BOUNDEDNESS OF HOMOGENEOUS FRACTIONAL INTEGRALS ON L^{p} FOR $N / \alpha \leq P \leq \infty$

YONG DING and SHANZHEN LU

Abstract

In this paper we study the map properties of the homogeneous fractional integral operator $T_{\Omega, \alpha}$ on $L^{p}\left(\mathbb{R}^{n}\right)$ for $n / \alpha \leq p \leq \infty$.

We prove that if Ω satisfies some smoothness conditions on S^{n-1}, then $T_{\Omega, \alpha}$ is bounded from $L^{n / \alpha}\left(\mathbb{R}^{n}\right)$ to $B M O\left(\mathbb{R}^{n}\right)$, and from $L^{p}\left(\mathbb{R}^{n}\right)(n / \alpha<p \leq \infty)$ to a class of the Campanato spaces $\mathcal{L}_{l, \lambda}\left(\mathbb{R}^{n}\right)$, respectively. As the corollary of the results above, we show that when Ω satisfies some smoothness conditions on S^{n-1}, the homogeneous fractional integral operator $T_{\Omega, \alpha}$ is also bounded from $H^{p}\left(\mathbb{R}^{n}\right)(n /(n+\alpha) \leq p \leq 1)$ to $L^{q}\left(\mathbb{R}^{n}\right)$ for $1 / q=1 / p-\alpha / n$. The results are the extensions of Stein-Weiss (for $p=1$) and Taibleson-Weiss's (for $n /(n+\alpha) \leq$ $p<1)$ results on the boundedness of the Riesz potential operator I_{α} on the Hardy spaces $H^{p}\left(\mathbb{R}^{n}\right)$.

§1. Introduction and results

It is well-known that the Hardy-Littlewood-Sobolev theorem showed that the Riesz potential operator I_{α} is bounded from $L^{p}\left(\mathbb{R}^{n}\right)$ to $L^{q}\left(\mathbb{R}^{n}\right)$ for $0<\alpha<n, 1<p<n / \alpha$ and $1 / q=1 / p-\alpha / n$. Here

$$
I_{\alpha} f(x)=\frac{1}{\gamma(\alpha)} \int_{\mathbb{R}^{n}} \frac{f(y)}{|x-y|^{n-\alpha}} d y, \text { and } \gamma(\alpha)=\frac{\pi^{n / 2} 2^{\alpha} \Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{n-\alpha}{2}\right)} .
$$

In 1960, Stein and Weiss [11] used the theory of the harmonic functions of several variables to prove that I_{α} is bounded from $H^{1}\left(\mathbb{R}^{n}\right)$ to $L^{n /(n-\alpha)}\left(\mathbb{R}^{n}\right)$. In 1980 , using the molecular characterization of the real Hardy spaces, Taibleson and Weiss [12] proved that I_{α} is also bounded from $H^{p}\left(\mathbb{R}^{n}\right)$ to $H^{q}\left(\mathbb{R}^{n}\right)$, where $0<p<1$ and $1 / q=1 / p-\alpha / n$.

Moreover, for the extreme case $p=n / \alpha$, it is easy to verify that I_{α} is not bounded from $L^{n / \alpha}\left(\mathbb{R}^{n}\right)$ to $L^{\infty}\left(\mathbb{R}^{n}\right)$. However, as its substitute, we know

[^0]that I_{α} is bounded from $L^{n / \alpha}\left(\mathbb{R}^{n}\right)$ to $\operatorname{BMO}\left(\mathbb{R}^{n}\right)$. In 1974, Muckenhoupt and Wheeden [8] gave the weighted boundedness of I_{α} from $L^{n / \alpha}\left(\mathbb{R}^{n}\right)$ to $\operatorname{BMO}\left(\mathbb{R}^{n}\right)$.

On the other hand, it has appeared about the investigations of the various map properties of the homogeneous fractional integral operators $T_{\Omega, \alpha}$, which is defined by

$$
T_{\Omega, \alpha} f(x)=\int_{\mathbb{R}^{n}} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} f(y) d y
$$

where $0<\alpha<n, \Omega$ is homogeneous of degree zero on \mathbb{R}^{n} with $\Omega \in$ $L^{s}\left(S^{n-1}\right)(s \geq 1)$ and S^{n-1} denotes the unit sphere of \mathbb{R}^{n}. For instance, the weighted $\left(L^{p}, L^{q}\right)$-boundedness of $T_{\Omega, \alpha}$ for $1<p<n / \alpha$ had been studied in [7] (for power weights) and in [2] (for $A(p, q)$ weights). The weak boundedness of $T_{\Omega, \alpha}$ when $p=1$ can be found in [1] (unweighted) and in [4] (with power weights). Moreover, for $p=n / \alpha$, an exponential integral inequality of $T_{\Omega, \alpha}$ had been given in [3].

In comparison with the map properties of the Riesz potential operator I_{α}, it is natural to ask under what conditions, the homogeneous fractional integral operator $T_{\Omega, \alpha}$ has the same map properties on $H^{p}\left(\mathbb{R}^{n}\right)$ as the Riesz potential operator I_{α}.

The aim of this paper is to answer the question above. First we shall prove that if Ω satisfies some smoothness conditions on S^{n-1}, then $T_{\Omega, \alpha}$ is bounded from $L^{n / \alpha}\left(\mathbb{R}^{n}\right)$ to $B M O\left(\mathbb{R}^{n}\right)$ and from $L^{p}\left(\mathbb{R}^{n}\right)(n / \alpha<p \leq \infty)$ to a class of the Campanato spaces $\mathcal{L}_{l, \lambda}\left(\mathbb{R}^{n}\right)$, respectively. As its corollary, then we verify that Stein-Weiss's conclusion (for $p=1$) and Taibleson-Weiss's conclusion (for $n /(n+\alpha) \leq p<1$) hold still for $T_{\Omega, \alpha}$ instead of I_{α}.

It is worth pointing out that in the proof of our results, we use only the dual theory on the real Hardy spaces, while the atomic-molecular decomposition of $H^{p}\left(\mathbb{R}^{n}\right)$ is not used. Therefore, our method gives indeed another way proving Stein-Weiss and Taibleson-Weiss's results on I_{α}.

Before stating our results, let us give some definitions.
Suppose that $Q=Q\left(x_{0}, d\right)$ is a cube with its sides parallel to the coordinate axes and center at x_{0}, diameter $d>0$. For $1 \leq l \leq \infty,-n / l \leq$ $\lambda \leq 1$, we denote

$$
\|f\|_{\mathcal{L}_{l, \lambda}}=\sup _{Q} \frac{1}{|Q|^{\lambda / n}}\left(\frac{1}{|Q|} \int_{Q}\left|f(x)-f_{Q}\right|^{l} d x\right)^{1 / l}
$$

where $f_{Q}=\frac{1}{|Q|} \int_{Q} f(y) d y$. Then the Campanato spaces $\mathcal{L}_{l, \lambda}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\mathcal{L}_{l, \lambda}\left(\mathbb{R}^{n}\right)=\left\{f \in L_{l o c}^{l}\left(\mathbb{R}^{n}\right):\|f\|_{\mathcal{L}_{l, \lambda}}<\infty\right\}
$$

If we identify functions that differ by a constant, then $\mathcal{L}_{l, \lambda}$ becomes a Banach space with the norm $\|\cdot\|_{\mathcal{L}_{l, \lambda}}$. It is well-known that

$$
\mathcal{L}_{l, \lambda}\left(\mathbb{R}^{n}\right) \sim \begin{cases}\operatorname{Lip}_{\lambda}\left(\mathbb{R}^{n}\right), & \text { for } 0<\lambda<1, \\ \operatorname{BMO}\left(\mathbb{R}^{n}\right), & \text { for } \lambda=0, \\ \operatorname{Morrey~space~} L^{p, n+l \lambda}\left(\mathbb{R}^{n}\right), & \text { for }-n / l \leq \lambda<0\end{cases}
$$

On the other properties of the spaces $\mathcal{L}_{l, \lambda}\left(\mathbb{R}^{n}\right)$, we refer the reader to [9].
We say that Ω satisfies the L^{s}-Dini condition if Ω is homogeneous of degree zero on \mathbb{R}^{n} with $\Omega \in L^{s}\left(S^{n-1}\right)(s \geq 1)$, and

$$
\int_{0}^{1} \omega_{s}(\delta) \frac{d \delta}{\delta}<\infty
$$

where $\omega_{s}(\delta)$ denotes the integral modulus of continuity of order s of Ω defined by

$$
\omega_{s}(\delta)=\sup _{|\rho|<\delta}\left(\int_{S^{n-1}}\left|\Omega\left(\rho x^{\prime}\right)-\Omega\left(x^{\prime}\right)\right|^{s} d x^{\prime}\right)^{1 / s}
$$

and ρ is a rotation in \mathbb{R}^{n} and $|\rho|=\|\rho-I\|$.
A nonnegative locally integrable function pair (u, ν) on \mathbb{R}^{n} is said to belong to $A(p, \infty)(1<p<\infty)$, if there is a constant $C>0$ such that for any cube Q in \mathbb{R}^{n}

$$
\left(\operatorname{ess} \sup _{x \in Q} \nu(x)\right)\left(\frac{1}{|Q|} \int_{Q} u(x)^{-p^{\prime}} d x\right)^{1 / p^{\prime}} \leq C<\infty
$$

where $p^{\prime}=p /(p-1)$.
For a nonnegative locally integrable function $w(x)$ on \mathbb{R}^{n}, let us consider the function class $B M O_{w}\left(\mathbb{R}^{n}\right)$, the weighted version of $B M O\left(\mathbb{R}^{n}\right)$. We say a function $g \in B M O_{w}\left(\mathbb{R}^{n}\right)$, if there is a constant $C>0$ such that for any cube $Q \in \mathbb{R}^{n}$,

$$
\|g\|_{B M O_{w}}:=\left(\underset{x \in Q}{\operatorname{ess} \sup _{x \in Q} w(x)}\right)\left(\frac{1}{|Q|} \int_{Q}\left|g(x)-g_{Q}\right| d x\right) \leq C<\infty
$$

where $g_{Q}=\frac{1}{|Q|} \int_{Q} g(y) d y$.
Now, let us formulate our results as follows. The first conclusion is about the weighted boundedness of $T_{\Omega, \alpha}$ from $L^{n / \alpha}\left(u^{n / \alpha}, \mathbb{R}^{n}\right)$ to $B M O_{\nu}\left(\mathbb{R}^{n}\right)$.

Theorem 1. Let $0<\alpha<n, s>n /(n-\alpha)$. If Ω satisfies the $L^{s}-$ Dini condition and $\left(u^{s^{\prime}}, \nu^{s^{\prime}}\right) \in A\left(n / \alpha s^{\prime}, \infty\right)$, then there is a $C>0$ such that for any cube $Q \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\left\|T_{\Omega, \alpha} f\right\|_{B M O_{\nu}} \leq C\|f\|_{L^{n / \alpha}\left(u^{n / \alpha}\right)} \tag{1.1}
\end{equation*}
$$

Remark 1. Obviously, Theorem 7 in [8] is the especial example of Theorem 1 when $\Omega \equiv 1, s=\infty$ and $u(x)=\nu(x)$.

The following two theorems show that $T_{\Omega, \alpha}$ is bounded map from $L^{p}\left(\mathbb{R}^{n}\right)(n / \alpha<p \leq \infty)$ to the Campanato spaces $\mathcal{L}_{l, \lambda}\left(\mathbb{R}^{n}\right)$ for appropriate indices $\lambda>0$ and $l \geq 1$.

Theorem 2. Let $0<\alpha<1, n / \alpha<p<\infty$ and $s>n /(n-\alpha)$. If for some $\beta>\alpha-n / p$, the integral modulus of continuity $\omega_{s}(\delta)$ of order s of Ω satisfies

$$
\begin{equation*}
\int_{0}^{1} \omega_{s}(\delta) \frac{d \delta}{\delta^{1+\beta}}<\infty \tag{1.2}
\end{equation*}
$$

then there is a $C>0$ such that for $1 \leq l \leq n /(n-\alpha),\left\|T_{\Omega, \alpha} f\right\|_{\mathcal{L}_{l, n\left(\frac{\alpha}{n}-\frac{1}{p}\right)}} \leq$ $C\|f\|_{L^{p}}$.

Theorem 3. Let $0<\alpha<1$ and $s>n /(n-\alpha)$. If the integral modulus of continuity $\omega_{s}(\delta)$ of order s of Ω satisfies

$$
\begin{equation*}
\int_{0}^{1} \omega_{s}(\delta) \frac{d \delta}{\delta^{1+\alpha}}<\infty \tag{1.3}
\end{equation*}
$$

then there is a $C>0$ such that for $1 \leq l \leq n /(n-\alpha),\left\|T_{\Omega, \alpha} f\right\|_{\mathcal{L}_{l, \alpha}} \leq$ $C\|f\|_{L^{\infty}}$.

Having the conclusions above, by the dual theory on real Hardy spaces, we can obtain the boundedness of the operator $T_{\Omega, \alpha}$ acting on some real Hardy spaces.

Theorem 4. Let $0<\alpha<n, s>n /(n-\alpha)$. If Ω satisfies the $L^{s}-$ Dini condition, then there is a $C>0$ such that

$$
\left\|T_{\Omega, \alpha} f\right\|_{L^{n /(n-\alpha)}} \leq C\|f\|_{H^{1}}
$$

Theorem 5. Let $0<\alpha<1, n /(n+\alpha)<p<1,1 / q=1 / p-\alpha / n$ and $s>n /(n-\alpha)$. If for $\beta>n(1 / p-1)$, the integral modulus of continuity $\omega_{s}(\delta)$ of order s of Ω satisfies (1.2), then there is a $C>0$ such that

$$
\left\|T_{\Omega, \alpha} f\right\|_{L^{q}} \leq C\|f\|_{H^{p}}
$$

Theorem 6. Let $0<\alpha<1, p=n /(n+\alpha)$ and $s>n /(n-\alpha)$. If the integral modulus of continuity $\omega_{s}(\delta)$ of order s of Ω satisfies (1.3), then there is a $C>0$ such that

$$
\left\|T_{\Omega, \alpha} f\right\|_{L^{1}} \leq C\|f\|_{H^{n /(n+\alpha)}}
$$

Below the letter C will denote a constant not necessarily the same at each occurrence.
§2. Boundedness of $T_{\Omega, \alpha}$ acting on $L^{p}\left(\mathbb{R}^{n}\right)$ for $n / \alpha \leq p \leq \infty$
In this section we shall give the proofs of Theorems 1 through 3. Let us begin with giving a lemma.

Lemma 1. Suppose that $0<\alpha<n, s>1, \Omega$ satisfies the L^{s}-Dini condition. There is a constant $0<a_{0}<1 / 2$ such that if $|x|<a_{0} R$, then

$$
\begin{aligned}
& \left(\int_{R<|y|<2 R}\left|\frac{\Omega(y-x)}{|y-x|^{n-\alpha}}-\frac{\Omega(y)}{|y|^{n-\alpha}}\right|^{s} d y\right)^{1 / s} \\
& \quad \leq C R^{n / s-(n-\alpha)}\left\{\frac{|x|}{R}+\int_{|x| / 2 R<\delta<|x| / R} \omega_{s}(\delta) \frac{d \delta}{\delta}\right\} .
\end{aligned}
$$

Using the similar method as proving Lemma 5 in [5], we can prove Lemma 1. We omit the detail here.

Proof of Theorem 1. Fix a cube $Q \subset \mathbb{R}^{n}$, we denote the center and the diameter of Q by x_{0} and d, respectively. Writing

$$
\begin{aligned}
T_{\Omega, \alpha} f(x) & =\int_{B} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} f(y) d y+\int_{\mathbb{R}^{n} \backslash B} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} f(y) d y \\
& :=T_{1} f(x)+T_{2} f(x)
\end{aligned}
$$

where $B=\left\{y \in \mathbb{R}^{n} ;\left|y-x_{0}\right|<d\right\}$. It is sufficient to prove (1.1) for $T_{1} f(x)$ and $T_{2} f(x)$, respectively. Below we denote briefly ess $\sup _{x \in Q} \nu(x)$ by E.

First let us consider $T_{1} f(x)$. We have

$$
\begin{aligned}
& \frac{E}{|Q|} \int_{Q}\left|T_{1} f(x)-\left(T_{1} f\right)_{Q}\right| d x \\
\leq & \frac{E}{|Q|} \int_{Q} \int_{B} \frac{|\Omega(x-y)|}{|x-y|^{n-\alpha}|f(y)| d y d x} \\
& +\frac{E}{|Q|} \int_{Q}\left(\frac{1}{|Q|} \int_{Q} \int_{B} \frac{|\Omega(z-y)|}{\left.|z-y|^{n-\alpha}|f(y)| d y d z\right) d x}\right. \\
\leq & \frac{2 E}{|Q|} \int_{B}|f(y)| \int_{Q} \frac{|\Omega(x-y)|}{|x-y|^{n-\alpha}} d x d y \\
\leq & \frac{2 E}{|Q|} \int_{B}|f(y)| \int_{|x-y|<2 d} \frac{|\Omega(x-y)|}{|x-y|^{n-\alpha}} d x d y .
\end{aligned}
$$

Note that $\Omega\left(x^{\prime}\right) \in L^{s}\left(S^{n-1}\right)$, we get

$$
\int_{|x-y|<2 d} \frac{|\Omega(x-y)|}{|x-y|^{n-\alpha}} d x \leq C d^{\alpha}\|\Omega\|_{L^{s}\left(S^{n-1}\right)} \leq C|Q|^{\alpha / n}\|\Omega\|_{L^{s}\left(S^{n-1}\right)}
$$

On the other hand, by Hölder's inequality,

$$
\int_{B}|f(y)| d y \leq\left(\int_{B}|f(y) u(y)|^{p} d y\right)^{1 / p}\left(\int_{B} u(y)^{-p^{\prime}} d y\right)^{1 / p^{\prime}}
$$

Here and below we denote $p=n / \alpha$ in the proof of Theorem 1. Since $p^{\prime}<s^{\prime}\left(p / s^{\prime}\right)^{\prime}$, using Hölder's inequality again, we have

$$
\begin{equation*}
\frac{E}{|Q|} \int_{Q}\left|T_{1} f(x)-\left(T_{1} f\right)_{Q}\right| d x \tag{2.1}
\end{equation*}
$$

$$
\leq C E|Q|^{-1+\alpha / n}\left(\int_{B}|f(y) u(y)|^{p} d y\right)^{1 / p}\left(\int_{B} u(y)^{-p^{\prime}} d y\right)^{1 / p^{\prime}}
$$

$$
\leq C E\left(\int_{B}|f(y) u(y)|^{p} d y\right)^{1 / p}\left(\frac{1}{|2 \sqrt{n} Q|} \int_{2 \sqrt{n} Q} u(y)^{-p^{\prime}} d y\right)^{1 / p^{\prime}}
$$

$$
\leq C E\left(\int_{B}|f(y) u(y)|^{p} d y\right)^{1 / p}\left(\frac{1}{|2 \sqrt{n} Q|} \int_{2 \sqrt{n} Q} u(y)^{-s^{\prime}\left(p / s^{\prime}\right)^{\prime}} d y\right)^{1 /\left[s^{\prime}\left(p / s^{\prime}\right)^{\prime}\right]}
$$

where $2 \sqrt{n} Q$ denotes the cube with the center at x_{0} and the diameter $2 \sqrt{n} d$. By the condition $\left(u(x)^{s^{\prime}}, \nu(x)^{s^{\prime}}\right) \in A\left(p / s^{\prime}, \infty\right)$, we get

$$
\begin{equation*}
E\left(\frac{1}{|2 \sqrt{n} Q|} \int_{2 \sqrt{n} Q} u(x)^{-s^{\prime}\left(p / s^{\prime}\right)^{\prime}} d x\right)^{1 /\left[s^{\prime}\left(p / s^{\prime}\right)^{\prime}\right]} \tag{2.2}
\end{equation*}
$$

$$
\begin{aligned}
& \leq\left\{\left(\operatorname{ess} \sup _{x \in 2 \sqrt{n} Q} \nu(x)^{s^{\prime}}\right)\left(\frac{1}{|2 \sqrt{n} Q|} \int_{2 \sqrt{n} Q}\left(u(x)^{s^{\prime}}\right)^{-\left(p / s^{\prime}\right)^{\prime}} d x\right)^{1 /\left(p / s^{\prime}\right)^{\prime}}\right\}^{1 / s^{\prime}} \\
& \leq C<\infty
\end{aligned}
$$

Therefore, by (2.1) and (2.2) we obtain
(2.3) $\quad \frac{E}{|Q|} \int_{Q}\left|T_{1} f(x)-\left(T_{1} f\right)_{Q}\right| d x \leq C\left(\int_{\mathbb{R}^{n}}|f(x) u(x)|^{p} d y\right)^{1 / p}$.

Now, let us turn to the estimation for $T_{2} f(x)$. In this case we have

$$
\begin{align*}
& \frac{E}{|Q|} \int_{Q}\left|T_{2} f(x)-\left(T_{2} f\right)_{Q}\right| d x \tag{2.4}\\
&= \frac{E}{|Q|} \int_{Q} \left\lvert\, \frac{1}{|Q|} \int_{Q}\left\{\int _ { | y - x _ { 0 } | \geq d } f (y) \left[\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}\right.\right.\right. \\
&\left.\left.-\frac{\Omega(z-y)}{|z-y|^{n-\alpha}}\right] d y\right\} d z \mid d x \\
& \leq \frac{E}{|Q|} \int_{Q} \frac{1}{|Q|} \int_{Q}\left\{\sum_{j=0}^{\infty} \int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d}|f(y)| \left\lvert\, \frac{\Omega(x-y)}{|x-y|^{n-\alpha}}\right.\right. \\
&\left.\left.\quad-\frac{\Omega(z-y)}{|z-y|^{n-\alpha} \mid} \right\rvert\, d y\right\} d z d x .
\end{align*}
$$

By Hölder's inequality, we get

$$
\begin{align*}
& \int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d}|f(y)|\left|\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}-\frac{\Omega(z-y)}{|z-y|^{n-\alpha}}\right| d y \tag{2.5}\\
\leq & \left(\int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d}|f(y)|^{s^{\prime}} d y\right)^{1 / s^{\prime}} \\
& \quad \times\left(\int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d}\left|\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}-\frac{\Omega(z-y)}{|z-y|^{n-\alpha}}\right|^{s} d y\right)^{1 / s} .
\end{align*}
$$

Since

$$
\begin{aligned}
& \left|\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}-\frac{\Omega(z-y)}{|z-y|^{n-\alpha}}\right| \\
& \quad \leq\left|\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}-\frac{\Omega\left(y-x_{0}\right)}{\left|y-x_{0}\right|^{n-\alpha}}\right|+\left|\frac{\Omega(z-y)}{|z-y|^{n-\alpha}}-\frac{\Omega\left(y-x_{0}\right)}{\left|y-x_{0}\right|^{n-\alpha}}\right|,
\end{aligned}
$$

we have

$$
\begin{aligned}
& \left(\int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d}\left|\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}-\frac{\Omega(z-y)}{|z-y|^{n-\alpha}}\right|^{s} d y\right)^{1 / s} \\
\leq & \left(\int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d}\left|\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}-\frac{\Omega\left(y-x_{0}\right)}{\left|y-x_{0}\right|^{n-\alpha}}\right|^{s} d y\right)^{1 / s} \\
& \quad+\left(\int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d}\left|\frac{\Omega(z-y)}{|z-y|^{n-\alpha}}-\frac{\Omega\left(y-x_{0}\right)}{\left|y-x_{0}\right|^{n-\alpha}}\right|^{s} d y\right)^{1 / s} \\
:= & J_{1}+J_{2} .
\end{aligned}
$$

Let us give the estimations of J_{1} and J_{2}, respectively. Writing J_{1} as

$$
\left(\int_{2^{j} d \leq|y|<2^{j+1} d}\left|\frac{\Omega\left(\left(x-x_{0}\right)-y\right)}{\left|\left(x-x_{0}\right)-y\right|^{n-\alpha}}-\frac{\Omega(y)}{|y|^{n-\alpha}}\right|^{s} d y\right)^{1 / s}
$$

Note that $x \in Q$, if taking $R=2^{j} d$, then $\left|x-x_{0}\right|<\frac{1}{2^{j+1}} R$. Applying Lemma 1 to J_{1}, we get

$$
\begin{aligned}
J_{1} & \leq C\left(2^{j} d\right)^{n / s-(n-\alpha)}\left\{\frac{\left|x-x_{0}\right|}{2^{j} d}+\int_{\left|x-x_{0}\right| / 2^{j+1} d<\delta<\left|x-x_{0}\right| / 2^{j} d} \omega_{s}(\delta) \frac{d \delta}{\delta}\right\} \\
& \leq C\left(2^{j} d\right)^{n / s-(n-\alpha)}\left\{\frac{1}{2^{j+1}}+\int_{\left|x-x_{0}\right| / 2^{j+1} d}^{\left|x-x_{0}\right| / 2^{j} d} \omega_{s}(\delta) \frac{d \delta}{\delta}\right\}
\end{aligned}
$$

By $z \in Q$ and using similar method, we have

$$
J_{2} \leq C\left(2^{j} d\right)^{n / s-(n-\alpha)}\left\{\frac{1}{2^{j+1}}+\int_{\left|z-x_{0}\right| / 2^{j+1} d}^{\left|z-x_{0}\right| / 2^{j} d} \omega_{s}(\delta) \frac{d \delta}{\delta}\right\}
$$

Since $p=n / \alpha$ and $n / s-(n-\alpha)=-n /\left[s^{\prime}\left(p / s^{\prime}\right)^{\prime}\right]$, we get

$$
\left(2^{j} d\right)^{n / s-(n-\alpha)} \leq C\left|2^{j+1} \sqrt{n} Q\right|^{-1 /\left[s^{\prime}\left(p / s^{\prime}\right)^{\prime}\right]} .
$$

Thus, with the estimations for J_{1} and J_{2}, we have

$$
\begin{align*}
& \left(\int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d}\left|\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}-\frac{\Omega(z-y)}{|z-y|^{n-\alpha}}\right|^{s} d y\right)^{1 / s} \tag{2.6}\\
\leq & C\left|2^{j+1} \sqrt{n} Q\right|^{-1 /\left[s^{\prime}\left(p / s^{\prime}\right)^{\prime}\right]}\left\{\frac{1}{2^{j}}+\int_{\left|x-x_{0}\right| / 2^{j+1} d}^{\left|x-x_{0}\right| / 2^{j} d} \omega_{s}(\delta) \frac{d \delta}{\delta}\right. \\
& \left.+\int_{\left|z-x_{0}\right| / 2^{j+1} d}^{\left|z-x_{0}\right| / 2^{j} d} \omega_{s}(\delta) \frac{d \delta}{\delta}\right\} .
\end{align*}
$$

On the other hand, using Hölder's inequality again we have

$$
\begin{align*}
&\left(\int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d}|f(y)|^{s^{\prime}} d y\right)^{1 / s^{\prime}} \tag{2.7}\\
& \leq\left(\int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d}|f(y) u(y)|^{p} d y\right)^{1 / p} \\
& \quad \times\left(\int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d} u(y)^{-s^{\prime}\left(p / s^{\prime}\right)^{\prime}} d y\right)^{1 /\left[s^{\prime}\left(p / s^{\prime}\right)^{\prime}\right]} \\
& \leq\left(\int_{\mathbb{R}^{n}}|f(y) u(y)|^{p} d y\right)^{1 / p}\left(\int_{2^{j+1} \sqrt{n} Q} u(y)^{-s^{\prime}\left(p / s^{\prime}\right)^{\prime}} d y\right)^{1 /\left[s^{\prime}\left(p / s^{\prime}\right)^{\prime}\right]}
\end{align*}
$$

Since $\left(u(x)^{s^{\prime}}, \nu(x)^{s^{\prime}}\right) \in A\left(p / s^{\prime}, \infty\right)$, it is easy to see that there is a $C>0$ such that for any $j \geq 0$,

$$
\begin{align*}
& E\left(\frac{1}{\left|2^{j+1} \sqrt{n} Q\right|} \int_{2^{j+1} \sqrt{n} Q} u(x)^{-s^{\prime}\left(p / s^{\prime}\right)^{\prime}} d x\right)^{1 /\left[s^{\prime}\left(p / s^{\prime}\right)^{\prime}\right]} \tag{2.8}\\
\leq & \left\{\left(\operatorname{ess} \sup _{x \in 2^{j+1} \sqrt{n} Q} \nu(x)^{s^{\prime}}\right)\right. \\
& \left.\quad \times\left(\frac{1}{\left|2^{j+1} \sqrt{n} Q\right|} \int_{2^{j+1} \sqrt{n} Q} u(x)^{-s^{\prime}\left(p / s^{\prime}\right)^{\prime}} d x\right)^{1 /\left(p / s^{\prime}\right)^{\prime}}\right\}^{1 / s^{\prime}} \\
\leq & C<\infty
\end{align*}
$$

From (2.5), (2.6), (2.7) and (2.8), we obtain

$$
\begin{aligned}
& \sum_{j=0}^{\infty} E \int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d}|f(y)|\left|\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}-\frac{\Omega(z-y)}{|z-y|^{n-\alpha} \mid}\right| d y \\
\leq C & \sum_{j=0}^{\infty}\left(\int_{\mathbb{R}^{n}}|f(y) u(y)|^{p} d y\right)^{1 / p} E\left(\int_{2^{j+1} \sqrt{n} Q} u(y)^{-s^{\prime}\left(p / s^{\prime}\right)^{\prime}} d y\right)^{1 /\left[s^{\prime}\left(p / s^{\prime}\right)^{\prime}\right]} \\
& \times\left|2^{j+1} \sqrt{n} Q\right|^{-1 /\left[s^{\prime}\left(p / s^{\prime}\right)^{\prime}\right]} \\
& \times\left\{\frac{1}{2^{j}}+\int_{\left|x-x_{0}\right| / 2^{j+1} d}^{\left|x-x_{0}\right| / 2^{j} d} \omega_{s}(\delta) \frac{d \delta}{\delta}+\int_{\left|z-x_{0}\right| / 2^{j+1} d}^{\left|z-x_{0}\right| / 2^{j} d} \omega_{s}(\delta) \frac{d \delta}{\delta}\right\} \\
\leq C & \left(\int_{\mathbb{R}^{n}}|f(y) u(y)|^{p} d y\right)^{1 / p} \\
& \times \sum_{j=0}^{\infty}\left\{\frac{1}{2^{j}}+\int_{\left|x-x_{0}\right| / 2^{j+1} d}^{\left|x-x_{0}\right| / 2^{j} d} \omega_{s}(\delta) \frac{d \delta}{\delta}+\int_{\left|z-x_{0}\right| / 2^{j+1} d}^{\left|z-x_{0}\right| / 2^{j} d} \omega_{s}(\delta) \frac{d \delta}{\delta}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \leq C\left(\int_{\mathbb{R}^{n}}|f(y) u(y)|^{p} d y\right)^{1 / p}\left\{2+2 \int_{0}^{1} \omega_{s}(\delta) \frac{d \delta}{\delta}\right\} \\
& \leq C\left(\int_{\mathbb{R}^{n}}|f(y) u(y)|^{p} d y\right)^{1 / p}
\end{aligned}
$$

Combining this with (2.4), we have
(2.9) $\quad \frac{E}{|Q|} \int_{Q}\left|T_{2} f(x)-\left(T_{2} f\right)_{Q}\right| d x \leq C\left(\int_{\mathbb{R}^{n}}|f(x) u(x)|^{p} d y\right)^{1 / p}$.

By (2.3) and (2.9), we complete the proof of Theorem 1.
Proof of Theorem 2. As the proof of Theorem 1, We need only to prove (1.3) for T_{1} and T_{2}, respectively. First let us consider $T_{1} f(x)$. We have

$$
\begin{aligned}
& \frac{1}{|Q|^{\alpha / n-1 / p}}\left(\frac{1}{|Q|} \int_{Q}\left|T_{1} f(x)-\left(T_{1} f\right)_{Q}\right|^{l} d x\right)^{1 / l} \\
\leq & \frac{2}{|Q|^{\alpha / n-1 / p}}\left(\frac{1}{|Q|} \int_{Q}\left|T_{1} f(x)\right|^{l} d x\right)^{1 / l} \\
= & \frac{2}{|Q|^{\alpha / n-1 / p}}\left(\frac{1}{|Q|} \int_{Q}\left|\int_{B} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} f(y) d y\right|^{l} d x\right)^{1 / l} \\
\leq & \frac{2}{|Q|^{\alpha / n-1 / p}} \frac{1}{|Q|^{1 / l}} \int_{B}|f(y)|\left(\int_{|y-x|<2 d}\left(\frac{|\Omega(x-y)|}{|x-y|^{n-\alpha}}\right)^{l} d x\right)^{1 / l} d y
\end{aligned}
$$

Note that $\Omega\left(x^{\prime}\right) \in L^{s}\left(S^{n-1}\right)$ and $s>n /(n-\alpha) \geq l$, hence

$$
\begin{align*}
\left(\int_{|x-y|<2 d}\left(\frac{|\Omega(x-y)|}{|x-y|^{n-\alpha}}\right)^{l} d x\right)^{1 / l} & \leq C d^{n / l-(n-\alpha)}\|\Omega\|_{L^{s}\left(S^{n-1}\right)} \tag{2.10}\\
& \leq C|Q|^{1 / l-(1-\alpha / n)}\|\Omega\|_{L^{s}\left(S^{n-1}\right)}
\end{align*}
$$

On the other hand, by Hölder's inequality,

$$
\int_{B}|f(y)| d y \leq C|Q|^{1 / p^{\prime}}\left(\int_{B}|f(y)|^{p} d y\right)^{1 / p} \leq C|Q|^{1 / p^{\prime}}\|f\|_{p}
$$

Thus,

$$
\begin{align*}
& \frac{1}{|Q|^{\alpha / n-1 / p}}\left(\frac{1}{|Q|} \int_{Q}\left|T_{1} f(x)-\left(T_{1} f\right)_{Q}\right|^{l} d x\right)^{1 / l} \tag{2.11}\\
\leq & C|Q|^{1 / p-\alpha / n-1 / l+1 / p^{\prime}+1 / l-(1-\alpha / n)}\|\Omega\|_{L^{s}\left(S^{n-1}\right)}\|f\|_{p} \leq C\|f\|_{p}
\end{align*}
$$

Now, let us turn to the estimation for $T_{2} f(x)$. In this case we have

$$
\begin{align*}
& \frac{1}{|Q|^{\alpha / n-1 / p}}\left(\frac{1}{|Q|} \int_{Q}\left|T_{2} f(x)-\left(T_{2} f\right)_{Q}\right|^{l} d x\right)^{1 / l} \tag{2.12}\\
= & \frac{1}{|Q|^{\alpha / n-1 / p}}\left(\frac{1}{|Q|} \int_{Q} \left\lvert\, \frac{1}{|Q|} \int_{Q}\left\{\sum_{j=0}^{\infty} \int_{2^{j}} d \leq\left|y-x_{0}\right|_{<2^{j+1} d} f(y)\right.\right.\right. \\
& \left.\left.\quad \times\left[\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}-\frac{\Omega(z-y)}{|z-y|^{n-\alpha}}\right] d y\right\}\left.d z\right|^{l} d x\right)^{1 / l} .
\end{align*}
$$

By (2.5) and $s^{\prime}<n / \alpha<p$,

$$
\begin{align*}
& \int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d}|f(y)|\left|\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}-\frac{\Omega(z-y)}{|z-y|^{n-\alpha}}\right| d y \tag{2.13}\\
\leq & \left(\int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d}|f(y)|^{s^{\prime}} d y\right)^{1 / s^{\prime}}\left(J_{1}+J_{2}\right) \\
\leq & C\|f\|_{p}\left(2^{j} d\right)^{n /\left[s^{\prime}\left(p / s^{\prime}\right)^{\prime}\right]}\left(J_{1}+J_{2}\right) .
\end{align*}
$$

Since the integral modulus of continuity $\omega_{s}(\delta)$ of order s of Ω satisfies (1.2) and

$$
\int_{0}^{1} \omega_{s}(\delta) \frac{d \delta}{\delta}<\int_{0}^{1} \omega_{s}(\delta) \frac{d \delta}{\delta^{1+\beta}}<\infty
$$

we know that Ω satisfies also the L^{s}-Dini condition. From Lemma 1 and the proof of Theorem 1,
(2.14) $J_{1}+J_{2} \leq C\left(2^{j} d\right)^{n / s-(n-\alpha)}$

$$
\times\left\{\frac{1}{2^{j}}+\int_{\left|x-x_{0}\right| / 2^{j+1} d}^{\left|x-x_{0}\right| / 2^{j} d} \omega_{s}(\delta) \frac{d \delta}{\delta}+\int_{\left|z-x_{0}\right| / 2^{j+1} d}^{\left|z-x_{0}\right| / 2^{j} d} \omega_{s}(\delta) \frac{d \delta}{\delta}\right\} .
$$

Note that

$$
\left(2^{j} d\right)^{n /\left[s^{\prime}\left(p / s^{\prime}\right)^{\prime}\right]+n / s-(n-\alpha)}=\left(2^{j} d\right)^{n(\alpha / n-1 / p)} \leq C|Q|^{\alpha / n-1 / p} 2^{j n(\alpha / n-1 / p)} .
$$

Moreover,

$$
\begin{align*}
& 2^{j n(\alpha / n-1 / p)} \int_{\left|x-x_{0}\right| / 2^{j+1} d}^{\left|x-x_{0}\right| / 2^{j} d} \omega_{s}(\delta) \frac{d \delta}{\delta} \tag{2.15}\\
\leq & 2^{j n(\alpha / n-1 / p)}\left(\left|x-x_{0}\right| / 2^{j} d\right)^{\beta} \int_{\left|x-x_{0}\right| / 2^{j+1} d}^{\left|x-x_{0}\right| / 2^{j} d} \omega_{s}(\delta) \frac{d \delta}{\delta^{1+\beta}} \\
\leq & C 2^{j[n(\alpha / n-1 / p)-\beta]} \int_{0}^{1} \omega_{s}(\delta) \frac{d \delta}{\delta^{1+\beta}} .
\end{align*}
$$

By $0<\alpha<1$ and $\beta>\alpha-n / p$, we have $n(\alpha / n-1 / p)-1<0$ and $n(\alpha / n-1 / p)-\beta<0$, respectively. Thus, by (2.13)-(2.15) and (1.2),

$$
\begin{aligned}
& \sum_{j=0}^{\infty} \int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d} f(y)\left[\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}-\frac{\Omega(z-y)}{|z-y|^{n-\alpha}}\right] d y \\
\leq & C\|f\|_{p}|Q|^{\alpha / n-1 / p} \sum_{j=0}^{\infty}\left\{2^{j[n(\alpha / n-1 / p)-1]}+C 2^{j[n(\alpha / n-1 / p)-\beta]} \int_{0}^{1} \omega_{s}(\delta) \frac{d \delta}{\delta^{1+\beta}}\right\} \\
\leq & C\|f\|_{p}|Q|^{\alpha / n-1 / p} .
\end{aligned}
$$

Combining this with (2.12), we have

$$
\begin{equation*}
\frac{1}{|Q|^{\alpha / n-1 / p}}\left(\frac{1}{|Q|} \int_{Q}\left|T_{2} f(x)-\left(T_{2} f\right)_{Q}\right|^{l} d x\right)^{1 / l} \leq C\|f\|_{p} \tag{2.16}
\end{equation*}
$$

By (2.11) and (2.16), we complete the proof of Theorem 2.
Proof of Theorem 3. For $T_{1} f(x)$, by $f \in L^{\infty}$ and (2.10) we get

$$
\begin{align*}
& \frac{1}{|Q|^{\alpha / n}}\left(\frac{1}{|Q|} \int_{Q}\left|T_{1} f(x)-\left(T_{1} f\right)_{Q}\right|^{l} d x\right)^{1 / l} \tag{2.17}\\
\leq & \frac{2}{|Q|^{\alpha / n}} \frac{1}{|Q|^{1 / l}} \int_{B}|f(y)|\left(\int_{|y-x|<2 d}\left(\frac{|\Omega(x-y)|}{|x-y|^{n-\alpha}}\right)^{l} d x\right)^{1 / l} d y \\
\leq & C|Q|^{-\alpha / n-1 / l+1+1 / l-(1-\alpha / n)}\|\Omega\|_{L^{s}\left(S^{n-1}\right)}\|f\|_{\infty} \leq C\|f\|_{\infty}
\end{align*}
$$

On the other hand, by $f \in L^{\infty}$ and (2.13) and (2.14),
(2.18) $\int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d}|f(y)|\left|\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}-\frac{\Omega(z-y)}{|z-y|^{n-\alpha}}\right| d y$

$$
\begin{aligned}
& \leq\left(\int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d}|f(y)|^{s^{\prime}} d y\right)^{1 / s^{\prime}}\left(J_{1}+J_{2}\right) \\
& \leq C\|f\|_{\infty}\left(2^{j} d\right)^{n / s^{\prime}}\left(2^{j} d\right)^{n / s-(n-\alpha)} \\
& \quad \times\left\{\frac{1}{2^{j}}+\int_{\left|x-x_{0}\right| / 2^{j+1} d}^{\left|x-x_{0}\right| / 2^{j} d} \omega_{s}(\delta) \frac{d \delta}{\delta}+\int_{\left|z-x_{0}\right| / 2^{j+1} d}^{\left|z-x_{0}\right| / 2^{j} d} \omega_{s}(\delta) \frac{d \delta}{\delta}\right\} .
\end{aligned}
$$

Note that $\left(2^{j} d\right)^{n / s^{\prime}+n / s-(n-\alpha)} \leq C|Q|^{\alpha / n} 2^{j \alpha}$, by (2.18) and (1.3),

$$
\begin{equation*}
\sum_{j=0}^{\infty} \int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d} f(y)\left[\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}-\frac{\Omega(z-y)}{|z-y|^{n-\alpha}}\right] d y \tag{2.19}
\end{equation*}
$$

$$
\begin{aligned}
& \leq C\|f\|_{\infty}|Q|^{\alpha / n} \\
& \quad \times \sum_{j=0}^{\infty}\left\{2^{j(\alpha-1)}+\left(\int_{\left|x-x_{0}\right| / 2^{j+1} d}^{\left|x-x_{0}\right| / 2^{j} d} \omega_{s}(\delta) \frac{d \delta}{\delta^{1+\alpha}}+\int_{\left|z-x_{0}\right| / 2^{j+1} d}^{\left|z-x_{0}\right| / 2^{j} d} \omega_{s}(\delta) \frac{d \delta}{\delta^{1+\alpha}}\right)\right\} \\
& \leq C\|f\|_{\infty}|Q|^{\alpha / n} .
\end{aligned}
$$

Now, we may give the estimate of $T_{2} f(x)$. By (2.12) (taking $p=\infty$) and (2.19), we have

$$
\begin{equation*}
\frac{1}{|Q|^{\alpha / n}}\left(\frac{1}{|Q|} \int_{Q}\left|T_{2} f(x)-\left(T_{2} f\right)_{Q}\right|^{l} d x\right)^{1 / l} \leq C\|f\|_{\infty} \tag{2.20}
\end{equation*}
$$

Thus, Theorem 3 follows from (2.17) and (2.20).
$\S 3$. Boundedness of $T_{\Omega, \alpha}$ acting on $H^{p}\left(\mathbb{R}^{n}\right)$ for $n /(n+\alpha) \leq p \leq 1$
Before giving the proofs of Theorems 4 through 6 , let us recall some definitions. Assume that $0<p \leq 1 \leq q \leq \infty, p \neq q$, and s be a nonnegative integer with $s \geq[n(1 / p-1)]$. Then a function $a(x) \in L^{q}\left(\mathbb{R}^{n}\right)$ is called a (p, q, s) atom, if there is a cube $Q \subset \mathbb{R}^{n}$ such that $a(x)$ satisfies the following conditions: (i) $\operatorname{supp} a \subset Q$; (ii) $\|a\|_{L^{q}} \leq|Q|^{\frac{1}{q}-\frac{1}{p}}$; and (iii) $\int a(x) x^{\gamma} d x=0$ for all multi-indices γ of order $|\gamma| \leq s$. The atom Hardy spaces $H_{a}^{p, q, s}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\begin{aligned}
H_{a}^{p, q, s}\left(\mathbb{R}^{n}\right)= & \left\{f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right): f(x)\right. \\
& \left.=\sum_{k} \lambda_{k} a_{k}(x), \text { each } a_{k} \text { is a }(p, q, s) \text { atom and } \sum_{k}\left|\lambda_{k}\right|^{p}<\infty\right\},
\end{aligned}
$$

where $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ denotes the tempered distribution class, and the equality in the definition above is in the sense of distribution. Setting $H_{a}^{p, q, s}\left(\mathbb{R}^{n}\right)$ norm of f by

$$
\|f\|_{H_{a}^{p, q, s}}=\inf \left(\sum_{k}\left|\lambda_{k}\right|^{p}\right)^{1 / p}
$$

where the infimum is taken over all decompositions of $f(x)=\sum_{k} \lambda_{k} a_{k}(x)$. Then by the theory of atomic decomposition on real Hardy spaces $H^{p}\left(\mathbb{R}^{n}\right)$ (see [6] or [10], for example), we know that

$$
\begin{equation*}
H_{a}^{p, q, s}\left(\mathbb{R}^{n}\right)=H^{p}\left(\mathbb{R}^{n}\right), \quad \text { in the sense }\|f\|_{H_{a}^{p, q, s}} \sim\|f\|_{H^{p}} \tag{3.1}
\end{equation*}
$$

Now let us give the definition of the dual spaces $\left(H_{a}^{p, q, s}\left(\mathbb{R}^{n}\right)\right)^{*}$ of $H_{a}^{p, q, s}\left(\mathbb{R}^{n}\right)$ for $0<p<1$. Suppose that s is a nonnegative integer, \mathcal{P}_{s} denotes the set of all polynomials with its degree $\leq s$. Moreover, $\lambda \geq 0,1 \leq l \leq \infty$. Let

$$
\|f\|_{\mathcal{L}_{l, \lambda, s}}=\sup _{Q} \frac{1}{|Q|^{\lambda / n}}\left(\frac{1}{|Q|} \int_{Q}\left|f(x)-\left(P_{Q} f\right)(x)\right|^{l} d x\right)^{1 / l}
$$

where $\left(P_{Q} f\right)(x)$ denotes the unique polynomial $P(x) \in \mathcal{P}_{s}$ satisfying

$$
\int_{Q}[f(x)-P(x)] h(x) d x=0, \text { for any } h(x) \in \mathcal{P}_{s}
$$

Then the Campanato space $\mathcal{L}_{l, \lambda, s}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\mathcal{L}_{l, \lambda, s}\left(\mathbb{R}^{n}\right)=\left\{f \in L_{l o c}^{l}\left(\mathbb{R}^{n}\right):\|f\|_{\mathcal{L}_{l, \lambda, s}}<\infty\right\}
$$

The following conclusion shows that $\mathcal{L}_{l, \lambda, s}\left(\mathbb{R}^{n}\right)$ is the dual space of $H^{p}\left(\mathbb{R}^{n}\right)$.
Theorem A. ([6]) Let $0<p \leq 1 \leq q \leq \infty, p \neq q, 1 / q+1 / q^{\prime}=1$ and s be a nonnegative integer with $s \geq[n(1 / p-1)]$. Then $\left(H_{a}^{p, q, s}\left(\mathbb{R}^{n}\right)\right)^{*}=$ $\mathcal{L}_{q^{\prime}, n(1 / p-1), s}\left(\mathbb{R}^{n}\right)$.

Thus, by Theorem A and (3.1) we get for $0<p<1,1 \leq l \leq \infty$ and $s \geq[n(1 / p-1)]$,

$$
\begin{equation*}
\left(H^{p}\left(\mathbb{R}^{n}\right)\right)^{*}=\mathcal{L}_{l, n(1 / p-1), s}\left(\mathbb{R}^{n}\right) \tag{3.2}
\end{equation*}
$$

Below, let us consider another space $\mathcal{L}_{l, \lambda, s}^{\prime}\left(\mathbb{R}^{n}\right)$, a version of $\mathcal{L}_{l, \lambda, s}\left(\mathbb{R}^{n}\right)$, which is defined by

$$
\mathcal{L}_{l, \lambda, s}^{\prime}\left(\mathbb{R}^{n}\right)=\left\{f \in L_{l o c}^{l}\left(\mathbb{R}^{n}\right):\|f\|_{\mathcal{L}_{l, \lambda, s}^{\prime}}<\infty\right\}
$$

where s is a nonnegative integer, $\lambda \geq 0,1 \leq l \leq \infty$, and

$$
\|f\|_{\mathcal{L}_{l, \lambda, s}^{\prime}}=\sup _{Q} \frac{1}{|Q|^{\lambda / n}}\left(\inf _{P \in \mathcal{P}_{s}} \frac{1}{|Q|} \int_{Q}|f(x)-P(x)|^{l} d x\right)^{1 / l}
$$

If we identify functions that differ by a polynomials with its degree $\leq s$, then $\mathcal{L}_{l, \lambda, s}^{\prime}\left(\mathbb{R}^{n}\right)$ becames a Banach space with the norm $\|\cdot\|_{\mathcal{L}_{l, \lambda, s}^{\prime}}$.

In [12], it was proved that the space $\mathcal{L}_{l, \lambda, s}^{\prime}\left(\mathbb{R}^{n}\right)$ is equal to the space $\mathcal{L}_{l, \lambda, s}\left(\mathbb{R}^{n}\right)$ in the sense

$$
\|f\|_{\mathcal{L}_{l, \lambda, s}^{\prime}} \sim\|f\|_{\mathcal{L}_{l, \lambda, s}}
$$

From this and (3.2), for $0<p<1,1 \leq l \leq \infty$ and $s \geq[n(1 / p-1)]$, we have

$$
\begin{equation*}
\left(H^{p}\left(\mathbb{R}^{n}\right)\right)^{*}=\mathcal{L}_{l, n(1 / p-1), s}^{\prime}\left(\mathbb{R}^{n}\right) \tag{3.3}
\end{equation*}
$$

On the other hand, from the definitions of $\mathcal{L}_{l, \lambda}\left(\mathbb{R}^{n}\right)$ and $\mathcal{L}_{l, \lambda, s}^{\prime}\left(\mathbb{R}^{n}\right)$, it is easy to verify that for any nonnegative integer s and $\lambda>0,1 \leq l \leq \infty$

$$
\begin{equation*}
\mathcal{L}_{l, \lambda}\left(\mathbb{R}^{n}\right) \subset \mathcal{L}_{l, \lambda, s}^{\prime}\left(\mathbb{R}^{n}\right), \quad \text { and } \quad\|f\|_{\mathcal{L}_{l, \lambda, s}^{\prime}} \leq\|f\|_{\mathcal{L}_{l, \lambda}} \text { for } f \in \mathcal{L}_{l, \lambda}\left(\mathbb{R}^{n}\right) \tag{3.4}
\end{equation*}
$$

Therefore, by (3.3) and (3.4) we get for $0<p<1$ and $1 \leq l \leq \infty$

$$
\begin{equation*}
\mathcal{L}_{l, n\left(\frac{1}{p}-1\right)}\left(\mathbb{R}^{n}\right) \subset\left(H^{p}\left(\mathbb{R}^{n}\right)\right)^{*} \tag{3.5}
\end{equation*}
$$

Now let us turn to the proofs of Theorem 4 through 6.
Proof of Theorem 4. Note that the dual relations $\left(L^{n /(n-\alpha)}\left(\mathbb{R}^{n}\right)\right)^{*}=$ $L^{n / \alpha}\left(\mathbb{R}^{n}\right)$, and $\left(H^{1}\left(\mathbb{R}^{n}\right)\right)^{*}=B M O\left(\mathbb{R}^{n}\right)$, by $(1.1)($ taking $u(x)=\nu(x) \equiv 1)$, for any $f \in H^{1}\left(\mathbb{R}^{n}\right)$ we have

$$
\begin{aligned}
\left\|T_{\Omega, \alpha} f\right\|_{L^{n /(n-\alpha)}} & =\sup _{g}\left|\int_{\mathbb{R}^{n}} T_{\Omega, \alpha} f(x) g(x) d x\right| \\
& =\sup _{g}\left|\int_{\mathbb{R}^{n}} f(x)\left(T_{\Omega, \alpha}\right)^{*} g(x) d x\right|
\end{aligned}
$$

where the supremum is taken over all $g \in L^{n / \alpha}\left(\mathbb{R}^{n}\right)$ with $\|g\|_{L^{n / \alpha}} \leq 1$, and $\left(T_{\Omega, \alpha}\right)^{*}$ denotes the adjoint operator of $T_{\Omega, \alpha}$. Obviously, we have $\left(T_{\Omega, \alpha}\right)^{*}=$ $T_{\widetilde{\Omega}, \alpha}$, where $\widetilde{\Omega}(x)=\overline{\Omega(-x)}$. It is easy to see that $\overline{\Omega(-x)}$ satisfies the same conditions as $\Omega(x)$. Thus, we know that under the conditions of Theorem 4 , the conclusion of Theorem 1 holds also for $\widetilde{\Omega}(x)$. Therefore,

$$
\begin{aligned}
\left\|T_{\Omega, \alpha} f\right\|_{L^{n /(n-\alpha)}} & =\sup _{g}\left|\int_{\mathbb{R}^{n}} f(x)\left(T_{\Omega, \alpha}\right)^{*} g(x) d x\right| \\
& \leq \sup _{g}\|f\|_{H^{1}}\left\|\left(T_{\Omega, \alpha}\right)^{*} g\right\|_{B M O} \\
& \leq C \sup _{g}\|f\|_{H^{1}}\|g\|_{L^{n / \alpha}} \leq C\|f\|_{H^{1}}
\end{aligned}
$$

This is (1.5).
Proof of Theorem 5. By $n /(n+\alpha)<p<1$ and $1 / q=1 / p-\alpha / n$, we get $1<q<n /(n-\alpha)$ and $n / \alpha<q^{\prime}<\infty$. Moreover, it is easy to verify
that $\beta>n(1 / p-1)$ is equivalent to $\beta>\alpha-n / q^{\prime}$. Thus, by Theorem 2 for $1 \leq l \leq n /(n-\alpha)$ and the adjoint operator $\left(T_{\Omega, \alpha}\right)^{*}$ of $T_{\Omega, \alpha}$, we have

$$
\begin{equation*}
\left\|\left(T_{\Omega, \alpha}\right)^{*} g\right\|_{\mathcal{L}_{l, n\left(\frac{1}{p}-1\right)}}=\left\|\left(T_{\Omega, \alpha}\right)^{*} g\right\|_{\mathcal{L}_{l, n\left(\frac{\alpha}{n}-\frac{1}{q^{\prime}}\right)}} \leq C\|g\|_{L^{q^{\prime}}} \tag{3.6}
\end{equation*}
$$

On the other hand, by (3.5) we know that for $0<p<1$ and $1 \leq l \leq \infty$, $\mathcal{L}_{l, n\left(\frac{1}{p}-1\right)}\left(\mathbb{R}^{n}\right) \subset\left(H^{p}\left(\mathbb{R}^{n}\right)\right)^{*}$. Thus, for any $f \in H^{p}\left(\mathbb{R}^{n}\right)(n /(n+\alpha)<p<1)$, if taking $1 \leq l \leq n /(n-\alpha)$ and using the idea above proving Theorem 4, then by (3.6) and (3.4) we get

$$
\begin{aligned}
\left\|T_{\Omega, \alpha} f\right\|_{L^{q}} & =\sup _{g}\left|\int_{\mathbb{R}^{n}} T_{\Omega, \alpha} f(x) g(x) d x\right|=\sup _{g}\left|\int_{\mathbb{R}^{n}} f(x)\left(T_{\Omega, \alpha}\right)^{*} g(x) d x\right| \\
& \leq \sup _{g}\|f\|_{H^{p}}\left\|\left(T_{\Omega, \alpha}\right)^{*} g\right\|_{\mathcal{L}_{l, n\left(\frac{1}{p}-1\right), s}} \leq \sup _{g}\|f\|_{H^{p}}\left\|\left(T_{\Omega, \alpha}\right)^{*} g\right\|_{\mathcal{L}_{l, n\left(\frac{1}{p}-1\right)}} \\
& \leq C \sup _{g}\|f\|_{H^{p}}\|g\|_{L^{q^{\prime}}} \leq C\|f\|_{H^{p}}
\end{aligned}
$$

where the supremum is taken over all $g \in L^{q^{\prime}}\left(\mathbb{R}^{n}\right)$ with $\|g\|_{L^{q^{\prime}}} \leq 1$. Thus, we finish the proof of Theorem 5.

Proof of Theorem 6. Finally, let us apply the idea above to give the proof of Theorem 6. By Theorem 3, for $1 \leq l \leq n /(n-\alpha)$ and the adjoint operator $\left(T_{\Omega, \alpha}\right)^{*}$ of $T_{\Omega, \alpha}$, we get

$$
\begin{equation*}
\left\|\left(T_{\Omega, \alpha}\right)^{*} g\right\|_{\mathcal{L}_{l, \alpha}} \leq C\|g\|_{L^{\infty}} . \tag{3.7}
\end{equation*}
$$

By (3.5) we know that $\mathcal{L}_{l, \alpha}\left(\mathbb{R}^{n}\right) \subset\left(H^{p}\left(\mathbb{R}^{n}\right)\right)^{*}$ for $1 \leq l \leq \infty$ and $p=n /(n+$ $\alpha)$. Thus, for any $f \in H^{p}\left(\mathbb{R}^{n}\right)(p=n /(n+\alpha))$, if taking $1 \leq l \leq n /(n-\alpha)$, by (3.4) and (3.7), we get

$$
\begin{aligned}
\left\|T_{\Omega, \alpha} f\right\|_{L^{1}} & =\sup _{g}\left|\int_{\mathbb{R}^{n}} T_{\Omega, \alpha} f(x) g(x) d x\right|=\sup _{g}\left|\int_{\mathbb{R}^{n}} f(x)\left(T_{\Omega, \alpha}\right)^{*} g(x) d x\right| \\
& \leq \sup _{g}\|f\|_{H^{p}}\left\|\left(T_{\Omega, \alpha}\right)^{*} g\right\|_{\mathcal{L}_{l, \alpha, s}} \leq \sup _{g}\|f\|_{H^{p}}\left\|\left(T_{\Omega, \alpha}\right)^{*} g\right\|_{\mathcal{L}_{l, \alpha}} \\
& \leq C \sup _{g}\|f\|_{H^{p}}\|g\|_{L^{\infty}} \leq C\|f\|_{H^{p}}
\end{aligned}
$$

where the supremum is taken over all $g \in L^{\infty}\left(\mathbb{R}^{n}\right)$ with $\|g\|_{L^{\infty}} \leq 1$. This is the conclusion of Theorem 6.

Acknowledgements. The authors would like to express their gratitude to the referee for his very valuable comments.

References

[1] S. Chanillo, D. Watson and R. L. Wheeden, Some integral and maximal operators related to star-like, Studia Math., 107 (1993), 223-255.
[2] Y. Ding and S. Z. Lu, Weighted norm inequalities for fractional integral operators with rough kernel, Canad. J. Math., 50 (1998), 29-39.
[3] Y. Ding and S. Z. Lu, The $L^{p_{1}} \times L^{p_{2}} \times \cdots \times L^{p_{k}}$ boundedness for some rough operators, J. Math. Anal. Appl., 203 (1996), 166-186.
[4] Y. Ding, Weak type bounds for a class of rough operators with power weights, Proc. Amer. Math. Soc., 125 (1997), 2939-2942.
[5] D. Kurtz and R. L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc., 255 (1979), 343-362.
[6] S. Z. Lu, Four lectures on real H^{p} spaces, World Scientific Publishing Co. Pte. Ltd., 1995.
[7] B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Math. Soc., 161 (1971), 249-258.
[8] —, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261-274.
[9] J. Peeter, On the theory of $\mathcal{L}_{p, \lambda}$ spaces, J. Funct. Anal., 4 (1969), 71-87.
[10] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Ocillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993.
[11] E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables I: The theory of H^{p} spaces, Acta Math., 103 (1960), 25-62.
[12] M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque, 77 (1980), 67-149.

Yong Ding
Department of Mathematics
Beijing Normal University
Beijing, 100875
P.R.of China
dingy@bnu.edu.cn
Shanzhen Lu
Department of Mathematics
Beijing Normal University
Beijing, 100875
P.R.of China.
lusz@bnu.edu.cn

[^0]: Received September 19, 1998.
 2000 Mathematics Subject Classification: 42B20, 47G10.
 The research was supported by National Natural Science Foundation (Grant: 19971010), Doctoral Programme Foundation of Institution of Higher Education and National 973 Project of China (G 19990751).

