BOUNDEDNESS OF HOMOGENEOUS FRACTIONAL INTEGRALS ON L^p FOR $N/\alpha \le P \le \infty$

YONG DING AND SHANZHEN LU

Abstract. In this paper we study the map properties of the homogeneous fractional integral operator $T_{\Omega,\alpha}$ on $L^p(\mathbb{R}^n)$ for $n/\alpha \leq p \leq \infty$.

We prove that if Ω satisfies some smoothness conditions on S^{n-1} , then $T_{\Omega,\alpha}$ is bounded from $L^{n/\alpha}(\mathbb{R}^n)$ to $BMO(\mathbb{R}^n)$, and from $L^p(\mathbb{R}^n)$ ($n/\alpha) to a class of the Campanato spaces <math>\mathcal{L}_{l,\lambda}(\mathbb{R}^n)$, respectively. As the corollary of the results above, we show that when Ω satisfies some smoothness conditions on S^{n-1} , the homogeneous fractional integral operator $T_{\Omega,\alpha}$ is also bounded from $H^p(\mathbb{R}^n)$ ($n/(n+\alpha) \le p \le 1$) to $L^q(\mathbb{R}^n)$ for $1/q = 1/p - \alpha/n$. The results are the extensions of Stein-Weiss (for p=1) and Taibleson-Weiss's (for $n/(n+\alpha) \le p < 1$) results on the boundedness of the Riesz potential operator I_α on the Hardy spaces $H^p(\mathbb{R}^n)$.

§1. Introduction and results

It is well-known that the Hardy-Littlewood-Sobolev theorem showed that the Riesz potential operator I_{α} is bounded from $L^{p}(\mathbb{R}^{n})$ to $L^{q}(\mathbb{R}^{n})$ for $0 < \alpha < n, 1 < p < n/\alpha$ and $1/q = 1/p - \alpha/n$. Here

$$I_{\alpha}f(x) = \frac{1}{\gamma(\alpha)} \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n - \alpha}} \, dy, \text{ and } \gamma(\alpha) = \frac{\pi^{n/2} 2^{\alpha} \Gamma(\frac{\alpha}{2})}{\Gamma(\frac{n - \alpha}{2})}.$$

In 1960, Stein and Weiss [11] used the theory of the harmonic functions of several variables to prove that I_{α} is bounded from $H^{1}(\mathbb{R}^{n})$ to $L^{n/(n-\alpha)}(\mathbb{R}^{n})$. In 1980, using the molecular characterization of the real Hardy spaces, Taibleson and Weiss [12] proved that I_{α} is also bounded from $H^{p}(\mathbb{R}^{n})$ to $H^{q}(\mathbb{R}^{n})$, where $0 and <math>1/q = 1/p - \alpha/n$.

Moreover, for the extreme case $p = n/\alpha$, it is easy to verify that I_{α} is not bounded from $L^{n/\alpha}(\mathbb{R}^n)$ to $L^{\infty}(\mathbb{R}^n)$. However, as its substitute, we know

Received September 19, 1998.

²⁰⁰⁰ Mathematics Subject Classification: 42B20, 47G10.

The research was supported by National Natural Science Foundation (Grant: 19971010), Doctoral Programme Foundation of Institution of Higher Education and National 973 Project of China (G 19990751).

that I_{α} is bounded from $L^{n/\alpha}(\mathbb{R}^n)$ to BMO(\mathbb{R}^n). In 1974, Muckenhoupt and Wheeden [8] gave the weighted boundedness of I_{α} from $L^{n/\alpha}(\mathbb{R}^n)$ to BMO(\mathbb{R}^n).

On the other hand, it has appeared about the investigations of the various map properties of the homogeneous fractional integral operators $T_{\Omega,\alpha}$, which is defined by

$$T_{\Omega,\alpha}f(x) = \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} f(y) \, dy,$$

where $0 < \alpha < n$, Ω is homogeneous of degree zero on \mathbb{R}^n with $\Omega \in L^s(S^{n-1})$ ($s \geq 1$) and S^{n-1} denotes the unit sphere of \mathbb{R}^n . For instance, the weighted (L^p, L^q) -boundedness of $T_{\Omega,\alpha}$ for 1 had been studied in [7] (for power weights) and in [2] (for <math>A(p,q) weights). The weak boundedness of $T_{\Omega,\alpha}$ when p=1 can be found in [1] (unweighted) and in [4] (with power weights). Moreover, for $p=n/\alpha$, an exponential integral inequality of $T_{\Omega,\alpha}$ had been given in [3].

In comparison with the map properties of the Riesz potential operator I_{α} , it is natural to ask under what conditions, the homogeneous fractional integral operator $T_{\Omega,\alpha}$ has the same map properties on $H^p(\mathbb{R}^n)$ as the Riesz potential operator I_{α} .

The aim of this paper is to answer the question above. First we shall prove that if Ω satisfies some smoothness conditions on S^{n-1} , then $T_{\Omega,\alpha}$ is bounded from $L^{n/\alpha}(\mathbb{R}^n)$ to $BMO(\mathbb{R}^n)$ and from $L^p(\mathbb{R}^n)$ ($n/\alpha) to a class of the Campanato spaces <math>\mathcal{L}_{l,\lambda}(\mathbb{R}^n)$, respectively. As its corollary, then we verify that Stein-Weiss's conclusion (for p=1) and Taibleson-Weiss's conclusion (for $n/(n+\alpha) \leq p < 1$) hold still for $T_{\Omega,\alpha}$ instead of I_{α} .

It is worth pointing out that in the proof of our results, we use only the dual theory on the real Hardy spaces, while the atomic-molecular decomposition of $H^p(\mathbb{R}^n)$ is not used. Therefore, our method gives indeed another way proving Stein-Weiss and Taibleson-Weiss's results on I_{α} .

Before stating our results, let us give some definitions.

Suppose that $Q = Q(x_0, d)$ is a cube with its sides parallel to the coordinate axes and center at x_0 , diameter d > 0. For $1 \le l \le \infty$, $-n/l \le \lambda \le 1$, we denote

$$||f||_{\mathcal{L}_{l,\lambda}} = \sup_{Q} \frac{1}{|Q|^{\lambda/n}} \left(\frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}|^{l} dx \right)^{1/l},$$

where $f_Q = \frac{1}{|Q|} \int_Q f(y) dy$. Then the Campanato spaces $\mathcal{L}_{l,\lambda}(\mathbb{R}^n)$ is defined by

$$\mathcal{L}_{l,\lambda}(\mathbb{R}^n) = \{ f \in L^l_{loc}(\mathbb{R}^n) : ||f||_{\mathcal{L}_{l,\lambda}} < \infty \}.$$

If we identify functions that differ by a constant, then $\mathcal{L}_{l,\lambda}$ becomes a Banach space with the norm $\|\cdot\|_{\mathcal{L}_{l,\lambda}}$. It is well-known that

$$\mathcal{L}_{l,\lambda}(\mathbb{R}^n) \sim \begin{cases} \operatorname{Lip}_{\lambda}(\mathbb{R}^n), & \text{for } 0 < \lambda < 1, \\ \operatorname{BMO}(\mathbb{R}^n), & \text{for } \lambda = 0, \\ \operatorname{Morrey space } L^{p,n+l\lambda}(\mathbb{R}^n), & \text{for } -n/l \leq \lambda < 0. \end{cases}$$

On the other properties of the spaces $\mathcal{L}_{l,\lambda}(\mathbb{R}^n)$, we refer the reader to [9].

We say that Ω satisfies the L^s -Dini condition if Ω is homogeneous of degree zero on \mathbb{R}^n with $\Omega \in L^s(S^{n-1})$ $(s \ge 1)$, and

$$\int_0^1 \omega_s(\delta) \frac{d\delta}{\delta} < \infty,$$

where $\omega_s(\delta)$ denotes the integral modulus of continuity of order s of Ω defined by

$$\omega_s(\delta) = \sup_{|\rho| < \delta} \left(\int_{S^{n-1}} |\Omega(\rho x') - \Omega(x')|^s dx' \right)^{1/s}$$

and ρ is a rotation in \mathbb{R}^n and $|\rho| = ||\rho - I||$.

A nonnegative locally integrable function pair (u, ν) on \mathbb{R}^n is said to belong to $A(p, \infty)$ (1 , if there is a constant <math>C > 0 such that for any cube Q in \mathbb{R}^n

$$\left(\operatorname{ess\,sup}_{x\in Q}\nu(x)\right)\left(\frac{1}{|Q|}\int_{Q}u(x)^{-p'}dx\right)^{1/p'}\leq C<\infty,$$

where p' = p/(p-1).

For a nonnegative locally integrable function w(x) on \mathbb{R}^n , let us consider the function class $BMO_w(\mathbb{R}^n)$, the weighted version of $BMO(\mathbb{R}^n)$. We say a function $g \in BMO_w(\mathbb{R}^n)$, if there is a constant C > 0 such that for any cube $Q \in \mathbb{R}^n$,

$$||g||_{BMO_w} := \left(\operatorname{ess\,sup}_{x \in Q} w(x)\right) \left(\frac{1}{|Q|} \int_Q |g(x) - g_Q| dx\right) \le C < \infty,$$

where $g_Q = \frac{1}{|Q|} \int_Q g(y) dy$.

Now, let us formulate our results as follows. The first conclusion is about the weighted boundedness of $T_{\Omega,\alpha}$ from $L^{n/\alpha}(u^{n/\alpha},\mathbb{R}^n)$ to $BMO_{\nu}(\mathbb{R}^n)$.

THEOREM 1. Let $0 < \alpha < n$, $s > n/(n-\alpha)$. If Ω satisfies the L^s -Dini condition and $(u^{s'}, \nu^{s'}) \in A(n/\alpha s', \infty)$, then there is a C > 0 such that for any cube $Q \in \mathbb{R}^n$,

(1.1)
$$||T_{\Omega,\alpha}f||_{BMO_{\nu}} \le C||f||_{L^{n/\alpha}(u^{n/\alpha})}.$$

Remark 1. Obviously, Theorem 7 in [8] is the especial example of Theorem 1 when $\Omega \equiv 1$, $s = \infty$ and $u(x) = \nu(x)$.

The following two theorems show that $T_{\Omega,\alpha}$ is bounded map from $L^p(\mathbb{R}^n)$ $(n/\alpha to the Campanato spaces <math>\mathcal{L}_{l,\lambda}(\mathbb{R}^n)$ for appropriate indices $\lambda > 0$ and l > 1.

THEOREM 2. Let $0 < \alpha < 1$, $n/\alpha and <math>s > n/(n-\alpha)$. If for some $\beta > \alpha - n/p$, the integral modulus of continuity $\omega_s(\delta)$ of order s of Ω satisfies

(1.2)
$$\int_0^1 \omega_s(\delta) \frac{d\delta}{\delta^{1+\beta}} < \infty,$$

then there is a C > 0 such that for $1 \le l \le n/(n-\alpha)$, $||T_{\Omega,\alpha}f||_{\mathcal{L}_{l,n(\frac{\alpha}{n}-\frac{1}{p})}} \le C||f||_{L^p}$.

THEOREM 3. Let $0 < \alpha < 1$ and $s > n/(n-\alpha)$. If the integral modulus of continuity $\omega_s(\delta)$ of order s of Ω satisfies

(1.3)
$$\int_0^1 \omega_s(\delta) \frac{d\delta}{\delta^{1+\alpha}} < \infty,$$

then there is a C > 0 such that for $1 \le l \le n/(n-\alpha)$, $||T_{\Omega,\alpha}f||_{\mathcal{L}_{l,\alpha}} \le C||f||_{L^{\infty}}$.

Having the conclusions above, by the dual theory on real Hardy spaces, we can obtain the boundedness of the operator $T_{\Omega,\alpha}$ acting on some real Hardy spaces.

Theorem 4. Let $0 < \alpha < n$, $s > n/(n-\alpha)$. If Ω satisfies the L^s -Dini condition, then there is a C > 0 such that

$$||T_{\Omega,\alpha}f||_{L^{n/(n-\alpha)}} \le C||f||_{H^1}.$$

THEOREM 5. Let $0 < \alpha < 1$, $n/(n+\alpha) , <math>1/q = 1/p - \alpha/n$ and $s > n/(n-\alpha)$. If for $\beta > n(1/p-1)$, the integral modulus of continuity $\omega_s(\delta)$ of order s of Ω satisfies (1.2), then there is a C > 0 such that

$$||T_{\Omega,\alpha}f||_{L^q} \le C||f||_{H^p}.$$

THEOREM 6. Let $0 < \alpha < 1$, $p = n/(n + \alpha)$ and $s > n/(n - \alpha)$. If the integral modulus of continuity $\omega_s(\delta)$ of order s of Ω satisfies (1.3), then there is a C > 0 such that

$$||T_{\Omega,\alpha}f||_{L^1} \le C||f||_{H^{n/(n+\alpha)}}.$$

Below the letter C will denote a constant not necessarily the same at each occurrence.

§2. Boundedness of $T_{\Omega,\alpha}$ acting on $L^p(\mathbb{R}^n)$ for $n/\alpha \leq p \leq \infty$

In this section we shall give the proofs of Theorems 1 through 3. Let us begin with giving a lemma.

LEMMA 1. Suppose that $0 < \alpha < n, s > 1, \Omega$ satisfies the L^s -Dini condition. There is a constant $0 < a_0 < 1/2$ such that if $|x| < a_0 R$, then

$$\left(\int_{R<|y|<2R} \left| \frac{\Omega(y-x)}{|y-x|^{n-\alpha}} - \frac{\Omega(y)}{|y|^{n-\alpha}} \right|^s dy \right)^{1/s} \\
\leq CR^{n/s-(n-\alpha)} \left\{ \frac{|x|}{R} + \int_{|x|/2R<\delta<|x|/R} \omega_s(\delta) \frac{d\delta}{\delta} \right\}.$$

Using the similar method as proving Lemma 5 in [5], we can prove Lemma 1. We omit the detail here.

Proof of Theorem 1. Fix a cube $Q \subset \mathbb{R}^n$, we denote the center and the diameter of Q by x_0 and d, respectively. Writing

$$T_{\Omega,\alpha}f(x) = \int_{B} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} f(y) dy + \int_{\mathbb{R}^{n} \setminus B} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} f(y) dy$$

:= $T_{1}f(x) + T_{2}f(x)$,

where $B = \{y \in \mathbb{R}^n; |y - x_0| < d\}$. It is sufficient to prove (1.1) for $T_1 f(x)$ and $T_2 f(x)$, respectively. Below we denote briefly ess $\sup_{x \in O} \nu(x)$ by E.

First let us consider $T_1 f(x)$. We have

$$\frac{E}{|Q|} \int_{Q} |T_{1}f(x) - (T_{1}f)_{Q}| dx$$

$$\leq \frac{E}{|Q|} \int_{Q} \int_{B} \frac{|\Omega(x-y)|}{|x-y|^{n-\alpha}} |f(y)| dy dx$$

$$+ \frac{E}{|Q|} \int_{Q} \left(\frac{1}{|Q|} \int_{Q} \int_{B} \frac{|\Omega(z-y)|}{|z-y|^{n-\alpha}} |f(y)| dy dz\right) dx$$

$$\leq \frac{2E}{|Q|} \int_{B} |f(y)| \int_{Q} \frac{|\Omega(x-y)|}{|x-y|^{n-\alpha}} dx dy$$

$$\leq \frac{2E}{|Q|} \int_{B} |f(y)| \int_{|x-y|<2d} \frac{|\Omega(x-y)|}{|x-y|^{n-\alpha}} dx dy.$$

Note that $\Omega(x') \in L^s(S^{n-1})$, we get

$$\int_{|x-y|<2d} \frac{|\Omega(x-y)|}{|x-y|^{n-\alpha}} dx \le C d^{\alpha} \|\Omega\|_{L^{s}(S^{n-1})} \le C |Q|^{\alpha/n} \|\Omega\|_{L^{s}(S^{n-1})}.$$

On the other hand, by Hölder's inequality,

$$\int_B |f(y)| dy \leq \bigg(\int_B |f(y)u(y)|^p dy\bigg)^{1/p} \bigg(\int_B u(y)^{-p'} dy\bigg)^{1/p'}.$$

Here and below we denote $p = n/\alpha$ in the proof of Theorem 1. Since p' < s'(p/s')', using Hölder's inequality again, we have

$$(2.1) \qquad \frac{E}{|Q|} \int_{Q} |T_{1}f(x) - (T_{1}f)_{Q}| dx$$

$$\leq CE|Q|^{-1+\alpha/n} \left(\int_{B} |f(y)u(y)|^{p} dy \right)^{1/p} \left(\int_{B} u(y)^{-p'} dy \right)^{1/p'}$$

$$\leq CE \left(\int_{B} |f(y)u(y)|^{p} dy \right)^{1/p} \left(\frac{1}{|2\sqrt{n}Q|} \int_{2\sqrt{n}Q} u(y)^{-p'} dy \right)^{1/p'}$$

$$\leq CE \left(\int_{B} |f(y)u(y)|^{p} dy \right)^{1/p} \left(\frac{1}{|2\sqrt{n}Q|} \int_{2\sqrt{n}Q} u(y)^{-s'(p/s')'} dy \right)^{1/[s'(p/s')']},$$

where $2\sqrt{n}Q$ denotes the cube with the center at x_0 and the diameter $2\sqrt{n}d$. By the condition $(u(x)^{s'}, \nu(x)^{s'}) \in A(p/s', \infty)$, we get

(2.2)
$$E\left(\frac{1}{|2\sqrt{n}Q|}\int_{2\sqrt{n}Q}u(x)^{-s'(p/s')'}dx\right)^{1/[s'(p/s')']}$$

$$\leq \left\{ \left(\operatorname{ess} \sup_{x \in 2\sqrt{n}Q} \nu(x)^{s'} \right) \left(\frac{1}{|2\sqrt{n}Q|} \int_{2\sqrt{n}Q} (u(x)^{s'})^{-(p/s')'} dx \right)^{1/(p/s')'} \right\}^{1/s'} < C < \infty.$$

Therefore, by (2.1) and (2.2) we obtain

(2.3)
$$\frac{E}{|Q|} \int_{Q} |T_1 f(x) - (T_1 f)_Q| dx \le C \left(\int_{\mathbb{R}^n} |f(x) u(x)|^p dy \right)^{1/p}.$$

Now, let us turn to the estimation for $T_2f(x)$. In this case we have

$$(2.4) \qquad \frac{E}{|Q|} \int_{Q} |T_{2}f(x) - (T_{2}f)_{Q}| dx$$

$$= \frac{E}{|Q|} \int_{Q} \left| \frac{1}{|Q|} \int_{Q} \left\{ \int_{|y-x_{0}| \geq d} f(y) \left[\frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(z-y)}{|z-y|^{n-\alpha}} \right] dy \right\} dz \right| dx$$

$$\leq \frac{E}{|Q|} \int_{Q} \frac{1}{|Q|} \int_{Q} \left\{ \sum_{j=0}^{\infty} \int_{2^{j}d \leq |y-x_{0}| < 2^{j+1}d} |f(y)| \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(z-y)}{|z-y|^{n-\alpha}} \right| dy \right\} dz dx.$$

By Hölder's inequality, we get

$$(2.5) \int_{2^{j}d \leq |y-x_{0}| < 2^{j+1}d} |f(y)| \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(z-y)}{|z-y|^{n-\alpha}} \right| dy$$

$$\leq \left(\int_{2^{j}d \leq |y-x_{0}| < 2^{j+1}d} |f(y)|^{s'} dy \right)^{1/s'}$$

$$\times \left(\int_{2^{j}d < |y-x_{0}| < 2^{j+1}d} \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(z-y)}{|z-y|^{n-\alpha}} \right|^{s} dy \right)^{1/s}.$$

Since

$$\begin{split} \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(z-y)}{|z-y|^{n-\alpha}} \right| \\ & \leq \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(y-x_0)}{|y-x_0|^{n-\alpha}} \right| + \left| \frac{\Omega(z-y)}{|z-y|^{n-\alpha}} - \frac{\Omega(y-x_0)}{|y-x_0|^{n-\alpha}} \right|, \end{split}$$

we have

$$\left(\int_{2^{j}d\leq |y-x_{0}|<2^{j+1}d} \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(z-y)}{|z-y|^{n-\alpha}} \right|^{s} dy \right)^{1/s} \\
\leq \left(\int_{2^{j}d\leq |y-x_{0}|<2^{j+1}d} \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(y-x_{0})}{|y-x_{0}|^{n-\alpha}} \right|^{s} dy \right)^{1/s} \\
+ \left(\int_{2^{j}d\leq |y-x_{0}|<2^{j+1}d} \left| \frac{\Omega(z-y)}{|z-y|^{n-\alpha}} - \frac{\Omega(y-x_{0})}{|y-x_{0}|^{n-\alpha}} \right|^{s} dy \right)^{1/s} \\
:= J_{1} + J_{2}.$$

Let us give the estimations of J_1 and J_2 , respectively. Writing J_1 as

$$\left(\int_{2^{j}d<|y|<2^{j+1}d} \left| \frac{\Omega((x-x_0)-y)}{|(x-x_0)-y|^{n-\alpha}} - \frac{\Omega(y)}{|y|^{n-\alpha}} \right|^s dy \right)^{1/s}.$$

Note that $x \in Q$, if taking $R = 2^{j}d$, then $|x - x_0| < \frac{1}{2^{j+1}}R$. Applying Lemma 1 to J_1 , we get

$$J_{1} \leq C(2^{j}d)^{n/s - (n - \alpha)} \left\{ \frac{|x - x_{0}|}{2^{j}d} + \int_{|x - x_{0}|/2^{j+1}d < \delta < |x - x_{0}|/2^{j}d} \omega_{s}(\delta) \frac{d\delta}{\delta} \right\}$$

$$\leq C(2^{j}d)^{n/s - (n - \alpha)} \left\{ \frac{1}{2^{j+1}} + \int_{|x - x_{0}|/2^{j+1}d}^{|x - x_{0}|/2^{j+1}d} \omega_{s}(\delta) \frac{d\delta}{\delta} \right\}.$$

By $z \in Q$ and using similar method, we have

$$J_2 \le C(2^j d)^{n/s - (n - \alpha)} \left\{ \frac{1}{2^{j+1}} + \int_{|z - x_0|/2^{j+1} d}^{|z - x_0|/2^j d} \omega_s(\delta) \frac{d\delta}{\delta} \right\}.$$

Since $p = n/\alpha$ and $n/s - (n - \alpha) = -n/[s'(p/s')']$, we get

$$(2^{j}d)^{n/s - (n-\alpha)} < C|2^{j+1}\sqrt{n}Q|^{-1/[s'(p/s')']}$$

Thus, with the estimations for J_1 and J_2 , we have

$$(2.6) \left(\int_{2^{j}d \leq |y-x_{0}| < 2^{j+1}d} \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(z-y)}{|z-y|^{n-\alpha}} \right|^{s} dy \right)^{1/s}$$

$$\leq C|2^{j+1}\sqrt{n}Q|^{-1/[s'(p/s')']} \left\{ \frac{1}{2^{j}} + \int_{|x-x_{0}|/2^{j+1}d}^{|x-x_{0}|/2^{j}d} \omega_{s}(\delta) \frac{d\delta}{\delta} + \int_{|z-x_{0}|/2^{j+1}d}^{|z-x_{0}|/2^{j+1}d} \omega_{s}(\delta) \frac{d\delta}{\delta} \right\}.$$

On the other hand, using Hölder's inequality again we have

$$(2.7) \qquad \left(\int_{2^{j}d\leq |y-x_{0}|<2^{j+1}d} |f(y)|^{s'}dy\right)^{1/s'}$$

$$\leq \left(\int_{2^{j}d\leq |y-x_{0}|<2^{j+1}d} |f(y)u(y)|^{p}dy\right)^{1/p}$$

$$\times \left(\int_{2^{j}d\leq |y-x_{0}|<2^{j+1}d} u(y)^{-s'(p/s')'}dy\right)^{1/[s'(p/s')']}$$

$$\leq \left(\int_{\mathbb{R}^{n}} |f(y)u(y)|^{p}dy\right)^{1/p} \left(\int_{2^{j+1}\sqrt{n}Q} u(y)^{-s'(p/s')'}dy\right)^{1/[s'(p/s')']}.$$

Since $(u(x)^{s'}, \nu(x)^{s'}) \in A(p/s', \infty)$, it is easy to see that there is a C > 0 such that for any $j \geq 0$,

$$(2.8) \quad E\left(\frac{1}{|2^{j+1}\sqrt{n}Q|} \int_{2^{j+1}\sqrt{n}Q} u(x)^{-s'(p/s')'} dx\right)^{1/[s'(p/s')']} \\ \leq \left\{ \left(\operatorname{ess} \sup_{x \in 2^{j+1}\sqrt{n}Q} \nu(x)^{s'} \right) \right. \\ \left. \times \left(\frac{1}{|2^{j+1}\sqrt{n}Q|} \int_{2^{j+1}\sqrt{n}Q} u(x)^{-s'(p/s')'} dx \right)^{1/(p/s')'} \right\}^{1/s'} \\ \leq C < \infty.$$

From (2.5),(2.6),(2.7) and (2.8), we obtain

$$\begin{split} &\sum_{j=0}^{\infty} E \int_{2^{j} d \leq |y-x_{0}| < 2^{j+1} d} |f(y)| \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(z-y)}{|z-y|^{n-\alpha}} \right| dy \\ &\leq C \sum_{j=0}^{\infty} \left(\int_{\mathbb{R}^{n}} |f(y)u(y)|^{p} dy \right)^{1/p} E \left(\int_{2^{j+1} \sqrt{n} Q} u(y)^{-s'(p/s')'} dy \right)^{1/[s'(p/s')']} \\ & \times |2^{j+1} \sqrt{n} Q|^{-1/[s'(p/s')']} \\ & \times \left\{ \frac{1}{2^{j}} + \int_{|x-x_{0}|/2^{j+1} d}^{|x-x_{0}|/2^{j} d} \omega_{s}(\delta) \frac{d\delta}{\delta} + \int_{|z-x_{0}|/2^{j+1} d}^{|z-x_{0}|/2^{j+1} d} \omega_{s}(\delta) \frac{d\delta}{\delta} \right\} \\ &\leq C \left(\int_{\mathbb{R}^{n}} |f(y)u(y)|^{p} dy \right)^{1/p} \\ & \times \sum_{j=0}^{\infty} \left\{ \frac{1}{2^{j}} + \int_{|x-x_{0}|/2^{j+1} d}^{|x-x_{0}|/2^{j+1} d} \omega_{s}(\delta) \frac{d\delta}{\delta} + \int_{|z-x_{0}|/2^{j+1} d}^{|z-x_{0}|/2^{j+1} d} \omega_{s}(\delta) \frac{d\delta}{\delta} \right\} \end{split}$$

$$\leq C \left(\int_{\mathbb{R}^n} |f(y)u(y)|^p dy \right)^{1/p} \left\{ 2 + 2 \int_0^1 \omega_s(\delta) \frac{d\delta}{\delta} \right\}$$

$$\leq C \left(\int_{\mathbb{R}^n} |f(y)u(y)|^p dy \right)^{1/p}.$$

Combining this with (2.4), we have

(2.9)
$$\frac{E}{|Q|} \int_{Q} |T_2 f(x) - (T_2 f)_Q| dx \le C \left(\int_{\mathbb{R}^n} |f(x) u(x)|^p dy \right)^{1/p}.$$

By (2.3) and (2.9), we complete the proof of Theorem 1.

Proof of Theorem 2. As the proof of Theorem 1, We need only to prove (1.3) for T_1 and T_2 , respectively. First let us consider $T_1f(x)$. We have

$$\frac{1}{|Q|^{\alpha/n-1/p}} \left(\frac{1}{|Q|} \int_{Q} |T_{1}f(x) - (T_{1}f)_{Q}|^{l} dx \right)^{1/l} \\
\leq \frac{2}{|Q|^{\alpha/n-1/p}} \left(\frac{1}{|Q|} \int_{Q} |T_{1}f(x)|^{l} dx \right)^{1/l} \\
= \frac{2}{|Q|^{\alpha/n-1/p}} \left(\frac{1}{|Q|} \int_{Q} \left| \int_{B} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} f(y) dy \right|^{l} dx \right)^{1/l} \\
\leq \frac{2}{|Q|^{\alpha/n-1/p}} \frac{1}{|Q|^{1/l}} \int_{B} |f(y)| \left(\int_{|y-x|<2d} \left(\frac{|\Omega(x-y)|}{|x-y|^{n-\alpha}} \right)^{l} dx \right)^{1/l} dy.$$

Note that $\Omega(x') \in L^s(S^{n-1})$ and $s > n/(n-\alpha) \ge l$, hence

$$(2.10) \left(\int_{|x-y|<2d} \left(\frac{|\Omega(x-y)|}{|x-y|^{n-\alpha}} \right)^l dx \right)^{1/l} \le C d^{n/l-(n-\alpha)} \|\Omega\|_{L^s(S^{n-1})}$$

$$\le C |Q|^{1/l-(1-\alpha/n)} \|\Omega\|_{L^s(S^{n-1})}.$$

On the other hand, by Hölder's inequality,

$$\int_{B} |f(y)| dy \le C|Q|^{1/p'} \left(\int_{B} |f(y)|^{p} dy \right)^{1/p} \le C|Q|^{1/p'} ||f||_{p}.$$

Thus,

$$(2.11) \qquad \frac{1}{|Q|^{\alpha/n-1/p}} \left(\frac{1}{|Q|} \int_{Q} |T_{1}f(x) - (T_{1}f)_{Q}|^{l} dx \right)^{1/l}$$

$$\leq C|Q|^{1/p-\alpha/n-1/l+1/p'+1/l-(1-\alpha/n)} ||\Omega||_{L^{s}(S^{n-1})} ||f||_{p} \leq C||f||_{p}.$$

Now, let us turn to the estimation for $T_2 f(x)$. In this case we have

$$(2.12) \qquad \frac{1}{|Q|^{\alpha/n-1/p}} \left(\frac{1}{|Q|} \int_{Q} |T_{2}f(x) - (T_{2}f)_{Q}|^{l} dx \right)^{1/l}$$

$$= \frac{1}{|Q|^{\alpha/n-1/p}} \left(\frac{1}{|Q|} \int_{Q} \left| \frac{1}{|Q|} \int_{Q} \left\{ \sum_{j=0}^{\infty} \int_{2^{j} d \leq |y-x_{0}| < 2^{j+1} d} f(y) \right\} \right.$$

$$\times \left[\frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(z-y)}{|z-y|^{n-\alpha}} \right] dy dz dx dx dx$$

By (2.5) and $s' < n/\alpha < p$,

(2.13)
$$\int_{2^{j}d \leq |y-x_{0}| < 2^{j+1}d} |f(y)| \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(z-y)}{|z-y|^{n-\alpha}} \right| dy$$

$$\leq \left(\int_{2^{j}d \leq |y-x_{0}| < 2^{j+1}d} |f(y)|^{s'} dy \right)^{1/s'} (J_{1} + J_{2})$$

$$\leq C \|f\|_{p} (2^{j}d)^{n/[s'(p/s')']} (J_{1} + J_{2}).$$

Since the integral modulus of continuity $\omega_s(\delta)$ of order s of Ω satisfies (1.2) and

$$\int_0^1 \omega_s(\delta) \frac{d\delta}{\delta} < \int_0^1 \omega_s(\delta) \frac{d\delta}{\delta^{1+\beta}} < \infty,$$

we know that Ω satisfies also the L^s -Dini condition. From Lemma 1 and the proof of Theorem 1,

$$(2.14) \quad J_1 + J_2 \leq C(2^j d)^{n/s - (n - \alpha)} \times \left\{ \frac{1}{2^j} + \int_{|x - x_0|/2^{j+1} d}^{|x - x_0|/2^{j} d} \omega_s(\delta) \frac{d\delta}{\delta} + \int_{|z - x_0|/2^{j+1} d}^{|z - x_0|/2^{j+1} d} \omega_s(\delta) \frac{d\delta}{\delta} \right\}.$$

Note that

$$(2^{j}d)^{n/[s'(p/s')']+n/s-(n-\alpha)} = (2^{j}d)^{n(\alpha/n-1/p)} \le C|Q|^{\alpha/n-1/p}2^{jn(\alpha/n-1/p)}.$$

Moreover,

$$(2.15) 2^{jn(\alpha/n-1/p)} \int_{|x-x_0|/2^{j}d}^{|x-x_0|/2^{j}d} \omega_s(\delta) \frac{d\delta}{\delta}$$

$$\leq 2^{jn(\alpha/n-1/p)} (|x-x_0|/2^{j}d)^{\beta} \int_{|x-x_0|/2^{j}d}^{|x-x_0|/2^{j}d} \omega_s(\delta) \frac{d\delta}{\delta^{1+\beta}}$$

$$\leq C2^{j[n(\alpha/n-1/p)-\beta]} \int_0^1 \omega_s(\delta) \frac{d\delta}{\delta^{1+\beta}}.$$

By $0 < \alpha < 1$ and $\beta > \alpha - n/p$, we have $n(\alpha/n - 1/p) - 1 < 0$ and $n(\alpha/n - 1/p) - \beta < 0$, respectively. Thus, by (2.13)–(2.15) and (1.2),

$$\sum_{j=0}^{\infty} \int_{2^{j} d \leq |y-x_{0}| < 2^{j+1} d} f(y) \left[\frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(z-y)}{|z-y|^{n-\alpha}} \right] dy$$

$$\leq C \|f\|_{p} |Q|^{\alpha/n-1/p} \sum_{j=0}^{\infty} \left\{ 2^{j[n(\alpha/n-1/p)-1]} + C 2^{j[n(\alpha/n-1/p)-\beta]} \int_{0}^{1} \omega_{s}(\delta) \frac{d\delta}{\delta^{1+\beta}} \right\}$$

$$\leq C \|f\|_{p} |Q|^{\alpha/n-1/p}.$$

Combining this with (2.12), we have

$$(2.16) \qquad \frac{1}{|Q|^{\alpha/n-1/p}} \left(\frac{1}{|Q|} \int_{Q} |T_2 f(x) - (T_2 f)_Q|^l \, dx \right)^{1/l} \le C ||f||_p.$$

By (2.11) and (2.16), we complete the proof of Theorem 2.

Proof of Theorem 3. For $T_1f(x)$, by $f \in L^{\infty}$ and (2.10) we get

$$(2.17) \qquad \frac{1}{|Q|^{\alpha/n}} \left(\frac{1}{|Q|} \int_{Q} |T_{1}f(x) - (T_{1}f)_{Q}|^{l} dx \right)^{1/l}$$

$$\leq \frac{2}{|Q|^{\alpha/n}} \frac{1}{|Q|^{1/l}} \int_{B} |f(y)| \left(\int_{|y-x|<2d} \left(\frac{|\Omega(x-y)|}{|x-y|^{n-\alpha}} \right)^{l} dx \right)^{1/l} dy$$

$$\leq C|Q|^{-\alpha/n-1/l+1+1/l-(1-\alpha/n)} \|\Omega\|_{L^{s}(S^{n-1})} \|f\|_{\infty} \leq C\|f\|_{\infty}.$$

On the other hand, by $f \in L^{\infty}$ and (2.13) and (2.14),

$$(2.18) \int_{2^{j}d \leq |y-x_{0}| < 2^{j+1}d} |f(y)| \left| \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(z-y)}{|z-y|^{n-\alpha}} \right| dy$$

$$\leq \left(\int_{2^{j}d \leq |y-x_{0}| < 2^{j+1}d} |f(y)|^{s'}dy \right)^{1/s'} (J_{1} + J_{2})$$

$$\leq C ||f||_{\infty} (2^{j}d)^{n/s'} (2^{j}d)^{n/s-(n-\alpha)}$$

$$\times \left\{ \frac{1}{2^{j}} + \int_{|x-x_{0}|/2^{j+1}d}^{|x-x_{0}|/2^{j+1}d} \omega_{s}(\delta) \frac{d\delta}{\delta} + \int_{|z-x_{0}|/2^{j+1}d}^{|z-x_{0}|/2^{j+1}d} \omega_{s}(\delta) \frac{d\delta}{\delta} \right\}.$$

Note that $(2^{j}d)^{n/s'+n/s-(n-\alpha)} \le C|Q|^{\alpha/n}2^{j\alpha}$, by (2.18) and (1.3),

$$(2.19) \quad \sum_{j=0}^{\infty} \int_{2^{j} d \le |y-x_{0}| < 2^{j+1} d} f(y) \left[\frac{\Omega(x-y)}{|x-y|^{n-\alpha}} - \frac{\Omega(z-y)}{|z-y|^{n-\alpha}} \right] dy$$

$$\leq C \|f\|_{\infty} |Q|^{\alpha/n}$$

$$\times \sum_{j=0}^{\infty} \left\{ 2^{j(\alpha-1)} + \left(\int_{|x-x_0|/2^{j+1}d}^{|x-x_0|/2^{j}d} \omega_s(\delta) \frac{d\delta}{\delta^{1+\alpha}} + \int_{|z-x_0|/2^{j+1}d}^{|z-x_0|/2^{j+1}d} \omega_s(\delta) \frac{d\delta}{\delta^{1+\alpha}} \right) \right\}$$

$$\leq C \|f\|_{\infty} |Q|^{\alpha/n}.$$

Now,we may give the estimate of $T_2f(x)$. By (2.12) (taking $p=\infty$) and (2.19), we have

$$(2.20) \qquad \frac{1}{|Q|^{\alpha/n}} \left(\frac{1}{|Q|} \int_{Q} |T_2 f(x) - (T_2 f)_Q|^l \, dx \right)^{1/l} \le C ||f||_{\infty}.$$

Thus, Theorem 3 follows from (2.17) and (2.20).

§3. Boundedness of $T_{\Omega,\alpha}$ acting on $H^p(\mathbb{R}^n)$ for $n/(n+\alpha) \leq p \leq 1$

Before giving the proofs of Theorems 4 through 6, let us recall some definitions. Assume that $0 , <math>p \ne q$, and s be a nonnegative integer with $s \ge \lfloor n(1/p-1) \rfloor$. Then a function $a(x) \in L^q(\mathbb{R}^n)$ is called a (p,q,s) atom, if there is a cube $Q \subset \mathbb{R}^n$ such that a(x) satisfies the following conditions: (i) supp $a \subset Q$; (ii) $||a||_{L^q} \le |Q|^{\frac{1}{q}-\frac{1}{p}}$; and (iii) $\int a(x)x^{\gamma}dx = 0$ for all multi-indices γ of order $|\gamma| \le s$. The atom Hardy spaces $H_a^{p,q,s}(\mathbb{R}^n)$ is defined by

$$H_a^{p,q,s}(\mathbb{R}^n) = \{ f \in \mathcal{S}'(\mathbb{R}^n) : f(x)$$

$$= \sum_k \lambda_k a_k(x), \text{ each } a_k \text{ is a } (p,q,s) \text{ atom and } \sum_k |\lambda_k|^p < \infty \},$$

where $\mathcal{S}'(\mathbb{R}^n)$ denotes the tempered distribution class, and the equality in the definition above is in the sense of distribution. Setting $H_a^{p,q,s}(\mathbb{R}^n)$ norm of f by

$$||f||_{H_a^{p,q,s}} = \inf(\sum_k |\lambda_k|^p)^{1/p},$$

where the infimum is taken over all decompositions of $f(x) = \sum_k \lambda_k a_k(x)$. Then by the theory of atomic decomposition on real Hardy spaces $H^p(\mathbb{R}^n)$ (see [6] or [10], for example), we know that

$$(3.1) \qquad H_a^{p,q,s}(\mathbb{R}^n) = H^p(\mathbb{R}^n), \ \ \text{in the sense} \ \ \|f\|_{H_a^{p,q,s}} \sim \|f\|_{H^p}.$$

Now let us give the definition of the dual spaces $(H_a^{p,q,s}(\mathbb{R}^n))^*$ of $H_a^{p,q,s}(\mathbb{R}^n)$ for 0 . Suppose that <math>s is a nonnegative integer, \mathcal{P}_s denotes the set of all polynomials with its degree $\leq s$. Moreover, $\lambda \geq 0$, $1 \leq l \leq \infty$. Let

$$||f||_{\mathcal{L}_{l,\lambda,s}} = \sup_{Q} \frac{1}{|Q|^{\lambda/n}} \left(\frac{1}{|Q|} \int_{Q} |f(x) - (P_Q f)(x)|^l dx \right)^{1/l},$$

where $(P_Q f)(x)$ denotes the unique polynomial $P(x) \in \mathcal{P}_s$ satisfying

$$\int_{O} [f(x) - P(x)]h(x) dx = 0, \text{ for any } h(x) \in \mathcal{P}_{s}.$$

Then the Campanato space $\mathcal{L}_{l,\lambda,s}(\mathbb{R}^n)$ is defined by

$$\mathcal{L}_{l,\lambda,s}(\mathbb{R}^n) = \{ f \in L^l_{loc}(\mathbb{R}^n) : ||f||_{\mathcal{L}_{l,\lambda,s}} < \infty \}.$$

The following conclusion shows that $\mathcal{L}_{l,\lambda,s}(\mathbb{R}^n)$ is the dual space of $H^p(\mathbb{R}^n)$.

THEOREM A. ([6]) Let $0 , <math>p \ne q$, 1/q + 1/q' = 1 and s be a nonnegative integer with $s \ge [n(1/p-1)]$. Then $(H_a^{p,q,s}(\mathbb{R}^n))^* = \mathcal{L}_{q',n(1/p-1),s}(\mathbb{R}^n)$.

Thus, by Theorem A and (3.1) we get for $0 and <math>s \ge [n(1/p-1)],$ (3.2) $(H^p(\mathbb{R}^n))^* = \mathcal{L}_{l,n(1/p-1),s}(\mathbb{R}^n).$

Below, let us consider another space $\mathcal{L}'_{l,\lambda,s}(\mathbb{R}^n)$, a version of $\mathcal{L}_{l,\lambda,s}(\mathbb{R}^n)$, which is defined by

$$\mathcal{L}'_{l,\lambda,s}(\mathbb{R}^n) = \{f \in L^l_{loc}(\mathbb{R}^n): \|f\|_{\mathcal{L}'_{l,\lambda,s}} < \infty\},$$

where s is a nonnegative integer, $\lambda \geq 0$, $1 \leq l \leq \infty$, and

$$||f||_{\mathcal{L}'_{l,\lambda,s}} = \sup_{Q} \frac{1}{|Q|^{\lambda/n}} \left(\inf_{P \in \mathcal{P}_s} \frac{1}{|Q|} \int_{Q} |f(x) - P(x)|^{l} dx \right)^{1/l}.$$

If we identify functions that differ by a polynomials with its degree $\leq s$, then $\mathcal{L}'_{l,\lambda,s}(\mathbb{R}^n)$ becames a Banach space with the norm $\|\cdot\|_{\mathcal{L}'_{l,\lambda,s}}$.

In [12], it was proved that the space $\mathcal{L}'_{l,\lambda,s}(\mathbb{R}^n)$ is equal to the space $\mathcal{L}_{l,\lambda,s}(\mathbb{R}^n)$ in the sense

$$||f||_{\mathcal{L}'_{l,\lambda,s}} \sim ||f||_{\mathcal{L}_{l,\lambda,s}}.$$

From this and (3.2), for $0 and <math>s \ge [n(1/p - 1)]$, we have

(3.3)
$$(H^p(\mathbb{R}^n))^* = \mathcal{L}'_{l,n(1/p-1),s}(\mathbb{R}^n).$$

On the other hand, from the definitions of $\mathcal{L}_{l,\lambda}(\mathbb{R}^n)$ and $\mathcal{L}'_{l,\lambda,s}(\mathbb{R}^n)$, it is easy to verify that for any nonnegative integer s and $\lambda > 0$, $1 \le l \le \infty$

$$(3.4) \quad \mathcal{L}_{l,\lambda}(\mathbb{R}^n) \subset \mathcal{L}'_{l,\lambda,s}(\mathbb{R}^n), \quad \text{and} \quad ||f||_{\mathcal{L}'_{l,\lambda,s}} \leq ||f||_{\mathcal{L}_{l,\lambda}} \quad \text{for} \quad f \in \mathcal{L}_{l,\lambda}(\mathbb{R}^n).$$

Therefore, by (3.3) and (3.4) we get for $0 and <math>1 \le l \le \infty$

(3.5)
$$\mathcal{L}_{l,n(\frac{1}{p}-1)}(\mathbb{R}^n) \subset (H^p(\mathbb{R}^n))^*.$$

Now let us turn to the proofs of Theorem 4 through 6.

Proof of Theorem 4. Note that the dual relations $(L^{n/(n-\alpha)}(\mathbb{R}^n))^* = L^{n/\alpha}(\mathbb{R}^n)$, and $(H^1(\mathbb{R}^n))^* = BMO(\mathbb{R}^n)$, by (1.1) (taking $u(x) = \nu(x) \equiv 1$), for any $f \in H^1(\mathbb{R}^n)$ we have

$$||T_{\Omega,\alpha}f||_{L^{n/(n-\alpha)}} = \sup_{g} \left| \int_{\mathbb{R}^{n}} T_{\Omega,\alpha}f(x)g(x) dx \right|$$
$$= \sup_{g} \left| \int_{\mathbb{R}^{n}} f(x)(T_{\Omega,\alpha})^{*}g(x) dx \right|,$$

where the supremum is taken over all $g \in L^{n/\alpha}(\mathbb{R}^n)$ with $\|g\|_{L^{n/\alpha}} \leq 1$, and $(T_{\Omega,\alpha})^*$ denotes the adjoint operator of $T_{\Omega,\alpha}$. Obviously, we have $(T_{\Omega,\alpha})^* = T_{\widetilde{\Omega},\alpha}$, where $\widetilde{\Omega}(x) = \overline{\Omega(-x)}$. It is easy to see that $\overline{\Omega(-x)}$ satisfies the same conditions as $\Omega(x)$. Thus, we know that under the conditions of Theorem 4, the conclusion of Theorem 1 holds also for $\widetilde{\Omega}(x)$. Therefore,

$$||T_{\Omega,\alpha}f||_{L^{n/(n-\alpha)}} = \sup_{g} \left| \int_{\mathbb{R}^{n}} f(x) (T_{\Omega,\alpha})^{*} g(x) \, dx \right|$$

$$\leq \sup_{g} ||f||_{H^{1}} ||(T_{\Omega,\alpha})^{*} g||_{BMO}$$

$$\leq C \sup_{g} ||f||_{H^{1}} ||g||_{L^{n/\alpha}} \leq C ||f||_{H^{1}}.$$

This is (1.5).

Proof of Theorem 5. By $n/(n+\alpha) and <math>1/q = 1/p - \alpha/n$, we get $1 < q < n/(n-\alpha)$ and $n/\alpha < q' < \infty$. Moreover, it is easy to verify

that $\beta > n(1/p-1)$ is equivalent to $\beta > \alpha - n/q'$. Thus, by Theorem 2 for $1 \le l \le n/(n-\alpha)$ and the adjoint operator $(T_{\Omega,\alpha})^*$ of $T_{\Omega,\alpha}$, we have

(3.6)
$$||(T_{\Omega,\alpha})^*g||_{\mathcal{L}_{l,n(\frac{1}{p}-1)}} = ||(T_{\Omega,\alpha})^*g||_{\mathcal{L}_{l,n(\frac{\alpha}{n}-\frac{1}{g'})}} \le C||g||_{L^{q'}}.$$

On the other hand, by (3.5) we know that for $0 and <math>1 \le l \le \infty$, $\mathcal{L}_{l,n(\frac{1}{p}-1)}(\mathbb{R}^n) \subset (H^p(\mathbb{R}^n))^*$. Thus, for any $f \in H^p(\mathbb{R}^n)$ $(n/(n+\alpha) , if taking <math>1 \le l \le n/(n-\alpha)$ and using the idea above proving Theorem 4, then by (3.6) and (3.4) we get

$$||T_{\Omega,\alpha}f||_{L^{q}} = \sup_{g} \left| \int_{\mathbb{R}^{n}} T_{\Omega,\alpha}f(x)g(x) dx \right| = \sup_{g} \left| \int_{\mathbb{R}^{n}} f(x)(T_{\Omega,\alpha})^{*}g(x) dx \right|$$

$$\leq \sup_{g} ||f||_{H^{p}} ||(T_{\Omega,\alpha})^{*}g||_{\mathcal{L}_{l,n(\frac{1}{p}-1),s}} \leq \sup_{g} ||f||_{H^{p}} ||(T_{\Omega,\alpha})^{*}g||_{\mathcal{L}_{l,n(\frac{1}{p}-1)}}$$

$$\leq C \sup_{g} ||f||_{H^{p}} ||g||_{L^{q'}} \leq C ||f||_{H^{p}},$$

where the supremum is taken over all $g \in L^{q'}(\mathbb{R}^n)$ with $||g||_{L^{q'}} \leq 1$. Thus, we finish the proof of Theorem 5.

Proof of Theorem 6. Finally, let us apply the idea above to give the proof of Theorem 6. By Theorem 3, for $1 \le l \le n/(n-\alpha)$ and the adjoint operator $(T_{\Omega,\alpha})^*$ of $T_{\Omega,\alpha}$, we get

(3.7)
$$||(T_{\Omega,\alpha})^* g||_{\mathcal{L}_{l,\alpha}} \le C ||g||_{L^{\infty}}.$$

By (3.5) we know that $\mathcal{L}_{l,\alpha}(\mathbb{R}^n) \subset (H^p(\mathbb{R}^n))^*$ for $1 \leq l \leq \infty$ and $p = n/(n + \alpha)$. Thus, for any $f \in H^p(\mathbb{R}^n)$ $(p = n/(n + \alpha))$, if taking $1 \leq l \leq n/(n - \alpha)$, by (3.4) and (3.7), we get

$$||T_{\Omega,\alpha}f||_{L^{1}} = \sup_{g} \left| \int_{\mathbb{R}^{n}} T_{\Omega,\alpha}f(x)g(x) dx \right| = \sup_{g} \left| \int_{\mathbb{R}^{n}} f(x)(T_{\Omega,\alpha})^{*}g(x) dx \right|$$

$$\leq \sup_{g} ||f||_{H^{p}} ||(T_{\Omega,\alpha})^{*}g||_{\mathcal{L}_{l,\alpha,s}} \leq \sup_{g} ||f||_{H^{p}} ||(T_{\Omega,\alpha})^{*}g||_{\mathcal{L}_{l,\alpha}}$$

$$\leq C \sup_{g} ||f||_{H^{p}} ||g||_{L^{\infty}} \leq C ||f||_{H^{p}},$$

where the supremum is taken over all $g \in L^{\infty}(\mathbb{R}^n)$ with $||g||_{L^{\infty}} \leq 1$. This is the conclusion of Theorem 6.

Acknowledgements. The authors would like to express their gratitude to the referee for his very valuable comments.

References

- [1] S. Chanillo, D. Watson and R. L. Wheeden, Some integral and maximal operators related to star-like, Studia Math., 107 (1993), 223–255.
- [2] Y. Ding and S. Z. Lu, Weighted norm inequalities for fractional integral operators with rough kernel, Canad. J. Math., **50** (1998), 29–39.
- [3] Y. Ding and S. Z. Lu, The $L^{p_1} \times L^{p_2} \times \cdots \times L^{p_k}$ boundedness for some rough operators, J. Math. Anal. Appl., **203** (1996), 166–186.
- [4] Y. Ding, Weak type bounds for a class of rough operators with power weights, Proc. Amer. Math. Soc., 125 (1997), 2939–2942.
- [5] D. Kurtz and R. L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc., 255 (1979), 343–362.
- [6] S. Z. Lu, Four lectures on real H^p spaces, World Scientific Publishing Co. Pte. Ltd., 1995.
- [7] B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Math. Soc., 161 (1971), 249–258.
- [8] _____, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261–274.
- [9] J. Peeter, On the theory of $\mathcal{L}_{p,\lambda}$ spaces, J. Funct. Anal., 4 (1969), 71–87.
- [10] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Ocillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993.
- [11] E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables I: The theory of H^p spaces, Acta Math., **103** (1960), 25–62.
- [12] M. H. Taibleson and G. Weiss, *The molecular characterization of certain Hardy spaces*, Astérisque, **77** (1980), 67–149.

Yong Ding
Department of Mathematics
Beijing Normal University
Beijing, 100875
P.R. of China
dingy@bnu.edu.cn

Shanzhen Lu
Department of Mathematics
Beijing Normal University
Beijing, 100875
P.R. of China.
lusz@bnu.edu.cn