\xi}\binom{r s}{i k}=(c, \ldots, c)$. If this relation holds, we define $e_{i k} \equiv e_{r \dot{s}}$. We may easily see that if $e_{i k}$ and $e_{r s}$ appear in a singular $u_{j l}$ then $e_{i k} \equiv e_{r s}$.
5. First we consider the case where a relation $\mu^{i}-\mu^{k}=\xi$ holds for some i, k, where ξ is a vector whose components are all equal, i.e. $\xi=(d, \therefore, d) .{ }^{18)}$ Then $\left[\sum_{j=1}^{n} \lambda^{j} \tilde{h}_{j}, e_{i k}\right]=\left(\sum_{j=1}^{n} \lambda^{j}\left(\mu_{j}^{i}-\mu_{j}^{k}\right)\right) e_{i k}=\left(\sum_{j=1}^{n} \lambda^{j} d\right) e_{i k}=0$.

Since \mathfrak{h} is $(n-1)$-dimensional, we may easily see that \mathfrak{h} is the subspace of \mathcal{F} consisting of all elements $\lambda^{1} h_{1}+\ldots+\lambda^{n+1} h_{n+1}$ such that $\lambda^{j}=\lambda^{k}$. For simplicity, let $i=n, k=n+1$. Let $\left[h, e_{i k}\right]=\alpha e_{i k}$ and $\left[h, e_{r s}\right]=\beta e_{r s}$, where $h \in \mathfrak{h}$. Then $e_{i k} \equiv e_{r s}$, if and only if $\alpha=\beta$ for every $h \in \mathfrak{h}$. Hence in our case, $e_{i k} \equiv e_{r s}$ if and only if $\lambda^{i}-\lambda^{k}=\lambda^{r}-\lambda^{s}$. As we may easily verify, the followings are possible :

$$
e_{n, k} \equiv e_{n+1, k}, e_{k, n} \equiv e_{k, n+1},(k<n), e_{n, n+1} \equiv e_{n+1}, n
$$

Since $\left[h, e_{n, n+1}\right]=\left[h, e_{n+1}, n\right]=0$ holds for every $h \in \mathfrak{h}, e_{n, n+1}$ and $e_{n+1, n}$ can not appear in u 's as factors. Hence if some u 's are singular, these u 's must be the form $u_{\alpha}=a e_{n, k}+b e_{n+1, k}, u_{\beta}=c e_{k, n}+d e_{k, n+1}$ and the "roots" α and β corresponding to these u 's satisfy the relation $\alpha=-\beta$. Hence $\left[u_{\alpha}, u_{\beta}\right]=\left[a e_{n, k}\right.$ $\left.+b e_{n+1, k}, c e_{k, n}+d e_{k, n+1}\right]=a c\left(h_{n}-h_{k}\right)+b d\left(h_{n+1}-h_{k}\right)+b c e_{n+1, n}+a d e_{n, n+1}$ $\in \mathfrak{h}$. Hence $b c=a d=0$ and $a c=b d$. This is clearly a contradiction and hence all u 's are not singular.
6. Now suppose $e_{i k} \equiv e_{r s}$. Then $\mu^{i}-\mu^{k}=\mu^{r}-\mu^{s}+\xi\binom{r s}{i k}$. If $\xi\binom{r s}{i k}=0$.

[^4]then $e_{r s}=e_{i k}$ or $e_{r s}=e_{k i}$, since 4 vectors taken from $\mu^{1} \ldots \mu^{n+1}$ are linearly independent for $n \geqslant 4$ (c.f. 4.) and $i \neq \dot{k}$ and $r \neq s$. If $e_{i k} \equiv e_{k i}$, then the relation $\mu^{i}-\mu^{k}=\xi$ holds and hence all u^{\prime} s are not singular. Thus we may assume $\boldsymbol{\xi}\binom{r s}{i k} \neq 0$. Further if $i=r$ or $k=s$, we also have the relations $\mu^{k}-\mu^{s}=\xi$ or $\mu^{i}-\mu^{r}=\xi$. Hence we may assume $i \neq r, k \neq s$.
7. Suppose that $e_{i k} \equiv e_{r s}$ and $e_{u v} \equiv e_{x y}$ holds. We may assume that $i \neq r$, $k \neq s, u \neq x$ and $v \neq y$. Then we have the relations $\mu^{i}-\mu^{k}=\mu^{r}-\mu^{s}+\xi\binom{r s}{i k}$ and $\mu^{u}-\mu^{v}=\mu^{x}-\mu^{y}+\xi\binom{x y}{u v}$. We may assume that ξ^{\prime} s are $\neq 0$ and $\xi\binom{r s}{i k}$ $=d \xi\binom{x y}{u v}$, where $d(\neq 0)$ is a complex number. Then we obtain the relation
$$
\mu^{i}-\mu^{k}-d \mu^{u}+d \mu^{v}=\mu^{r}-\mu^{s}-d \mu^{x}+d \mu^{y} .
$$
i) Let $d \neq \pm 1$. Since 8 vectors taken from $\mu^{1} \ldots \mu^{n+1}$ are linearly independent for $n \geqslant 8$, we must have $\mu^{i}-\mu^{k}-\mu^{r}+\mu^{s}=0, \mu^{u}-\mu^{v}-\mu^{x}+\mu^{y}=0$ and moreover $i=s, k=r, u=y$ and $v=x$. Hence $e_{i k} \equiv e_{k i}$ and $e_{u v} \equiv e_{v u}$. Then $\mu^{i}-\mu^{k}=\xi$ and $\mu^{u}-\mu^{v}=\xi$ hold and all u^{\prime} s are not singular (c.f. 5 and 6).
ii) Let $d= \pm 1$. Then $\mu^{i} \pm \mu^{v}+\mu^{s} \pm \mu^{x}-\mu^{k} \mp \mu^{u}-\mu^{r} \mp \mu^{y}=0$. As in i) 8 vectors are linearly independent and since $i \neq k, r \neq s, u \neq v, x \neq y, i \neq r$, $k \neq s, u \neq x$ and $v \neq y$, we may verify that the following cases are possible :
\[

$$
\begin{align*}
e_{i k} \equiv e_{r s}, & e_{i r} \equiv e_{k s} \\
e_{i k} \equiv e_{r s}, & e_{r i} \equiv e_{s k} \\
e_{i k} \equiv e_{r s}, & e_{k i} \equiv e_{s r} \\
e_{i k} \equiv e_{k i}, & e_{u v} \equiv e_{v u} \\
e_{i k} \equiv e_{k s}, & e_{s v} \equiv e_{v i} \\
e_{i k} \equiv e_{k s}, & e_{i v} \equiv e_{v s}
\end{align*}
$$
\]

But in the cases 4),5) and 6), we obtain the relation of the form $\mu^{l}-\mu^{m}=\hat{5}$. Hence we have only to treat 1), 2) and 3).
8. Then it is easily verified that the possible singular u 's are as follows :

$$
\begin{array}{ll}
u_{\alpha}=a_{\alpha} e_{i k}+b_{\alpha} e_{r s}, & u_{-\alpha}=a_{-\alpha} e_{k i}+b_{-\alpha} e_{s r} ; \\
u_{\beta}=a_{\beta} e_{i r}+b_{\beta} e_{k s}, & u_{-\beta}=a_{-\beta} e_{r i}+b_{-\beta} e_{s k} .
\end{array}
$$

Let $u_{a}=u_{p q}$. Then $u_{\alpha}=\left[u_{p t}, u_{t q}\right](t=1, \ldots, n)$. Clearly, for some $t, u_{p t}$ and $u_{t q}$ are not singular. Let $u_{p t}=a e_{u v}$ and $u_{t q}=b e_{x y}$. Then $u_{\alpha}=\left[u_{p t}, u_{t q}\right]$ $=\left[a e_{u v}, b e_{x y}\right]=a b\left(\delta_{v x} e_{u y}-\delta_{u y} e_{x v}\right)$. Hence it follows that $u=i, y=k, x=r$, $v=s$ or $u=r, y=s, x=i, v=k$. Then, since $i \neq k$ and $r \neq s, \delta_{u y}=\delta_{v x}=0$. However, they can not bo the case. Thus we have proved that no u is singular.
9. Let $u_{x}=a_{\alpha} e_{i_{\alpha}} j_{\alpha}$. We want to prove that the set of indices $S=\bigcup_{\alpha}\left\{i_{\alpha}, j_{\alpha}\right\}$ is a proper subset of $\{1,2, \ldots, n+1\}$. Suppose, for this purpose, that $S=\{1$, $2, \ldots, n+1\}$. Let $1 \leqq s, t \leqq n+1$. Then there exist α and β such that $s=i_{\alpha}$ or j_{α} and $t=i_{\beta}$ or j_{β}. Take a u_{ε} such that $\left[u_{\alpha}, u_{\varepsilon}\right] \neq 0$ and $\left[u_{\varepsilon}, u_{\beta}\right] \neq 0$. Then $\left[e_{i_{\alpha} j_{\alpha}}, e_{i_{\varepsilon} j_{\xi}}\right]=\delta_{j_{\alpha} i_{\varepsilon}} e_{i_{\alpha} j_{\varepsilon}}-\delta_{j_{\varepsilon} i_{\alpha}} e_{j_{\varepsilon} i_{\alpha}} \neq 0$. Hence $i_{\varepsilon}=j_{\alpha}$ or $i_{\alpha}=j_{\varepsilon}$. It follows similarly that $i_{\varepsilon}=j_{\beta}$ or $j_{\varepsilon}=i_{\beta}$. Now there exists an element $h(\neq 0)$ of $\mathfrak{y y}^{5}$ such that $[h, \mathfrak{H}]=0 .^{19)}$ Then $\left[h, u_{\mathrm{r}}\right]=0$ for every u_{r}. Let $h=\lambda^{1} h_{1}+\ldots$ $+\lambda^{n+1} h_{n+1}$. It follows that $\lambda^{i_{\alpha}}=\lambda^{j_{\alpha}}, \lambda^{i_{\varepsilon}}=\lambda^{j_{\varepsilon}}$ and $\lambda^{i_{\beta}}=\lambda^{j_{\beta}}$. From the above relations we obtain $\lambda^{i_{\alpha}}=\lambda^{j_{\alpha}}=\lambda^{i_{\varepsilon}}=\lambda^{j_{\varepsilon}}=\lambda^{i_{\beta}}=\lambda^{j_{\beta}}$. Hence $\lambda^{s}=\lambda^{t}$. Since this holds for every pair of s and t, it follows that $\lambda^{\prime}=\lambda^{2}=\ldots=\lambda^{n+1}$. Then necessarily $\lambda^{1}=\lambda^{2}=\ldots=\lambda^{n+1}=0$, since $\sum_{i=1}^{n+1} \lambda^{i}=0$. Hence $h=0$ and this is impossible. Thus $S \neq\{1,2, \ldots, n+1\}$. Hence there exists an integer $s(1 \leqq s$ $\leqq n+1$) such that $s \bar{E}$. Then we see easily that \mathfrak{U} is contained in the Lie algebra $\mathfrak{A}=\mathfrak{h}^{\prime}+\sum_{\substack{i, k=1 \\ i \neq s, k \neq s}}^{n+1} e_{i \bar{k}} K$, where \mathfrak{h}^{\prime} is composed of all elements $\lambda^{1} h_{1}+\ldots$ $+\lambda^{n+1} h_{n+1}$ of \mathfrak{F} such that $\lambda^{s}=0$. But since \mathfrak{U} and \mathfrak{A} have the same dimension, it follows that $\mathfrak{l}=\mathfrak{A}$. Then every matrix of \mathfrak{u} transforms the s-th axis of the $(n+1)$ dimensional complex vector space into 0 . Then "unitary ristricted" \mathfrak{u}_{c} transforms the s-th axis of the unitary $(n+1)$-space into 0 . The integrated group U leaves fixed the same axis. Then clearly U is conjugate to A_{n-1}.

IV.

1. We consider now the group $G=C_{n}$, the unitary simplectic group of $2 n$ variables. G consists of all unitary matrices of degree $2 n$ which leave the skewsymmetric bilinear form

$$
S(x, y)=\left(x_{1} y_{1}^{\prime}-x_{1}^{\prime} y_{1}\right)+\left(x_{2} y_{2}^{\prime}-x_{2}^{\prime} y_{2}\right)+\ldots+\left(x_{n} y_{n}^{\prime}-x_{n}^{\prime} y_{n}\right)
$$

invariant, where the vector x has the componentes ($x_{1}, \ldots, x_{n}, x_{1}{ }^{\prime}, \ldots, x_{n}{ }^{\prime}$).
We denote by C_{n-1} the subgroup of G conisting of all matrices of G which leave fixed the variables x_{1} and $x_{1}{ }^{\prime}$ i.e. $x_{1} \rightarrow x_{1}, x_{1}{ }^{\prime} \rightarrow x_{1}{ }^{\prime}$. Then $G / C_{n-1}=S^{4 n-1}$ and hence $C_{n-1}+0 .{ }^{12)}$

We prove the following
Theorem III. Every S-subgroup of $G=C_{n}$ is conjugate to C_{n-1} for $n>4$.
19) Take an element h_{1} of \mathfrak{F} which is not contained in \mathfrak{h}. Since $\left[h_{\mathfrak{1}}, \mathfrak{u}\right] \subseteq \mathfrak{M}$, the mapping $u \rightarrow\left[h_{1}, u\right](u \in \mathfrak{u})$ is a derivation of \mathfrak{u}. As the derivations of the simple Lie algebra \mathfrak{l} are inner, there exists an element \boldsymbol{u}_{0} of \mathfrak{u} such that $\left[h_{1}, \boldsymbol{u}\right]=\left[u_{0}, \boldsymbol{u}\right]$ for every $\boldsymbol{u} \in \mathfrak{u}$. But since $\left[h_{1}, \boldsymbol{u}\right]=0$ for every $\boldsymbol{u} \in \mathfrak{h}, \boldsymbol{u}_{0}$ commutes with every element of \mathfrak{h}. \mathfrak{h} is a maximal abelian subalgebra of \mathfrak{u} and hence $\boldsymbol{u}_{0} \in \mathfrak{h}$. Then the element $h_{1}-\boldsymbol{u}_{0}$ satisfies our condition.
2. Let U be an S-subgroup of G. Then $R(G / U)=R\left(S^{m}\right)$ (m : odd) and $R(G)=R\left(U \times S^{m}\right)$. The homology ring of G is

$$
R(G)=R\left(C_{n}\right)=R\left(S^{3} \times S^{7} \times \ldots \times S^{4 n-1}\right) .^{(5)}
$$

Hence $m=4 k-1$ and

$$
\begin{equation*}
R(U)=R\left(S^{3} \times S^{2} \times \ldots \times S^{4 k \cdots 5} \times S^{4 k+3} \times \ldots \times S^{4 n-1}\right) \tag{1}
\end{equation*}
$$

Since S^{3} appears in (1) only once, U is simple. ${ }^{18)}$ As we may easily verify, U can not be the exceptional groups F_{4}, E_{7} and E_{3}. If $U=E_{6}$, then we may casily verify that the homology ring of E_{6} must be isomorphic with that of C_{6} and this is a contradiction. ${ }^{00}$ Hence if $n>3, U$ is a classical simple group. Then (1) is impossible if $m<4 n-1$. Hence $m=4 n-1$ and $R(U)=R\left(S^{3} \times S^{7} \times \ldots\right.$ $\left.\times S^{4 n-5}\right)$. This shows that U is a simple group of type C_{n-1} or $B_{n-10^{15)}}$
3. Let the Lie algebras $\mathfrak{B}_{c}, \mathfrak{B}, \mathfrak{u}_{c}, \mathfrak{U}, \mathfrak{f}_{c}, \mathfrak{f}_{2}, \mathfrak{f}_{c}$ and \mathfrak{G} be defined as in III, 3 . Then \& has the following basis:

$$
\begin{aligned}
& \mathscr{G}=K h_{1}+\ldots+K h_{n}+\sum_{i=1}^{n} K e_{ \pm: \lambda^{i}}+\sum_{i, k=1}^{n} K e_{ \pm \lambda^{i} \pm \lambda^{k}} \\
&(K: \text { the field of complex numbers }),
\end{aligned}
$$

where $\mathscr{S}=K h_{1}+\ldots+K h_{n}$ and $\left[\sum_{j=1}^{n} \lambda^{j} h_{j}, e_{ \pm 2 \lambda^{i}}\right]=\left(\pm 2 \lambda^{i}\right) e_{ \pm 2 \lambda^{i}}$ and $\left[\sum_{j=1}^{n} \lambda_{j} h_{j}\right.$, $\left.e_{ \pm \lambda^{i} \pm \lambda^{k}}\right]=\left(\pm \lambda^{i} \pm \lambda^{k}\right) e_{ \pm \lambda^{i} \pm \lambda^{k}}$. First let $\mathfrak{l l}$ be a simple algebra of type C_{n-1}. Then \mathfrak{U} has the following basis:

$$
\mathbb{U}=K \widetilde{h}_{1}+\ldots+K \widetilde{h}_{n-1}+\sum_{i=1}^{n-1} K u_{ \pm 2 \lambda^{i}}+\sum_{i, k=1}^{n-1} K u_{ \pm \lambda^{i} \pm \lambda^{k}}
$$

where $\mathfrak{G}=K \widetilde{h}_{1}+\ldots+K \tilde{h}_{n-1}(\subset \mathfrak{g})$ and the commutator products of \widetilde{h} s and u s are defined anlogously as in \mathbb{G}. If \mathfrak{H} is a simple algebra of type B_{n-1}, \mathfrak{H} has the following basis:

$$
\mathfrak{U}=K \widetilde{h}_{1}+\ldots+K \widetilde{h}_{n-1}+\sum_{i=1}^{n-1} K u_{ \pm \lambda^{i}}+\sum_{i, k=1}^{n-1} K u_{ \pm \lambda^{i} \pm \lambda^{k}},
$$

where $\mathfrak{y}=K \widetilde{h}_{1}+\ldots+K \tilde{h}_{n-1} \quad(\subset \mathscr{g})$ and $\left[\sum_{i=1}^{n-1} \lambda^{j} \widetilde{h}_{j}, u_{ \pm \lambda^{i}}\right]=\left(\pm \lambda^{i} u_{ \pm \lambda^{i}}\right) \quad$ and $\left[\sum_{j=1}^{n-1} \lambda^{j} \tilde{h}_{j}, u_{ \pm \lambda^{i} \pm \lambda^{k}}\right]=\left(\pm \lambda^{i} \pm \lambda^{k}\right) u_{ \pm \lambda^{k} \pm \lambda^{k}}$. Clearly u_{a} 'S are the linear combinations of e_{β}^{\prime} 's. A. u_{α} is said to be singular if it is a linear combination of at least two e_{β} 's. We shall prove that non of them is singular in case $n>4$ 。
${ }^{2 n}$) See, Yen Chih-Ta, Sur les polynomes de Poincaré des groupes simples exceptionnels, C. R. Paris, 228, (1949).
4. Let $\tilde{h}_{i}=\sum_{k=1}^{n} \mu_{i}{ }^{k} h_{k}$. Since \tilde{h}_{i} are linearly independent the matrix ($\mu_{i}{ }^{k}$) $(k=1, \ldots, n ; i=1, \ldots, n-1)$ has rank $n-1$. Let $\mu^{k}=\left(\mu_{1}^{k}, \ldots, \mu_{n-1}^{k}\right)$, $k=1, \ldots, n$. Then $n-1$ of these n vectors are linearly independent. We may assume that $\mu^{1}, \mu^{2}, \ldots, \mu^{n-1}$ are so. Now

$$
\left[\sum_{j=1}^{n-1} \lambda^{j} \widetilde{h}_{j}, e_{\ell \lambda} \lambda^{i}+\delta \lambda^{k}\right]=\left(\sum_{j=1}^{n-1} \lambda^{j}\left(\varepsilon \mu_{j}^{i}+\delta \mu_{j}^{k}\right)\right) e_{\varepsilon \ell} \lambda^{i}+\delta \lambda^{k}
$$

where $\varepsilon= \pm 1, \delta= \pm 1$ for $i \neq k$ and for $i=k, \varepsilon=\delta= \pm 1$, if \mathfrak{H} is of type C_{n-1}, and $\varepsilon=0, \delta= \pm 1$, if \mathfrak{u} is of type B_{n-1}.

If $\sum_{j=1}^{n-1} \lambda^{j}\left(\varepsilon \mu_{j}{ }^{i}+\delta \mu_{j}{ }^{k}\right)=\sum_{j=1}^{n-1} \lambda^{j}\left(\varepsilon^{\prime} \mu_{j}^{r}+\delta^{\prime} \mu_{j}{ }^{s}\right)$ holds for every λ^{j}, then the relation $\varepsilon \mu^{i}+\delta \mu^{k}=\varepsilon^{\prime} \mu^{r}+\delta^{\prime} \mu^{s}$ holds. In this case we write $e_{\xi \lambda^{i}+\delta \lambda^{k}} \equiv e_{\varepsilon^{\prime} \lambda^{r}+\delta^{\prime} \lambda^{3}}$. If e_{α} and e_{β} appear in a singular u_{τ}, then $e_{\alpha} \equiv e_{\beta}$.
5. Let $\mu^{n}=0$. Then the possible relations are $e_{\mathrm{E} \lambda^{i}+\lambda^{n}} \equiv e_{\varepsilon \lambda^{i}-\lambda^{n}}(\varepsilon= \pm 1$; $1 \leqq i \leqq n$. Hence the possible singular u 's are the forms

$$
u_{a_{i}}=a_{i} e_{\lambda^{i}+\lambda^{n}}+b_{i} e_{\lambda^{i}-\lambda^{n}}, u_{-\alpha_{i}}=c_{i} e_{-\lambda^{i}-\lambda^{n}}+d_{i} e_{-\lambda^{i}+\lambda^{n}}
$$

Then $\left[u_{\alpha_{i}}, u_{-\alpha_{i}}\right]=h+b_{i} c_{i} N_{i} e_{-2 \lambda^{n}}+a_{i} d_{i} N_{i} e_{2 \lambda^{n}} \in \mathfrak{H}$, where $h \in \mathfrak{h}$ and $\left[e_{\lambda^{i}-\lambda^{n}}\right.$, $\left.e_{-\lambda^{i}-\lambda^{n}}\right]=N_{i} e_{-2 \lambda^{n}}$ and $\left[e_{\lambda^{i}+\lambda^{n}}, e_{-\lambda^{i}+\lambda^{n}}\right]=N_{i}^{\prime} e_{2 \lambda^{n}}$ and $N_{i} \neq 0, N_{i}^{\prime} \neq 0$. Hence it follows $b_{i} c_{i}=a_{i} d_{i}=0$. This shows that $u_{\alpha_{i}}$ and $u_{-a_{i}}$ can not be singular.
6. Now let $\mu^{n} \neq 0$. Then $\mu^{n}=\sum_{i=1}^{n-1} a_{i} \mu^{i}$. Let m be the number of indices i such that $a_{i} \neq 0$. If $m \equiv 4$, then no u_{α} is singular. For, if $e_{\varepsilon \lambda^{i}+\delta \lambda^{k}} \equiv e_{\varepsilon^{\prime} \lambda^{r}+\delta^{\prime} \lambda^{s}}$, then $\varepsilon \mu^{i}+\delta \mu^{k}=\varepsilon^{\prime} \mu^{r}+\delta^{\prime} \mu^{s}$ and at least one of these vectors must be μ^{n}. Then μ^{n} is a linear combination of at most 3 vectors and this is impossible. Hence we may assume $m \leqq 3$.
i) First let $m=1$. For simplicity let $\mu^{n}=a_{1} \mu^{1}$. Let $\alpha=\varepsilon \lambda^{i}+\delta \lambda^{k}$. We denote for simplicity the indices i, k as the indices of α and e_{α}. Let $u_{\alpha}=\sum_{i} a_{\beta_{i}} e_{\beta i}$ be singular. We show that the indices of β_{i} 's are 1 and n. Suppose that β_{3} has an index i different from 1 and n and let $\beta_{1}=\varepsilon_{1} \lambda^{i}+\varepsilon_{2} \lambda^{j}$. Further let $\beta_{2}=\eta_{1} \lambda^{k}+\eta_{2} \lambda^{l}$. Then since $e_{\beta 1} \equiv e_{\beta 2}, \varepsilon_{1} \mu^{i}+\varepsilon_{2} \mu^{j}=\eta_{1} \mu^{k}+\eta_{2} \mu^{l}$. If $i, j, k, l<n$, this is impossible. Since $i \neq 1, n, \alpha)$ first let $j=n$. Then $\varepsilon_{1} \mu^{i}+\varepsilon_{9} a_{1} \mu^{1}=\eta_{1} \mu^{k}$ $+\eta_{2} \mu^{l}$. Since $i \neq 1$, it follows that $i=k, \varepsilon_{1}=\eta_{1}$ and $1=l, \varepsilon_{2} a_{1}=\eta_{2}$. Then β_{1} $=\varepsilon_{1} \lambda^{i}+\varepsilon_{2} \lambda^{n}$ and $\beta_{2}=\varepsilon_{1} \lambda^{i}+\varepsilon_{2} a_{1} \lambda^{1}$. β) Let $k=n$. Then $\beta_{1}=\varepsilon_{1} \lambda^{i}+\varepsilon_{2} \lambda^{1}$ and β_{2} $=\varepsilon_{1} \lambda^{i}+\varepsilon_{2} a_{1} \lambda^{n} . \gamma$) Let $l=n$. Then $\beta_{1}=\varepsilon_{1} \lambda^{i}+\varepsilon_{2} \lambda^{1}$ and $\beta_{2}=\varepsilon_{1} \lambda^{i}+\varepsilon_{2} a_{1} \lambda^{n}$. In either case β_{2} is determined by β_{1} uniquely, whence $e_{\beta_{3}}$ can not appear in u_{α}, and $u_{-\alpha}$ must be the forms $u_{\alpha}=a e_{\lambda^{i}+\varepsilon_{2} \lambda^{1}}+b e_{\lambda^{i}+\eta_{2} n^{n},} u_{-\alpha}=c e_{-\lambda^{i}-\varepsilon_{2} \lambda^{1}}+d e_{-\lambda^{i}-\eta_{2} \lambda_{0}}{ }^{-}$ Then $\left[u_{\alpha}, u_{-\alpha}\right] \in \mathfrak{h}$ and we may prove in the same way as in 5 that $b c=0$ and $a d=0$. Then u_{α} and $u_{-\alpha}$ are not singular. Hence the indices of β_{i} are 1
and n. But there are only $8 e_{\beta}^{\prime}$'s having indices 1 and 2, i.e. $e_{ \pm 2 \lambda^{1}}, e_{ \pm \lambda^{n}}, e_{ \pm \lambda^{1} \pm \lambda^{n}}$. Hence the number of possible singular u 's is at most 4.
ii) Next let $m=2$. For simplicity let $\mu^{n}=a_{1} \mu^{1}+a_{2} \mu^{2}$. If $u_{\alpha}=\sum_{i} a_{\beta i} e_{\beta i}$ is singular, then we may prove as in i) that the indices of β_{i} 's form subset of $\{1,2, n\}$. But in each singular u_{u} at least one $e_{B i}$ must appear, one of whose indices is n. The number of such e_{β} 's are 10, i.e. $e_{ \pm \lambda^{n}}, e_{ \pm \lambda^{n} \pm \lambda^{n}}$ and $e_{ \pm \lambda^{n} \pm \lambda^{n}}$. But it is impossible that, for example, $e_{\lambda^{1}+\varepsilon \lambda^{n}}$ and $e_{-\lambda^{1}+\varepsilon \lambda^{n}}$ both appear in the singular u 's. For, then the relations $e_{\varepsilon_{1} \lambda^{1}+\varepsilon \lambda^{2}+\varepsilon \lambda_{3} \lambda^{n}} \equiv e_{\lambda^{1}+\varepsilon \lambda^{n}}$ and $e_{\delta \lambda^{1}+\delta 2 \lambda^{2}+\delta \delta_{3} h^{n}} \equiv e_{-\lambda^{1}+\varepsilon \lambda^{n}}$ hold, where $\varepsilon_{i}, \delta_{i}= \pm 1$ or 0 and at least one of ε_{i} and δ_{i} is 0 respectively. These lead to a contradiction as we may easily verify. From these facts we see that the number of the possible singular u 's is at most 6 .
iii) Finally let $m=3$ and let, for simplicity, $\mu^{n}=a_{1} \mu^{1}+a_{2} \mu^{2}+a_{3} \mu^{3}$. Then as above the singular u 's are the linear combinations of $e_{\beta,}$'s whose indices form subsets of $\{1,2,3, n\}$ and in each u_{α} at least one $e_{\beta_{i}}$ with index n must appear. The number of such $e_{\beta_{i}}$'s is 14, i.e. $e_{ \pm 2 \lambda^{n}}, e_{ \pm \lambda^{1} \pm \lambda^{n}}, \varepsilon_{ \pm \lambda^{2} \pm \lambda^{n}}$ and $e_{ \pm \lambda^{n} \pm \lambda^{n}}$. But $e_{ \pm 2 \lambda^{n}}$ can not appear in the singular u 's, for if did μ^{n} would be a linear combination of two μ 's. As in ii) it is also impossible that, for example, $e_{\lambda^{1}+\varepsilon \lambda^{n}}$ and $e_{-\lambda^{1}+\varepsilon \lambda^{n}}$ both appear in the singular u 's. Hence the number of possible singular u 's is at most 6. Thus we have shown that the number of singular elements is at most 6. We see also from the above consideration that if the number s of singular elements is 6 , then for every singular $u_{\beta}, u_{-\beta}$ is also singular. Further we see that if $s=5$, then there exist singular $u_{\beta_{1}}$ and $u_{\beta_{2}}$ such that $u_{-\beta_{1}}$ and $u_{-\beta_{2}}$ are also singular. These hold equally for \mathfrak{H} of type $B_{n_{-1}}$ and of type C_{n-1}.
7. Next we prove that if $n>4$, no u is singular.
i) Let \mathfrak{U} be the type B_{n-3}. Suppose that $u_{\varepsilon \lambda^{i}+\delta \lambda^{k}}(i \neq k, \varepsilon= \pm 1, \delta= \pm 1)$ is singular. Then since $\left[u_{\varepsilon \lambda^{i}}, u_{\delta \lambda^{k}}\right]=N_{i, k} u_{\varepsilon \lambda^{i}+\delta \lambda^{k}}, u_{\Sigma \lambda^{i}}$ or $u_{\delta \lambda^{k}}$ must be singular. Let $u_{\ell \lambda^{i}}$ be singular. Then since $u_{\S \lambda^{i}}=N_{t}\left[u_{\S \lambda^{i}+\lambda^{t}}, u_{-\lambda^{t}}\right],(t=1, \ldots, n-1$, $t \neq i), u_{8 \lambda^{i}+\lambda^{t}}$ or $u_{-\lambda^{t}}$ is singular for every t. Hence we get a set of $n-2$ singular elements. Further from the relations $u_{\varepsilon \lambda^{i}}=N_{t^{\prime}}\left[u_{\varepsilon \lambda^{i}-\lambda^{t}}, u_{\lambda^{t}}\right](t=1, \ldots$, $n-1, t \neq i)$, we get also a set of $n-2$ singular elements and these two sets have no common elements. $u_{\lambda \varepsilon}{ }^{i}$ is also a singular element different from these $2(n-2)$ singular element. Hence there are at least $2(n-2)+1$ singular elements. If the number s of singular elements is $\leqq 4$, then $2(n-2)+1 \leqq 4$ and hence $n \leqq 3$. If $s=5$ we see easily that there exists at least one singular $u_{;}$ different from the above $2(n-2)+1$ elements and hence also $n \leqq 3$. If $s=6$, there exist at least two singular elements different from the above $2(n-2)+1$ element and so also $n \leqq 3$. Hence we may assume that all $u_{a}\left(\alpha= \pm \lambda^{i} \pm \lambda^{k}, i\right.$, $k=1, \ldots, n-1$) are not singular. If one of $u_{ \pm \lambda^{i}}$, say $u_{\lambda^{1}}$, is not singular,
then since $\left[u_{\lambda^{1}}, u_{-\lambda^{1} \dot{ \pm}^{i}}\right]=N_{i} u_{ \pm \lambda^{i}}(i=2, \ldots, n=1), u_{ \pm \lambda^{i}}(i=2, \ldots, n-1)$ are also not singular. Then since $\left[u_{-\lambda^{1}+\lambda^{i}}, u_{-\lambda^{i}}\right]=N_{i}^{\prime} u_{-\lambda^{1}}, u_{-\lambda^{1}}$ is also not singular and hence all u 's are not singular. If all of $u_{ \pm \lambda^{i}}(i=1, \ldots, n-1)$ are singular, there exist $2(n-1)$ singular element. Hence $2(n-1) \leqq 6$, i.e. $n \leqq 4{ }^{21)}$ Thus if $n>4 u$ s are not singular.
ii) If \mathfrak{u} is of type $C_{n_{-1}}$, we may prove analogously that none of u is singular in case $n>3$.
8. We prove now that \mathfrak{U} is not of type B_{n-1}. Let $u_{\lambda^{i}}=a_{i} e_{x_{i}}$ and $u_{-\lambda^{i}}$ $=b_{i} e_{-a_{i}}(i=1,2, \ldots, n-1)$. Then since $\left[u_{\varepsilon \lambda^{i}}, u_{\delta_{\lambda}{ }^{j}}\right] \neq 0(\varepsilon, \delta= \pm 1)$, we see that the set of $2(n-1)$ "roots" $\left\{ \pm \alpha_{i}\right\}$ of \mathbb{C} has the property that $\pm \alpha_{i} \pm \alpha_{j}$ are also the roots of \mathbb{Q}, Let one of α_{i} be the form $\pm 2 \lambda^{j}$; for example let $\alpha_{1}=2 \lambda^{j}$. Further let $\alpha_{2}=\varepsilon \lambda^{i}+j \lambda^{k}$, then since $\alpha_{1}+\alpha_{2}$ is a root, it follows that $\alpha_{2}=-\lambda^{j}+\delta \lambda^{k}$. But then $-\alpha_{1}+\alpha_{2}=-2 \lambda^{j}-\lambda^{j}+\delta \lambda^{k}$ is not a root of (G). Hence α_{i} are of the forms $\pm \lambda^{k} \pm \lambda^{j}$ 。 Let $\alpha_{1}=\varepsilon \lambda^{i}+\delta \lambda^{k}$ and $\alpha_{2}=\varepsilon_{1} \lambda^{j}+\delta_{1} \lambda^{l}$. Since $\alpha_{1}+\alpha_{2}=\varepsilon \lambda^{i}+\delta \lambda^{k}+\varepsilon_{1} \lambda^{j}+\delta_{1} \lambda^{l}$ is a root, it follows that $\alpha_{2}=-\varepsilon \lambda^{i}+\eta \lambda^{s}$ or $\alpha_{2}=-\delta \lambda^{k}+\eta \lambda^{s}$, where $s=j$ or l. But since $\alpha_{1}-\alpha_{2}$ is also a root it follows that $\alpha_{2}=-\varepsilon \lambda^{i}+\delta \lambda^{k}$ or $\alpha_{2}=\varepsilon \lambda^{i}-\delta \lambda^{k}$. Thus α_{2} and $-\alpha_{2}$ are determined uniquely by α_{1}. Hence if $n>3$, there is no such a set of roots $\left\{ \pm \alpha_{i}\right\}$ of \mathbb{G}. Therefore 11 is not of type B_{n-1},
9. By 8. we know that \mathfrak{l} is of type \dot{C}_{n-1}. Now let $u_{2 \lambda}{ }^{i}=a_{i} e_{\alpha i}$ and $u_{-2 \lambda^{i}}$ $=b_{i} e_{-\alpha_{i}}(i=1,2, \ldots, n-1)$. Since $\left[u_{\mathrm{E2} \mathrm{\lambda}}{ }^{i}, u_{\delta 2 \lambda}\right]=0$, the set of $2(n-1)$ roots $\left\{ \pm \alpha_{i}\right\}$ of \mathbb{C} has the property that $\pm \alpha_{i} \pm \alpha_{j}$ are not the roots of \mathbb{G} at all. Suppose that $\alpha_{j}=\varepsilon_{j} 2 \lambda^{i_{j}}$ for $1 \leqq j \leqq k$ and $\alpha_{s}=\delta_{s} \lambda^{j_{s}}+\eta_{s} \lambda^{l_{s}}\left(j_{s} \neq l_{s}\right)$ for $k+1$ $\leqq s \leqq n-1$. Then the sets of indices $\left\{i_{1}\right\}, \ldots,\left\{i_{k}\right\},\left\{j_{k+1}, l_{k+1}\right\}, \ldots,\left\{j_{n-1}\right.$, $\left.l_{n-1}\right\}$ have no common indices. Hence the number of these indices is $k+2(n$ $-k-1)=2(n-1)-k$. Thus $2(n-1)-k \leqq n$ and hence $k \equiv n-2$. Suppose that $k=n-2$ and let, for simplicity, $\left\{i_{1}, \ldots, i_{n-1}\right\}=\{1,2, \ldots, n-2\},\left\{j_{n-1}\right.$, $\left.l_{n-1}\right\}=\{n-1, n\}$ and $u_{\ell \lambda^{n}}=a_{n-1} e_{\ell \lambda^{n-1}+\delta \lambda^{n}}$. Now there exists an element $h=\lambda^{1} h_{1}$ $+\ldots+\lambda^{n} h_{n} \in \mathscr{F}(h \neq 0)$ such that $[h, u]=0$ for all $u \in \mathfrak{U} .{ }^{19)}$ Since $\left[h, u_{2 \lambda^{i}}\right]$ $=0$, it follows that $\lambda^{1}=\lambda^{2} \doteq \ldots=\lambda^{n-2}=0$ and $\varepsilon \lambda^{n-1}+\delta \lambda^{n}=0$. Let $u_{\lambda^{n-1}+\lambda^{i}}$ $=c e_{\beta 1}$ and $u_{\lambda^{n-1}-\lambda^{i}}=d e_{\beta 2}$. As $\left[h, e_{\beta k}\right]=0 \quad(k=1,2)$ and $\beta_{k} \neq \pm\left(\varepsilon \lambda^{n-1}+\delta \lambda^{n}\right)$, the indices of β_{k}^{\prime} s are $<n-1$. But $\left[u_{\lambda^{n-1}+\lambda^{i}}, u_{\lambda^{n-1}-\lambda^{i}}\right]=N_{i} u_{2 \lambda^{n-1}}$ and this is a contradiction. Hence $k=n-1$. Suppose $\left\{i_{1}, \ldots, i_{n-1}\right\}=\{1,2, \ldots, n-1\}$. Then we easily see that $u_{\varepsilon \lambda^{i}+\delta \lambda^{k}}=a_{i k} e_{\varepsilon_{1} \lambda^{j}+\delta_{1} \lambda^{l}}(1 \leqq i, k \leqq n-1)$ and $1 \leqq j, l \leqq n-1$. Now let $\mathfrak{A}=K h_{1}+\ldots+K h_{n+1}+\sum_{i=1}^{n-1} K e_{ \pm 2 \lambda^{i}}+\sum_{i, k=1}^{n-1} K e_{ \pm \lambda^{i} \pm \lambda^{k}}$. Then \mathfrak{A} is a subalgebra of \mathfrak{G} of type C_{n-1} containing \mathfrak{u}. Hence $\mathfrak{U}=\mathfrak{u}$. Then each matrix of \mathfrak{u}

[^5]transforms the variables x_{n} and $x_{n}{ }^{\prime}$ into 0 . The same holds for every matrix of μ_{c}. Hence each matrix of the integrated group U leaves fixed the variables x_{n} and x_{n}^{\prime} (i.e. $x_{n} \rightarrow x_{n}, x_{n}{ }^{\prime} \rightarrow x_{n}{ }^{\prime}$). Then clearly U is conjugate to C_{n-1}. Thus Theorem III is proved,
V.

Now let G be the exceptional group of rank >2. The Poincare polynomials of the exceptional groups are as follows : ${ }^{20}$
$G_{2}:\left(1+x^{3}\right)\left(1+x^{11}\right) ;$
$F_{4}:\left(1+x^{3}\right)\left(1+x^{11}\right)\left(1+x^{15}\right)\left(1+x^{33}\right)$;
$E_{6}:\left(1+x^{3}\right)\left(1+x^{9}\right)\left(1+x^{11}\right)\left(1+x^{15}\right)\left(1+x^{17}\right)\left(1+x^{23}\right)$;
$E_{7}:\left(1+x^{3}\right)\left(1+x^{11}\right)\left(1+x^{15}\right)\left(1+x^{19}\right)\left(1+x^{23}\right)\left(1+x^{27}\right)\left(1+x^{35}\right)$;
$E_{9}:\left(1+x^{3}\right)\left(1+x^{15}\right)\left(1+x^{23}\right)\left(1+x^{27}\right)\left(1+x^{35}\right)\left(1+x^{39}\right)\left(1+x^{47}\right)\left(1+x^{59}\right)$ 。
From this table, we may easily see the following
Theorem IV. Exceptional simple groups of rank >2 have no S-subgroups.

Mathematical Institute, Nagoya University.

[^0]: ${ }^{5)}$ H. Hopf, Über die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerungen, Ann. of Math. Vol. 42 (1941) and H. Hopf, Über den Rang geschlossener Lieschen Gruppen, Commet. Math. Helvet. Vol. 13 (1941).
 ${ }^{6}$) See, [S], Satz Vl. Note that by the results of H. Samelson and T. Kudo H is an S. subgroup if and only if H is not homologous to 0 and $r(H)=r(G)-1$.
 ${ }^{\text {7) }}$ In this case we may consider $G_{1} \circ G_{2}$ as the usual product of two normal subgroups G_{1} and G_{2}.

[^1]: s) For the definition and the properties of the minimal element, see H. Hopf, loc. oit. and [S].
 ${ }^{9)}$ See, [S], Satz III. Korollar 1.
 ${ }^{10)}$ The following proof is similar to the proof of Theorem I b) in [M-S]. But we avoid to use a theorem of Gysin which played an essential role there.

[^2]: 11) See, [S], Satz III Korollar 3.
[^3]: 17) For, any toral subgroup of a compact connected Lie group G is conjugate to a subgroup of any maximal toral subgroup G. See, A. Weil, Démonstration topologique d'un théorème fondamental de Cartan. C. R. Paris 200 (1935) ; H. Hopf and H. Samelson, Ein Satz über die Wirkungsräume geschlossener Liescher Gruppen, Commet. Math. Helvet. Vol. 13 (1941).
[^4]: ${ }^{18)}$ Through in the following we denote by ξ such a vector.

[^5]: ${ }^{21)}$ If $n=4$, there may be 6 singular elements.

