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ON l-ADIC ITERATED INTEGRALS, I

ANALOG OF ZAGIER CONJECTURE

ZDZIS LAW WOJTKOWIAK

Abstract. We are studying some aspects of the action of Galois groups on
the torsor of paths connecting two (possibly tangential) points on a projec-
tive line minus a finite number of points. We obtain objects which formally
behave like classical iterated integrals and polylogarithms. We formulate an
analog of Zagier conjecture for these l-adic analogs of iterated integrals and
polylogarithms.

§0. Introduction

0.1. The classical complex iterated integrals appear in the study of

mixed Hodge structures on fundamental groups and on torsors of paths

(see [D], [BD] and [W3]). In this paper we shall study their l-adic analogs.

The notion of a tangential base point (see [D]) is very important in this

paper. We use a definition given in [N2].

Let K be a number field and let X be a projective line P1
K minus

a finite number of K-points. Let z and v be two K-points or tangential

base points defined over K of X. Let π1(XK̄ ; v) be the l-completion of the

étale fundamental group of XK̄ based at v. We denote by π(XK̄ ; z, v) the

π1(XK̄ ; v)-torsor of (l-adic) paths from v to z. The Galois group GK :=

Gal(K̄/K) acts on the set π(XK̄ ; z, v). To describe this action of GK we

shall proceed in the following way.

Let us fix a path p from v to z. Then the map

(0.1.1) π(XK̄ ; z, v) 3 q −→ p−1q ∈ π1(XK̄ ; v)

is a bijection. The action of GK on the torsor π(XK̄ ; z, v) transported to

an action of GK on π1(XK̄ ; v) by the map (0.1.1) is given by

π1(XK̄ ; v) 3 S −→ fp(σ) · σ(S) ∈ π1(XK̄ ; v),
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where σ ∈ GK and

(0.1.2) fp(σ) := p−1 · σ(p).

The function fp : GK → π1(XK̄ ; v) has the following important property.

Proposition A. (see Section 1) The function fp : GK → π1(XK̄ ; v) is

a cocycle, i.e.,

(0.1.3) fp(τ · σ) = fp(τ) · τ(fp(σ)).

This (well known) result was the starting point of the paper (see also

Theorem A and B in [I1]).

Let X := P1
K \ {a1, . . . , an,∞}. The fundamental group π1(XK̄ ; v)

is a pro-l free group freely generated by n generators, which we denote

by x1, . . . , xn and which will be constructed below. The element fp(σ) ∈

π1(XK̄ ; v), hence

fp(σ) ≡ x
α1(σ)
1 · x

α2(σ)
2 · · · xαn(σ)

n ·
∏

i<j

(xi, xj)
βi,j (σ)

mod
(

(π1(XK̄ ; v), π1(XK̄ ; v)), π1(XK̄ ; v)
)

for some αi(σ) and βi,j(σ) in Zl. Let GK act on Zl as a multiplication by

the cyclotomic character χ : GK → Z∗
l . It follows from Proposition A that

the exponents αi : GK → Zl are cocycles (see Corollary 2.2.2). The obvious

question is if the exponents βi,j : GK → Zl are also cocycles. This question

and its generalization are studied in Sections 6 and 11.

The fundamental group π1(XK̄ ; v) we embed into the algebra Ql{{X1,

. . . , Xn}} of non-commutative formal power series in n non-commuting vari-

ables X1, . . . , Xn (n + 1 is a number of points removed from P1
K) sending

a loop around ai onto eXi for i = 1, . . . , n. The actions of GK on the fun-

damental group π1(XK̄ ; v) and on the torsor π(XK̄ ; z, v) we transport to

linear actions of GK on Ql{{X1, . . . , Xn}}. Hence we get representations

ϕ : GK −→ Aut(Ql{{X1, . . . , Xn}})

in a case of the action deduced from the action on π1(XK̄ ; v) and

ψp : GK −→ GL(Ql{{X1, . . . , Xn}})

in a case of the action deduced from the action on the torsor π(XK̄ ; z, v).
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If σ ∈ GK(µl∞) := Gal(K̄/K(µl∞)) then ψp(σ) is a pro-unipotent au-

tomorphism of Ql{{X1, . . . , Xn}}. Hence logψp(σ) is defined and we have

the following result.

Proposition B. (see Section 5) Let σ ∈ GK(µl∞). Then we have

logψp(σ) = L(logψp(σ))(1) + log ϕ(σ),

where for w ∈ Ql{{X1, . . . , Xn}}, Lw is a left multiplication by w.

The operator log ϕ(σ) is a derivation of the Ql-algebra Ql{{X1, . . . ,

Xn}}. Let us fix a path γi from v to a tangential base point at ai for

i = 1, . . . , n. The generator

xi := γ−1
i · small loop around ai · γi

we send to eXi for i = 1, . . . , n. Then we show the following result.

Proposition C. (see Section 5) Let σ ∈ GK(µl∞ ). Then we have

(log ϕ(σ))(Xi) = [Xi, (log ψγi
(σ))(1)]

for i = 1, . . . , n.

P. Deligne in [D] and Y. Ihara in [I1], [I2] have studied the Galois

action on P1 \ {0, 1,∞}. They got results related to our Proposition C.

Their results in the case of P1 \ {0, 1,∞} motivated our study of more

general situations.

The power series (log ψp(σ))(1) is a Lie element and its coefficients (with

σ ∈ GK(µl∞ ) varing) in a Hall base we shall call l-adic iterated integrals (see

Definition 5.3.0). These l-adic iterated integrals are functions from GK(µl∞)

to Ql. They depend on points v and z and also on a choice of a path p from

v to z (compare with the classical integral
∫ z
v
dz
z which depends on v and z

and on a choice of a path p from v to z). They have all formal properties

of iterated integrals on X(C). In [W1] we studied functional equations of

iterated integrals. The l-adic iterated integrals have the same functional

equations as classical complex iterated integrals on X(C) (see Section 10).

We have an analog of Zagier conjecture for l-adic iterated integrals as in

[W3] (see Section 7).

We would like to thank H. Nakamura for discussions of some topics

considered in the paper and and for encouragements. The results of this
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paper were presented in unofficial talk in Berkeley and in Oberwolfach in

autumn 1999, in Luminy in spring 2000 and in summer 2001, in Acquafreda

di Maretea in 2001 and in Cambridge in autumn 2002.

The present paper is a rewritten version of the first six sections of [W4].

§1. Torsors of paths

1.0. Let X be a smooth algebraic variety defined over a number field

K. We denote by X̂(K) the union of K-points of X and tangential base

points of X defined over K.

Let us fix a prime number l. Let z, v ∈ X̂(K). Let π1(XK̄ ; v) be

the l-completion, i.e., the maximal pro-l quotient of the étale fundamental

group of XK̄ with a base point at v. We denote by π(XK̄ ; z, v) the profinite

set of homotopy classes of (l-adic) paths from v to z. The set π(XK̄ ; z, v)

is a π1(XK̄ ; v)-torsor. We set GK := Gal(K̄/K). The group GK acts on

π1(XK̄ ; v) and on π(XK̄ ; z, v) and the action of GK is compatible with the

action of π1(XK̄ ; v) on π(XK̄ ; z, v), i.e., σ(p · S) = σ(p) · σ(S) for p ∈

π(XK̄ ; z, v), S ∈ π1(XK̄ ; v) and σ ∈ GK .

In this section we shall study elementary properties of the action of the

Galois group GK on the torsor of paths π(XK̄ ; z, v). The set π(XK̄ ; z, v)

is difficult to handle. We fix a path from v to z and using this path we

identify the set π(XK̄ ; z, v) with the fundamental group π1(XK̄ ; v). The

group π1(XK̄ ; v) is more familiar and we describe the action of GK on

π(XK̄ ; z, v) in terms of the action of GK on π1(XK̄ ; v).

Let us fix a path p ∈ π(XK̄ ; z, v). Then

tp : π(XK̄ ; z, v) −→ π1(XK̄ ; v)

given by tp(q) := p−1 · q is a bijection. The map tp is not GK -equivariant.

However using this map we shall transport the action of GK on π(XK̄ ; z, v)

into the action of GK on π1(XK̄ ; v), which is a more familiar object.

Let σ ∈ GK . We set

σp := tp ◦ σ ◦ t
−1
p ,

where σ : π(XK̄ ; z, v)→ π(XK̄ ; z, v) is the map induced by σ.

Definition 1.0.1. We define a function fp : GK → π1(XK̄ ; v) setting

fp(σ) := p−1 · σ(p) ∈ π1(XK̄ ; v)

for any σ ∈ GK .
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Lemma 1.0.2. The action of GK on π1(XK̄ ; v) transported by the iso-

morphism tp from the action of GK on π(XK̄ ; z, v) is given by

σp(S) = fp(σ) · σ(S),

where S ∈ π1(XK̄ ; v) and σ ∈ GK .

Proof. We have σp(S) = tp◦σ◦t
−1
p (S) = tp(σ(p·S)) = p−1 ·σ(p)·σ(S) =

fp(σ) · σ(S).

This action of GK on π1(XK̄ ; v) transported by the isomorphism tp
depends on a choice of a path p from v to z. Let q ∈ π(XK̄ ; z, v) be another

path from v to z. One easily verifies that

(1.0.3) fp(σ) = (q−1p)−1 · fq(σ) · σ(q−1p)

and

(1.0.4) tp(r) = tq((qp
−1) · r) = (p−1q) · tq(r)

for any r in π(XK̄ ; z, v).

The relation between actions of σp and σq is described in the next

lemma.

Lemma 1.0.5. For any σ ∈ GK and S ∈ π1(XK̄ ; v) we have

σp(S) = (q−1p)−1 · σq((q
−1p) · S).

Proof. The lemma follows from Lemma 1.0.2 and from (1.0.3).

We finish this section describing some elementary properties of the el-

ement fp(σ).

Lemma 1.0.6. Let p be a path from v to z and let q be a path from w
to v. Then we have

fpq(σ) = q−1 · fp(σ) · q · fq(σ) and fp−1(σ) = p · (fp(σ))−1 · p−1

for any σ ∈ GK .

Proof. An easy verification we left to the reader.
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Proposition 1.0.7. The function fp : GK → π1(XK̄ ; v) is a cocycle,

i.e., for any τ and σ in GK we have

fp(τ · σ) = fp(τ) · τ(fp(σ)).

Proof. We have fp(τ ·σ) = p−1 · τ(σ(p)) = p−1 · τ(p) · τ(p−1) · τ(σ(p)) =
fp(τ) · τ(fp(σ)).

Corollary 1.0.8. We have

fp(τ
−1) = τ−1(fp(τ)

−1).

Remark. Let p be a path from
−→
01 to

−→
10 on P1(C) \ {0, 1,∞}. The

element fp(σ) was used by Ihara in [I2]. Its Hodge-De Rham incarnation
appears in [D] and [Dr].

§2. Geometric generators of π1(X(C); v)

2.0. Let X = P1
C \ {a1, . . . , an+1} and let v ∈ X̂(C). We shall con-

struct a canonical family of generators of π1(X(C); v). The Galois action

on fundamental groups will be described in terms of these generators.

Let us choose a tangential base point vi (a tangent vector) at ai for

i = 1, 2, . . . , n+ 1.

2.0.1. Let us assume that v ∈ X(C). Let Γ = {γk}k=1,...,n+1 be a family

of smooth paths from v to each vk such that any two paths do not intersect,

no path self-intersects and for each k, γk([0, 1[) ⊂ X(C). The indices are

choosen in such a way that when we make a small circle around v in the

opposite clockwise direction starting from γ1, then we meet successively

γ2, γ3, . . . , γn+1. The element Sk ∈ π1(X(C); v) is defined in the following

way: we move along γk, near ak we make a small circle around ak in the

opposite clockwise direction and we return along γk to v (see Picture 1).

2.0.2. Without loss of generality we can assume that v is a tangential

base point at a1. Let v′ ∈ X(C) be near a1 in the direction v. Let Γ =

{γ′k}k=2,...,n+1 be a family of smooth paths from v′ to each vk satisfying the

conditions from 2.0.1. Let S ′
k be defined by the path γ ′k. Let γ be a path

[0, 1] 3 t→ a1 + t(v′−a1) ∈ X(C). We set γk := γ′k ·γ and Sk := γ−1 ·S′
k ·γ

for k = 2, . . . , n + 1. S1 is a small circle around a1 starting from v in the

opposite clockwise direction (see Picture 2).



ON l-ADIC ITERATED INTEGRALS, I 119

Picture 1

Picture 2

Lemma 2.0.3. The elements S1, . . . , Sn+1 generate π1(X(C); v) and

satisfy the only relation

Sn+1 · · ·S1 = 1.

Definition 2.0.4. The ordered sequence (S1, . . . , Sn+1) we shall call
a sequence of geometric generators of π1(X(C); v) associated to a family of
paths Γ.

2.1. Let Fn+1 = Fn+1(x1, . . . , xn+1) be a free group on n+1 elements

(x1, . . . , xn+1). Let Bn+1(x1, . . . , xn+1) be a subgroup of Aut(Fn+1) con-

sisting of automorphisms f such that f(xi) = ti ·xµ(i) · t
−1
i (i = 1, . . . , n+1)

and f(xn+1) · · · f(x1) = xn+1 · · · x1, where ti ∈ Fn+1 and µ ∈ Sn+1 is a

permutation.

Let us set F ∗
n+1 := Fn+1/〈xn+1 · · · x1〉. The group Bn+1(x1, . . . , xn+1)

acts as an automorphism group on F ∗
n+1. This automorphism group we
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denote by B∗n+1(x1, . . . , xn+1). Let

B
(1)∗
n+1(x1, . . . , xn+1) := ker

(

π : B∗n+1(x1, . . . , xn+1)→ Σn+1

)

,

where π is the obvious projection.

The next lemma is well known.

Lemma 2.1.1. (see [W2]) Let (S1, . . . , Sn+1) be a sequence of geometric

generators of π1(X(C); v). Then any other sequence of geometric gen-

erators of π1(X(C); v) is of the form (f(S1), . . . , f(Sn+1)), where f ∈
B∗n+1(S1, . . . , Sn+1).

Definition 2.1.2. Let s = (S1, . . . , Sn+1) and s′ = (S′
1, . . . , S

′
n+1) be

two sequences of geometric generators of π1(X(C); v). We say that s and

s′ are in the same permutation class if there is f ∈ B
(1)∗
n+1(S1, . . . , Sn+1) such

that f(Si) = S′
i for each i.

2.2. Let K be a number field. Let a1, . . . , an+1 be K-points of the

projective line P1
K . Let X = P1

K \{a1, . . . , an+1} and let v ∈ X̂(K). Let us

choose a tangential base point vk ∈ X̂(K) at ak for k = 1, . . . , n + 1. Let

us fix an embedding K ⊂ C. Let Γ = {γk}k=1,...,n+1 be a family of paths

on X(C) from v to each vk and let S1, . . . , Sn+1 be a family of geometric

generators of π1(X(C); v) associated to Γ.

The geometric generators of π1(X(C); v) can be interpreted as elements

of π1(XK̄ ; v). The path γk from v to vk can be interpreted as an l-adic path,

i.e., a natural transformation of fiber functors over v and over vk from étale

coverings of XK̄ to sets. A small circle around ak based at vk is defined

in the proof of Proposition 2.2.1. However it would be very interesting to

construct “geometric generators” of π1(XK̄ ; v) in purely algebraic way.

Below we shall describe the action of GK on π1(XK̄ ; v) in terms of these

generators. The result seems to be well known (see [I1, pages 51 and 52]

and [AI, page 128]). We give however a sketch of a proof because of the

importance of this result in our studies.

Let χ : GK → Z∗
l be the cyclotomic character.

Proposition 2.2.1. Let σ ∈ GK . Then

σ(Sk) = (fγk
(σ))−1 · S

χ(σ)
k · fγk

(σ)

for k = 1, . . . , n+ 1.



ON l-ADIC ITERATED INTEGRALS, I 121

Proof. Without loss of generality we can assume that ak = 0, an+1 =
∞ and vk =

−→
01. Consider the following Galois equivariant map

π1(Spec K̄[[z]][ 1z ],
−→
01) −→ π1(XK̄ , vk),

where K̄[[z]][ 1z ] is the algebra of formal Laurent power series. The funda-

mental group π1(Spec K̄[[z]][ 1z ],
−→
01) is isomorphic to Zl. The group GK acts

on π1(Spec K̄[[z]][ 1z ],
−→
01) by the cyclotomic character χ : GK → Z∗

l . (See
[I1] and [N1, p. 94].)

Let us fix an embedding of K̄ into C. We recall that the elements of
π1(Spec K̄[[z]][ 1z ],

−→
01) act on Puiseux elements z1/ln by analytic continua-

tion. We define a canonical generator T of π1(Spec K̄[[z]][ 1z ],
−→
01) requiring

that T (z1/ln) = e2πi/l
n
· z1/ln (see Picture 3).

Picture 3

We denote by Tk the image of T in π1(XK̄ , vk). Clearly we have σ(Tk) =

T
χ(σ)
k . Observe that Sk = γ−1

k ·Tk ·γk. Hence we get σ(Sk) = σ(γ−1
k ) ·T

χ(σ)
k ·

σ(γk) = σ(γ−1
k ) ·γk ·(γ

−1
k ·T

χ(σ)
k ·γk) ·(γ

−1
k ) ·σ(γk) = (fγk

(σ))−1 ·S
χ(σ)
k ·fγk

(σ).

Let z ∈ X̂(K) and let p be a path from v to z. Let us define functions

αi : GK → Zl for i = 1, 2, . . . , n by the following congruence

fp(σ) ≡
n

∏

i=1

S
αi(σ)
i mod

(

π1(XK̄ ; v), π1(XK̄ ; v)
)

.

Let GK act on Zl as a multiplication by the cyclotomic character χ : GK →

Z∗
l .

Corollary 2.2.2. The functions αi : GK → Zl for i = 1, 2, . . . , n are

cocycles.

Proof. The corollary follows from Propositions 1.0.7 and 2.2.1.
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§3. Filtrations of GK associated with the lower central series of

π1

3.0. In this section we shall study various filtrations of the group GK

obtained from the action of GK on fundamental groups and on torsors of

paths. The filtrations obtained from the action on fundamental groups were

already studied by Ihara (see [I1]), Nakamura and Tsunogai (see [NT]) and

others.

These filtrations are associated to the lower central series filtrations.

Hence we recall here the definition of the lower central series of a group.

Let π be a group. The subgroups Γnπ of the lower central series are

defined recursively by

Γ1π := π, Γn+1π := (Γnπ, π), n = 1, 2, . . .

(see [MKS, Section 5.3]).

Let X = P1
K \ {a1, . . . , an+1} and let z, v ∈ X̂(K). Fix an embedding

of K̄ into C. Let x = (x1, . . . , xn+1) be a sequence of geometric generators

of π1(X(C); v) associated with a family of paths Γ = {γi}i=1,...,n+1. The

action of GK on π1(XK̄ ; v) preserves Γi+1π1(XK̄ ; v), hence GK acts also on

the quotient group π1(XK̄ ; v)/Γi+1π1(XK̄ ; v).

We set

Gi = Gi(X, v) := ker
(

GK → Aut(π1(XK̄ ; v)/Γi+1π1(XK̄ ; v))
)

.

Observe that G1 = Gal(K̄/K(µl∞)). The quotient group Gi/Gi+1 is iso-

morphic to a finite direct sum of several copies of Zl (see [NT, Theorem

(5.11)]). This implies that Gk/Gi are l-adic Lie groups.

The group GK/G1 ⊂ Z∗
l acts on Gi/Gi+1 and the GK/G1-module

Gi/Gi+1 is isomorphic to Zl(i)
ni (see [I1] in the special case, when X =

P1
Q \ {0, 1,∞}). Below we shall show that this result is a corollary of a

more general statement.

Let us set G∞ = G∞(X, v) :=
⋂∞
i=1Gi(X, v). Then G1/G∞ =

lim
←−i

G1/Gi is a pro l-adic Lie group.

We say that two paths p, q ∈ π(XK̄ ; z, v) are Γi-equivalent if p−1 ·

q ∈ Γiπ1(XK̄ ; v). The set of Γi-equivalence classes, which we denote by

π(XK̄ ; z, v)/Γi, is a π1(XK̄ ; v)/Γiπ1(XK̄ ; v)-torsor. The action of GK on

π(XK̄ ; z, v) induces an action of GK on π(XK̄ ; z, v)/Γi compatible with the

structure of the π1(XK̄ ; v)/Γiπ1(XK̄ ; v)-torsor.
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We introduce a subgroup Hi = Hi(X; z, v) of Gi by

Hi = Hi(X; z, v) := ker
(

Gi(X, v)→ AutSet(π(XK̄ ; z, v)/Γi)
)

.

Proposition 3.0.1. The conjugation on Hj by elements of GK in-

duces an action of GK/G1 ⊂ Z∗
l on the quotient group Hj/Hj+1. Moreover

Hj/Hj+1 is isomorphic to a finite direct sum Zl(j)
mj as a GK/G1-module.

Proof. Let us fix a path p from v to z. The map tp : π(XK̄ ; z, v) →
π1(XK̄ ; v) is GK-equivariant, if σ ∈ GK acts by σp on π1(XK̄ ; v). The map
tp induces a GK -equivariant map

π(XK̄ ; z, v)/Γjπ(XK̄ ; z, v)→ π1(XK̄ ; v)/Γjπ1(XK̄ ; v).

Hence we get that

Hj = ker
(

Gj → AutSet(π1(XK̄ ; v)/Γjπ1(XK̄ ; v))
)

.

Let σ ∈ Hj. Proposition 2.2.1 implies that σ(xk) = (fγk
(σ))−1 ·xk ·fγk

(σ) for
k = 1, . . . , n, n+1. Observe that fγk

(σ) ∈ Γjπ1(XK̄ ; v) for k = 1, . . . , n, n+1
and fp(σ) ∈ Γjπ1(XK̄ ; v). The sequence

(

fp(σ), fγ1(σ), . . . , fγn(σ)
)

∈ Γjπ1(XK̄ ; v) × (Γjπ1(XK̄ ; v))n

determines the map σp. This implies that the quotient group Hj/Hj+1 is
isomorphic to a closed subgroup of

Γjπ1(XK̄ ; v)/Γj+1π1(XK̄ ; v)×
(

Γjπ1(XK̄ ; v)/Γj+1π1(XK̄ ; v)
)n
.

Therefore the quotient group Hj/Hj+1 is isomorphic to a finite direct sum
Z
mj

l .

Let τ ∈ GK and σ ∈ Hj. We shall show that τ · σ · τ−1 = χ(τ)j · σ

in Hj/Hj+1. It follows from Proposition 1.0.7 and Corollary 1.0.8 that

fp(τ · σ · τ
−1) = fp(τ) · τ(fp(σ)) · (τ · σ · τ−1)(fp(τ)

−1). Observe that fp(τ) ·

τ(fp(σ))·(τ ·σ ·τ−1)(fp(τ)
−1) = τ(fp(σ)) mod Γj+1π1(XK̄ ; v) and τ(fp(σ)) =

χ(τ)j · fp(σ) mod Γj+1π1(XK̄ ; v). This implies the proposition because we

have also

fγi
(τ · σ · τ−1) = χ(τ)j · fγi

(σ) mod Γj+1π1(XK̄ ; v)

for i = 1, . . . , n, n+ 1.
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Corollary 3.0.2. The conjugation on Gj by elements of GK induces

an action of GK/G1 ⊂ Z∗
l on the quotient group Gj/Gj+1. Moreover

Gj/Gj+1 is isomorphic to a finite direct sum Zl(j)
nj as a GK/G1-module.

Proof. The corollary is a special case of Proposition 3.0.1 if z = v and
p is a constant path.

The class of the element σ ∈ Hj modulo Hj+1 is completely determined

by its coordinates

(

fp(σ), fγ1(σ), . . . , fγn(σ)
)

∈
(

Γjπ1(XK̄ ; v)/Γj+1π1(XK̄ ; v)
)

×
(

Γjπ1(XK̄ ; v)/Γj+1π1(XK̄ ; v)
)n
.

Apparentely the first coordinate fp(σ) mod Γj+1π1(XK̄ ; v) depends on a

choice of a path p from v to z. However we have the following result.

Lemma 3.0.3. Let σ ∈ Hj and let p and q be two paths from v to z.
Then fp(σ) ≡ fq(σ) mod Γj+1π1(XK̄ ; v).

Proof. Let us set S = p−1 · q. Then fq(σ) = fp·S(σ) = S−1 · fp(σ) ·σ(S).
Observe that σ(S) = S mod Γj+1π1(XK̄ ; v). Hence we get that fq(σ) =
fp(σ) mod Γj+1π1(XK̄ ; v).

It follows from Proposition 3.0.1 that Hk/Hi are l-adic Lie groups. Let

us set

H∞ = H∞(X; z, v) :=
∞
⋂

i=1

Hi(X; z, v).

Then H1/H∞ = lim
←−i

H1/Hi is a pro l-adic Lie group.

Definition 3.0.4. Let A and B be nilpotent groups with exponents
in Zl. We say that a homomorphism h : A → B of groups with exponents
in Zl is an f -epimorphism if for any b ∈ B there exists a positive integer n
and an element a ∈ A such that h(a) = bl

n
.

Remark. If A and B are Zl-modules and if B is a finitely generated
Zl-module then h : A → B is an f -epimorphism if and only if coker(h) is
finite.
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Proposition 3.0.5. The natural homomorphisms

Hi/Hk −→ Gi/Gk

are f -epimorphisms for any i > 0 and any k > 0 such that k > i.

Proof. The equality H1 = G1 implies that the natural homomorphism
g : H1/Hk → G1/Gk is an epimorphism for any k. After the Malcev rational
completion we obtain an epimorphism g0 : H1/Hk ⊗ Q → G1/Gk ⊗ Q of
nilpotent groups with exponents in Ql. The category of nilpotent groups
with exponent in Ql and the category of nilpotent Lie algebras over Ql are
equivalent. Hence passing to Lie algebras we get an epimorphism Lie(g0) :
Lie(H1/Hk ⊗ Q) → Lie(G1/Gk ⊗ Q) of finite dimensional nilpotent Lie
algebras over Ql. The construction of the Malcev rational completion and
then passing to Lie algebras are functorial. Therefore the Galois group
GK acts linearly on both Lie algebras and the morphism Lie(g0) is GK -
equivariant. Now the standard weight arguments imply that the natural
morphism Lie(Hi/Hk ⊗Q) → Lie(Gi/Gk ⊗Q) is an epimorphism. Hence
the homomorphism of nilpotent groups Hi/Hk ⊗Q → Gi/Gk ⊗Q is also
an epimorphism. This implies that the natural map Hi/Hk → Gi/Gk is an
f -epimorphism.

Let us set

Ki(X, v) :=
⋂

z∈X̂(K)

Hi(X; z, v), Ki(X) :=
⋂

(z,v)∈X̂(K)2

Hi(X; z, v)

and

K∞(X, v) :=
∞
⋂

i=1

Ki(X, v), K∞(X) :=
∞
⋂

i=1

Ki(X).

3.0.6. Observe that K1(X) = K1(X, v) = G1(X, v) = Gal(K̄/K(µl∞)).

We do not know if the maps

Ki(X, v)/Kk(X, v) −→ Hi(X; z, v)/Hk(X; z, v)

and

Ki(X)/Kk(X) −→ Hi(X; z, v)/Hk(X; z, v)

are f -epimorphisms for any i and any k. Below we shall show weaker results.
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Let T be a nonempty finite subset of X̂(K)2. Let us set

KTi (X) :=
⋂

(z,v)∈T

Hi(X; z, v) and KT∞(X) :=

∞
⋂

i=1

KTi (X).

In the same way as Proposition 3.0.5 we show the following result.

Proposition 3.0.7. Let T and S be nonempty finite subsets of X̂(K)2.
Assume that S ⊂ T . Then the maps

KTi (X)/KTk (X) −→ KSi (X)/KSk (X)

are f -epimorphisms for any positive integers k and i such that k > i.

Lemma 3.0.8. The restriction map

H1(GK ,Ql(N)) −→ H1(KTN (X),Ql(N))

is injective.

Proof. Let Γ = Gal(K(µl∞)/K). We recall the reader that KT1 (X) =
Gal(K̄/K(µl∞)). The restriction map

H1(GK ,Ql(N)) −→ HomΓ(KT1 (X)ab,Ql(N))

is injective. Let f ∈ HomΓ(KT1 (X)ab,Ql(N)). Assume that the composition
of f with the natural projection KT1 (X) → KT1 (X)ab vanishes on KTN (X).
Therefore f induces a Γ-homomorphism f̃ : (KT1 (X)/KTN (X))ab → Ql(N).
Proposition 3.0.1 implies that the quotient group KT1 (X)/KTN (X) is a suc-
cessive extension of direct sums of Zl(i) with i < N . Now it follows from
weight arguments that f̃ and hence also f are zero maps. This implies the
lemma.

Definition 3.0.9. Let C be the category whose objects are all finite
subsets of X̂(K)2 and whose morphisms are inclusions. We set

H1
C(KN (X),Ql(N)) := lim

−→
C

H1(KTN (X),Ql(N)).

Lemma 3.0.10. The map

H1(GK ,Ql(N)) −→ H1
C(KN (X),Ql(N))

is injective.
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Proof. The lemma follows from Lemma 3.0.8.

Lemma 3.0.10 will be needed in our formulation of Zagier conjecture

in Section 7. We recall also that H1(GK ,Ql(N)) for N > 1 is a finite

dimensional vector space over Ql. More precisely there is the following

result. Let r1 (resp. r2) be a number of real (resp. complex) places of K.

We assume that l is an odd prime. Let S be a set of maximal ideals of

OK containing all maximal ideals which divide l and let OK,S be a ring of

S-integers in K. Then

dimH1(SpecOK,S,Ql(N)) = dimH1(GK ,Ql(N)) = r2,

if N is even and greater than 1;

dimH1(SpecOK,S,Ql(N)) = dimH1(GK ,Ql(N)) = r1 + r2,

if N is odd and greater than 1.

(See [S2, Theorem 1] for OK [1l ] and apply Proposition 1 from [S1] for K

and OK,S.)

Let us assume that O∗
K,S ⊗Q is a finite dimensional vector space over

Q. Then

dimH1(SpecOK,S,Ql(1)) = dimQ(O∗
K,S ⊗Q).

The last equality follows from Kummer theory.

3.1. We shall study relations between filtrations {Gi}i∈N and {Hi}i∈N

of GK for different X.

Lemma 3.1.0. Let Y = P 1
K \ {b1, . . . , bm+1} and let g : Y → X be

a non-constant morphism between affine varieties. Let y, w ∈ Ŷ (K) and

let z = g(y) and v = g(w). Then we have Gi(Y,w) ⊂ Gi(X, v) and

Hi(Y ; y, w) ⊂ Hi(X; z, v).

Proof. Observe that the induced map g∗ : π1(YK̄ ;w) → π1(XK̄ ; v) is
surjective after passing to the Malcev rational completions and it commutes
with the action of GK . This implies that Gi(Y,w) ⊂ Gi(X, v). Let p be a
path from w to y. Then fg(p)(σ) = g∗(fp(σ)). Hence fp(σ) ∈ Γiπ1(YK̄ ;w)
implies that fg(p)(σ) ∈ Γiπ1(XK̄ ; v). This implies that Hi(Y ; y, w) ⊂
Hi(X; z, v).

As before the weight arguments imply the following result.
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Proposition 3.1.1. The induced maps

Gi(Y,w)/Gi+k(Y,w) −→ Gi(X, v)/Gi+k(X, v)

and

Hi(Y ; y, w)/Hi+k(Y ; y, w) −→ Hi(X; z, v)/Hi+k(X; z, v)

are f -epimorphisms for all i > 0 and all k > 0.

3.2. We recall that x = (x1, x2, . . . , xn+1) is a sequence of geomet-

ric generators of π1(X(C); v). Then π1(XK̄ ; v) is a free pro-l group on n

generators x1, . . . , xn. Let Lie(X) be a free Lie algebra on n generators

X1, . . . , Xn. Let us fix a Hall base B of Lie(X). Let Bi be the set of el-

ements of degree i in B. We introduce a linear order in the set B in the

following way. We fix a linear order in Bi for every i. We assume that

elements of Bi are smaller than elements of Bi+1.

If e = [· · · [Xi1 , Xi2 ]Xi3 · · · ], we denote by e(x) the element (· · · (xi1 , xi2)

xi3 · · · ) of π1(XK̄ ; v). It is well known that any g ∈ π1(XK̄ ; v) can be written

uniquely as an infinite convergent product

∞
∏

i=1

∏

e∈Bi

e(x)αe

where αe ∈ Zl and the product is taken in the declared linear order in B.

Definition 3.2.0. Let z ∈ X̂(K) and let p ∈ π(XK̄ ; z, v). For each
e ∈ Bj we define maps

κe(p, x) : Hj(X; z, v) −→ Zl(j)

by the following equations

fp(σ) ≡
∏

e∈Bj

e(x)κe(p,x)(σ) mod Γj+1π1(XK̄ ; v).

Lemma 3.2.1. Let z ∈ X̂(K) and let p ∈ π(XK̄ ; z, v). Let e ∈ Bj.
The map κe(p, x) : Hj(X; z, v) → Zl(j) is a homomorphism compatible

with actions of Gal(K(µl∞)/K). The map κe(p, x) does not depend on

the choice of a path p from v to z and it does not depend on the choice

of a sequence of geometric generators x = (x1, x2, . . . , xn+1) in the same

permutation class.
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Proof. Let x′ = (x′1, . . . , x
′
n+1) be another sequence of geometric gen-

erators of π1(X(C); v) associated with a family of paths Γ′ = {γ′i}i=1,...,n+1.
We shall assume that the automorphism of π1(X(C); v) given by xi → x′i
for i = 1, . . . , n+ 1 is in B

(1)∗
n+1(x1, . . . , xn+1). We have

(3.2.2) x′i = fi(x1, . . . , xn)
−1 · xi · fi(x1, . . . , xn) (i = 1, . . . , n+ 1),

where fi(x1, . . . , xn) := γ−1
i · γ

′
i ∈ π1(X(C); v). Then

fp(σ) ≡
∏

e∈Bj

e(x′)κe(p,x′)(σ) mod Γj+1π1(XK̄ ; v).

It follows from (3.2.2) that e(x) ≡ e(x′) mod Γj+1π1(XK̄ ; v). Hence
κe(p, x) = κe(p, x

′).
Let q ∈ π(XK̄ ; z, v) and let T := p−1 · q. Then it follows from (1.0.4)

that
fq(σ) = T−1 · fp(σ) · σ(T ).

If σ ∈ Gj(X, v) then σ(T ) = T mod Γj+1π1(XK̄ ; v). Hence we get fq(σ) =
T−1 · fp(σ) · σ(T ) = fp(σ) mod Γj+1π1(XK̄ ; v). Therefore κe(p, x) does not
depend on the choice of a path p in π(XK̄ ; z, v).

The formula
fp(τσ) = fp(τ) · τ(fp(σ))

(see Proposition 1.0.7) and Proposition 2.2.1 imply that κe(p, x) is a homo-
morphism.

Let τ ∈ GK and σ ∈ Hj(X; z, v). Then τστ−1 ∈ Hj(X; z, v) and

fp(τστ
−1) ≡

∏

e∈Bj

e(x)κe(p,x)(τστ−1) mod Γj+1π1(XK̄ ; v).

On the other hand

fp(τστ
−1) = fp(τ) · τ(fp(σ)) · τσ(fp(τ

−1)).

Working mod Γj+1π1(XK̄ ; v) we get

fp(τ) · τ(fp(σ)) · τσ(fp(τ
−1)) ≡ fp(τ) ·

∏

e∈Bj

e(x)χ(τ)jκe(p,x)(σ) · τ(fp(τ
−1))

≡
∏

e∈Bj

e(x)χ(τ)jκe(p,x)(σ)
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because σ(fp(τ
−1)) ≡ fp(τ

−1) mod Γj+1π1(XK̄ ; v) and τ(fp(τ
−1)) =

(fp(τ))
−1. Hence we get that κe(p, x)(τστ

−1) = χ(τ)jκe(p, x)(σ).

Observe that the homomorphism κe(p, x) : Hj(X; z, v) → Zl(j) de-

pends only on (z, v) ∈ X̂(K)2 and on a linear order (a1, . . . , an+1) of points

removed from P1
K . Assuming that the linear order (a1, . . . , an+1) is fixed

we set

κe(z, v) := κe(p, x).

§4. Coordinates on the fundamental group and on the torsor

4.0. Let X = P1
K \ {a1, . . . , an+1} and let v ∈ X̂(K). Let x =

(x1, . . . , xn+1) be a sequence of geometric generators of π1(X(C); v). Let

Ql{{X1, . . . , Xn}} be an algebra of non-commutative formal power series

in n non-commuting variables X1, . . . , Xn. We set X := {X1, . . . , Xn}. To

simplify the notation we shall write Ql{{X}} instead of Ql{{X1, . . . , Xn}}.

We recall that Ql is a topological non-archimedian field. Let I be the

augmentation ideal of Ql{{X}}. Observe that Ql{{X}}/I
m is a finite dimen-

sional topological vector space over Ql and Ql{{X}} = lim
←−m

Ql{{X}}/I
m.

We equip Ql{{X}} with a topology of the projective limit. We recall that

π1(XK̄ ; v) is equipped with a pro-finite topology.

We define a continuous embedding

kx : π1(XK̄ ; v) −→ Ql{{X}}

setting kx(xi) := expXi for i = 1, . . . , n and requiring that kx(w · w
′) =

kx(w) · kx(w
′).

Let p ∈ π(XK̄ ; z, v). Composing tp (see Section 1) with kx we get a

continuous embedding

kx,p : π(XK̄ ; z, v) −→ Ql{{X}}.

Let us set

Λ(p,x)(σ) := kx(fp(σ)).

(We shall omit the subscript x if a sequence of geometric generators is fixed

and we shall write Λp(σ) instead of Λ(p,x)(σ).)

Let us denote by Aut(Ql{{X}}) the group of continuous automorphisms

of the Ql-algebra Ql{{X}} and by GL(Ql{{X}}) the group of continuous

linear automorphisms of the Ql-vector space Ql{{X}}.
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The action of GK on π1(XK̄ ; v) defines a continuous action of GK on

Ql{{X}},

( )x : GK −→ Aut(Ql{{X}})

given by σx(expXi) := kx(σ(xi)) for i = 1, . . . , n.

The action of GK on π(XK̄ ; z, v) defines a continuous action of GK on

Ql{{X}},

( )x,p : GK −→ GL(Ql{{X}})

given by σx,p(w) := Λ(p,x)(σ) · σx(w).

(We shall omit the subscript x if a sequence of geometric generators is fixed

and we shall write σ instead of σx and σp instead of σx,p. We hope that these

notations will not cause confusions with notations used in Section 1. There

σ (resp. σp) denotes an automorphism of π1(X(C); v) (resp. a bijection of

π1(X(C); v)) induced from the action of GK on π1(X(C); v) (resp. on the

π1(X(C); v)-torsor π(XK̄ ; z, v)).)

4.1. The subgroups Gi(X, v) and Hi(X; z, v) of GK can be described

in terms of the action of GK on Ql{{X}} in the following way.

Lemma 4.1.1. Let X = P1
K \ {a1, . . . , an+1} and let z, v ∈ X̂(K). We

have

Gi(X; v) = ker(GK → Aut(Ql{{X}}/I
i+1))

and

Hi(X; z, v) = ker(Gi(X; v)→ GL(Ql{{X}}/I
i)).

We shall omit an easy proof.

4.2. Let λ ∈ Q∗
l . We define a continuous automorphism of Ql-algebras

ρ(λ) : Ql{{X}} −→ Ql{{X}}

setting ρ(λ)(w) := λiw if w is homogenous of degree i.

Let σ ∈ GK . We set

ϕx(σ) := σx ◦ ρ(χ(σ)−1)

and

ψx,p(σ) := σx,p ◦ ρ(χ(σ)−1).

Observe that ϕx(σ) (resp. ψx,p(σ)) is a pro-unipotent automorphism of Ql-

algebra (resp. pro-unipotent Ql-linear automorphism of) Ql{{X}}.
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Remark. If σ ∈ G1 then ϕx(σ) = σx and ψx,p(σ) = σx,p.

Lemma 4.2.1. We have

ϕx(τ · σ) = ϕx(τ) ◦
(

ρ(χ(τ)) ◦ ϕx(σ) ◦ ρ(χ(τ)−1)
)

and

ψx,p(τ · σ) = ψx,p(τ) ◦
(

ρ(χ(τ)) ◦ ψx,p(σ) ◦ ρ(χ(τ)−1)
)

.

We can interpret the equalities from Lemma 4.2.1 in the following way.

Corollary 4.2.2. Let GK acts on Aut(Ql{{X}}) (resp. GL(Ql{{X}}))
by σ(a) := ρ(χ(σ))◦a◦ρ(χ(σ)−1). Then the maps ϕx : GK → Aut(Ql{{X}})
and ψx,p : GK → Aut(Ql{{X}}) are 1-cocycles.

Let λ ∈ Q∗
l . We shall denote by aλ the automorphism ρ(λ−1) ◦ a ◦ ρ(λ)

§5. l-adic iterated integrals

5.0. The purpose of this section is to introduce objects called by us l-

adic iterated integrals (see Definition 5.3.0). These l-adic iterated integrals

evaluated at z are functions from the Galois group GK to Ql, which to σ ∈

GK associate coefficients of the power series (logψx,p(σ))(1) ((log σx,p)(1)

if σ ∈ GK(µl∞)). These l-adic iterated integrals correspond to suitably

normalized classical complex iterated integrals.

Let a1, . . . , an+1 be K-points of the projective line P1
K . Let X = P1

K \

{a1, . . . , an+1} and let v ∈ X̂(K) be a base point. Let us choose a tangential

base point vi at ai for i = 1, 2, . . . , n + 1. Let x = (x1, . . . , xn+1) be a

sequence of geometric generators of π1(X(C); v) associated with a family

of paths Γ = {γi}i=1,...,n+1 from v to each vi. It follows from Section 3

that G1/G∞ is a pro-unipotent l-adic Lie group. Hence (G1/G∞)⊗Q - the

rational completion of G1/G∞ - is a pro-unipotent Ql-Lie group. Let us

set g = g(X, v) := Tid ((G1/G∞) ⊗Q) = Lie((G1/G∞) ⊗Q) - the tangent

space of (G1/G∞)⊗Q at the identity.

We shall denote by Der(Ql{{X}}) the Lie algebra of continuous deriva-

tions of the Ql-algebra Ql{{X}} and by End(Ql{{X}}) the Lie algebra of

continuous automorphisms of the Ql-vector space Ql{{X}}.
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We have the following commutative diagram:

G1/G∞

( )x

−−−−→ Aut(Ql{{X}})






y

log







y

log

g
Lie( )x

−−−−→ Der(Ql{{X}}).

(The upper horizontal arrow is induced by the action of GK on Ql{{X}},

the lower horizontal arrow is the induced map on tangent spaces, log on the

right side is defined only on pro-unipotent automorphisms.)

Let z ∈ X̂(K) and let p ∈ π(XK̄ ; z, v). It follows from Section 3 that

H1/H∞ = H1(X; z, v)/H∞(X; z, v) is a pro-unipotent l-adic Lie group.

Hence (H1/H∞) ⊗ Q is a pro-unipotent Ql-Lie group. Let us set h =

h(X; z, v) := Tid ((H1/H∞)⊗Q) = Lie((H1/H∞)⊗Q) - the tangent space of

(H1/H∞)⊗Q at the identity. We have the following commutative diagram:

H1/H∞

( )x,p

−−−−→ GL(Ql{{X}})






y

log







y

log

h
Lie( )x,p

−−−−→ End(Ql{{X}}).

Let T ⊂ X̂(K)2 be a finite subset containing a pair (z, v). We have epimor-

phisms KT1 (X)/KT∞(X)→ G1/G∞ and KT1 (X)/KT∞(X)→ H1/H∞ and the

induced epimorphisms of Lie algebras

Lie(KT1 (X)/KT∞(X)⊗Q) −→ g and Lie(KT1 (X)/KT∞(X) ⊗Q) −→ h.

Hence we can consider that the homomorphisms ( )x and ( )x,p are defined

on KT1 (X)/KT∞(X) and that the morphisms of Lie algebras Lie( )x and

Lie( )x,p are defined on Lie(KT1 (X)/KT∞(X) ⊗Q).

The image of the morphism ( )x (resp. Lie( )x) is contained in the

“braid-like” subgroup of Aut(Ql{{X}}) (resp. Lie subalgebra of Der

(Ql{{X}})). We recall their definitions. We also describe subgroups and

subalgebras containing images of morphisms ( )x,p and Lie( )x,p respec-

tively.
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5.1. We recall that X = {X1, . . . , X2}. Let Lie(X) be a free Lie

algebra over Ql on the set X. Let us set

L(X) := lim
←−
i

Lie(X)/Γi Lie(X).

We identify L(X) with Lie elements in Ql{{X}}.

We introduce the following notation. If A and B belong to a Lie al-

gebra then we define [[A,B]B0] := [A,B], [[A,B]B1] := [[A,B], B] and

[[A,B]Bm] := [[[A,B]Bm−1], B] for m > 1.

Definition 5.1.0. Let us define subgroups

Aut∗(Ql{{X}}) := {f ∈ Aut(Ql{{X}}) |

∀Xi ∈ X ∃li ∈ L(X), f(Xi) = e−li ·Xi · e
li};

Aut∗ L(X) :=

{

f ∈ AutL(X)

∣

∣

∣

∣

∀Xi ∈ X ∃li ∈ L(X), f(Xi) = Xi +
∞

∑

m=1

1

m!
[[Xi, li]l

m−1
i ]

}

and Lie subalgebras

Der∗(Ql{{X}}) := {D ∈ Der(Ql{{X}}) |

∀Xi ∈ X ∃Ai ∈ L(X), D(Xi) = Xi · Ai −Ai ·Xi};

Der∗L(X) := {D ∈ DerL(X) | ∀Xi ∈ X ∃Ai ∈ L(X), D(Xi) = [Xi, Ai]}

and

Der∗ Lie(X) := {D ∈ DerLie(X) |

∀Xi ∈ X ∃Ai ∈ Lie(X), D(Xi) = [Xi, Ai]}.

Lemma 5.1.1. We have

i) Aut∗(Ql{{X}}) = Aut∗ L(X);

ii) Der∗(Ql{{X}}) = Der∗L(X);

iii) The Lie algebra of Aut∗(Ql{{X}}) (resp. Aut∗ L(X)) is

Der∗(Ql{{X}}) (resp. Der∗L(X)).
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Proof. The first part follows from the well known formula

(5.1.2) e−li ·Xi · e
li = Xi +

∞
∑

m=1

1

m!
[[Xi, li]l

m−1
i ].

The second part is obvious, so it rests to show the last statement of the
lemma. It is well known that the Lie algebra of the group of automorphisms
of a Ql-algebra is the Lie algebra of derivations of this Ql-algebra. Let
D be a derivation of the Ql-algebra Ql{{X}}. Suppose that exp tD ∈
Aut∗(Ql{{X}}). Then (exp tD)(Xi) = e−li(t) · Xi · e

li(t) for i = 1, . . . , n.
The elements li(t) are in L(X). We can suppose that the coefficient of li(t)
at Xi vanishes. Then we have li(0) = 0 and li(t) depends smoothly on t.
Hence Ai := limt→0

1
t li(t) exists and belongs to L(X). Comparing Taylor

developments of (exp tD)(Xi) and e−li(t) ·Xi · e
li(t) we get D(Xi) = [Xi, Ai]

for i = 1, . . . , n. Therefore D belongs to Der∗(Ql{{X}}).

Proposition 5.1.3. Let σ ∈ GK . Then ϕx(σ) ∈ Aut∗(Ql{{X}}) and

log ϕx(σ) ∈ Der∗(Ql{{X}}).

Proof. It follows from Proposition 2.2.1 that

σx(Xi) = (Λ(γi ,x)(σ))−1 · χ(σ)Xi · Λ(γi,x)(σ)

for i = 1, . . . , n. Hence ϕx(σ) ∈ Aut∗(Ql{{X}}). It follows from Lemma
5.1.1 that log ϕx(σ) ∈ Der∗(Ql{{X}}).

To give an explicit formula for log ϕx(Xi) we need to study Galois

actions on torsors of paths. The action of Galois groups on torsors of paths

requires to introduce semi-direct products of Lie algebras. Below we give

the necessary definitions.

Let L be a Lie algebra and let D be a Lie subalgebra of the algebra of

Lie derivations of L. We equip the direct product L×D with a Lie bracket

[(l,D), (l1, D1)] := ([l, l1] +D(l1)−D1(l), [D,D1]).

The resulting Lie algebra we denote by L ×̃ D and we call it a semi-direct

product of L and D.

If g ∈ Ql{{X}} then Lg denotes left multiplication by g. Lexp(L(X)) is

the set of left multiplications by elements of exp(L(X)) and LL(X) is the

set of left multiplications by elements of L(X).
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Lemma 5.1.4. Let G be a subgroup of GL(Ql{{X}}) generated by

Lexp(L(X)) and Aut∗(Ql{{X}}). Then G is a semi-direct product of Lexp(L(X))

and Aut∗(Ql{{X}}), which we denote by Lexp(L(X)) ×̃Aut∗(Ql{{X}}). The

Lie algebra of Lexp(L(X)) ×̃Aut∗(Ql{{X}}) is equal to a semi-direct product

of Lie algebras LL(X) ×̃Der∗ L(X) ≈ L(X) ×̃Der∗ L(X).

Proof. Let f, f1 ∈ exp(L(X)) and φ, φ1 ∈ Aut∗(Ql{{X}}). Then we
have

(Lf ◦ φ) ◦ (Lf1 ◦ φ1) = Lf ·φ(f1) ◦ (φ ◦ φ1).

This implies that G is a semi-direct product of Lexp(L(X)) and Aut∗

(Ql{{X}}). It follows from Lemma 5.1.1 that the Lie algebra of Aut∗

(Ql{{X}}) is Der∗ L(X). The Lie algebra of Lexp(L(X)) is LL(X). Hence
the Lie algebra of G is equal to LL(X) ×Der∗ L(X) as a vector space.

Let f, g ∈ L(X) and let D,E ∈ Der∗ L(X). Observe that Lf +D is the
tangent vector at t = 1 to the curve t→ Lexp tf ◦ exp tD. To calculate a Lie
bracket of the Lie algebra of G we need to calculate the coefficient at t2 of
the commutator

(Lexp tf ◦ exp tD,Lexp tg ◦ exp tE).

This coefficient is equal L[f,g]+D(g)−E(f) + [D,E]. This shows that the Lie
algebra of G is the semi-direct product of Lie algebras LL(X) ×̃Der∗ L(X) ≈
L(X) ×̃Der∗ L(X).

Proposition 5.1.5. Let σ ∈ GK. Then ψx,p(σ) ∈ Lexp(L(X)) ×̃ Aut∗

(Ql{{X}}) and logψx,p(σ) ∈ LL(X) ×̃Der∗L(X).

Proof. Let σ ∈ GK and w ∈ Ql{{X}}. We have

(5.1.6) ψx,p(σ)(w) = Λ(p,x)(σ) · ϕx(σ)(w).

It follows from (5.1.6) that ψx,p(σ) belongs to the semi-direct product

Lexp(L(X)) ×̃Aut∗(Ql{{X}}).

The Lie algebra of the semi-direct product of groups Lexp(L(X)) ×̃ Aut∗

(Ql{{X}}) is equal to a semi-direct product of Lie algebras LL(X) ×̃
Der∗ L(X) ≈ L(X) ×̃ Der∗ L(X) by Lemma 5.1.4. Therefore logψx,p(σ) ∈
LL(X) ×̃Der∗ L(X). This finishes the proof of the proposition.
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Below we shall calculate both components of log ψx,p(σ).

We denote by © a product given by the Baker-Campbell-Hausdorff

formula (BCH formula) (see [MKS, Theorem 5.19]).

Proposition 5.1.7. The element log ψx,p(σ)(1) ∈ L(X) and we have

log ψx,p(σ) = L(logψx,p(σ))(1) + logϕx(σ).

Proof. Let g, h ∈ L(X) and D ∈ Der∗(Ql{{X}}). Then [Lg, Lh] =
L[g,h] and [D,Lg] = LD(g). Hence all terms of logψx,p(σ) − logϕx(σ) =
Llog Λ(p,x)(σ)© log ϕx(σ)− log ϕx(σ) are of the form Lg for some g ∈ L(X).

Therefore log ψx,p(σ) = Lg +log ϕx(σ) for some g ∈ L(X). Evaluating both
sides of the equality at 1 we get that g = (ψx,p(σ))(1). This finishes the
proof of the proposition.

Proposition 5.1.8. Let σ ∈ GK . Then we have

log ϕx(σ)(Xk) = [Xk; (log ψx,γk
(σ))(1)]

for k = 1, . . . , n.

Proof. One computes easily that

(log ψx,γk
(σ))(1) = (Λ(γk ,x)(σ)− 1)

− 1
2

(

Λ(γk ,x)(σ) · ϕx(σ)(Λ(γk ,x)(σ))− 2Λ(γk ,x)(σ) + 1
)

+ 1
3

(

Λ(γk ,x)(σ) · ϕx(σ)(Λ(γk ,x)(σ)) · ϕx(σ)2(Λ(γk ,x)(σ))

− 3Λ(γk ,x)(σ) · ϕx(σ)(Λ(γk ,x)(σ)) + 3Λ(γk ,x)(σ)− 1
)

· · · .

This implies that (log ψx,γk
(σ))(Xk) = Xk · ((log ψx,γk

(σ))(1)). Now it fol-
lows from Proposition 5.1.7 that logϕx(σ)(Xk) = [Xk; (log ψx,γk

(σ))(1)].

5.2. The main object of our study are coefficients of the operator

log ψx,p(σ) for varing σ (see Definition 5.3.0). The element logψx,p(σ) ∈

LL(X)×̃Der∗ L(X). Hence to study these coefficients we need to study linear

forms on the Lie algebra LL(X) ×̃Der∗ L(X) and on various Lie subalgebras

of this Lie algebra. First we define suitable linear forms which evaluated on

the element logψx,p(σ) gives coefficients. Next we are studying properties

of the operators induced by the Lie brackets on these linear forms.

The free Lie algebra Lie(X) (resp. the completed free Lie algebra L(X))

has an obvious Q-structure - a free Lie algebra over Q on the set X (resp. a
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completed free Lie algebra over Q on the set X). Therefore the Lie algebras

of derivations Der Lie(X) and Der∗ Lie(X) (resp. DerL(X) and Der∗ L(X))

have also Q-structures.

Let Lie(X)m be a vector subspace of Lie(X) of homogenous elements of

degree m. Let (Lie(X)m)∗ be the dual vector space of the finite dimentional

vector space Lie(X)m. We define the graded dual Lie(X)� of the free Lie

algebra by

Lie(X)� :=

∞
⊕

m=1

(Lie(X)m)∗.

Let 〈Xi〉 be a vector subspace of Lie(X) generated by Xi and let 〈Xi〉
∗ be

the dual vector space. We define the subspace of Lie(X)� of linear forms

killing 〈Xi〉 by

(Lie(X)/〈Xi〉)
� := ker(Lie(X)� → 〈Xi〉

∗).

We shall define the graded dual of the semi-direct product Lie(X) ×̃ Der∗

Lie(X). We start with the following observation. Let D ∈ Der∗ Lie(X) be

such that D(Xi) = [Xi, Ai] for i = 1, . . . , n. The map

f : Der∗ Lie(X) −→
n

⊕

i=1

(Lie(X)/〈Xi〉)

given by f(D) = (A1, . . . , An) is an isomorphism of vector spaces. The

isomorphism f is compatible with Q-structures on both vector spaces. The

isomorphism f identifies Der∗ Lie(X) with
⊕n

i=1(Lie(X)/〈Xi〉). We define

the graded dual of the Lie algebra Der∗ Lie(X) by

(Der∗ Lie(X))� :=
n

⊕

i=1

(Lie(X)/〈Xi〉)
�.

The dual of a semi-direct product of two Lie algebras is a direct sum

of duals of these two Lie algebras. Hence we set

(Lie(X) ×̃Der∗ Lie(X))� := Lie(X)� ⊕ (Der∗ Lie(X))�.

Definition 5.2.0. Let V be a vector space. We say that V is a Lie
coalgebra if V is equipped with a linear map d : V → V ⊗ V satisfying

i) τ ◦ d+ d = 0, where τ(a⊗ b) = b⊗ a;
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ii)
∑2

i=0 σ
i ◦ (d⊗ idV ) ◦ d = 0, where σ(a⊗ b⊗ c) = b⊗ c⊗ a.

It follows from i) that d factors through d : V → V ∧ V , where

V ∧ V =

{

∑

i∈I

ni(ai ⊗ bi − bi ⊗ ai) ∈ V ⊗ V

}

.

Farther we shall also denote V ∧ V by
∧2 V .

Lemma 5.2.1. i) If V is a Lie coalgebra then the dual vector space

V ∗ equipped with [ ] := d∗ : V ∗ ⊗ V ∗ → V ∗ is a Lie algebra.

ii) If L is a Lie algebra then L∗ equipped with d := [ ]∗ : L∗ → L∗ ⊗ L∗

is a Lie coalgebra.

Corollary 5.2.2. The vector spaces Lie(X)�, (Der∗ Lie(X))� and

(Lie(X) ×̃Der∗ Lie(X))� equipped with d := [ ]∗ are Lie coalgebras.

Proof. The dual vector spaces Lie(X)∗, (Der∗ Lie(X))∗ and (Lie(X) ×̃
Der∗ Lie(X))∗ equipped with d := [ ]∗ are Lie coalgebras. Observe that
d preserves Lie(X)�, (Der∗ Lie(X))� and (Lie(X) ×̃ Der∗ Lie(X))�. Hence
these vector spaces are also Lie coalgebras.

5.2.3. The vector spaces Lie(X)�, (Der∗ Lie(X))� and (Lie(X) ×̃ Der∗

Lie(X))� are canonically embedded as Lie coalgebras into L(X)∗, (Der∗

L(X))∗ and (L(X) ×̃Der∗ L(X))∗ respectively. When we view these vector

spaces as vector subspaces of L(X)∗, (Der∗ L(X))∗ and (L(X)×̃Der∗ L(X))∗

then we denote them by L(X)�, (Der∗ L(X))� and (L(X) ×̃ Der∗ L(X))�

respectively.

5.3. Below we shall give the very definition of the l-adic iterated inte-

grals. Observe that the element (log ψx,p(σ))(1) is a Lie element in Ql{{X}}

by Proposition 5.1.7.

Definition 5.3.0. Let us fix a Hall base B of Lie(X). Let σ ∈ GK .
We set

ax,p(σ) := (log ψx,p(σ))(1) =
∑

e∈B

aex,p(σ) · e.

Let φ ∈ L(X)� be a linear form defined over Q. We set

aφx,p(σ) := φ((log ψx,p(σ))(1)).
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The functions aex,p : GK → Ql we shall call l-adic iterated integrals.
If e ∈ B then we denote by e∗ the dual vector with respect to this base

B. Observe that the set {e∗}e∈B is a linear base of Lie(X)�. Hence any aφx,p
is a linear combination of a finite number of aex,p.

Theorem 5.3.1. Let e ∈ B be an element of degree i. We have:

i) aex,p(σ) = 0 for σ ∈ Hi+1.

ii) aex,p(τ · σ) = aex,p(τ) + aex,p(σ) for any τ, σ ∈ Hi.

iii) The homomorphism aex,p|Hi
: Hi → Ql(i) is compatible with the action

of Gal(K(µl∞)/K) on Hi and Ql(i).

iv) The homomorphism aex,p|Hi
: Hi → Ql(i) depends only on z and v. It

does not depend on the choice of geometric generators x (in a given

permutation class) and on a choice of a path p from v to z.

Proof. The point i) follows from the definition of the group Hi and
from Lemma 4.1.1. Let τ, σ ∈ Hi. Then ψx,p(σ) = σx,p, ψx,p(τ) = τx,p and
ψx,p(τ · σ) = (τ · σ)x,p It follows from the point i) that

(5.3.2) (log σx,p)(1) =
∑

e∈Bi

aex,p(σ) · e+
∑

j≥i+1

∑

e∈Bj

aex,p(σ) · e.

We have (τ · σ)x,p = τx,p ◦ σx,p. The BCH formula implies

log(τ · σ)x,p = log τx,p + log σx,p +
1

2
[log τx,p, log σx,p] + · · · .

Evaluating both sides of the equality at 1 we get

(log(τ · σ)x,p)(1) = (log τx,p)(1) + (log σx,p)(1) +A(τ, σ)(1),

where A(τ, σ) = 1
2 [log τx,p, log σx,p] + · · · . It follows from the point i) that

terms of degree i of A(τ, σ)(1) vanish. Hence aex,p(τ · σ) = aex,p(τ) + aex,p(σ)
for e ∈ Bi and τ, σ ∈ Hi. The points iii) and iv) follow from Lemma 3.2.1.

We recall from Proposition 5.1.7 that

logψx,p(σ) = L(logψx,p(σ))(1) + log ϕx(σ).

The l-adic iterated integrals introduced in Definition 5.3.0 are coefficients of
the element (log ψx,p(σ))(1). We must also study coefficients of the operator
logϕx(σ). We recall that ϕx(σ) is an automorphism of Ql{{X}} induced
by the action of σ on π1(XK̄ ; v) twisted by the cyclotomic character (see
Section 4). Hence the operator ϕx(σ) depends only on a choice of geometric
generators x = (x1, . . . , xn+1) and on a choice of a base point v.
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Definition 5.3.3. Let ε ∈ (Der∗ L(X))� be a linear form of degree m
and let σ ∈ GK . We set

ε(v)(σ) := ε(log ϕx(σ)).

Observe that ε(v) is a function from GK to Ql. We shall use functions
ε(v) to express the action of the operator d on l-adic iterated integrals.
Any function ε(v) is in fact a linear combination of l-adic iterated integrals
defined in Definition 5.3.0. However it is still very useful to have a separated
notation for these functions.

Proposition 5.3.4. There are e1, . . . , er ∈ Bm and αk,i ∈ Ql for 0 <
k < n+ 1 and 0 < i < r + 1 such that

ε(v) =
n

∑

k=1

r
∑

i=1

αk,ia
ei
x,γk

.

If ε is defined over Q then αk,i are in Q.

Proof. The proposition follows from Proposition 5.1.8.

We shall see later that the function aex,p : GK → Ql depends on a choice

of a path p from v to z. Assume that e is of degree m. It follows from

Theorem 5.3.1 iv) that the restriction of aex,p to the subgroup Hm(X; z, v)

depends only on z and v. It does not depend on a choice of a path p. This

motivate the following definition.

Definition 5.3.5. Let e ∈ B be an element of degree m and let ϕ ∈
L(X)� be a linear form of degree m. We set

Le(z, v) := aex,p|Hm(X;z,v)
and Lϕ(z, v) := aϕx,p|Hm(X;z,v)

.

Let ε ∈ (Der∗ L(X))� be a linear form of degree m. We set

Lε(v) := ε(v)|Hm(X;z,v).

It follows from Proposition 5.3.4 that

Lε(v) =
n

∑

k=1

r
∑

i=1

αk,iL
ei(vk, v).
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§6. Cocycle conditions

6.0. It follows from Proposition 1.0.7 that the function fp : GK →

π1(XK̄ ; v) is a cocycle. Similarly Lemma 4.2.1 implies that the functions

ϕx : GK → Aut(Ql{{X}}) and ψx,p : GK → GL(Ql{{X}}) are cocycles.

The map ( )x,p : GK(µl∞ ) → GL(Ql{{X}}) is a homomorphism. However

coefficients of these matrix valued functions usually are not cocycles or

homomorphisms.

Let ϕ ∈ L(X)� be a linear form of degree m. The function aϕx,p :

GK(µl∞) → Ql(m) (resp. aϕx,p : GK → Ql(m)) usually is not a homo-

morphism (resp. a cocycle). We are looking for conditions when a linear

combination of various aϕx,p with Ql coefficients is a homomorphism (resp.

a cocycle).

Let T be a finite subset of X̂(K)2 containing a pair (z, v). It follows

from Section 5.0 that aϕx,p and ε(v) can be also considered as functions from

the Lie algebra Lie(KT1 (X)/KT∞(X)) to Ql.

Lemma 6.0.1. Let ϕ ∈ L(X)� be a linear form of degree m and let T
be a finite subset of X̂(K)2 containing a pair (z, v). Assume that

d(ϕ) =
∑

k+j=m

(

∑

e∈Bk, e′∈Bj

ce,e′e
∗ ∧ e′

∗
+

∑

e∈Bk, ε∈(Der∗ L(X))j

be,εe
∗ ∧ ε

)

in
∧2(L(X) ×̃Der∗ L(X))�. Then we have

d(aϕx,p) =
∑

k+j=m

(

∑

e∈Bk, e′∈Bj

ce,e′a
e
x,p∧a

e′
x,p+

∑

e∈Bk, ε∈(Der∗ L(X))j

be,εa
e
x,p∧ε(v)

)

in
∧2 (

Lie(KT1 (X)/KT∞(X))
)∗

, where

(

Lie(KT1 (X)/KT∞(X))
)∗

:= HomZl

(

Lie(KT1 (X)/KT∞(X));Ql

)

.

Proof. The lemma is an obvious consequence of the fact that the map

Lie( )x,p : Lie(KT1 (X)/KT∞(X)) −→ LL(X) ×̃Der∗L(X)

is a morphism of Lie algebras.

Proposition 6.0.2. Let (zi, vi) ∈ X̂(K)2, let ϕi ∈ L(X)� be a linear

form of degree m, let pi be a path from vi to zi and let xi be a sequence

of geometric generators of π1(X(C); vi) for i = 1, . . . , N . Let n1, . . . , nN
be in Ql. Let T be a finite subset of X̂(K)2 containing pairs (zi, vi) for

i = 1, . . . , N .
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i) Assume that d
(
∑N

i=1 nia
ϕi
xi,pi

)

= 0 in
∧2(Lie(KT1 (X)/KT∞(X))

)∗
.

Then
∑N

i=1 nia
ϕi
xi,pi is a homomorphism from KT1 (X)/KT∞(X) to

Ql(m).

ii) Assume that for any τ and σ in GK

N
∑

i=1

niϕi
(

[· · · [· · · [log ψxi,pi
(τ), log ψxi,pi

(σ)χ(τ)−1
], log ψxi,pi

(τ)] · · · ](1)
)

= 0

for all Lie brackets of lengths 2, 3, . . . ,m. Then
∑N

i=1 nia
ϕi
xi,pi is a

cocycle on GK with values in Ql(m).

Proof. We start with the proof of the first part of the proposition. Let
τ, σ ∈ KT1 (X). Let us set Ti = log τxi,pi

and Si = log σxi,pi
. The equality

τxi,pi
◦ σxi,pi

= (τσ)xi,pi
implies

log(τσ)xi,pi
= Ti + Si +

1

2
[Ti, Si]−

1

12
[[Ti, Si]Ti] + · · · .

Evaluating ϕi on the last equality we get

aϕi
xi,pi

(τσ) = aϕi
xi,pi

(τ) + aϕi
xi,pi

(σ) +
1

2
ϕi([Ti, Si])−

1

12
ϕi([[Ti, Si]Ti]) + · · · .

Observe that ϕi([Ti, Si]) = dϕi(Ti ⊗ Si) = daϕi
xi,pi(log τ ⊗ log σ). Hence

∑N
i=1 niϕi([Ti, Si]) = 0. Observe that ϕ([[T, S]R]) = ((d⊗id )◦d)(ϕ)(T⊗S⊗

R). This implies
∑N

i=1 niϕi([[Ti, Si]Ti]) = 0. We apply the same arguments
to others brackets and finally we get

N
∑

i=1

nia
ϕi
xi,pi

(τσ) =

N
∑

i=1

nia
ϕi
xi,pi

(τ) +

N
∑

i=1

nia
ϕi
xi,pi

(σ).

Now we assume that τ, σ ∈ GK . The equality

ψxi,pi
(τσ) = ψxi,pi

(τ) ◦ ψxi,pi
(σ)χ(τ)−1

(see Lemma 4.2.1) implies that

logψxi,pi
(τσ) = logψxi,pi

(τ)© log ψxi,pi
(σ)χ(τ)−1

= logψxi,pi
(τ) + logψxi,pi

(σ)χ(τ)−1

+
1

2
[logψxi,pi

(τ), log ψxi,pi
(σ)χ(τ)−1

] + · · · .

Now the second part of the proposition follows immediately from the as-
sumptions ii).
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6.1. We shall define filtrations of the Lie algebras Der∗L(X) and

L(X) ×̃Der∗L(X) associated with the lower central series of L(X).

Let us set

Der∗k L(X) := {D ∈ Der∗L(X) | ∀Xi ∈ X ∃Ai ∈ ΓkL(X), D(Xi) = [Xi, Ai]}

and

γk(L(X) ×̃Der∗ L(X)) := ΓkL(X) ×̃Der∗k L(X).

Lemma 6.1.0. Der∗k L(X) (resp. γk(L(X) ×̃Der∗ L(X))) is a Lie ideal

of Der∗L(X) (resp. L(X) ×̃ Der∗L(X)). We have isomorphisms of Lie

algebras
∞

⊕

k=1

Der∗k L(X)/Der∗k+1 L(X) = Der∗ Lie(X)

and

∞
⊕

k=1

γk(L(X)×̃Der∗ L(X))/γk+1(L(X)×̃Der∗ L(X)) = Lie(X)×̃Der∗ Lie(X).

Proof. The lemma follows from the fact that the graded associated Lie
algebra

⊕∞
k=1 ΓkL(X)/Γk+1L(X) is canonically isomorphic to Lie(X).

Let T be a finite subset of X̂(K)2. We set

kT (X) := gr Lie(KT1 (X)/KT∞(X)) :=
∞

⊕

i=1

Lie(KTi (X)/KTi+1(X)) ⊗Q.

The homomorphism of Lie algebras

Lie( )x,p : Lie(KT1 (X)/KT∞(X)) −→ L(X) ×̃Der∗ L(X)

is compatible with filtrations {Lie(KTi (X)/KT∞(X))}∞i=1 of Lie(KT1 (X)/

KT∞(X)) and {γi(L(X) ×̃ Der∗ L(X))}∞i=1 of L(X) ×̃ Der∗ L(X). Therefore

it induces a homomorphism of associated graded Lie algebras

πTz,v : kT (X) −→ Lie(X) ×̃Der∗ Lie(X).

Let us set

kT (X)� :=
∞

⊕

i=1

(

Lie(KTi (X)/KTi+1(X)) ⊗Q
)∗
.
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Then kT (X)� is a Lie coalgebra and we have a homomorphism of Lie coal-

gebras

(πTz,v)
� : (Lie(X) ×̃Der∗ Lie(X))� −→ kT (X)�.

Moreover an inclusion S ⊂ T of finite subsets of X̂(K)2 induces a morphism

of Lie coalgebras

kS(X)� −→ kT (X)�.

Definition 6.1.1. Let C be the category whose objects are all finite
subsets of X̂(K)2 and whose morphisms are inclusions. We set

k(X)� := lim
−→
C

kT (X)�.

The Ql-vector space k(X)� is a Lie coalgebra and morphisms (πTz,v)
� :

(Lie(X) ×̃Der∗ Lie(X))� → kT (X)� induce a morphism of Lie coalgebras

π�z,v : (Lie(X) ×̃Der∗ Lie(X))� −→ k(X)�.

Observe that
Le(z, v) = e∗ ◦ πz,v = π�z,v(e

∗)

and
Lε(v) = ε ◦ πv,v = ε ◦ πz,v = π�v,v(ε) = π�z,v(ε)

for any e ∈ B and for any ε ∈ (Der∗ Lie(X))� of degree n.
Hence we get

dLe(z, v) = d(π�z,v(e
∗)) = (π�z,v ∧ π

�
z,v)(d(e

∗)).

Warning: π�z,v is not injective, hence we can have d(e∗) 6= 0 but d(Le(z, v)) =
0.

Proposition 6.1.2. Let ϕ ∈ L(X)� be a linear form of degree m. If

d(ϕ) =
∑

k+j=m

(

∑

e∈Bk, e′∈Bj

ce,e′e
∗ ∧ e′

∗
+

∑

e∈Bk, ε∈(Der∗ L(X))j

be,εe
∗ ∧ ε

)

in
∧2(L(X) ×̃Der∗ L(X))� then

d(Lϕ(z, v)) =
∑

k+j=m

(

∑

e∈Bk, e′∈Bj

ce,e′L
e(z, v) ∧ Le

′

(z, v)

+
∑

e∈Bk, ε∈(Der∗ L(X))j

be,εL
e(z, v) ∧ Lε(v)

)

in k(X)�.
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§7. Analog of Zagier conjecture

7.0. We shall present here a conjecture which is an l-adic analog of con-

jectures concerning iterated integrals from [W3]. These conjectures are gen-

eralizations of the Zagier conjecture for classical complex polylogarithms.

The main ideas come from the Deligne-Beilinson paper.

We assume that there exists a category of mixed Tate motives over

SpecK such as in [BD]. (We do not know if recent constructions of Vo-

evodsky and others are sufficient for our purpose.) We shall denote this

category byMMK . The categoryMMK is a tannakian category and it is

equivalent to a category of representations of a pro-algebraic group ΠK de-

fined over Q. Let UK := ker(ΠK → Gm). The group UK is a pro-algebraic

pro-unipotent group defined over Q. We denote by LieUK its Lie algebra.

This Lie algebra is equipped with the weight filtration. Let

Lie UK =

∞
⊕

n=1

(Lie UK)n

be the associated graded Lie algebra. We set

(Lie UK)� :=
∞

⊕

n=1

(Lie UK)�n.

(Lie UK)� equipped with d - the dual of the Lie bracket - is a Lie coalgebra.

Let X be a projective line over K minus a finite number of K-points.

We shall construct a Lie subcoalgebra of the Lie coalgebra (Lie UK)� cor-

responding to the pro-unipotent part of the fundamental group of the tan-

nakian category generated by mixed motives of torsors of paths from v to

z on X for all pairs (z, v) ∈ X̂(K)2.

We shall construct this Lie subcoalgebra of (Lie UK)� in the inductive

way. This Lie subcoalgebra will be a graded Lie coalgebra. The construction

in degree 1 will be clear. We shall assume that we have constructed our

Lie coalgebra up to degree N , i.e., we have
⊕N−1

i=1 Li and d :
⊕N−1

i=1 Li →
∧2(⊕N−2

i=1 Li
)

.

We construct a candidate L′
N in degreeN and d′N : L′N →

∧2(⊕N−1
i=1 Li

)

.

Our construction should be motivic hence we should have the following com-
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mutative diagram

ker d′N
Φ′

N

−−−−→ ker dN






y







y

L′N
Φ̄N

−−−−→ (Lie UK)�N






y

d′N







y

dN

∧2(⊕N−1
i=1 Li

)

V2(
LN−1

i=1 Φi)

−−−−→
∧2(⊕N−1

i=1 (Lie UK)�i
)

Then it is clear that LN = L′N/ ker Φ̄N . Observe that L′N/ ker Φ̄N =

L′N/ ker Φ′
N . In fact we shall conjecture that we have a map

Φ′
N : ker d′N −→ ker dN = Ext1MMK

(Q(0),Q(N)) ⊗Q

and we shall set LN = L′N/ ker Φ′
N . This is a short motivic justification of

our next steps.

We recall that in the category MMK

Ext1MMK
(Q(0),Q(1)) ⊗Q = K∗ ⊗Q.

7.1. Let X = P1
K \ {a1, . . . , an+1}. We assume for simplicity that

an+1 = ∞. Let us choose a tangential base point vi (a tangent vector) at

ai for i = 1, 2, . . . , n + 1. Let B be a Hall base of Lie(X) and let Bm be

elements of degree m in B.

For k = 1 we set L1 := K∗ ⊗Q, d1 = 0 : L1 → 0. We define symbols

{z, v}Xi
∈ L1 in the following way. If (z, v) ∈ X(K)2 then {z, v}Xi

:=
z−ai

v−ai
⊗ 1 ∈ L1, if z ∈ X(K) and v = −→aix then {z, v}Xi

:= z−ai

x−ai
⊗ 1 ∈ L1 and

{z, v}Xj
:=

z−aj

ai−aj
⊗1 ∈ L1, if z =

−−→
akx

′ and v = −→alx then {z, v}Xi
:= ak−ai

al−ai
⊗

1 ∈ L1 for i 6= k, l, {z, v}Xk
:= x′−ak

al−ak
⊗1 ∈ L1 and {z, v}Xl

:= ak−al

x−al
⊗1 ∈ L1.

We define a map

ϕ1 : L1 −→ Ext1MMK
(Q(0),Q(1)) ⊗Q = K∗ ⊗Q

by ϕ1(z ⊗ 1) := z ⊗ 1. We define

ψ1 : L1 −→ H1(K1(X),Ql(1))

by ψ1({z, v}Xi
) := LXi(z, v). (We recall that K1(X) = Gal(K̄/K(µl∞)).)
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Proposition 7.1.0. The diagram

L1

ϕ1

−−−−→ Ext1MMK
(Q(0),Q(1)) ⊗Q







y

ψ1







y

realization

H1(K1(X),Ql(1))←−−−−↩ H1(GK ,Ql(1)),

commutes, where realization associates to z⊗1 ∈ K ∗⊗Q = Ext1MMK
(Q(0),

Q(1))⊗Q the Kummer character corresponding to z.

Proof. Let (z, v) ∈ X̂(K)2 and let p be a path from v to z. First we
consider the case when z and v are K-points of X. Let us take σ ∈ GK(µl∞ ).
We shall calculate the coefficient of (log σx,p)(1) at Xi. This coefficient is
equal to the exponent of fp(σ) at xi. Let ζ be a coordinate on P1

K . The
loop fp(σ) = p−1 · σ · p · σ−1 transforms (ζ − ai)

1/ln into

σ−1((v − ai)
1/ln)

(v − ai)1/l
n ·

σ((z − ai)
1/ln)

(z − ai)1/l
n · (ζ − ai)

1/ln .

This finishes the proof of the proposition when (z, v) ∈ X(K)2. Now we
assume that v = −→aix is a tangential base point and z is a K-point. The
isomorphism of P1

K given by y → y−ai

x−ai
is defined over K. Hence we can

assume that ai = 0, v =
−→
01 and p is a path from

−→
01 to z1 = z−ai

x−ai
. Let ζ be

a local parameter corresponding to the tangential base point
−→
01. The loop

fp(σ) transforms ζ1/ln into σ
(

( z−ai

x−ai
)1/l

n)

·
(

( z−ai

x−ai
)1/l

n)−1
· ζ1/ln . Hence the

exponent of fp(σ) at xi is equal to the Kummer character of z−ai

x−ai
evaluated

at σ. The other cases we left to the readers.

Let N > 1. We assume that the groups Lk, the symbols {z, v}e ∈ Lk
for e ∈ Bk, the homomorphisms dk : Lk →

⊕

i+j=k Li ∧ Lj, ϕk : ker dk →

Ext1MMK
(Q(0),Q(k)) ⊗ Q and ψk : Lk → H1

C(Kk(X),Ql(k)) are defined

for k < N . We assume that for k < N the diagram

ker dk
ϕk

−−−−→ Ext1MMK
(Q(0),Q(k)) ⊗Q







y

ψk







y

realization

H1
C(Kk(X),Ql(k))←−−−−↩ H1(GK ,Ql(k))
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commutes. We recall that the lower horizontal morphism is injective by

Lemma 3.0.10.

Let ϕ ∈ Lie(X)� be a linear form of degree k defined over Q. If ϕ =
∑

i ai(e
k
i )

∗
then we set {z, v}ϕ :=

∑

i ai{z, v}ek
i
.

Let ε ∈ (Der∗ Lie(X))� =
⊕n

i=1(Lie(X)/〈Xi〉)
� be a linear form of

degree k defined over Q. Assume that ε = (ϕ1, . . . , ϕn), where ϕi ∈

(L(X)/〈Xi〉)
�. Then we set

{v}ε :=

n
∑

i=1

{vi, v}ϕi
.

Observe that Lε(v) =
∑n

i=1 L
ϕi(vi, v).

Let BN = {eNi }i∈I . For each eNi we set

Le
N
i :=

⊕

{z,v}∈X̂(K)2

Q{z, v}′eN
i
− a vector space over Q on symbols {z, v}′eN

i

and

L′N :=
⊕

i∈I

Le
N
i .

Let e ∈ BN . We define

d′N : L′N −→
⊕

i+j=N

Li ∧ Lj

setting

d′N ({z, v}′e) =
∑

k+j=N

(

∑

e1∈Bk , e2∈Bj

ce1,e2{z, v}e1 ∧ {z, v}e2

+
∑

e′∈Bk, ε∈(Der∗ L(X))j

be′,ε{z, v}e′ ∧ {v}ε

)

if

d(e∗) =
∑

k+j=N

(

∑

e1∈Bk, e2∈Bj

ce1,e2e
∗
1 ∧ e

∗
2 +

∑

e′∈Bk , ε∈(Der∗ L(X))j

be′,εe
∗ ∧ ε

)

in
∧2(Lie(X) ×̃Der∗ Lie(X))�.
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Conjecture DN . There is a homomorphism

ϕ′
N : ker d′N −→ Ext1MMK

(Q(0),Q(N)) ⊗Q

such that the diagram

ker d′N
ϕ′

N

−−−−→ Ext1MMK
(Q(0),Q(N)) ⊗Q







y

ψ′

N







y

realization

H1
C(KN (X),Ql(N))←−−−−↩ H1(GK ,Ql(N)),

commutes, where the map ψ′
N is given by ψ′

N ({z, v}′
eN
i

) := Le
N
i (z, v).

If the conjecture is true then we set LN := L′N/ kerϕ′
N . The maps dN ,

ψN and ϕN are defined by passing to quotient. The symbol {z, v}eN
i

is the

image of {z, v}′
eN
i

in LN .

Definition 7.1.1. We set

LK(X) :=

∞
⊕

N=1

LN .

We define d : LK(X)→ LK(X) ∧ LK(X) by setting d|LN
:= dN .

Lemma 7.1.2. Let ε ∈ (Der∗ Lie(X))� be a linear form of degree N
defined over Q. Assume that

dε =
∑

p+q=N

∑

ε1∈(Der∗ Lie(X))p , ε2∈(Der∗ Lie(X))q

aε1,ε2ε1 ∧ ε2

in
∧2(Der∗ Lie(X))�. Then

d({v}ε) =
∑

p+q=N

∑

ε1∈(Der∗ Lie(X))p , ε2∈(Der∗ Lie(X))q

aε1,ε2{v}ε1 ∧ {v}ε2 .

Proof. We recall that

Der∗ Lie(X) = {D ∈ DerLie(X) |

∀Xi ∈ X ∃Ai ∈ Lie(X), D(Xi) = [Xi, Ai]}.
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The derivation D ∈ Der∗(Lie(X)) such that D(Xi) = [Xi, Ai] we shall
denote by D(A1,...,An) = D(Ai)i=1,...,n

. We have an identification

Der∗ Lie(X) =

n
⊕

i=1

Lie(X)/〈Xi〉

sending D(A1,...,An) to a sequence (A1, . . . , An). One easily checks that
(7.1.3)

[D(Vk)k=1,...,n
, D(Wk)k=1,...,n

] = D([Vk,Wk]+D(Vj )j
(Wk)−D(Wj )j

(Vk))k=1,...,n
.

If e ∈ B then we set (e)i = (a1, . . . , an) ∈
⊕n

k=1 Lie(X)/〈Xk〉, where ai = e
and aj = 0 for j 6= i.

Let ε ∈ (Der∗ Lie(X))�. Then ε =
∑n

i=1

(
∑

e∈B ne,i(e)
i∗

)

, where (e)i∗ is
a composition of e∗ with the projection

⊕n
k=1 Lie(X)/〈Xk〉 → Lie(X)/〈Xi〉.

We shall compare d(e∗) with d((e)i∗) in (Lie(X) ×̃ Der∗ Lie(X))�. Observe
that e∗ ∈ Lie(X)� and (e)i∗ ∈ (Der∗ Lie(X))�. It follows from the definition
of the Lie bracket in the semi-direct product Lie(X) ×̃Der∗(Lie(X)) that

(7.1.4)

d(e∗) =
∑

e1,e2∈B

e∗([e1, e2])e
∗
1 ∧ e

∗
2 +

n
∑

k=1

∑

e3,e4∈B

e∗(D(e4)k(e3))e
∗
3 ∧ (e4)

k∗.

Hence we get

d({vi, v}e) =
∑

e1,e2∈B

e∗([e1, e2]){vi, v}e1 ∧ {vi, v}e2(7.1.5)

+

n
∑

k=1

∑

e3,e4∈B

e∗(D(e4)k(e3)){vi, v}e3 ∧ {v}(e4)k∗ .

On the other side it follows from (7.1.3) that

d((e)i∗) =
∑

e1,e2∈B

e∗([e1, e2])(e1)
i∗ ∧ (e2)

i∗(7.1.6)

+
n

∑

k=1

∑

e3,e4∈B

e∗(D(e4)k(e3))(e3)
i∗ ∧ (e4)

k∗.

We recall that we have defined {v}(e)i∗ := {vi, v}e. Hence if in the right

hand side of the equality (7.1.6) we replace (eα)j∗ by {v}(eα)j∗ then we get
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the right hand side of the equality (7.1.5). Therefore the lemma is proved
for ε = (e)i∗. Any ε ∈ (Der∗ Lie(X))� is a linear combination of (e)i∗, hence
the lemma is proved for any ε ∈ (Der∗ Lie(X))�.

Proposition 7.1.7. The Q-vector space LK(X) equipped with the ho-

momorphism d : LK(X)→ LK(X) ∧ LK(X) is a Lie coalgebra.

Proof. It is enough to show that

(7.1.8)

2
∑

i=0

σi ◦ (d⊗ idLK(X)) ◦ d = 0,

where σ(a⊗ b⊗ c) = b⊗ c⊗a. In the Lie coalgebra (Lie(X) ×̃Der∗ Lie(X))�

we obviously have

(7.1.9)
2

∑

i=0

σi ◦ (d⊗ id (Lie(X)×̃Der∗ Lie(X))�) ◦ d = 0.

The calculation of d({z, v}e) (corresponding to d(e∗) in (Lie(X) ×̃Der∗

Lie(X))�) involves only symbols {z, v}e1 (corresponding to e∗1 in (Lie(X) ×̃
Der∗ Lie(X))�) and {vi, v}e2 = {v}(e2)i∗ (corresponding to (e2)

i∗ in (Lie(X)×̃
Der∗ Lie(X))�). Hence the proposition follows from Lemma 7.1.2.

Proposition 7.1.10. Assume that Conjectures DN are true for all N
and that for all N the maps realization : Ext1

MMK
(Q(0),Q(N)) ⊗ Q →

H1(GK ,Ql(N)) are injective. Let (zi, vi) ∈ X̂(K)2 and let eNi ∈ BN for

i = 1, . . . ,m. Let ni ∈ Ql for i = 1, . . . ,m. Then
∑m

i=1 niL
eN
i (zi, vi) = 0 if

and only if
∑m

i=1 ni{zi, vi}eN
i

= 0 in LN ⊗Ql.

Proof. It is well known that the restriction map H 1(GK ,Ql(1)) →
H1(GK(µl∞ ),Ql(1)) is injective. Hence it follows from Proposition 7.1.0 that
the proposition is true for k = 1. Let us assume that it is true for k < N .
Let

∑m
i=1 niL

eN
i (zi, vi) = 0. This implies that d(

∑m
i=1 niL

eN
i (zi, vi)) =

∑

k+l=N

∑

α,β c
k,l
α,βL

ek
α(zα, vα) · Le

l
β (zβ, vβ) = 0 in t(X)� ∧ t(X)�. Hence for

any σ ∈ KTk (X)/KTk+1(X) we have
∑

α,β c
k,l
α,βL

ek
α(zα, vα)(σ) ·Le

l
β (zβ , vβ) = 0

for T sufficiently big. Hence by the induction hypothesis we have
∑

α,β c
k,l
α,β

Le
k
α(zα, vα)(σ)·{zβ , vβ}el

β
= 0. Let f : L → Ql be a homomorphism. We get

that for all σ ∈ KTk (X)/KTk+1(X),
∑

α,β c
k,l
α,βL

ek
α(zα, vα)(σ) · f({zβ , vβ}el

β
) =
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0. The induction hypothesis implies that for any homomorphism f : L →
Ql we have

∑

α,β c
k,l
α,β{zα, vα}ek

α
· f({zβ, vβ}el

β
) = 0. This implies that

d(
∑m

i=1 ni{zi, vi}eN
i

) = 0. The assumption that the realization and the

restriction are injective implies that
∑m

i=1 ni{zi, vi}eN
i

= 0 in LK(X)⊗Ql.

Corollary 7.1.11. Assume that Conjectures DN are true for all N .

Assume that for all N the maps realization : Ext1
MMK

(Q(0),Q(N))⊗Q→
H1(GK ,Ql(N)) are injective. Let qi ∈ Q for i = 1, . . . ,m.

i) We have a relation
∑m

i=1 qiL
ei(zi, vi) = 0 if and only if

∑m
i=1 qi{zi, vi}ei

= 0 in LK(X).

ii) The vector space of linear relations between functions Le(z, v) is defined

over Q.

Proof. The first part follows immediately from Proposition 7.1.10. Ob-
serve that a vector space of linear relations between elements {z, v}e is gen-
erated by relations with Q-coefficients. This implies the second part of the
corollary.

Proposition 7.1.12. Assume that Conjectures DN are true for all N .

Assume that for all N the maps realization : Ext1
MMK

(Q(0),Q(N))⊗Q→

H1(GK ,Ql(N)) are injective. Then the Lie coalgebras (LK(X)⊗Ql, d) and

(k(X)�, d) are isomorphic.

Proof. Let us define a map

rl : LK(X)⊗Ql −→ k(X)�

by rl({z, v}e ⊗ 1) := Le(z, v). The vector space k(X)� is generated over Ql

by linear forms Le(z, v) ((z, v) ∈ X̂(K) × X̂(K), e ∈ B). Corollary 7.1.11
implies that the map rl is an isomorphism of vector spaces over Ql. It
follows from the definition of d in LK(X) that rl is an isomorphism of Lie
coalgebras over Ql.

§8. Primitive example in the case P1 \ {0, 1,∞}

8.0. We shall show here that the functions aϕx,p are generalizations of

characters considered by Soulé, Deligne, Ihara (see [S1], [S2], [D] and [I1]).

Let V = P 1
Q \ {0, 1,∞}. Let us fix a path p from

−→
01 to

−→
10. We recall

that π1(VQ̄,
−→
01) is a free group on x - a small loop around 0, and y - a loop
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Picture 4

around 1. (One goes from
−→
01 to

−→
10 along p, makes a small loop around 1

and returns to
−→
01 along p (see Picture 4).)

The action of σ ∈ GQ(µl∞ ) is given by

σ(x) = x and σ(y) = fp(σ)−1 · y · fp(σ).

Let us set π′1 := [π1(VQ̄,
−→
01), π1(VQ̄,

−→
01)] and π′′1 := [π′1, π

′
1]. The element

fp(σ) belongs to π′1. Assume that

(8.0.1) fp(σ) =
∏

i,j≥1

(yj−1(xi−1(x, y) · · · ) · · · )αi,j (σ) mod π′′1 .

It implies that

(8.0.2) σ((x, y)) = (x, y)
∏

i,j≥1

(yj(xi(x, y) · · · ) · · · )αi,j (σ) mod π′′1 .

Ihara shows that π′
1/π

′′
1 is a free Zl[[u, v]]-module generated by (x, y), where

(u+ 1) · z = x · z · x−1 and (v+ 1) · z = y · z · y−1 for any z ∈ π′1/π
′′
1 (see [I1,

Theorem 2]). It follows from (8.0.2) that σ((x, y)) = hσ(u, v) · (x, y), where

hσ(u, v) := 1 +
∑

i,j≥1 αi,j(σ)uivj . Coefficients βi,j : GQ(µl∞ ) → Ql(i + j)

are defined by the equality

(8.0.3) log hσ(e
U − 1, eV − 1) =

∑

i,j≥1

βi,j(σ)

i!j!
U iV j

(see [I1, pages 96 and 105]). We shall compare these coefficients with l-adic

iterated integrals defined by us.
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The inclusion k of π1(XQ̄,
−→
01) into Ql{{X,Y }} given by k(x) = eX and

k(y) = eY induces an action of σ on Ql{{X,Y }} given by

σ(X) = X and σ(Y ) = Λp(σ)−1 · Y · Λp(σ).

The logarithm of σ, log σ ∈ Der∗(Ql{{X,Y }}) and

(log σ)(X) = 0, (log σ)(Y ) = [Y,L(X,Y )(σ)]

for some element L(X,Y )(σ) ∈ [L(X,Y ), L(X,Y )]. Let L′ := [L(X,Y ),

L(X,Y )] and L′′ := [L′, L′]. Then

L(X,Y )(σ) =
∞
∑

n=2

∑

i+j=n, i>0, j>0

aij(σ)[· · · [· · · [Y,X]X i−1]Y j−1] mod L′′,

where aij : GQ(µl∞ ) → Ql(i+ j). Hence

(8.0.4)

(log σ)(Y ) =

∞
∑

n=2

∑

i+j=n, i>0, j>0

aij(σ)[· · · [· · · [X,Y ]X i−1]Y j] mod L′′.

We shall calculate the coefficients ai,j.

Lemma 8.0.5. We have k((yb−1(xa−1(x, y) · · · ) · · · ) = era,b(X,Y ), where

ra,b(X,Y ) =
∑

ia,...,i1,jb,...,j1≥1

(−1)ia+···+i1+jb+···+j1−1

ia! · · · i1! · jb · · · j1!

× [· · · [· · · [Y,X]X ia+···+i1−1]Y jb+···+j1−1] mod L′′.

Proof. First one calculates r1,1(X,Y ) and next by induction ra,b(X,Y )
for any pair (a, b).

Lemma 8.0.6. There is a continuous bijection of vector spaces

L′/L′′ ≈ Ql[[s, t]]

given by [· · · [· · · [Y,X]X i−1]Y j−1] → sitj. The element ra,b(X,Y ) ∈ L′/L′′

corresponds to a power series −(e−s − 1)a(e−t − 1)b.



156 Z. WOJTKOWIAK

Observe that Λp(σ) = eϕσ(X,Y ), where ϕσ(X,Y ) ∈ L′. The action of σ

on Ql{{X,Y }} induces

σ : L(X,Y )/L′′ −→ L(X,Y )/L′′

given by σ(X) = X and σ(Y ) = Y +[Y, ϕσ(X,Y )] mod L′′. It follows from

(8.0.1) that

(8.0.7) ϕσ(X,Y ) =
∑

i,j≥1

αi,j(σ)ri,j(X,Y ) mod L′′.

We shall calculate (log σ)(Y ), where σ : L(X,Y )/L′′ → L(X,Y )/L′′.

Proposition 8.0.8. The element (log σ)(Y ) ∈ L′/L′′ corresponds to

the power series

t log

(

1 +
∑

i,j≥1

αi,j(σ)(e−s − 1)i(e−t − 1)j
)

∈ Ql[[s, t]].

Proof. Let Fσ(s, t) ∈ Ql[[s, t]] corresponds to ϕσ(X,Y ) ∈ L′/L′′. Then
the series −tFσ(s, t) corresponds to (σ− Id)(Y ), the series tFσ(s, t)

2 corre-
sponds to (σ−Id)2(Y ), the series t(−Fσ(s, t))

n corresponds to (σ−Id)n(Y ).
Hence (log σ)(Y ) corresponds to the series t log(1−Fσ(s, t)). It follows from
Lemma 8.0.6 that Fσ(s, t) = −

∑

i,j≥1 αi,j(σ)(e−s − 1)i(e−t − 1)j .

It follows from (8.0.4) and Proposition 8.0.8 that the coefficient ai,j(σ)

is equal to the coefficient of the power series − log
(

1 +
∑

i,j≥1 αi,j(σ)(e−s−

1)i(e−t − 1)j
)

at sitj. It follows from (8.0.3) that
βi,j(σ)
i!j! is the coefficient

of the series log
(

1 +
∑

i,j≥1 αi,j(σ)(eU − 1)i(eV − 1)j
)

at U iV j . Hence we

get that
βi,j(σ)
i!j! = (−1)i+j−1ai,j(σ). It follows from Proposition 5.1.8 that

(log σ)(Y ) = [Y, (log σp)(1)]. We recall that (log σp)(1) =
∑

e∈B a
e
p(σ)e,

where B is a Hall base of Lie(X,Y ). Hence we get that

ai,j(σ) = a[···[···[Y,X]Xi−1]Y j−1]
p (σ).

Therefore we have proved the following result.

Proposition 8.0.9. We have

βi,j(σ)

i!j!
= (−1)i+j−1a[[[Y,X]Xi−1]Y j−1]

p (σ).
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225–258.

[W1] Z. Wojtkowiak, The Basic Structure of Polylogarithmic Functional Equations,

Structural Properties of Polylogarithms (L. Lewin, ed.), Mathematical Surveys

and Monographs, Vol 37, pp. 205–231.

[W2] Z. Wojtkowiak, Monodromy of iterated integrals and non-abelian unipotent peri-

ods, Geometric Galois Actions London Math. Soc. L.N. Series 243, Cambridge

University Press, pp. 219–289.

[W3] Z. Wojtkowiak, Mixed Hodge Structures and Iterated Integrals I, Motives, Poly-

logarithms and Hodge Theory. Part I: Motives and Polylogarithms, International

Press Lecture Series Vol. 3, Part I (2002), pp. 121–208.



158 Z. WOJTKOWIAK

[W4] Z. Wojtkowiak, On l-adic iterated integrals, Prépublication n 603, Université de
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