
ON A TYPE OF SUBGROUPS OF

A COMPACT LIE GROUP

YOZO MATSUSHIMA

Let G be a connected compact Lie group and H a connected closed sub-
group. Then H is an orientable submanifold of G and we may consider H as
a cycle in G. In his interesting paper on the topology of group manifoldsJ) H.
Samelson has proved that, if His not homologous to 0, then the homology ring2)

of the coset space G/H is isomorphic to the homology ring of a product space
of odd dimensional spheres and the homology ring of G is isomorphic to that
of the product of the spaces H and G/H. On the other hand, in a recent in-
vestigation of fibre bundles3' T. Kudo has shown that, if the homology ring of
the coset space G/H is isomorphic to that of an odd dimensional sphere, then
H is not homologous to 0.

In the present paper we shall consider those connected closed subgroups
of a connected compact Lie group G such that the homology rings of the coset
spaces are isomorphic to that of odd dimensional spheres. We shall first show
that the problem to find all such subgroups of G may be reduced to the case
where G is a simple group. The determination of such subgroups of the rotation
groups of spheres (simple Lie groups of types B and D) is contained essentially
in a paper by D. Montgomery and H. Samelson on the transformation groups of
spheres.4' Hence we shall consider here the above problem for simple Lie groups
of the other types. The writer is grateful to Mr. M. Kuranishi for his friendly
cooperation during the preparation of this paper.

I.
1. All groups considered in the following are compact Lie groups and sub-

Received July 29, 1950.

*> H. Samelson, Beitra'ge zur Topologie der Gruppen-Mannigfaltigkeiten, Ann. of Math*

Vol. 42 (1941) Satz VI. We refer to this paper as [S],
2> The coefficients of the homology ring are rational numbers.
5> T. Kudo, On the homological properties of fibre bundles, forthcoming in Journ. of the

Institute of Polytechnics, Osaka City University.
4> D. Montgomery and H. Samelson,. Transformation groups of spheres, Ann. of Math.

Vol. 44 (1943). We refer to this paper as [M-S].
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groups are always taken as closed.

a) The homology ring2 ) of an orientable manifold M is denoted by R(M)

and Sn denotes the w-sphere. The homology ring R(G) of a compact Lie group

G is isomorphic to R(Smι x . . . x Smr), where m» are odd and r is the rank

r(G) of G.5)

b) A connected subgroup if of a compact connected Lie group G is said

to be an S-subgroup, if R{G/H) is isomorphic to R(Sm)9 where m is odd. If H

is an S-subgroup, then r{H) = r(G) - l.fi)

c) Let Gι, . . . , Gkbe (compact connected) Lie groups and let iVbe a finite

normal subgroup of G = G, x . . . x G*. We say that the factor group G = G/N

is essentially the product of GJ? . . . , G* and we denote G = d ° . . . ° G*.

Every compact connected Lie group G is essentially the producted of some simply

connected simple groups and a toral group. If Gj is a connected normal sub-

group of a compact connected Lie group G? then there exists a connected normaί

subgroup G2 of G such that G = Gi o G2.
7)

d) Let G be a Lie group and H a subgroup and let W = G/H. Then we

may consider G in a natural way as a transitive transformation group of W.

The set of all elements g e G for which g(x), x & W, are identity transformation

of W form a normal subgroup Go contained in H. If Go is a finite group, then

G is said to be almost effective on W.

2. We prove now a theorem on the structure of S-subgroups. Let Ri be

the rotation group of 1-sρhere and Rz the simply connected covering group of

the rotation group R* of 2-sphere,

THEOREM I. Let G be a compact connected Lie group, H an S-subgroup of

G, and let G2 be the maximal connected normal subgroup of G contained in H.

Further, let Gι be a connected normal subgroup of G such that G = Gj ° G2.

Then H = Hi ° G>> and Hi is an S-subgroups of G} and Gι is simple or essen-

tially the product of two simple groups one of which is Rλ or R2.

3. To prove Theorem I we need some lemmas.

LEMMA 1. If H is a connected normal subgroup of G, then H 4- 0.

Proof Let K be a connected normal subgroup of G such that G = H° K

5) H. Hopf, ϋber die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeine-
rungen, Ann. of Math. Vol. 42 (1941) and H. Hopf, ϋber den Rang geschlossener
Lieschen Gruppen, Commet. Math. Helvet. Vol. 13 (1941).

6> See, [S], Satz VI. Note that by the results of H. Samelson and T. Kudo H is an S-
subgroup if and only if H is not homologous to 0 and r(H) = r{G) — 1.

7) In this case we may consider G\ ° G« as the usual product of two normal subgroups
G\ and Gz.
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and let G = H x K. Then H is obviously 4- 0 in Go But the natural homo-

morphism π of G onto G induces the isomorphic mapping of the homology group

B (G) of G onto the homology group B(G) of G. From these facts we conclude

without difficulty that H + 0 in G.'

LEMMA 2β Let G = Gj ° G2, G = Gj x G2 and let TΓ be the natural homomor-

phic mapping of G onto G. Further let H be a connected subgroup of G and

H the connected component containing the identity of the group π~ι(H). H is

an S-subgroup of G if and only if Ή is an S-subgroup of G, and R(G/H)

s? R(GfS).

Proof, π induces the isomorphic mapping of the homology group B(G) of

G onto the homology group B{G) of G. The same holds for B(H) and J3(iϊ),

since π(ίΠ = R and π is locally isomorphic* Let V(Ή) be the additive sub-

group of B{H) composed of all minimal elements of Bdi)^ and let vh ...,~ϋk

be a basis of V(H). Then π{Vi), . . . , π(ϋk) i$ also a basis of the group V{H)

of the minimal elements of B(H).*] Assume H + 0. Then π{vχ), . . . , 7r(^)

are linearly independent also when we consider π(ϋi) as homology classes in

G.9) If // ~ 0, then ~ϋ\9 . . . , ^ would be linearly dependent considered as

homology classes in G9 and the same for π(vι), . . . , πijΰk) considered as the

homology class in G. Hence 5 + 0. Conversely, if H + 0, then £Γ + 0. Since

r(//) = r(5), r{G) = r(G) and r(H) = r(G) - 1, we have r(H) = r(G) - 1.

Hence R(G/H) 9? i?(Sm). Further since άϊmG/H = dim G/S we have clearly

R(G/H) ^R(Sm).

4. Proof of Theorem I.i0) Let G = Gj x G2? π be the natural homomorphism

of G onto G and let J7 be the connected component of the group π~ι(H). Since

H ^ Go, we have H — Hi x G2, where Hj is a connected subgroup of Gj. By

Lemma 2 /f -f 0 in G, hence ΛΓ, 4- 0 in Gj and Hi is clearly an S-subgroup of

Gj containing no connected normal subgroup of Gj (different from the group

consisting only of identity of Gi). We shall prove that Gj has the structure

stated in Theorem I. For simplicity we write G and H in place of Gj and Hi.

Then // is an S-subgroup of G containing no connected normal subgroup of G.

Let W = G/H and Λ(W0 = R(Sm) (m being odd). Then G is almost effective

on W. If G = Gi o Go, then we show that one of G, , say GJ? is transitive on W.

For this purpose let G = GjXG 2, let, as above, H be the connected component

8> For the definition and the properties of the minimal element, see H. Hopf, loc, oit.

and [S].
») See, [S], Satz III. Korollar 1.

10) The following proof is similar to the proof of Theorem I b) in [M-S], But we avoid
to use a theorem of Gysin which played an essential role there.
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of π'ι(H) and W = G/H. Then R(W) = R(Sm) and G is also almost effective

on W. If we can show that Gι is transitive on W9 then we see easily that

Gι is also transitive on W. Let Γ, be the image of Ή under the natural homo-

morphism gι g2 -» gϊ of G onto G, and let Γ = Γj x Γ2. Γ, are connected and

Γ E H. Let if, be the intersections Ή n G, . //,• are normal subgroups of /V.

Then, as in the proof of Theorem I b) in [M-S3, the spaces Γ/H, Γi/Hi, Γ2/H%

are homeomorphic. Consider the space Γi/Hi. As H\ is a normal subgroup of

Γϊ9 it is a compact connected Lie group. If Γι = if,, then A = ϋ&. If follows

that ΪZ = Hi x # 2 and G/tf = G,/#, x G2xH2. But since R(G/H) = /?(Sm), the

space G/// can not be decomposed into a direct product of two manifolds of

positive dimensiens. Hence one of the spaces Gi/Hi, for example G*/H2, must

be a point. This means that G2 = ϋΓ2 and hence H must contain the normal

subgroup G2, which is impossible. Hence Γ\ # Hi. Since r(ϊf) = r(G) — 1, we

can show that r(Γι/H\) = 1. Therefore Γi/Hi is homeomorphic with one of the

three following manifolds : the 1-sphere SJ, the 3-sphere S3, and the projective

3-space P\ We shall show that one of Γ, is equal to G, .

i) First let Γ/H z, Γi/Hi ̂  S\

Since S 3 is simply connected, Hi are connected. Clearly r(G) = r(JΓ) and

r(i7) = r(G) — 1. As Hi are the normal subgroups of Ή, Hiι + 0 in -§" by Lemma

1. Since 5 + 0 in G, it follows that H, + 0 in G,n) whence Hi + 0 in G, . Let

Δ^&x H2. Then J 4-0 in G and since r(fft) = f(Γ, ) - 1,r(J) =r(£Γ) - 1.

Hence Δ is an S-subgroup of Ή. Then, from the relations R(G) = R{G/H X /?)

and Λ(J?) = JP^/J x J),12) we obtain i?(G) = R(G/Ή x Ή/Δ x Δ). But since

R(G) = i?(G/J x J), it follows that R(G/Δ) = R(Gι/Hι x G2/H2) = Λ(G/S

x H/Δ). However, 5^ and J are S-subgroups of G and Γ̂ respectively, and there-

fore R(G/H) = /?(SW) and /?(5/J) = i?(Sfe) {m and ^ being odd). Hence R{Gι/Hι

x Gτ/Ht) = R(SmxSk). Then it follows that R{G>/Hι) = ^(S^) and R(G2/H*)

- Λ(S*). On the other hand Λ(G«) = ^ ( f t x G2/H2) = ^(JSi x S*) and /?(Γ2)

= R(H2x Γ2/H2) = 7?(iy2 x S3). But since dim Γ - dim Δ = 6 and dim Γ - dim

// = 3, we have dim 5 — dim Δ = 3. Hence # = 3. This shows that dim Ga

= dim Γ2 and hence G2 = A .

ii) Next let Γ / 5 ^ Γ,/ ,̂- ̂  P 3.

In this case Hi need not be connected. But if Hi0 are the connected com-

ponents of Hi, then Γi/Hi0 are the covering spaces of P\ whence homeomorphic

to S3. So, replacing Hi by Hi0, if necessary, we obtain G2 = Γ2 by the same

argument as in i).

») See, [S], Satz III Korollar 3.
12> See, [S], Satz VI.
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iii) Finally let Γ/H ^ Γi/H, ^ S1.

Let Hf be the connected components of Hi. Then ΓilH? are also homeo-

morphic to S1. Hence we may assume that Hi are connected. In this case

H/Δ = S1 and by the same argument as in i), we have R(Gi/Hi x G2/H2)

= R(G/H x ΉfΔ) = /?(S« x SJ). Hence Rid/Hi) = i?(S™) and i?(G2/#2)

-RiS1). It follows that dim G2 - dim # 2 = dim Γ2 - dim H2 = 1. Hence G2 = Γ2.

Thus we have proved that G2 = A- Then we may show as in [M-S] that

G] is transitive on W and that r{G2) = 1 i.e. G2 is Rj or i?2 or i?2. Theorem

I will be proved, if we show that G, is simple. Since G} is transitive on W,

there exists a subgroup #i of Gj such that W = Gil Hi 9 where -Hi = G] n 75Γ, Let

/?i0 be the connected component of Hi. Then Hi0 is a normal subgroup of H

Hence J?i0 + 0 in H. Then, by the same argument as above, //j° <+> Q in Gj.

Moreover, we majζ easily verify that r(Hι°) = ^(Gj) - 1, whence iJj° is an S-

subgroup of G3 and ff(WΊ) = R(Sm). Clearly H}

Q contains no connected normal

subgroup of Gi different from the identity. Suppose that Gj is not simple and

let Gj = G o G". We use for G\, /fj0 and PΓi the same argument we used for

G, // and W and find that G is transitive on Wι and G" is /?, or i?2 or ί?2. Then

G = G' o (G" o G2). Since the rank of the group GΓi = G' ° G2 is 2, it must be

transitive on W. By the same argument as above, there exists in G3 an S-

subgroup H% such that R(G*/H<ι) = R(Sm) and //3 contains no connected normal

subgroup of G3. Then G' or G2 must be transitive on G*/Ά. This is impos-

sible if m > 3. The cases m = 1 and 3 may be treated easily for themselves.

Thus Theorem I is proved.

5. By Theorem I the problem to find all S-subgroups of a compact connected

group G is reduced to the cases where G is a simple group or a direct product

of two simple groups one of which is of rank 1. The latter case may be reduced

to the former case. So we consider in the following the S-subgroups of a simple

group.

II.

1. If G and G are locally isomorphic compact simple groups, then, as we

may easily see from Lemma 2, the S-subgroups of G and Gf correspond to each

other. Hence we have only to consider one respresentative from each class of

locally isomorphic groups. In particular, if we can show that the S-groups of a

simple group G are conjugate to each other, then the same folds for every

simple group locally isomorphic to G.

2. First we consider the case G = Rn, the rotation group of w-sphere. We

denote by Qn-k the subgroup of Rn composed of all elements of Rn which leave
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fixed the unit point on the first k of n + 1 axis of Euclidean (# 4-I)-space

En+i* Clearly Qn-k is isomorphic to Rn-k.

i) n = 2m - L

Then RnlQn~ι = S2m-' and hence Qn-\ + 0 in /?«.J3) By Lemma 7 of

[M-S] we see that every S-subgroup of R is conjugate to Qn-\ except for a

finite number of n's.

ii) n = 2 m.

In this case Qw-2 + 0 in Rn. By the proof of Theorem IV of [M-S] we see

that every S-subgroup of Rn is conjugate to Qn-« except for a finite number

of w's.

III.

1. Here we consider the group G - An, the unimodular unitary group in

n -f- 1 variables. We denote by Λ».] the subgroup of G = An consisting of all

elements of G which leave fixed the unit point on the first of the n + 1 axis

of unitary (n + 1)-space. Then G/An-i = S2n+ι, whence An-i * O.m

We prove the following

THEOREM II. Every S-subgroup of G - Anis conjugate to An-ι for n^8.14)

2. Let U be an S-subgroup of G. Then R(G/U) = R(Sm) (m : odd) and

R(G) = R(G/U x U). Hence Λ(G) = /?(ί/ x Sm). The homology ring of G is

Z?(G) = R(An) = R(S* x S" x . . . x S2n+i).15)

Hence m = 2 H l and

(1) R(U) = i?(S3 x S 5 x . . . x S^-2 x S w + 2 x . . . x S2 M + I).

Z7 is simple, for in (1) S 3 appears only once.16) As we may easily verify the

group An can not contain the exceptional groups of rank n — 1. Hence U is

a classical simple group. Then (1) is possible for m < 2n + 1 only when w = 3,

w = 5, and Λ(G) = i?(S3 x S 5 x S7) and /?(£/) = i?(S3 x S 7). Hence if w > 3

then m = 2w + 1 and i?(Z7) = # ( S 3 x S 5 x . . . x S2 W" ). This shows that U is

a simple group of type An-\1*?

») See, [S], Satz IV.
J4) The writer can not decide whether Theorem II is also valid for n <^S or not. Since

every subgroups of rank 1 is not homologous to 0, Theorem II is not valid for n = 2
as we may show by an example. Cf. J. L. Koszul, C. R. Paris 225, p. 477 (1947), and
H. Samelson, C. R, Paris 228, p. 630 (1949).

15> See, L. Pontrjagin, Homologies in compact Lie groups, Rec. Math. N. S. Vol. 6 (1939)
or [S].

lβ) For, by a theorem of E. Cartan, the 3-dimensional Betti number of any semi-simple
group is not equal to 0.



ON A TYPE OF SUBGROUPS OF A COMPACT LIE GROUP 7

3, Let ®c be the Lie algebra of G and Uc the subalgebra of ©c correspond-

ing to the subgroup U. By taking a suitable conjugate group of U, we may

assume that a maximal abelian subalgebra l)c of Uc is contained in a fixed

maximal abelian subalgebra ξ>c oί ©c.
17) We denote by © and H the Lie algebras

obtained from (§>c and Uc respectively by extending the domain of coefficients

to the complex number field K* § and f) may be defined analogously. Then as

is well known, (5 is the Lie algebra consisting of all matrices of degree n -f 1

with complex numbers as coefficients whose traces are 0. Let eih (/, k = 1, . . . s

n -f- 2) be the matrix whose (/, &)-eίement is 2 and others are all 0 and hi — en.

Then © has the following basis :

β - €> + Ψ^Keik, {i*k); © = {λ*hι + . . . + λn+ιhn+>), Σ * 1 ' = 0 '>
t,/t=:ί 1=1

The real Lie algebra (Be is obtained from © by the so called "unitary restric-

tion." Since II is of type AΛ_j, II has the following basis :

U = KhS + . . . + Kftn-i -f ΣΛΓM/Λ

where Si', . . . , F Λ + , is a Jinearly independent basis of ί) and

Σ μf%/, tHk\ = (u* -Mk)Uik, {i, k 4L n-X)

μι

Now, let Tin be an element of © which is not contained in Ij and let hi = %/ + HΛ

for i = 1, . . . , rc - 1. Then ^ J S / + . . . + ^-^ Sς., = ^ ^ + . . . + ^ %n and

/ί1 + . . . + βn = 0. Hence ί) is the set of all elements λιhι + . . . + λnhn such

that I j ' = 0. We have

1 7 ] For, any toral subgroup of a compact connected Lie group G is conjugate to a sub-

group of any maximal toral subgroup G« See, A. Weil, Demonstration topologique

d'un theorέme fondamental de Cartan. C. R. Paris 200 (1935) H Hopf and H. Samelson,

Ein Satz ϋber die Wirkungsraume geschlossener Liescher Gruppen, Commet. Math.

Helvet. Vol. 13 (1941).
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for 1 ίs i, k £ n.

Clearly Uik's are linear combinations of ers's. A u%k is said to be singular

if it is a linear combination of at least two ers

9s. We shall prove that no Wk is

singular for n ^ 8.

4. Let hi = Σ /«***» where Σ w * = 0. Since %j,. . . , Un are linearly in-

dependent elements of £, det (μik)i.k*i, - . . . »=* 0. Let ju1' = ( M . . . , ^«f) for

i = 1,. . . , n + 1. Then the vectors μι

9. . ., μn are linearly independent and

μn+* =z — μ* — . m ..— μn. Hence n vectors taken from μ\ . . . , μΛ + J are all line-

arly independent Now [ Σ * % , eikj = ( Σ *J(M/ - JK/))*Λ and [ΣΛ y Ei, &*]

* y W - /«/))^ K i ] ̂ *W - /«/) = Σ / ' W - i«/) for every χ3 such

that Σ λ* = 0, then, as we may easily verify, μ* - μk = ^ - Ms + f (^|)» where

ίVfej = (c» » c ) K t h ί s relation holds, we define βik = eri. We may easily

see that if βik and ers appear in a singular uμ then dk s ^ r s .

5. First we consider the case where a relation μf" — μk = f holds for some

ί,£, where f is a vector whose components are all equal, Le. ξ = (d9 .'. . , rf).l8)

Then [ Σ λ'Kj, eik\ = ( Σ λJ(ί*J - /ι/)) M = ( Σ Vd)eik = 0.

Since ΐ) is (w — 1)-dimensional, we may easily see that ϊ) is the subspace of

$ consisting of all elements λιhi + . . . + λn+ίhn+ι such that ^ = A*. For sim-

plicity, let i = n, k = n+ 1. Let [A, £, jj = <*£,•* and [A,^5] = β^«, where heϊ>.

Then l̂ife = βrs, if and only if a = /3 for every ftεl|. Hence in our case, e%k s ^ r s

if and only if A1' — λk - λr - ^s. As we may easily verify, the followings are

possible :

en.k = en+ι,k, eu, n = eu, n+i, (k < ri), en, «+i = en+i.n

Since [h9en. »+J = Zh,en+i,nl = 0 holds for every ftεί, έ?«,Λ+j and βΛ+i, « can

not appear in u's as factors. Hence if some u*s are singular, these u's must be

the form ua = aen, k + ^^«+i, *, «P = c^,« + den, n+i and the "roots" a and £

corresponding to these u's satisfy the relation a = - β. Hence [wβ,«β] = [αeΛ, *

+ ben+u k,cek, n + tfe*. «+i] = ΛC (ft« - hk) + M (AΛ+, - fe) + ftcβΛ+i, Λ + aden,n+i

e 1̂ . Hence be = αc? = 0 and αc = M This is clearly a contradiction and hence

all u's are not singular.

6. Now suppose eik s έ?rs. Then ^ - μk = /zr - ^ s + ξ ( ^ ) . If ? ( ^ ) = 0.

18> Through in the following we denote by ξ such a vector.
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then ers -eik or ers = flw, since 4 vectors taken from μι . . . μn+i are linearly

independent for n i^ 4 (c.f. 4.) and Ϊ ^ ft and r # s. If 7̂5 = eki, then the relation

μ* — μk ~ ξ holds and hence all u's are not singular. Thus we may assume

ik) * 0 # further ** * = r 0 Γ * = s* w e a I s° have the relations μk - μs = ξ or

μ' — μr = ξ. Hence we may assume i # r, ft # s.

7. Suppose that 4-* = ers and euv = exy holds. We may assume that i =*F /,

ft # 5, u ±? x and t ; ^ ^ Then we have the relations μ' - μk = /ur - μs +

and μu -μv = μx - μy+ ξ(^ζ). We may assume that £'s are # 0 and ξ {

)> where c?( # 0 ) is a complex number. Then we obtain the relation

μi - μk - dμu + dμυ = μr - μs - * ι

i) Let */# ±1. Since 8 vectors taken from μ1 . . . ^ w + 1 are linearly inde-

pendent for n ^ 8, we must have yu1' - μk - /ίr + μs = 0, /iM - /ι* - /ι* + /ιy = 0

and moreover i = s, ft = r, « = y and v ~ x. Hence β, jfe s ^ , and ewt) Ξ βt,w.

Then /£* — μk = ξ and μu — μΌ = ξ hold and all w's are not singular (c.f. 5 and 6).

ii) Let d = ± 1 . Then /ι' ± μv 4- ̂ s ± A** - βk =F Â M - A<r =P ̂  = 0. As in i)

8 vectors are linearly independent and since i # k, r # 5, u # v, x *? y9 i*t r9

k±r s, u±r x and t ;^^, we may verify that the following cases are possible:

1) dk = ers, eir Ξ ^ s

2) βik = ers9 eri Ξ eSk

3) ^,* s ^rs, eki s ŝf

4) ftjfe Ξ tfjfe/, ^w ί; = ^ ϋ M

5 ) βik = βks, βsυ = βυi

6 ) βik Ξ €ks9 Civ = ^ s

But in the cases 4), 5) and 6), we obtain the relation of the form μι - μm = ξ.

Hence we have only to treat 1), 2) and 3).

8. Then it is easily verified that the possible singular w's are as follows :

u* = a* βik 4- ba erS9 u-* = «-« £

Let «« = upq. Then «Λ = [w^, ιr/J (ί = 1, . . . , w). Clearly, for some /, «/>/

and w/a are not singular. Let upt = aeUυ and «/α = 6 ^ . Then ua = {upt9utq\

= [tf e«i>, te^] = «Z> (δvx euy - 5W3; ̂ v). Hence it follows that u = i9 y = k9 x ~ r,

v = s or « = r, y = s, x = ί, t; = ft. Then, since ί # ft and r =̂ s, δ«y = flt* = 0.

However, they can not bo the case. Thus we have proved that no u is singular.
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9. Let uΛ = aa eιΛ yβ. We want to prove that the set of indices S = \J(iΛ9ja}
a

is a proper subset of {1, 2, . . . , n + 1}. Suppose, for this purpose, that S = {1,

2, . . . , n + 1}. Let 1 £ s, t £ n + 1. Then there exist α and /3 such that

s = ιβ or yα and f = i? or yp. Take a # ε such that [> t f, « J 3= 0 and [> e , %] # 0.

Then [>,•« yβ, βiz y j = £yβ , s */, yε - tfye /β ey8 /* # 0. Hence ίε = Λ or i* = Λ It

follows similarly that ίs = Λ or j \ = z?. Now there exists an element A(=*F 0) of

€> such that [Λ, II] = 0.19) Then [A, « τ ] = 0 for every « τ . Let A = ΛJ A, + . . .

-f λn+ihn+i. It follows that λ** = ^«, >ίfε = Λ''e and ^^ = ^>. From the above

relations we obtain λ{* = λJ« = ^ l ε = ^"ε = Af> = λjκ Hence ; s = λ*. Since this

holds for every pair of s and t9 it follows that λι = >ί2 = . . . = ^Λ + 1. Then
n+l

necessarily ΛJ = ^2 = . . . = λn+1 = 0, since 53 λ% = ° Hence A = 0 and this is

impossible. Thus S * {1, 2, . . . , w + 1}. Hence there exists an integer s(l ^ s

^ n -j-1) such that s e S . Then we see easily that U is contained in the Lie
n+J

algebra ?l = 1/ + Σ #Λ ^» where ^' is composed of all elements λιh\+ . . .

-f ^w+1A»4i of § such that Λs = 0. But since U and 91 have the same dimension,

it follows that It = 91. Then every matrix of U transforms the s-th axis of the

(n -f 1)-dimensional complex vector space into 0. Then "unitary ristricted" VLC

transforms the s-th axis of the unitary (w + 1)-space into 0. The integrated

group U leaves ήxed the same axis. Then clearly U is conjugate to A«-i.

IV.

1. We consider now the group G = C w , the unitary simplectic group of 2n

variables. G consists of all unitary matrices of degree 2n which leave the skew-

symmetric bilinear form

S{x,y) = (xtyί - x/yi) + (ΛΓ 2 ^ - xly2) + . . . + (xnyn

f - xn'yn)

invariant, where the vector x has the componentes (xl9. . . , xn9X\\ . . . ,xn').

We denote by Cn-\ the subgroup of G conisting of all matrices of G which

leave fixed the variables ΛΓJ and Xι i.e. Xi -> xl9 x/ -> xλ'm Then G/Cn-i = SΛn-1

and hence Cn-\ Λ- O.J2)

We prove the following

THEOREM III. Every S-subgroup of G = Cn is conjugate to Cn-i for n> 4.

19) Take an elemental of § which is not contained in fj. Since [Ai, U] ς=U, the mapping

w~> [Λi, M] (« ε II) is a derivation of U. As the derivations of the simple Lie algebra

U are inner, there exists an element uo of U such that [hi, w] = [«o, u\ for every u e 11.

But since [Ai, «] = 0 for every u e ή, «o commutes with every element of l). ^ is a

maximal abelian subalgebra of U and hence « o e | . Then the element Aj — «o satisfies

our condition.
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2, Let U be an S-subgroup of G» Then R{G/U) = R(Sm) (m : odd) and

R(G) - R(Ux Sm). The homology ring of G is

R(G) = R(Cn) - R ( S \ x S 7 x . . . x

Hence m — 4k ~ 1 and

(1) /?(£/) - Λ(S* x S ? x , , , x S4*~5 x

Since S 3 appears in (1) only once, U is simple.18* As we may easily verify, U

can not be the exceptional groups FΛ, Ξ7 and Fa. If ί/ ~ isβ, then we may efasily

verify that the homology ring of Fa must be isomorphic with that of Cβ and

this is a contradiction.-01 Hence if n > 3$ U is a classical simple group. Then

(1) is impossible If m <άn- 1. Hence m = 4Λ - 1 and #(£7) = ^ ( S 3 x S7 x . . .

x S'lw~5), This shows that £/ is a simple group of type Cn-ι or Bn^u

i5)

3. Let the Lie algebras ®c, ®? UG> U, ©c, ©? ĉ and f) be defined as in Til. 3.

Then © has the following basis :

® = Aft, + . . . + Rhn -V Σ Jfe±sλ< + Σ

( ^ : the field of complex numbers),

where © = Kh} + . + Aft» and ( " Σ ̂  * * «±2λ'l = ( ± 2^0 e±^ and l*Σ ^i Ay,

^±λί±λ^l = (±λi±λk) e±x*±λK First let IX be a simple algebra of type C?,_,o Then

U has the following basis :

U - Khi + . . . + A X Λ . , +'Σ-K«±sλ' + ̂ _Ku±%*±x*9

where () = /ί%] + . . . -f AS».j ( c ©) and the commutator products of S's and

w's are defined anlogously as in ©* If U is a simple algebra of type Bn-\9 U

has the following basis :

U = Σ

where ί) = M 3 -f . . . Λ-Khn-i (<=£>) and \^λJ'hj9 u±χ*\= (±λ{u±λή and

n-] , ~ "I .

Σ ^ ŷ» u±\ί±\κ = (±A'±A*) «±λ*±λfc. Clearly j«e's are the linear combinations of

A eια is said to be singular if it is a linear combination of at least two

We shall prove that non of them is singular in case n > 4,
20) See, Yen Chih-Ta, Sur les polynomes de Poincarέ des groupes simples exceptionnels,

C. R3 Paris, 228, (1949).
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4. Let %i = y^βikhk> Since /?/ are linearly independent the matrix (/*,*)

(ft = 1, . . . , n i = 1, . . . , n - 1) has rank n - 1. Let ^* = (/iι\ . • • , j"*-i),

ft = 1,. . . , n. Then n - 1 of these # vectors are linearly independent We

may assume that μ\ μ\ . . . , μn~ι are so. Now

δμjk))
/

where e = ±1, fl = ± 1 for i =¥ ft and for i = ft, e = δ = ±1, if U is of type C - j ,

and ε = 0, δ = ±1, if II is of type J5w.j.

If ΣΛ'(εμ/ + δμjk) = Σ ^ V / i / + ^ / ) holds for every Λ>', then the rela-

tion εμ* H- (5^fe = sfμr + δ'μs holds In this case we write enA

i+sxk = er\r+s>\*. If

ea and e$ appear in a singular ur, then eβ Ξ ̂ P.

5. Let μn = 0. Then the possible relations are e^+x^ = eςχi-λ« (e = ±1;

1 ^ i ^ n). Hence the possible singular u's are the forms

uai = aieχi+xn + bie\i_\n9 U-ai = c/^.x'-x" 4- di

Then |> α ί , u.ΛJ = h + biCiNie-2λn + aidiNi'e<>\n&:ί), where ^ e ^ and

^.λ'-λ»II = Niβ^\n and I>x*+x«, ^.x^+x"] = N/e2x
n and iV7 ̂ 0 , iV7 ^ 0. Hence it

follows biCi = β, rf, = 0. This shows that uai and w_αί can not be singular.
n-ί

6. Now let μn # 0. Then μn = Σ β/Λ«' Let *w be the number of indices i

such that di =^0. If w ^ 4 5 then no ua is singular. For, if £€x**.,«x
fc s 8̂'xr+e'xe>

then εμ* + δμk = εr μr + δf μs and at least one of these vectors must be μn.

Then μn is a linear combination of at most 3 vectors and this is impossible*

Hence we may assume m ^ 3.

i) First let m = 1. For simplicity let μn = dμK Let a = e/t1' + 5 A We

denote for simplicity the indices f, ft as the indices of a and ea. Let wα = Σ ^H^H

be singular. We show that the indices of S/'s are 1 and w. Suppose that /2j

has an index / different from 1 and n and let i?, = ejΛ1 4 e2λ
J\ Further let

β* = qiλk + ^A'. Then since £pJ = ^p2, ej^1 + εzμ
j = ViMk + fyμ' If i, j , k, I <n,

this is impossible. Since i # 1, n, a) first let ./' = n. Then ej/i1 4- ε*a,\μλ = ^i^fe

4- ^o/ .̂ Since i # 1, it follows that i = ft, ej = ^ and 1 = /, e2«j = τ?2. Then βt

= e,;1' + ε2;
M and & = e^1' 4- ε2β,ΛJ. /3) Let ft = n. Then 0, = ε,̂ 1' 4- ε^1 and β

= e,Af 4- ε2fl,λ
w. r) Let / = n. Then /?, = ε,^' 4- ε2A

J and βt = s1λ
i 4- ε2α,Aw. In

either case β2 is determined by ft uniquely, whence e^ can not appear in u^

and #_« must be the forms ua = «^+e2x
J 4- be^Unx", u~a = ^_xi-e2x

J 4- ̂ -x<-.η2x».

Then [« β , « . β ] ε ^ and we may prove in the same way as in 5 that be = 0

and tfd = 0. Then «α and »_α are not singular. Hence the indices of βi are 1
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and n. But there are only 8 ep's having indices 2 and 2, i.e. #± 2 λj, e±χ», e±χ>±χ»Λ

Hence the number of possible singular u's is at most 4.

ii) Next let m = 2. For simplicity let μn = aλμ
ι + a2μ\ If u* = ^aHeH is

singular, then we may prove as in i) that the indices of βfs form subset of

{1, 2, n). But in each singular ua at least one eH must appear, one of whose

indices is n. The number of such e?

9s are 10, i.e. e±x% e±χi±χ* and <?±λ2±λM. But

it is impossible that, for example, <?λi+ελ« and e-tf+txn both appear in the singular

u's. For, then the relations etiχi+ξ2χ^+^χn == eχi+ξχ
n and eδsx^s^+δ^n = e-xJ+ex* hold,

where et-, Λ = ± 1 or 0 and at least one of ε, and 5/ is 0 respectively. These

lead to a contradiction as we may easily verify. From these facts we see that

the number of the possible singular u's is at most 6.

iii) Finally let m = 3 and let, for simplicity, μn =•• aιμ% -f Λs£es + ^μ%. Then

as above the singular tfs are the linear combinations of %/s whose indices form

subsets of {1,2,3, ή) and in each ua at least one eH with index n must appear.

The number of such e^a is 14, i.e. 0±ax
M, e±\*±χn9 e±x2±xn and ^ix^ix^. But £±2χ*

can not appear in the singular tί$9 for if did μn would be a linear combination

of two μ's. As in ii) it is also impossible that, for example, £χi+ελ* and e_λJ+βλ»

both appear in the singular u's. Hence the number of possible singular u's is

at most 6. Thus we have shown that the number of singular elements is at

most β We see also from the above consideration that if the number s of

singular elements is 6, then for every singular %, «.p is also singular, Further

we see that if 5 = 5, then there exist singular &βι and Uβ2 such that u-.?ι and

K-ps are also singular. These hold equally for U of type Bn~\ and of type Cn-u

7. Next we prove that if n > 4, no u is singular.

i) Let IX be the type Bn-ι. Suppose that f#ελ*+*λfc (i # ft, e = ± 1 , δ = ±1)

is singular. Then since [>sxs us\kl = Λ/ί,* uξχt+δ\k, Utx* or #sxfc must be singular.

Let wsx* be singular. Then since u^ = Λi C^x^x*, ι«-λθ» (f = 1, . . . , » - 1,

i =̂  /)> Wελ*+λ* or ^«χf is singular for every ί Hence we get a set of n - 2

singular elements, Further from the relations mx* = JViT«tx<-x*, «λθ (ί = 1, . . . ,

Λ - 1, f # ί)> we get also a set of n - 2 singular elements and these two sets

have no common elements, ux^ is also a singular element different from these

2(n - 2) singular element. Hence there are at least 2(n - 2) + 1 singular ele-

ments. If the number 5 of singular elements is έ 4, then 2(n - 2) + 1 -ύ 4 and

hence n έ 3. If s = 5 we see easily that there exists at least one singular α,,

different from the above 2(n - 2) + 1 elements and hence also n £ 3. If s = 6,

there exist at least two singular elements Afferent from the above 2{n - 2) 4-1

element and so also n ^ 3. Hence we may assume that all uΛ(oc = ±λ% ±λk, i9

A = 1, . . . , n - 1) are not singular. If one of «±λ<, say wx', is not singular*
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then since Ox1, w-λ>±λθ = Niu±\* (i = 2, . , . , n = 1), «±x* (ί = 2, . . . , n - 1)

are also not singular. Then since j>_x

J+xs w-xO = Λ/i'w-x*, w-xJ is also not

singular and hence all «'s are not singular. If all of u±\t (*' = 1, . . . , n - 1) are

singular, there exist 2(n — 1) singular element. Hence 2(w — 1) ^ β, i.e. n ^ 4.2j>

Thus if n > 4 z/s are not singular.

ii) If U is of type Cn_j, we may prove analogously that none of u is singular

in case n > 3.

8. We prove now that U is not of type Bn-\. Let utf ~ cπe^ and #-λ*

= *ί0-« (*' = 1, 2, . . . , w - 1). Then since |>8λ<, ifoλ/] # 0 (ε, δ = ±1), we see

that the set of 2(w - 1) "roots" {±oci} of © has the property that ± α , ±αy

are also the roots of @, Let or,e of α f be the form ± 2λ* for example let

ai = 2Λ'. Further let <ar2 = ελ' -f ^^^? then since cci Λ a2 is a root, it follows that

a* = - ^ + ^ ^ . But then - ccι + α:2 = - 2^* - ;*' + W* is not a root of (S.

Hence ca are of the forms ±λk ±λK Let or, = ελi + δλk and α:2 = &ιλj + ^i^7.

Since or, 4- <*2 = eA1' + δλk + eĵ -7' + δiλ1 is a root, it follows that α2 = - e^f + 7^s

or α2 = - δλk -f τ?As

? where s = j or /. But since or3 — α2 is also a root it follows

that α2 = - εΛ' + W* or α:2 = e^' - δλk, Thus ΛΓS and - ccz are determined uniquely

by ai. Hence if w > 3, there is no such a set of roots {± aa} of ®. Therefore

U is not of type Bn-i>

9. By 8. we know that U is of type Crt_j. Now let th\ι = aiβΛt and w-jx̂

= biβ-at (i = 1, 2, . . . , w - 1), Since [wεsx̂ , w ] = 05 the set of 2(n - 1) roots

{± oci} of © has the property that ± aa ± αy are not the roots of © at all.

Suppose that αy = εy2Afi for U ^ i and <rs = ^ s^
y* + ?sΛ/β (/s # fc) for ft + 1

^sgn-1. Then the sets of indices {*,}, . . . , {ik}y (jk+i9 h+ι}9 . . , O«-i,

/««]} have no common indices. Hence the number of these indices is k 4- 2{n

- ft - 1) = 2(w - 1) -ft. Thus 2(n -1) -kgn and hence ft ^ α - 2. Suppose

that ft = w - 2 and let, for simplicity, {iu . . . , in-ι) = {1, 2, . . . , n - 2}, O'n-i,

/«-i} = {w — 1, w} and w2χ
n = an-\ ^ελn-J+δλ". Now there exists an element h = Λj#i

- { - . . . + n M G 5 ( l i # 0 ) such that [ft, u\ = 0 for all « e U.19) Since [ft, «2 λ0

= 0, it follows that Λ1 = P = . . . = ; n " 2 = 0 and ελn~ι + d l* = 0. Let wλ»-ί+λ*

= ce?ι and wλ

w-i-λ* = de&. As [/z, ^βΛ] = 0 (ft = 1, 2) and βk # ± (ε^- 1 4- 5A71),

the indices of /5&'s are < w — 1. But [wx^+xs wx^-ί-xβ = ΛΓ, W2>.«-i and this is a

contradiction. Hence k = n - L Suppose {ij, . . . , *»_,} = {1, 2, . . . , n - 1}.

Then we easily see that Wελ'+βλ* = Λfjfeβεjλi+βiλ1 (1 ^ /, ft ̂  w - 1) and 1 ^ /, / ^ » - 1.

Now let 91 = 2», + . . . + Khn+ι + ^Ke±ty* + ^Ke±χi±λκ Then 21 is a subal

gebra of © of type Cn-i containing U. Hence 3ί = U. Then each matrix of II

if M s- 4̂  there may be 6 singular elements.
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transforms the variables xn and xή into 0, The same holds for every matrix

of Uc. Hence each matrix of the integrated group U leaves fixed the variables

%n and %n (i.e. xn -* xn, xή ~* xή). Then clearly U is conjugate to d _ j . Thus

Theorem III is proved^

V.

Now let G be the exceptional group of rank > 2β The Poincare polynomials

of the exceptional groups are as follows :20)

EΊ : (1 + ^ ) (1 4- * ] i ) (1 4- Λ^15) (1 4- xi0) (1 4- x**) (1 + Λ:27) (1 4- x*5)

E,\ (14- a 3 ) (1 4- a 1 5) (1 4- a2 3) (1 4- a2 7) (1 4- x™) (1 4- xw) (1 4- A;47) (1 4- * M ) .

F r o m this table, we m a y easily see the following

THEOREM IV. Exceptional simple groups of rank > 2 have no S-subgroups.
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