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TOEPLITZ OPERATORS ON HARMONIC

BERGMAN SPACES

BOO RIM CHOE, YOUNG JOO LEE and KYUNGUK NA

Abstract. We study Toeplitz operators on the harmonic Bergman spaces on
bounded smooth domains. Two classes of symbols are considered; one is the
class of positive symbols and the other is the class of uniformly continuous
symbols. For positive symbols, boundedness, compactness, and membership in
the Schatten classes are characterized. For uniformly continuous symbols, the
essential spectra are described.

§1. Introduction

Throughout the paper, Ω ⊂ R
n (n ≥ 2) denotes a fixed bounded domain

with C∞-boundary. For 1 ≤ p < ∞, the harmonic Bergman space bp =
bp(Ω) is the set of all complex-valued harmonic functions f on Ω for which

||f ||p =

{∫

Ω
|f |p dV

}1/p

<∞.

Here and elsewhere, V denotes the Lebesgue volume measure on Ω. We
will also use the notation dy = dV (y) for simplicity. Also, we let b∞ denote
the space of all bounded harmonic functions on Ω.

As is well known, bp is a closed subspace of Lp = Lp(Ω, V ) and hence
a Banach space. In particular, b2 is a Hilbert space. Each point evaluation
is easily verified to be a bounded linear functional on b2. Hence, for each
x ∈ Ω, there exists a unique function R(x, ·) ∈ b2 which has the following
reproducing property:

f(x) =

∫

Ω
f(y)R(x, y) dy (x ∈ Ω)

for all f ∈ b2(Ω).
Let Q be the Hilbert space orthogonal projection from L2 onto b2. The

reproducing kernels R(x, ·) are known to be symmetric and real-valued. See
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[1] for more information and related facts. Hence, the reproducing property
mentioned above yields the following integral representation of Q:

Qψ(x) =

∫

Ω
ψ(y)R(x, y) dy (x ∈ Ω)(1.1)

for functions ψ ∈ L2. For each fixed x ∈ Ω, the function R(x, ·) is known
to be bounded on Ω (see Lemma 2.1). Thus, the projection Q naturally
extends to an integral operator via (1.1) from L1 into the space of all har-
monic functions on Ω. Moreover, for 1 < p < ∞, it is known that Q is a
bounded projection from Lp onto bp. See Theorem 4.2 of [5]. Using this
Lp-boundedness of Q, one can see that b∞ is dense in each of bp, 1 < p <∞
(see Lemma 2.5).

The integral transform Q even extends to M(Ω), the space of all com-
plex Borel measures on Ω. Namely, for each µ ∈M(Ω), the integral

Qµ(x) =

∫

Ω
R(x, y) dµ(y) (x ∈ Ω)

defines a function harmonic on Ω (harmonicity can be checked by using
Lemma 2.1 below).

For µ ∈M(Ω), the Toeplitz operator Tµ with symbol µ is defined by

Tµf = Q(fdµ)

for f ∈ b∞. In case µ = ϕdV , we will write Tµ = Tϕ. Note that Tµ is
densely defined on bp for each 1 < p <∞.

In this paper, we consider two classes of symbols. One is the class of
positive symbols and the other is the class of uniformly continuous symbols.
For positive symbols, we give characterizations for corresponding Toeplitz
operators to be bounded, compact and in the Schatten classes. For uni-
formly continuous symbols, we find the essential spectra of corresponding
Toeplitz operators. Previously, Toeplitz operators with positive or uni-
formly continuous symbols were studied in [4], [6], [8] on the ball; see [2] for
results on the half-space. Our results show that previously known results
continue to hold for general bounded smooth domains.

In Section 2 several preliminary facts are collected. Section 3 is de-
voted to results concerning positive symbols. Section 4 is devoted to results
concerning uniformly continuous symbols.

Constants. We will use the same letter C to denote various positive
constants, often with subscripts indicating dependency, which may change
at each occurrence. We will often abbreviate inessential constants involved
in inequalities by writing A . B for positive quantities A and B if the ratio
A/B has a positive upper bound. Also, we write A ≈ B if A . B and
B . A.
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§2. Basic Lemmas

The main ingredients to our work in this paper are fundamental esti-
mates obtained by Kang and Koo [5]. So, in this section, we recall some
results in [5] and prove some basic consequences.

We let r(x) = dist(x, ∂Ω) for x ∈ Ω. Also, for x, y ∈ Ω, we define

d(x, y) = |x− y| + r(x) + r(y).

Note that our definition of r is slightly different from that in [5]. In [5] the
definition of r requires some smoothness off the boundary of Ω. However,
as far as estimates in Lemma 2.1 and Lemma 2.2 are concerned, those two
definitions does not make any difference.

We first recall a couple of results in [5]. The first one is the size es-
timates of derivatives of the reproducing kernels. In the following we use
the conventional multi-index notations. That is, for an ordered n-tuple
α = (α1, · · · , αn) of nonnegative integers, we let |α| = α1 + · · · + αn and
∂αx = (∂/∂x1)

α1 · · · (∂/∂xn)
αn .

Lemma 2.1. Given multi-indices α and β, there exists a constant Cα,β
such that

|∂αx ∂
β
yR(x, y)| ≤

Cα,β

d(x, y)n+|α|+|β|
(2.1)

for x, y ∈ Ω. Moreover, there exists a constant C such that

R(x, x) ≥
C

r(x)n
(2.2)

for x ∈ Ω.

Proof. See Theorem 1.1 of [5].

The second one is the integral estimates which, together with Lemma
2.1, enable us to estimate integral behavior of the reproducing kernels.

Lemma 2.2. For s, t ≥ 0 with s + t > 0 and t < 1, there exists a

constant Cs,t such that
∫

Ω

dy

d(x, y)n+sr(y)t
≤

Cs,t
r(x)s+t

for x ∈ Ω.

Proof. See Lemma 4.1 of [5].
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Our first observation is that the estimate (2.2) remains valid for points
x, y sufficiently close to each other. To be more precise, let

Eδ(x) = {y ∈ Ω : |x− y| < δr(x)}

for 0 < δ < 1 and x ∈ Ω. Since δ < 1, we note that Eδ(x) is the euclidean
ball with center at x and radius δr(x). We then have the following.

Lemma 2.3. There exist some δ0 ∈ (0, 1) and a constant C such that

C−1 ≤ R(x, y)r(x)n ≤ C

whenever x ∈ Ω and y ∈ Eδ0(x).

Proof. Let x ∈ Ω and y ∈ Eδ(x) for δ to be chosen later. Then, we
have by (2.1)

R(x, x) −R(x, y) ≤ sup
z∈Eδ(x)

|∇zR(x, z)||x − y|

.
δr(x)

d(x, z)n+1

≤
δ

r(x)n

where ∇z denotes the gradient with respect to z-variable. It follows from
(2.2) that

R(x, y) ≥ R(x, x) −
O(δ)

r(x)n
&

1 −O(δ)

r(x)n
.

Now, taking δ small enough, we have

R(x, y) &
1

r(x)n
.

This shows the lower estimate. The upper estimate is a consequence of
(2.1). The proof is complete.

Next, we estimate the Lp-norms of the reproducing kernels.

Lemma 2.4. Let 1 < p <∞. Then there is a constant Cp such that

C−1
p ≤ ||R(x, ·)||p r(x)

n(1− 1
p
)
≤ Cp

for every x ∈ Ω.
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Proof. Let x ∈ Ω. It follows from Lemma 2.1 and Lemma 2.2 that

||R(x, ·)||pp .

∫

Ω

1

d(x, y)np
dy .

1

r(x)n(p−1)
.

For the converse inequality, fix δ0 provided by Lemma 2.3. Then, we have

||R(x, ·)||pp ≥

∫

Eδ0
(x)

|R(x, y)|p dy ≈
V (Eδ0(x))

r(x)np
≈

1

r(x)n(p−1)
.

The proof is complete.

Next, we prove the density of b∞ in bp. We will use the Lp-boundedness
of the projection Q for 1 < p <∞, which is mentioned in the introduction.

Lemma 2.5. The space b∞ is dense in bp for each 1 < p <∞.

Proof. Let 1 < p < ∞ and f ∈ bp. For ε > 0, we let fε = fχΩε where
Ωε = {x ∈ Ω : r(x) ≥ ε}. By Lemma 2.1, one can see Qfε ∈ b∞ for each ε.
Moreover, by boundedness of Q, we have

||f −Qfε||p = ||Q(f − fε)||p . ||f − fε||p

for each ε. Since the last term above goes to 0 as ε→ 0, we have the desired
result. The proof is complete.

We remark in passing that Lemma 2.5 remains valid for p = 1. This can
be seen by constructing nonorthogonal L1-bounded projections, which were
not considered in [5]. Finally, we need the dualities. Given 1 < p <∞, the
exponent p′ will always denote the conjugate exponent of p, i.e.,1/p+1/p′ =1.

Lemma 2.6. Let 1 < p <∞. Then the dual of bp is bp
′

under the usual

pairing

〈f, g〉 =

∫

Ω
fḡ dV.

Proof. See Corollary 4.3 of [5].

§3. Positive Toeplitz operators

In this section, we consider positive symbols and give characterizations
for corresponding Toeplitz operators to be bounded, compact and in the
Schatten classes. Our characterizations will be in terms of Carleson mea-
sures.
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Let 1 ≤ p < ∞. Given a finite positive Borel measure µ on Ω (we will
simply write µ ≥ 0), we say that µ is a Carleson measure on bp if there
exists a constant C > 0 such that

∫

Ω
|f |p dµ ≤ C

∫

Ω
|f |p dV

for all f ∈ bp. So, µ is a Carleson measure on bp if and only if the inclusion
ip : bp → Lp(µ) is bounded.

In order to describe Carleson measures on bp, we need notions of av-
eraging functions and Berezin transforms. Let µ ≥ 0. For δ ∈ (0, 1), the
averaging function µ̂δ of µ over the balls Eδ(x) is defined by

µ̂δ(x) =
µ(Eδ(x))

V (Eδ(x))
(x ∈ Ω).

Also, for 1 < p <∞, we define the Berezin p-transform µ̃p on Ω by

µ̃p(a) =

∫

Ω
|ka,p|

p dµ (a ∈ Ω)

where
ka,p(x) =

R(x, a)

||R(· , a)||p
(x ∈ Ω)

is the Lp-normalized reproducing kernel.
As is the case on various other settings, Carleson measures will be

characterized in terms of averaging functions and Berezin transforms.

Lemma 3.1. Let δ ∈ (0, 1). Then we have

(1 − δ)r(x) < r(y) < (1 + δ)r(x)

for x ∈ Ω and y ∈ Eδ(x).

Proof. Let x ∈ Ω and y ∈ Eδ(x). Then, for any ζ ∈ ∂Ω, we have

r(y) ≤ |y − ζ| ≤ |x− y| + |x− ζ| < δr(x) + |x− ζ|.

Hence, taking the infimum over all ζ ∈ ∂Ω, we have the second inequality.
The first inequality can be verified similarly. The proof is complete.

Lemma 3.2. Let δ, ε ∈ (0, 1). Then, there exist constants Cδ,ε such

that the following hold for all µ ≥ 0 and x ∈ Ω.

(a) µ(Eδ(x)) ≤
Cδ,ε

V (Eδ(x))

∫

Eδ(x)
µ(Eε(y)) dy.
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(b) µ̂δ(x) ≤
Cδ,ε

V (Eδ(x))

∫

Eδ(x)
µ̂ε(y) dy.

Proof. Let µ ≥ 0 and x ∈ Ω. Note that if y ∈ E ε
1+ε

(w), then w ∈ Eε(y)

by Lemma 3.1. In other words, we have

χE ε
1+ε

(w)(y) ≤ χEε(y)(w)

for w, y ∈ Ω. Here, χE denotes the characteristic function of E. It follows
that ∫

Eδ(x)
µ(Eε(y)) dy =

∫

Eδ(x)

∫

Eε(y)
dµ(w) dy

=

∫

Ω

∫

Eδ(x)
χEε(y)(w) dy dµ(w)

≥

∫

Eδ(x)

∫

Eδ(x)
χE ε

1+ε
(w)(y) dy dµ(w)

=

∫

Eδ(x)
V [Eδ(x) ∩E ε

1+ε
(w)] dµ(w)

≥ µ(Eδ(x)) inf
w∈Eδ(x)

V [Eδ(x) ∩E ε
1+ε

(w)].

Thus, in order to prove (a), it remains to show

inf
w∈Eδ(x)

V [Eδ(x) ∩E ε
1+ε

(w)] & r(x)n.(3.1)

To see this, let w ∈ Eδ(x) and write w = x + tζ where 0 ≤ t < δr(x)
and |ζ| = 1. If 0 ≤ t < ε

1+εr(w) − δr(x), then Eδ(x) ⊂ E ε
1+ε

(w). If

t > ε
1+εr(w)− δr(x), then Eδ(x)∩E ε

1+ε
(w) contains the ball with center at

w− ε
2(1+ε)r(w)ζ and radius ε

2(1+ε)r(w). Thus, by Lemma 3.1, we have (3.1)

as desired. So, (a) holds. Also, (b) follows from (a) and Lemma 3.1. The
proof is complete.

As an easy consequence of Lemma 3.2, we have the following.

Corollary 3.3. Let µ ≥ 0. If µ̂ε is bounded for some ε ∈ (0, 1), then

so is µ̂δ for all δ ∈ (0, 1).

We also need a decomposition of Ω whose proof is essentially the same
as that of Lemma of Covering in [7]. So, we omit the details.

Lemma 3.4. Let δ ∈ (0, 1). Then, there exists a sequence {ai} in Ω
satisfying the following two conditions:

(a) ∪∞
i=1E δ

3

(ai) = Ω.



172 B. R. CHOE, Y. J. LEE AND K. NA

(b) There is a positive integer N such that each Eδ(ai) intersects at most

N of the balls Eδ(ai).

Note. In what follows, the sequence {ai} will always refer to the se-
quence chosen in Lemma 3.4. Note that ai → ∂Ω as i→ ∞.

Now, we characterize Carleson measures on bp in terms of averaging
functions and Berezin transforms.

Theorem 3.5. Let 1 < p <∞ and δ ∈ (0, 1). For µ ≥ 0, the following

conditions are all equivalent.

(a) µ is a Carleson measure on bp.

(b) µ̃p is bounded on Ω.

(c) µ̂δ is bounded on Ω.

(d) The sequence {µ̂δ(ai)} is bounded.

Note that conditions (a) and (b) are independent of δ, while conditions
(c) and (d) are independent of p. Thus, the notion of Carleson measures
on bp is independent of 1 < p < ∞. So, we will simply say that µ ≥ 0 is a
Carleson measure if one of the four conditions above holds for µ.

Proof. Since each ka,p has Lp-norm 1, the implication (a) ⇒ (b) follows
immediately.

Next, suppose (b) and show (c). To prove (c), we only need to consider
δ sufficiently small by Corollary 3.3. So, assume δ = δ0 where δ0 is the
number provided by Lemma 2.3. Let a ∈ Ω. By Lemma 2.3 and Lemma
2.4, we have
∫

Eδ(a)
|ka,p|

p dµ ≈ r(a)n(p−1)

∫

Eδ(a)
|R(x, a)|pdµ(x) ≈

r(a)n(p−1)

r(a)np
µ(Eδ(a))

so that

µ(Eδ(a))

r(a)n
≈

∫

Eδ(a)
|ka,p|

p dµ ≤

∫

Ω
|ka,p|

p dµ ≤ sup
a∈Ω

µ̃p(a) <∞.(3.2)

Now, since V (Eδ(a)) ≈ r(a)n, we have (c).
Clearly, we have (c) ⇒ (d).
Finally, suppose (d) and show (a). Let f ∈ bp. First note that

|f(x)|p .
1

r(x)n

∫

Eδ/3(x)
|f |p dV
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for x ∈ Ω. This, together with Lemma 3.1, yields

sup
x∈Eδ/3(a)

|f(x)|p . sup
x∈Eδ/3(a)

1

r(x)n

∫

Eδ/3(x)
|f |p dV

.
1

r(a)n

∫

Eδ(a)
|f |p dV

.
1

V (Eδ(a))

∫

Eδ(a)
|f |p dV

for a ∈ Ω. Now, by Lemma 3.4, we have∫

Ω
|f |p dµ ≤

∞∑

i=1

∫

Eδ/3(ai)
|f |p dµ

≤
∞∑

i=1

µ(Eδ/3(ai)) sup
x∈Eδ/3(ai)

|f(x)|p

.

∞∑

i=1

µ(Eδ(ai))

V (Eδ(ai))

∫

Eδ(ai)
|f |p dV

≤

(
sup
i
µ̂δ(ai)

) ∞∑

i=1

∫

Eδ(ai)
|f |p dV.

≤ N

(
sup
i
µ̂δ(ai)

)∫

Ω
|f |p dV.

Hence, µ is a Carleson measure on bp. The proof is complete.

The above proof shows that the implications (c) ⇒ (d) ⇒ (a) still hold
for p = 1. So, we have the following, which will be used in the characteri-
zation of bounded positive Toeplitz operators.

Corollary 3.6. If µ ≥ 0 is a Carleson measure, then µ is a Carleson

measure on b1.
Also, by carefully examining the proof above, one can see that the

following equivalences between various quantities.

Corollary 3.7. Let 1 < p <∞ and δ ∈ (0, 1). For µ ≥ 0, we have

sup
06=f∈bp

∫
Ω |f |p dµ∫
Ω |f |p dV

≈ sup
a∈Ω

µ̃p(a) ≈ sup
a∈Ω

µ̂δ(a) ≈ sup
i
µ̂δ(ai).

Having Theorem 3.5, we now turn to the characterizations of bounded
positive Toeplitz operators on bp. For µ ≥ 0, recall that the Toeplitz oper-
ator Tµ densely defined on bp is given by

Tµf(x) =

∫

Ω
R(x, y)f(y) dµ(y)
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for functions f ∈ b∞.

Lemma 3.8. Let µ ≥ 0 be a Carleson measure. Then we have

〈Tµf, g〉 =

∫

Ω
fḡ dµ

for f, g ∈ b∞.

Proof. Since µ is a Carleson measure on b1 by Corollary 3.6, we have
by Lemma 2.1

∫

Ω
|R(x, y)| dµ(y) .

∫

Ω
|R(x, y)| dy .

∫

Ω
d(x, y)−n dy

for x ∈ Ω and therefore∫

Ω

∫

Ω
|R(x, y)| dµ(y) dx .

∫

Ω

∫

Ω
d(x, y)−n dy dx

.
[∫

Ω

(∫

Ω
d(x, y)−n dy

)2

dx
]1/2

.

In the meantime, by Lemma 2.2, we have

(∫

Ω
d(x, y)−n dy

)2

=

(∫

Ω

r(y)1/4

d(x, y)n/2
·

1

d(x, y)n/2r(y)1/4
dy

)2

≤

(∫

Ω

r(y)1/2

d(x, y)n
dy

)(∫

Ω

1

d(x, y)nr(y)1/2
dy

)

.
1

r(x)1/2

∫

Ω

r(y)1/2

d(x, y)n
dy

for x ∈ Ω. It follows from Fubini’s theorem and Lemma 2.2 again that
∫

Ω

∫

Ω
|R(x, y)| dµ(y) dx .

∫

Ω

∫

Ω

r(y)1/2

d(x, y)nr(x)1/2
dx dy <∞.

This justifies interchanging the order of integrations below. Now, for f, g ∈
b∞, we have

< Tµf, g > =

∫

Ω
g(x)

∫

Ω
R(x, y)f(y) dµ(y) dx

=

∫

Ω
f(y)

∫

Ω
R(x, y)g(x) dx dµ(y)

=

∫

Ω
f(y)g(y) dµ(y).
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The proof is complete.

Now, we characterize positive bounded Toeplitz operators.

Theorem 3.9. Let µ ≥ 0 and 1 < p < ∞. Then, the following two

conditions are equivalent.

(a) Tµ : bp → bp is bounded.

(b) µ is a Carleson measure.

Moreover, ||Tµ|| is equivalent to any of quantities in Corollary 3.7.

Proof. First assume that Tµ is bounded on bp. Let a ∈ Ω. By Propo-
sition 8.1 of [1] we have

|Tµka,p(a)| . r(a)−
n
p ||Tµka,p||p ≤ r(a)−

n
p ||Tµ||.

On the other hand, by Lemma 2.4, we have

|Tµka,p(a)| ≈ r(a)n(1− 1
p
)
∫

Ω
|R(a, y)|2 dµ(y).

Combining these two, we have

r(a)n
∫

Ω
|R(a, y)|2 dµ(y) . ||Tµ||.(3.3)

Now, let δ = δ0 where δ0 is the number provided by Lemma 2.3. Then, we
have by Lemma 2.3 and (3.3)

µ̂δ(a) ≈
µ(Eδ(a))

r(a)n
≈ r(a)n

∫

Eδ(a)
|R(a, y)|2 dµ(y) . ||Tµ||.

This is true for all a ∈ Ω and constants abbreviated above are independent
of a. Thus, we have supa∈Ω µ̂δ(a) . ||Tµ|| and thus µ is a Carleson measure
by Theorem 3.5.

Now, suppose that µ is a Carleson measure. Let f, g ∈ b∞(Ω). By
Lemma 3.8 and Corollary 3.7, we have

| < Tµf, g > | =

∣∣∣∣
∫

Ω
fḡ dµ

∣∣∣∣

≤

(∫

Ω
|f |p dµ

)1/p(∫

Ω
|g|p

′

dµ

)1/p′

. sup
a∈Ω

µ̂δ(a)

(∫

Ω
|f |p dV

)1/p(∫

Ω
|g|p

′

dV

)1/p′
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where the last inequality holds, because µ is a Carleson measure. Since b∞

is dense in both bp and bp
′

by Lemma 2.5, a duality argument using Lemma
2.6 shows that Tµ is bounded on bp and ||Tµ|| . supa∈Ω µ̂δ(a). The proof is
complete.

Next, we give the corresponding characterization for compact positive
Toeplitz operators. In order to do so, we need the notion of vanishing
Carleson measures. For µ ≥ 0 and 1 < p <∞, we say that µ is a vanishing
Carleson measure on bp if the inclusion ip : bp → Lp(µ) is compact, or
equivalently, if ∫

Ω
|fk|

p dµ→ 0

whenever fk → 0 weakly in bp. To characterize vanishing Carleson measures
on bp, we first need the following.

Lemma 3.10. Let 1 < p <∞. Then ka,p → 0 weakly in bp as a→ ∂Ω.

Proof. Let f ∈ bp
′

. Using Lemma 2.4, we have

|〈ka,p, f〉| ≈ r(a)n(1− 1
p
)|f(a)| → 0

as a→ ∂Ω. The proof is complete.

Now, we have a characterization for vanishing Carleson measures.

Theorem 3.11. Let 1 < p < ∞ and δ ∈ (0, 1). For µ ≥ 0, the

following conditions are all equivalent.

(a) µ is a vanishing Carleson measure on bp.

(b) lim
a→∂Ω

µ̃p(a) = 0.

(c) lim
a→∂Ω

µ̂δ(a) = 0.

(d) lim
i→∞

µ̂δ(ai) = 0.

One can see from the theorem above that the notion of vanishing Car-
leson measures on bp is also independent of 1 < p <∞. So, we will simply
say that µ ≥ 0 is a vanishing Carleson measure if one of the four conditions
above holds for µ.
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Proof. Since ka,p → 0 weakly in bp as a → ∂Ω by Lemma 3.10, we
clearly have (a) ⇒ (b).

Next, we assume (b) and show (c). By (3.2) we have

µ̂δ(a) .

∫

Ω
|ka,p|

p dµ = µ̃p(a) → 0 (a→ ∂Ω)

for δ = δ0 where δ0 is the number provided by Lemma 2.3. Hence, (c) holds
for a small δ. But, an application of Lemma 3.2 shows that (c) holds in
fact for all δ.

Since ai → ∂Ω, we have (c) ⇒ (d).
Finally, we assume (d) and show (a). Let {fk} be a sequence converging

to 0 weakly in bp. By the proof of (d) ⇒ (a) of Theorem 3.5, we have

∫

Ω
|fk|

p dµ .
∑

i<j

∫

Eδ/3(ai)
|fk|

p dV +N sup
i≥j

µ̂δ(ai)

∫

Ω
|fk|

p dV(3.4)

for any i, j. Here, N is the positive integer provided by Lemma 3.4. Since
fk → 0 weakly in bp, one can easily see that fk → 0 uniformly on compact
subsets of Ω and {fk} is bounded in Lp-norm. Thus, fixing j and taking
the limit k → ∞ in (3.4), we obtain

lim sup
k

∫

Ω
|fk|

p dµ . sup
i≥j

µ̂δ(ai)

for each j. Note that we have by assumption supi≥j µ̂δ(ai) → 0 as j → ∞.
Thus, taking the limit j → ∞, we conclude

lim sup
k

∫

Ω
|fk|

p dµ = 0.

Namely, µ is a vanishing Carleson measure, as desired. The proof is com-
plete.

As a result corresponding to Theorem 3.9, we characterize compact
positive Toeplitz operators in terms of vanishing Carleson measures.

Theorem 3.12. Let µ ≥ 0 and 1 < p < ∞. Then, the following two

conditions are equivalent.

(a) Tµ : bp → bp is compact.

(b) µ is a vanishing Carleson measure.
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Proof. First, suppose that Tµ is compact. By Lemma 2.4, we have

| < Tµka,p, ka,p′ > | ≈ r(a)n
∫

Ω
|R(a, y)|2 dµ(y) ≈ µ̃2(a)(3.5)

for all a ∈ Ω. On the other hand, since ka,p → 0 weakly in bp as a → ∂Ω
by Lemma 3.10, Hölder’s inequality and compactness of Tµ yield

| < Tµka,p, ka,p′ > | ≤ ||Tµka,p||p → 0 (a→ ∂Ω).(3.6)

Thus, by (3.5), (3.6) and Theorem 3.11, we conclude that µ is a vanishing
Carleson measure.

Now, suppose that µ is a vanishing Carleson measure. For ε > 0, let
µε = χΩεdµ where Ωε = {x ∈ Ω : r(x) ≥ ε}. Since each µε is supported on a
compact subset of Ω, one can easily verify that the corresponding Toeplitz
operator Tµε is compact. Hence, in order to show the compactness of Tµ, it
is sufficient to show that Tµε → Tµ in the operator norm.

Let τε = µ − µε. Fix δ ∈ (0, 1). Note that if a ∈ Ω and r(a) ≥ ε
1−δ ,

then Eδ(a) ⊂ Ωε by Lemma 3.1. Therefore, we have

sup
a∈Ω

(̂τε)δ(a) ≤ sup
r(a)< ε

1−δ

µ̂δ(a) → 0 (ε→ 0)

where the convergence holds by Theorem 3.11. Now, since Tµ − Tµε = Tτε ,
we conclude by Theorem 3.9

||Tµ − Tµε || ≈ sup
a∈Ω

(̂τε)δ(a) → 0 (ε→ 0)

as desired. The proof is complete.

We now turn to the characterization of positive Schatten class Toeplitz
operators. Before proceeding, let’s review briefly some basic facts about
Schatten class operators.

For a compact operator T on a separable Hilbert space X, let {sm(T )}
be the nonzero eigenvalues (listed by multiplicity) of |T | = (T ∗T )1/2 ar-
ranged so that the sequence is non-increasing, where T ∗ denotes the Hilbert
space adjoint of T . This sequence is called the singular value sequence of
T . For 1 ≤ p <∞, we say T is a Schatten p-class operator if

||T ||Sp(X) =

(∑

m

|sm(T )|p

)1/p

<∞.
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Let Sp(X) be the space of all Schatten p-class operators on X. As is well
known, Sp(X) is a Banach space with the above norm and is a two-sided
ideal in the space of all bounded linear operators on X.

Also, for T ∈ S1(X) and an orthonormal basis {em} for X, the sum

tr(T ) =
∑

m

〈Tem, em〉

is absolutely convergent and independent of the choice of {em}. The sum
above is called the trace of T . If T ∈ Sp(X) and T ≥ 0, we have

||T ||Sp(X) = [tr(T p)]1/p

for 1 ≤ p <∞. See [9], for example, for more information and related facts.
In the rest of this section we use the notations Sp = Sp(b

2), µ̃ = µ̃2 and
kx = kx,2 for simplicity. Also, the measure dλ is defined on Ω by

dλ(x) = R(x, x)dV (x).

Note that ||R(x, ·)||22 = R(x, x). Hence, using the same arguments of Lemma
13 in [10], we have

tr(T ) =

∫

Ω
〈TR(x, ·), R(x, ·)〉 dx =

∫

Ω
〈Tkx, kx〉 dλ(x)(3.7)

for every T ∈ S1.
We now give a characterization of Schatten class positive Toeplitz op-

erators on b2(Ω).

Theorem 3.13. Let 1 ≤ p < ∞ and δ ∈ (0, 1). For µ ≥ 0, the

following conditions are all equivalent.

(a) Tµ ∈ Sp .

(b) µ̃ ∈ Lp(λ).

(c) µ̂δ ∈ Lp(λ).

(d)
∑

i

µ̂δ(ai)
p <∞.

Moreover, we have

||Tµ||Sp ≈

(∫

Ω
|µ̃|p dλ

)1/p

≈

(∫

Ω
|µ̂δ|

p dλ

)1/p

≈

(∑

i

µ̂δ(ai)
p

)1/p

.
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Proof. First, suppose (a) and show (b). Since Tµ ≥ 0, it follows from
(3.7) that

||Tµ||
p
Sp

= tr(T pµ ) =

∫

Ω
〈T pµkx, kx〉 dλ(x).

It follows from Proposition 6.3.3 of [9] and Lemma 3.8 that

||Tµ||
p
Sp

≥

∫

Ω
〈Tµkx, kx〉

p dλ(x) =

∫

Ω
µ̃(x)p dλ(x),

so we have (b).
Next, suppose (b) and show (c). Fix δ = δ0 where δ0 is the number

provided by Lemma 2.3. By Lemma 2.1 and Lemma 2.4, we have

∫

Ω
µ̃(x)p dλ(x) ≥

∫

Ω

(∫

Eδ(x)
|kx|

2 dµ

)p
dλ(x)

=

∫

Ω

(
R(x, x)−1

∫

Eδ(x)
|R(x, y)|2 dµ(y)

)p
dλ(x)

≈

∫

Ω
µ̂δ(x)

p dλ(x).

So, we have (c) for a small δ. But, a simple application of Lemma 3.2 shows
that (c) holds for all δ.

Now, suppose (c) and show (d). By Lemma 3.2 and Jensen’s inequality,
we have

µ̂δ(ai)
p . 1

r(ai)n

∫
Eδ(ai)

µ̂δ(x)
p dx ≈

∫
Eδ(ai)

µ̂δ(x)
p dλ(x)

for all i. Summing up all these together, we have

∑

i

µ̂δ(ai)
p .

∑

i

∫

Eδ(ai)
µ̂δ(x)

p dλ(x) . N

∫

Ω
µ̂δ(x)

p dλ(x) <∞

where N is the positive integer provided by Lemma 3.4. Thus, we have (d).
Finally, suppose (d) and show (a). First, consider the case p = 1. By

(3.7) and Lemma 3.8, we have

tr(Tµ) =

∫

Ω

∫

Ω
|R(x, y)|2 dµ(y) dx =

∫

Ω
|R(y, y)|2 dµ(y)

Thus, by Lemma 2.1 and Lemma 3.1, we have

tr(Tµ) ≤
∑

i

∫

Eδ(ai)
R(y, y) dµ(y) ≈

∑

i

µ̂δ(ai) <∞.
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So, we have Tµ ∈ S1. Now, consider the case 1 < p < ∞. For any ζ ∈ C

with 0 ≤ Re ζ ≤ 1, define a complex Borel measure µζ on Ω by

dµζ(x) =
∑

i

[µ̂δ(ai)]
pζ−1 χEδ(ai)(x) dµ(x)

and consider corresponding Toeplitz operators Tµζ
acting on b2. Note Tµ ≤

Tµ 1
p

. Thus, the complex interpolation (see Theorem 2.2.7 of [9]) gives

||Tµ||Sp ≤ ||Tµ 1
p

||Sp ≤M
1− 1

p

0 M
1
p

1 ,

where M0 = sup{||Tµζ
|| : Re ζ = 0} and M1 = sup{||Tµζ

||S1
: Re ζ = 1}.

One can see M0 < ∞ by the same argument as in the proof of Theorem
12 in [10]. To estimate M1, let {fk} and {gk} be two orthonormal bases
for b2. Then, for Re ζ = 1, it follows from the same way as in the proof of
Theorem 12 of [10] that

∑

k

| < Tµζ
fk, gk > | ≤

∑

k

∫

Ω
|fk||gk| d|µζ | ≤

∫

Ω
R(x, x) d|µζ |(x)

and thus

||Tµζ
||S1

.
∑

k

[µ̂δ(ai)]
p−1

∫

Eδ(ai)
R(x, x) dµ(x) ≈

∑

k

µ̂δ(ai)
p.

So, we have

||Tµ||
p
Sp

. M1 .
∑

i

(µ̂δ(ai))
p <∞.

This completes the proof.

§4. Toeplitz operators with continuous symbols

In this section, we consider uniformly continuous symbols. That is,
we consider symbols continuous up to the boundary and then describe the
essential spectra of corresponding Toeplitz operators.

Let’s recall the notion of the essential spectrum. Let B be the algebra of
all bounded linear operators on a Banach space X and K be the two-sided
compact ideal of B. For an operator T ∈ B and a complex number η, we
say that η ∈ σe(T ;X), the essential spectrum of T , if (T − η) + K is not
invertible in the Calkin algebra B/K. In other words, η ∈ σe(T ;X) if and
only if T − η is not Fredholm.
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We need compactness of Hankel operators with symbols continuous up
to the boundary. For ϕ ∈ L∞, the Hankel operator Hϕ with symbol ϕ is
defined by

Hϕf = ϕf −Q(ϕf)

for f ∈ b1. Let 1 < p < ∞. Then, since Q is bounded on Lp, it is clear
that Hϕ : bp → Lp is also bounded and ||Hϕ|| . ||ϕ||L∞ . The integral
representation of Hϕ is given by

Hϕf(x) =

∫

Ω
R(x, y)[ϕ(x) − ϕ(y)]f(y) dy (x ∈ Ω)

for f ∈ bp.

Lemma 4.1. Let 1 < p <∞ and K be a measurable function on Ω×Ω
for which

sup
x∈Ω

∫

Ω
|K(x, y)|p

′

dy <∞.

Then, the integral operator T defined by

Th(x) =

∫

Ω
K(x, y)h(y) dy (x ∈ Ω)

is a compact operator from Lp into Lp.

Proof. See Exercise VI.53 of [3].

Theorem 4.2. Let 1 < p <∞ and ϕ ∈ C(Ω). Then, Hϕ : bp → Lp is

compact.

Proof. Fix 1 < p <∞ and let Mp be the set of all functions ϕ ∈ C(Ω)
for which the corresponding Hankel operators Hϕ : bp → Lp are compact.
We need to show Mp = C(Ω).

First, we show that Mp is a closed subalgebra of C(Ω). Let {ψk} be a
sequence in Mp converging to ψ in C(Ω). Then, we have

||Hψk
−Hψ|| = ||Hψk−ψ|| . ||ψk − ψ||L∞ → 0.

It follows that Hψ is compact, because each Hψk
is compact. Hence, Mp

is a closed subspace of C(Ω). Now, for any ϕ,ψ ∈ L∞, a straightforward
calculation yields

Hϕψ = H̃ϕHψ +HϕTψ
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where H̃ϕ denotes the “Hankel” operator extended to the whole Lp. This
shows that Mp is an algebra.

Next, we show that Mp contains all the polynomials. So, let ϕ be a
polynomial and consider an integral operator T defined by

Tf(x) =

∫

Ω
R(x, y)[ϕ(x) − ϕ(y)]f(y) dy (x ∈ Ω)

for f ∈ L1. Note that, when restricted to bp, T reduces to Hϕ acting on bp.
Since Tf = ϕQ(f)−Q(ϕf), T clearly is bounded on Lq for all 1 < q <∞.
We claim that T : Lq → Lq is compact for q > n. So, let q > n. Note that
|ϕ(x) − ϕ(y)| . |x− y| for x, y ∈ Ω. Thus, by Lemma 4.1, it is sufficient to
show that

sup
x∈Ω

∫

Ω
|x− y|q

′

|R(x, y)|q
′

dy <∞.(4.1)

By Lemma 2.1, we have

|x− y||R(x, y)| . |x− y|d(x, y)−n ≤ |x− y|1−n

for x, y ∈ Ω. Note q′(1 − n) > −n. Thus, taking c > 0 so that Ω ⊂ {x ∈
R
n : |x| ≤ c}, we obtain

sup
x∈Ω

∫

Ω
|x− y|q

′(1−n) dy .

∫

|y|≤2c
|y|q

′(1−n) dy <∞

and thus (4.1) holds. Having seen that T : Lq → Lq is compact whenever
q > n, one may now repeat the same interpolation argument as in the proof
of Theorem 4.4 in [4] to see that T : Lp → Lp, as well as Hϕ = T |bp : bp →
Lp, is compact. Thus, ϕ ∈Mp.

Now, since Mp is a closed subalgebra of C(Ω) containing all the poly-
nomials, we conclude Mp = C(Ω) by the Stone-Weierstrass theorem. The
proof is complete.

As a consequence of Theorem 4.2, we have the following which will be
used in the proof of Theorem 4.5 below.

Corollary 4.3. Let 1 < p < ∞. If ϕ,ψ ∈ C(Ω), then both Tϕψ −
TϕTψ and TϕTψ − TψTϕ are compact on bp.
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Proof. For any ϕ,ψ ∈ L∞, a straightforward calculation yields

Tϕψ = TϕTψ + T̃ϕHψ

where T̃ϕ denotes the “Toeplitz” operator extended to the whole Lp. This,
together with Theorem 4.2, shows the compactness of Tϕψ−TϕTψ on bp for
ψ ∈ C(Ω). Hence, TϕTψ − TψTϕ is compact on bp for ϕ,ψ ∈ C(Ω).

Also, we need the following (we shall see that the converse is also true).

Lemma 4.4. Let 1 < p < ∞ and ϕ ∈ C(Ω). If ϕ = 0 on ∂Ω, then Tϕ
is compact on bp.

Proof. Without loss of generality assume ϕ ≥ 0. Since ϕ = 0 on ∂Ω,
there exists a sequence {ϕk} ⊂ C(Ω) with compact support in Ω such that
ϕk ≥ 0 and ϕk → ϕ in L∞. So, Tϕk

→ Tϕ in the operator norm. Since
each Tϕk

is compact on bp by Theorem 3.11, we conclude that Tϕ is also
compact. This completes the proof.

We now turn to the characterization of σe(Tϕ; bp) for 1 < p < ∞ and
ϕ ∈ C(Ω).

Theorem 4.5. Let 1 < p < ∞ and ϕ ∈ C(Ω). Then σe(Tϕ; bp) =
ϕ(∂Ω).

Proof. Fix p. First, we show ϕ(∂Ω) ⊂ σe(Tϕ; bp). Let η ∈ ϕ(∂Ω)
and assume η = ϕ(ζ) for some ζ ∈ ∂Ω. For simplicity, assume η = 0;
consider otherwise ϕ− η. Suppose that Tϕ is Fredholm on bp. Then, there
exists a bounded linear operator S on bp such that STϕ − I is compact
on bp. Since kx,p → 0 weakly in bp as x → ∂Ω by Lemma 3.10, we have
||STϕkx,p − kx,p||p → 0 as x → ∂Ω. In particular, since each kx,p has
Lp-norm 1, we have

||STϕ(kx,p)||p → 1(4.2)

as x→ ζ.
On the other hand, by Lemma 2.1 and Lemma 2.4, we have

||STϕkx,p||
p
p = ||SQ(ϕkx,p)||

p
p

.

∫

Ω
|ϕ(y)|p

|R(x, y)|p

||R(x, · )||pp
dy

. Mδ + ||ϕ||∞r(x)
n(p−1)

∫

|y−ζ|≥δ

1

|x− y|pn
dy
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where

Mδ = sup{|ϕ(y)|p : |y − ζ| < δ, y ∈ Ω}

for δ > 0. Thus, taking the limit x→ ζ, we have

lim sup
x→ζ

||STϕ(kx,p)||
p
p . Mδ

for each δ > 0. Note that the constant abbreviated in the inequity above is
independent of δ. Since ϕ ∈ C(Ω), Mδ → 0 as δ → 0. Now, take δ → 0 to
get ||STϕ(kx,p)||p → 0 as x→ ζ, which is a contradiction to (4.2).

Next, we show σe(Tϕ; bp) ⊂ ϕ(∂Ω). Let η /∈ ϕ(∂Ω) and assume η = 0,
as above. We need to show that Tϕ is Fredholm on bp. Take ψ ∈ C(Ω) such
that ϕψ = 1 on ∂Ω. Then, T1−ϕψ is compact on bp by Lemma 4.4. Note

TψTϕ − I = TψTϕ − Tψϕ − T1−ϕψ.

It follows from Corollary 4.3 that TψTϕ− I is compact on bp. Similarly, we
see TϕTψ − I is compact on bp. So, Tϕ is Fredholm on bp, as desired. The
proof is complete.

As an immediate application, we have the following.

Corollary 4.6. Let 1 < p <∞ and ϕ ∈ C(Ω). Then, Tϕ is Fredholm

on bp if and only if ϕ is bounded away from 0 near ∂Ω.

Let ||Tϕ||p,e denote the norm of Tϕ : bp → bp in the Calkin algebra of
bp. Then, we also have the following as another consequence.

Corollary 4.7. Let 1 < p <∞ and ϕ ∈ C(Ω). Then, we have

||ϕ||L∞(∂Ω) ≤ ||Tϕ||p,e(4.3)

and the equality holds for p = 2. In particular, Tϕ is compact on bp if and

only if ϕ = 0 on ∂Ω.

Proof. The assertion (4.3) follows from Theorem 4.5 and the spectral
radius formula. It is easily seen that T ∗

ϕ = Tϕ. Thus, by Corollary 4.3, we
see that Tϕ is normal in the Calkin algebra of b2. Hence, the equality holds
in (4.3) for p = 2. The second part of the corollary follows from (4.3) and
Lemma 4.4. The proof is complete.
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