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1. Let © be the family of analytic functions F(z) which are regular and

schlicht in the circle E: \z\ < 1 and normalized at the origin such that F(0) = 0

and F'(0) = 1. Let 21 be the subfamily of β consisting of all functions, each

of which possesses, as boundary of its image-domain., a closed Jordan curve which

is supposed to be regular analytic. Then 21 is everywhere dense in the original

family S. Hence, by an approximation theorem of Caratheodory on the kernel

of sequence of domains, we may restrict ourselves within 21, so far as we concern

the estimation of continuous functionals on S. We know the following funda-

mental theorem due to Schaeffer-SpencerJ):

THEOREM 1. Let F(z) be any function of % and etϋ be any positive number

greater than the maximum modulus of F(z) on \z\ = 1. Then there exists a one-

parameter family of functions h(z,t), defined for 2G E and 0 ^ t *= t0, satisfy-

ing the differential equation

with boundary conditions h(z,t0) = z and h(z9θ) = f(z) = e~t()F(z), Here p(z,t)

is, for each t (0 ^t ^ U), an analytic function regular and with positive real

part with respect to z^E and moreover satisfying the condition p(O,t) = 1.

Let now R denote the (doubly-connected) ring domain on ^-plane whose

boundary consists of \w\ = 1 and of the image-curve of |z| = 1 by the mapping

w = e-ΐoF(z). Then, each function w = h(z,t) may be regarded as the mapping

function from E onto a domain bounded by a level curve of harmonic measure

of \w\ = 1 with respect to R, satisfying the following conditions:

MO,*) = o, »'(<),*) =

Hence, e^hizj) belongs, for each t (0 ^ t === to), to the family 2ί. Now, we

introduce a new family {f(z,t)} by means of the relation
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J> A. C. Schaefifer and D. C. Spencer, The coefficients of schlicht functions, II. Duke Math.
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/(*) =h(f(z9t),t).

If we denote by D the image-domain of E by the mapping w = /(2), then w

= f(z91) maps i? onto the domain Dt corresponding to D which are now con-

sidered to be laid on the C-plane, by the mapping C = h{w9t)9 i.e., D = h{Dt,t).

Since each /(2, t) maps JE1 onto a domain bounded by a regular Jordan curve

and satisfies f(09t) = 0, f'(09t) = *-', the funciton e*f(z9t) belongs, for each

t(Q ̂  t a= to), to the family 9ί. The differential equation for this family {f(z,t)}

is immediately obtained from the preceding theorem.2'3 *

THEOREM 2. Under the same conditions as in the preceding theorem, the

function f(z) = e~toF(z) is determined as the integral f(z) =f(z,t0) of the dif-

ferential equation

(1.2) ^ - ^ = - p(f(z, t), t)f(z91)

with initial condition f(z, 0) = z.

Making use of the last theorem, we shall show in this Note that various

distortion theorems in the theory of @ can also be proved by the differential

equation (1.2). The procedure is, however, analogous with that using the Lδw-

ner's differential equation for slit mapping. The last part of the Note will be

devoted to a generalization of the method to doubly-connected case.

2. On account of the above-mentioned properties of p(z9t)9 it can be ex-

pressed by the so-called Herglotz's formula, that is,

__' + w
JO e"

where dτ(θ,t) is the differential with respect to θ and, for each t (0 ^ t ^ U)9

ί
2π 0*$ i jjQ

~—dτ{θ,t)
0 tί "— VU

is an increasing function of θ such that τ (0,*) = 0 and r (2π,t) = 1. Hence

we have the Harnack's inequalities

(2.2)

Using these inequalities, we shall first prove, as an example, a famous distor-

tion theorem of Koebe-Bieberbach:4)

2> Y. Komatu and S. Nagura, Theory of schlicht functions. Sύgaku 1 (1948/9), 286-302.
(Japanese.)

3 ) Y. Komatu, Fundamental differential equations in the theory of conformal mapping.

Proc. of Japan Acad. Tokyo 25 (1949), 1-10.
Λ) A proof of the theorem by using Lό'wner's equation has been given by G. M. Golusin,

Uber einige Abschatzungen von Funktionen, welche den Kreis konform und schlicht
abbilden. Recueil Math. 36(1929), 152-172. (in Russian.)
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THEOREM 3. For any function F(z) G © , zve have

(2.3) ( 1 4
equality holds, at a certain point z0 (0 < |20| < 1), ow/y for the function

Proof It is sufficient to prove (2.3) for functions F(z) = etQf(z) belonging

to 3ί. Supposing that 2 is an arbitrarily fixed point in E, we may write d/dt

instead of d/dt. We can then rewrite (1.2) in the form

(2.5) ^ — - JS \IΛ/, U) \VU — CΛ/f — J \*, fr ) ) .

Comparing here the real parts of both sides we have

(2.6) ~ # " ~ = "" 9 ί ^ ( ^ *) >

and hence, by Harnack's inequalities (2.2),

/o 7\ 1 — \w\ ̂  _ dig \w\ ^ 1 -f \vo\
KΔm ' l + j ί i l ^ ~"dt = 1 - M "

Integrating each of these differential inequalities between the range 0 ^ t ^

and hence |^ 0 | ^ k^i ~ N*ol with ^ 0 =/(2,0) = z, wt0 = / ( ^ , ί0), we obtain

(1 + |/(2, fo) I2) (X+bτ2 - e^f(z,t)\ ^ (1 - 1/(2, W I2) 7^-^τy 2 ?

from which the relation (2.3) follows immediately. Each equality in (2.3) holds

only in the limiting case where U tends to infinity and p (w,t) tends to

(1 + εw)/(l — ew), whence we get the extremal function:

fitnfi* f \ ~ Π 4- cf(? / A\2 ? . _> ___? (f -^ m \
v -i. i ε2 j " i x ~r ε2) -

We shall next prove, as second typical example, a classical distortion theo-

rem due to R, Nevanlinna: 51

THEOREM 4. For any function F(z) ε S , we have

(2.8)
| 2 | " ί

equality holds only for the same extremal function as that in the preceding

theorem, that is, for (2.4).

Proof. Differentiating both sides of (2.5) with respect to z, we get

5) A proof by the method of Lδwner's equation has been given by G. M. Golusin, Uber
die Verzerrungssatze der schlichten konformen Abbildungen. Recueil Math. 1 (43) (1936),
127-135. (in Russian.)
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and hence, by remembering again the equation (2.5), we have

(2.10) £lgζ=-u>jf(μ>,t).

On the other hand, we have, by differentiating (2.1) with respect to w9

(2.11)

and we get from (2. 6), by taking account of (2.1),

ί? 12Ϊ dt - (Γ 1~ίwl* dτ(θ
o I Ί \u>\ '

Combining these relations we obtain a differential inequality

-1 (-!
since dτ(O,t) ^ 0 and d\w\ ̂  0. Integrating from 0 to U with respect to t and

putting f(z,to) = e*°F(z), we conclude the distortion formula (2.8). As to the

equality sign at a point zQ with 0 < \zo\ < 1, we notice again that it can only

occur in the limiting case where tQ -» oo. If we put f{Zo,t) = p(zo9t)eiφ(z^ΐ}

 9 it

is easily seen that the equality in (2.8) can hold only when

(2.13) β = φ + γ =F -|- (mod 2 TΓ) ,

in which case τ(θ,t) must be a step function whose differential is equal to 0

except for the value just assigned in (2.13). In this limiting case we have

p(w,t) = (1 + ew)/(l — εw) with e = ± \zo\/zo and, hence, obtain the extremal

function (2.4).

The inequalities (2.8) can be further sharpened, as shown by Golusin6) by

making use of Lowner's equation, to the following form:

which can also be proved by a similar method as that in the last theorem.

We shall mention here the so-called Golusin's rotation theorem. Though

almost all the distortion theorems in the theory of @ can be derived by the

classical method of Bieberbach's area theorem or the more powerful method due

to Grunsky7>, the rotation theorem for argF'(z) can now be proved, in its pre-

6 ' G. M. Golusin, Erganzung zur Arbeit "Uber die Verzerrungssatze der schlichten kon-

formen Abbildungen." Recueil Math. 2 (44)(1937), 685-688. (in Russian.)
7> H. Grunsky, Neue Abschatzungen zur konformen Abbildung ein- und mehrίach zusam-

menhangender Bereiche. Schriften math. Sem. u. Inst. angew. Math. Univ. Berlin 1

(1932/3), 95-140.
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cise form, only by the method based upon Lowner's differential equation.

Golusins) has given it a first proof which has been simplified a little by Basile-

witsch.9) A proof we shall give in the following lines resembles closely to that

of Basilewitsch. The theorem states :

THEOREM 5. For any function F(z) E S , we have

( 4arcsin|2| ((*!
(2.15)

%xgF'(z) denoting here the Branch which vanishes at the origin. For any point

ZQ of E there exists an extremal function.

Proof. Comparing the imaginary parts of both sides of (2.9) and then

making use of (2.1) and (2. 11), we obtain

t t) t

which becomes, by substituting (2.12),

(2. iβ, ,a r g »-= (J7 ̂ : » >• * „ . „
Since τ(d,t) is increasing, i.e., dτ(θ,t) ^ 0, we get

._ ._ 2|Gf(l- e-ihvYl -2d\w\

\dBrgw>\ * Wtax - ¥ - ~ { - S Γ η i ί

A
V2/'

-2d\w\
I V2

from which we conclude, by integration,

< 2 1 8 ^ f4arcsin|2| - 4arcsin i/*(

7Γ - 4arcsinMin(l/U,ίo)l, ^

As argF'(2) = arg/'(2, t0), the desired relation (2.15) follows immediately. We

now examine the extremal case at zύ EΞ E. As is seen from (2.18), the equality

in (2.15) can hold only for the limiting case t0 -> oo# If we regard (2.15) as

double inequalities for the quantity arg F'{z) itself, the lower or upper bound is

reached Gnly when dτ(θ, t) is equal to 0 except for a value of θ given by

G. M. Golusin, loc. cit. 5^ and Sur les theorέmes de rotation dans la theorie des fonc-

tions univalentes. Recueil Math. 1(43) (1936), 293-296.

J. Basilewitsch, Sur les theoremes de Koebe-Bieberbach. Recueil Math. 1 (43) (1936),

283-292.
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f 2 pVl - p* (p ^ 1/V~2 ),

respectively, where we put for brevity f(zo,t) = ρeiφ = p{zo9t)eiφ{Z()tt\ The last

equation can also be written in the form

(2.19) ^
l l - f

herein ^ may be equal to either 4-1 or — 1. After substituting this expression

for ρei{*~Q) in the right-hand side, the integration of the equation

yields p(20, t) as a monotone-decreasing continuous function of t9 and thφn, again

by (2.19), the quantity pei{φ~B) is itself determined as a function of t. But for

the step function τ(θ, t), we get p(w,t) = (eie + w)/(ei9 - ιc;)(fc; =f(zo,t)) and

hence, by (2.5),

Since the quantity pei{*-Q) has already been determined as a function of f, the

integration of the last equation determines φ = φ(z0, t), and hence also θ = 0(2O, O^

as a function of f. Therefore, the Poisson kernel pipe**, t) = (1 + ρeiφ)/(l - pe1'?)

is also determined as a function of ί for which we have, as can be seen from

the procedure stated above, the limit relations

ί =F 4arcsin|z| (\zo\

{

This completes the proof of the theorem.

The other various distortion or rotation theorems of © may also be proved

in quite similar manner.

3. Corresponding to two theorems stated in the first paragraph, the funda-

mental differential equations can also be derived for doubly-connected case.J0>

Let now D be a ring domain on the w-plane whose boundary is composed of

\ιv\ = 1 and of a closed curve C surrounding the unit circle in its interior which

may be, for simplicity, supposed to be regular analytic. Let the modulus (the

essentially unique conformal invariant) of D be Ig Q-1 (0 < Q < 1), and let w

= F{z) with F(l) = 1 map 1 < \z\ < Q'1 onto D. Let Qo be any positive number

less than unity such that the closed domain D + C is contained in the annular

ro> See loc. cit. 3>
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let V be a neighbourhood of G/N having no non-trivial subgroup. Then there

exists an neighbourhood W of G such that f(W)cV and that W n N contains

no non-trivial subgroup. It is clear that the only subgroup in W is the identity

group.

Proof of the theorem. First we consider some special cases.

i) Let L be discrete. In this case G and G/L are locally isomorphic. Hence

the assertion is obvious.

ii) Let L be a connected semi-simple Lie group with the center e. Let A (L)

be the group of all continuous isomorphisms of L9 and I {L) the subgroup

composed of inner automorphisms. It is well-known that A (L) is a linear Lie

group, and / (L) coincides with the identity component of A (L)«

Now let g be an element of G. Putting

d(g)l = g"ιlg for l&L,

we obtain a continuous homomorphίsm d of G into A (L). Denote by C the

kernel of the homomorphism: C-{c; lc~cl, for l9lL}. Next let δ (g) be

the coset of A (L) mod. I(L) containing δ (g)β Then Ogives a continuous

homomorphism of G into A (L)/I(L). Let N be the kenrel of #1

Because A(L)/I (L) is discrete, N is an open subgroup in G, Now every

element of N induces an inner automorphism of L. Hence N^CL. On the

other hand as the center of L is e,C n £ = e% whence N-CxL. Thus the

isomorphism N/L^C and the openness of N imply our assertion.

iii) Let Lbe a connected commutative Lie group. Denote by N the centralizer

of L: N-{g; lg = gl9 for / $ £ } . By a similar argument as above C/N is a

Lie group.

Now let Z be the center of N. Then by LEMMA 1 N/Z has no small

subgroup. Now, because Z has no small subgroup and is commutative, Z is a

Lie group. Hence Z/L is a Lie group. Thus by using LEMMA 2 twice we have

the desired proposition.

iv) General case. Let L\ be the identity component of L, and £2 the largest

solvable invariant subgroup of Z,,. And let i s be the identity component of L2»

Denote by LA the topological commutator subgroup of Z3, L$ the topological

commutator subgroup of Z,4, and so on. Then we get ^ sequence

Lo=Z,3Z,j3Z^3 . . . D £ « D Ln+i = £

of characteristic subgroups of L such that every Li/Lj+i is either discrete,

connected commutative, or connected semi-simple vfith no center. Considering

G/Li, G/Lo, . . , , in order, we get the result in virtue of above i), ii) and iii).

Q.E.D.
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dure is, however, also analogous with that using the differential equation for

slit mappings.12 >

THEOREM 8. Any function w = F(z) with F(l) = 1, mapping 1 < \z\ < R

onto a ring domain D bounded by \w\ = 1 and contained in 1 < \w\ < M, satisfies

the distortion inequalities

(3.5) ΦM(\Z\)^\F(Z)\^ΦM(-\Z\) (l<\z\<R);

w = ΦM(Z) denoting the function which maps 1 < \z\ < R onto the ring 1 < \w\

< M cut along a rectilinear segment on real axis starting from w = M, such that

ΦM(l) = 1. Each equality in (3.5) holds, at any given point z0 in 1 < \z\ < R,

only for the function

(3.6) F(z) = Wv(ez) (ε = ± M ) .

Proof It is sufficient to prove (3.5) for such functions F(z) as in the pre-

vious theorem with Q-1 = R, Qr1 = Af. Supposing that 2 is an arbitrarily ήxed

point in 1 < |z| < /?, we may write d/dlgq in place of d/dlgq, and hence the

equation (3.4) may be written in the form:

Comparing the real parts of both sides we have, by (3.2),

4 ί | y = * £ to0> = 20ΪA(W,<ΓVG ; q)dτ(β,q) .

Now, it can be shown that

9tA{w, q-^o q) = ± ^ - ^ (\w\n - ^ ) cos n{0 - φ) (w

is an even function of 0 - φ which, for \w\ > 1 and 0 < q < 1, decreases strictly

monotonic as θ — ̂  varies from 0 to 7r.13) We have hence the following diffe-

rential inequalities:

2 * i i ( - \w\9q-* q) ^

The differential equations

integrated with common initial condition: w =? 2 for q~R~\ yield for 0 = M'1

the absolute values of extremal mapping function, i.e., \w\ = ΦM(=f \z\). Since

J2) Cf. Y. Komatu, Untersuchungen ίiber konformen Abbitdung- von zweifach zusammen-

Mngenden Gebieten. Prpc. Phys.-Math. Soc. 25 (1943), 1-42, where the concrete expres-

sions for various quantities, especially for extremal functions, are also given.
J3> Cf. loc. cit. J2>, p. 26 et seq.
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dίgg < 0, we get in fact the desired inequalities (3.5). The last part of the

theorem concerning the equality sign is also immediate.

If we let the bound M tend to infinity in the last theorem, we obtain the

distortion theorem for general function w = F(z) which maps 1 < |z| < R onto

a ring domain bounded by \w\ = 1 and contained outside the unit circumference

that is, we have the distortion formulae :J 4 )

0(1*1) έ \F(z)\ *=k 0 ( - 1*1) with Φ(z) = UmΦm(z).

Mathematical Institute, Nagoya University

Tokyo Institute of Technology

14> Cf. also loc. cit. i2K






