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SOLUTIONS IN MORREY SPACES

OF SOME SEMILINEAR HEAT EQUATIONS

WITH TIME-DEPENDENT EXTERNAL FORCES

XIAOFANG ZHOU†

Abstract. In this paper, we consider the Cauchy problem for some semilinear
heat equations with time-dependent external forces. Both the external force
and the initial data are assumed to be small in some Morrey spaces. We first
prove the unique existence of a small time-global solution. We next show the
stability of that solution by proving the time-global sovability of perturbation
problems.

§1. Introduction

In this paper, we are concerned with the existence, uniqueness and

stability of solutions of the semilinear heat equations in Rn(n ≥ 3) :

(1.1)
∂v

∂t
(t, x) = ∆v(t, x) + v(t, x)ν + f(t, x) in (0,∞) ×Rn,

(1.2) v(0, x) = a(x) on Rn,

where ν ≥ 3, ν ∈ Z.

There have been many researches on the Cauchy problem (1.1)–(1.2)

without external forces, i.e. f(t, x) ≡ 0. (see [3]–[6] and [14]) On the other

hand, many authors have also studied the Cauchy problem with measures as

initial data. Brezis and Friedman [2] proved that a time-local solution exists

with the Dirac measure δ(x) as the initial value if and only if ν < 1 + 2/n.

Baras and Pierre [1] studied various capacities of the initial Radon measures

for which the Cauchy problem is solvable. Niwa [12] obtained a sufficient

condition for the local well-posedness and the global well-posedness of the
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Cauchy problem with initial data in the spaces of measures of the Morrey-

type. Kozono and Yamazaki [8] obtained time-local and time-global solu-

tions when the initial data are in the Besov-type Morrey spaces. Wu [17]

concluded the well-posedness of the Cauchy problem with initial data in

the homogeneous Lebesgue spaces. Then Zhou [19] showed the stability of

small stationary solutions in Morrey spaces of the semilinear heat equations

with time-independent external force f(x).

Recently Yamazaki [18] considered the solutions in the Morrey spaces of

the Navier-Stokes equation with time-dependent external force. Inspired by

his research, we are interested in studying the Cauchy problem (1.1)–(1.2)

when the external force f(t, x) depends on t and does not decay in general

as t → ∞. In particular, we are interested in time-periodic solutions.

The main purpose of this paper is to give a sufficient condition on the

external force for the unique existence of small solutions of (1.1) in the

whole time which is bounded with values in some Morrey spaces. We also

show that this problem is well-posed by proving the continuous dependence

of the solution on the external force. As an immediate consequence of the

uniqueness, we can also prove that if the external force is time-periodic in

a function space, so is the solution. The second purpose is to show the

stability of small time-global solution in our functional setting.

This paper is organized as follows. In Section 2, we introduce our func-

tion spaces and state our main theorems. The existence and the uniqueness

of small solutions bounded in the whole space-time are proved in Section 3.

Finally, the stability of small time-global solutions is proved in Section 4.

§2. Main results

Before stating our main theorems, we will introduce the function
spaces of Besov-type based on the Morrey spaces defined by H. Kozono
and M. Yamazaki in [8].

Definition 2.1. Let 1 ≤ q ≤ p < ∞, s ∈ R. The Morrey space Mp,q

on Rn is defined to be the set of functions u(x) ∈ Lq
loc(R

n) such that

‖u‖Mp,q = sup
x0∈Rn

sup
R>0

Rn/p−n/q

(

∫

|x−x0|<R
|u(x)|qdx

)1/q

< ∞.

Furthermore, the Sobolev-type Morrey space Ms
p,q is defined by

Ms
p,q =

{

u(x) ∈ S ′/P
∣

∣

∣
‖u(x)‖Ms

p,q
= ‖(−∆)

s
2 u‖Mp,q < ∞

}

,
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where S ′ and P denote the set of tempered distributions on Rn and the set
of polynomials with n independent vaariables, respectively.

For detailed properties, see Peetre [14], Taylor [15], Kozono and
Yamazaki [8, 9], Zhou [19].

In order to define the spaces of Besov type based on the Morrey spaces,
we need to use the Littlewood-Paley decomposition functions. Let
{ϕj(ξ)}∞j=−∞ be a sequence of C∞-functions on Rn

ξ satisfying 0 ≤ ϕj(ξ) ≤ 1,

suppϕ0 ⊂ {ξ ∈ Rn|1/2 < |ξ| < 2}, ϕj(ξ) = ϕ0(2
−jξ) for every integer j

and every ξ ∈ Rn, and the locally finite sum
∑∞

j=−∞ ϕj(ξ) on Rn
ξ \ {0} is

identically equal to 1. Then we define our function spaces as follows:

Definition 2.2. Let 1 ≤ q ≤ p < ∞, 1 ≤ r ≤ ∞ and s ∈ R. The
space N s

p,q,r = N s
p,q,r(R

n) is defined to be the set of equivalence classes of
distributions u ∈ S ′/P such that

||u||N s
p,q,r

= ||{2sj ||ϕj(D)u||Mp,q}∞j=−∞||lr < ∞,

where ϕj(D)u = F−1[ϕj(ξ)F [u](ξ)], and P denotes the set of polynomials
with n variables.

The following facts are proved in [8].

Facts. The spaces N s
p,q,r are Banach spaces independent of the

choice of the function ϕ0(ξ) modulo the equivalence, and enjoy the
following inclusion relations and the equivalences as Banach spaces.

1. The space N s
p,p,r coincides with the standard homogeneous

Besov space Ḃs
p,r.

2. For every s1, s2 ∈ R such that s1 6= s2, every 1 ≤ q ≤ p < ∞,

every 1 ≤ r ≤ ∞ and every θ ∈ (0, 1), the space N s0(1−θ)+s1θ
p,q,r coincides

with the real interpolation space (Ms0
p,q,Ms1

p,q)θ,r.
3. If 1 ≤ q′ < q ≤ p, 1 ≤ r < r′ ≤ ∞, then we have N s

p,q,r ⊂
N s

p,q′,r,N s
p,q,r ⊂ N s

p,q,r′.

4. If s < σ < t, then we have N s
p,q,r∩N t

p,q,r ⊂ N σ
p,q,r ⊂ N s

p,q,r+N t
p,q,r.

5. We have N s
p,q,1 ⊂ Ms

p,q ⊂ N s
p,q,∞.

6. All singular integrals are bounded on Ms
p,q, for 1 < q ≤ p <∞

and on N s
p,q,r for 1 ≤ q ≤ p <∞ and 1 ≤ r ≤ ∞.

7. We have the imbedding N s
p,q,r ⊂ N s−(1−θ) n

p
p
θ
, q
θ
,r

for θ ∈ (0, 1) and

N s
p,q,r ⊂ Ḃ

s−n
p

∞,r .
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8. If s < n
p
, then we can choose a canonical representative from

every equivalence class in N s
p,q,r, so that we can regard N s

p,q,r as a
subspace of S ′.

9. Suppose that 1 ≤ m < n, and put x = (x′, x′′), where x′ ∈ Rm

and x′′ ∈ Rn−m. Then the function u(x′) ∈ N s
p,q,r(R

m), regarded as a
function on Rn, belongs to the space N s

np
m

,q,r(R
n).

10. Let exp(t∆) denote the heat kernel on Rn. If 1 ≤ q ≤ p <

∞, 1 ≤ r ≤ ∞ and s ∈ R, there exists a positive constant C such that
the inequality

|| exp(t∆)u||N s
p,q,r

≤ C||u||N s
p,q,r

holds for every t ≥ 0. Moreover, for every p, q, r as above and s < σ,
there exists a positive constant C such that the inequality

|| exp(t∆)u||Nσ
p,q,1

≤ Ct
s−σ

2 ||u||N s
p,q,∞

holds for every t > 0.

Let p0 = n(ν−1)
2

, p, q, r satisfy

(H1) max

{

ν2 − ν + 1

ν2
p0, ν

}

< p < p0, ν < r ≤ p,
ν − 1

p
+

1

q
=

ν

p0
.

The condition (H1) implies that ν < p < p0 < q.
For small positive constants ε, δ, we define the sets

K = {v(t, ·) ∈ L∞(R,Mp,r ∩Mq, qr
p
)| ||v||K <∞}

and

L = {f(t, ·) ∈ L∞(R,N−2−ε
p,r,∞ ∩N−2+δ

p,r,∞ ∩N−2−ε
q, qr

p
,∞ ∩N−2+δ

q, qr
p

,∞)|

||f ||L <∞},
where

||v||K = sup
t∈R

max{||v(t, ·)||Mp,r, ||v(t, ·)||Mq,
qr
p
},

||f ||L =sup
t∈R

max {||f(t, ·)||N−2−ε
p,r,∞

, ||f(t, ·)||N−2+δ
p,r,∞

,

||f(t, ·)||N−2−ε

q,
qr
p ,∞

, ||f(t, ·)||N−2+δ

q,
qr
p ,∞

}.
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We observe that the equation (1.1) formally follows from the integral
equation

(2.1) v(t, ·) =

∫ t

−∞

exp((t− τ)∆){v(τ, ·)ν + f(τ, ·)}dτ.

In general, the equation (2.1) without the initial data does not imply
(1.1). However, we shall show that the small solution of (1.1) which
exists on the whole space-time is uniquely determined and enjoys (2.1).

Our main result on the unique existence of small solutions of (2.1)
bounded for the whole time is the following.

Theorem 2.1. Suppose that p, q, r satisfy (H1). For small positive

numbers ε, δ, there exist positive numbers γ0 and κ0 such that the following

holds.

(1) If f(t, ·) is in L with ||f ||L = γ < γ0, there uniquely exists a solution

v(t, x) ∈ K of (2.1) such that

||v||K < κ0(2.2)

and t 7→ v(t, ·) is Hölder-continuous with values in Mp,r ∩Mq, qr
p
.

(2) Moreover, if t 7→ f(t, ·) is Hölder-continuous with values in N −2
p,r,∞∩

N−2
q, qr

p
,∞

, then v(t, ·) is a unique solution of (1.1) satisfying (2.2).

(3) The mapping T from B(0, γ0) ⊂ L to B(0, κ0) ⊂ K defined by

T (f(t, ·)) = v(t, ·) is continuous.

Remark 2.1. Suppose that f(t, x) ∈ L is periodic with respect to t with
period T , and let v(t, x) be the corresponding solution. Then the function
v1(t, x) ≡ v(t + T, x) is also the solution of (2.1) and enjoys ||v1||K = ||v||K.
Hence, by the uniqueness of Theorem 2.1, we see that v1(t, x) ≡ v(t, x),
which implies that the solution v(t, x) is also time-periodic with the same
period T as well.

Remark 2.2. Suppose that f(t, x) satisfies the estimate

A = sup
t∈R

max

{

||f(t, ·)||N−1
α,γ,∞

, ||f(t, ·)||N−1

β,
γβ
α

,∞

}

< ∞,

with some α, β and γ such that 1 < γ ≤ α < n
2 ≤ ν−1

ν+1n < β < n. Then we
can take some p and r enjoying the condition (H1) and ε, δ > 0 such that
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f(t, x) ∈ L and ||f ||L ≤ CA with some positive constant C independent
of f(t, x). In fact, we can choose p ∈ (β, p0) satisfying 1 + n

p < n
α and

n
β + 2p0

p < 3 + n
p0

. Putting ε = n
α − n

p − 1 and δ = 3 + n
p0

− n
β − 2p0

p , we see
by Fact 7 that

sup
t∈R

max

{

||f(t, ·)||N−2−ε

p,
γp
α ,∞

, ||f(t, ·)||
N

−1− n
β

+n
p

p,
γp
α ,∞

}

≤ CA

with some positive constant C. Since

−2 + δ,
n

p
− n

q
− 2 − ε ∈

(

−2 − ε,−1 − n

β
+

n

p

)

,

it follows from Fact 4 that

sup
t∈R

max

{

||f(t, ·)||N−2+δ

p,
γp
α ,∞

, ||f(t, ·)||
N

n
p −n

q −2−ε

p,
γp
α ,∞

}

≤ CA

with another positive constant C. Fact 7 implies that N
n
p
−n

q
−2−ε

p, γp
α

,∞
⊂ N−2−ε

q, γq
α

,∞

and N−1−n
β

+n
p

p, γp
α

,∞
⊂ N−2+δ

q, γq
α

,∞
. Therefore f(t, x) ∈ L with r = γp

α .

Example 2.1. We give an example of time-periodic external force en-
joying the assumptions of Theorem 2.1. Let f(t, x) = c0(−∆x)

1
2 (1+sin2 t+

|x|2)−n+1
2 , then f(t, x) ∈ L∞(R,N−1

α,α,∞ ∩N−1
β,β,∞) for every α, β such that

1 ≤ α ≤ β. Hence f(t, x) enjoys the conditions of Remark 2.2 with some
γ ≤ α. It follows that we can take this function as the time-periodic exter-
nal force f(t, x) in Theorem 2.1 provided that the constant |c0| is sufficiently
small.

In order to state the main result on the stability of the time-global
solution of (1.1), we first introduce the following condition on p, q, r

and l, m, α.

(H2) max

{

(ν − 1)2

ν2 − ν − 1
p0, ν

}

< p < p0, ν < r ≤ p,
ν − 1

p
+

1

q
=

ν

p0
,

(ν − 1)p0 ≤ l < νp0, 1 < α <
νp0

l
,
ν

α
< m ≤ lr

p
.

It is easy to see that p in the condition (H2) also satisfies (H1).
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Moreover, we define the set

K+ = {v(t, ·) ∈ L∞([0,∞),Mp,r ∩Mq, qr
p
)| ||v||K+ <∞}

equipped with the norm

||v||K+ = sup
t≥0

max{||v(t, ·)||Mp,r, ||v(t, ·)||Mq,
qr
p
}.

Let w(t, x) ∈ K+ be a solution of (1.1) given in Theorem 2.1 with
some f(t, x), and let v(t, x) be another solution of (1.1) with the initial
data a(x). Then the difference u(t, x) = v(t, x) − w(t, x) enjoys the
following equations:

(2.3)
∂u

∂t
(t, x) = ∆u(t, x) +

ν−1
∑

k=0

(

ν

k

)

u(t, x)ν−kw(t, x)k,

(2.4) u(0, x) = b(x),

where b(x) = a(x) − w(0, x).
For the uniqueness of solutions of the Cauchy problem (2.3)-(2.4),

we have the following result.

Theorem 2.2. Suppose that p, q, r and l,m, α satisfy the condition

(H2). Then we can find positive numbers ρ and λ(λ ≤ κ0) such that the fol-

lowing holds. Suppose that w(t, x) ∈ K+ is a solution of (1.1) satisfying the

estimate ||w||K+ < λ and Hölder continuous as an Mp,r ∩ Mq, qr
p
−valued

function with respect to t ∈ [0,∞). Let T denote either a positive con-

stant or ∞ and let b(x) be an element of S ′. Then the solution of (2.3) on

(0, T ) ×Rn
x satisfying

sup
0<t<T ′

t
n

2p0
− n

2αl ||u(t, ·)||Mαl,αm
< 1 for every T ′ ∈ (0, T ),(2.5)

sup
0<t<T ′

||u(t, ·)||
N

n
l
− n

p0
l,m,∞

< ∞ for every T ′ ∈ (0, T ),(2.6)

lim sup
t→+0

t
n

2p0
− n

2αl ||u(t, ·)||Mαl,αm
< ρ,(2.7)
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and

u(t, ·) → b in S ′ as t → +0(2.8)

is at most unique. Moreover, it is Hölder continuous as an Mβl,βm-valued

function with respect to t ∈ (0, T ) for every β such that 1 < β < α.

Remark 2.3. From the convexity inequality on Lp(Rn), we see that the
time-global solution w(t, x) ∈ K+ of (1.1) satisfies

w(t, x) ∈ Mp,r ∩Mq, qr
p
⊂ Mp0,

p0r
p

⊂ M
n
l
− n

p0

l, lr
p

⊂ N
n
l
− n

p0
l,m,∞ .

The following theorem gives the existence of time-global solution
to the equation (2.3) and its asymptotic behavior. Together with The-
orem 2.2, it implies the stability of the small solution given by Theorem
2.1.

Theorem 2.3. Let p, q, r, l,m, α and w(t, x) be the same as in Theo-

rem 2.2. Then there exist a positive number ι0 and a continuous, strictly

monotone-increasing function ω(ι) on [0, ι0] with ω(0) = 0 such that the

following holds :

For every b(x) ∈ N
n
l
− n

p0
l,m,∞ with ||b||

N
n
l
− n

p0
l,m,∞

= ι < ι0, there exists a solu-

tion u(t, x) of (2.3) satisfying the assumptions of Theorem 2.2 with T = ∞.

Moreover, this solution satisfies the following conditions:

u(t, ·) → b weakly∗ in Ḃ
− n

p0
∞,∞ as t → +0,(2.9)

sup
t>0

||u(t, ·)||
N

n
l
− n

p0
l,m,∞

≤ ω(ι)(2.10)

and

sup
t>0

t
n

2p0
− n

2βl ||u(t, ·)||Mβl,βm
< ∞ for every β such that 1 < β < α.(2.11)

§3. Unique existence of small solutions bounded for the whole

time

In this section we prove Theorem 2.1 by applying the functional
setting introduced in the previous section.
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For functions f(t, x), u(t, x) and v(t, x) on Rt × Rn
x, we define

Φl[u, v](t, ·) =

∫ t

−∞

exp((t− τ)∆){u(τ, ·)ν−lv(τ, ·)l}dτ,

l = 0, 1, . . . , ν.

For f ∈ L, we define the sequences of functions {vj(t, x)}∞j=0,

{uj(t, x)}∞j=0 inductively by

v0(t, ·) =

∫ t

−∞

exp((t− τ)∆)f(τ, ·)dτ,

vj+1(t, ·) = v0(t, ·) +

∫ t

−∞

exp((t− τ)∆)vj(τ, ·)νdτ

= v0(t, ·) + Φν [vj, vj](t, ·), j = 0, 1, . . . ,

uj(t, ·) = vj+1(t, ·) − vj(t, ·), j = 0, 1, . . . .

Then we have the following lemma.

Lemma 3.1. For every s such that −ε < s < δ(< n
q ), there exists a

positive constant C such that

sup
t∈R

max

{

||v0(t, ·)||N s
p,r,1

, ||v0(t, ·)||N s
q,

qr
p ,1

}

≤ C||f ||L.

In particular, we have v0 ∈ K and there exists a positive constant C0 such

that ||v0||K ≤ C0||f ||L.

Proof. We use Fact 10 in the previous section to get

sup
t∈R

max

{

||v0(t, ·)||N s
p,r,1

, ||v0(t, ·)||N s
q,

qr
p ,1

}

≤sup
t∈R

∫ t

−∞
max

{

||exp((t−τ)∆)f(τ, ·)||N s
p,r,1

, ||exp((t−τ)∆)f(τ, ·)||N s
q,

qr
p ,1

}

dτ

≤ Csup
t∈R

(
∫ t−1

−∞
(t − τ)−1− ε

2
− s

2 dτ +

∫ t

t−1
(t − τ)−1+ δ

2
− s

2 dτ

)

||f ||L

≤ C||f ||L.



136 X. ZHOU

In order to estimate the functions vj(t, x) and uj(t, x), we need the
following proposition.

Proposition 3.1. Suppose that 2
(

1 − p0

p

)

< s < n
p − n

p0
. Then there

exists a positive constant Cl such that the estimate

sup
t∈R

max

{

||Φl[u, v](t, ·)||N s
p,r,1

, ||Φl[u, v](t, ·)||N s
q,

qr
p ,1

}

≤ Cl||u||ν−l
K ||v||lK

holds for every u(t, x), v(t, x) ∈ K, l = 0, 1, . . . , ν.

Proof. Without loss of generality, let 1 ≤ l ≤ ν − 1. By definition we
observe that

||Φl[u, v](t, ·)||N s
p,r,1

≤
∫ t

−∞
|| exp((t − τ)∆){u(τ, ·)ν−lv(τ, ·)l}||N s

p,r,1
dτ

≤ C

∫ t−1

−∞
(t − τ)−

p0
p
− s

2 ||u(τ, ·)ν−lv(τ, ·)l||
N

−
2p0
p

p,r,∞

dτ

+C

∫ t

t−1
(t − τ)

−1− n
2p0

+ n
2p

− s
2 ||u(τ, ·)ν−lv(τ, ·)l||

N
−2− n

p0
+ n

p
p,r,∞

dτ,

||Φl[u, v](t, ·)||N s
q,

qr
p ,1

≤
∫ t

−∞
|| exp((t − τ)∆){u(τ, ·)ν−lv(τ, ·)l}||N s

q,
qr
p ,1

dτ

≤ C

∫ t−1

−∞
(t − τ)−

p0
p
− s

2 ||u(τ, ·)ν−lv(τ, ·)l||
N

−
2p0
p

q,
qr
p ,∞

dτ

+C

∫ t

t−1
(t − τ)

−
p0
q
− s

2 ||u(τ, ·)ν−lv(τ, ·)l||
N

−
2p0
q

q,
qr
p ,∞

dτ.

Next, we apply the Hölder inequality and embedding theorems on Morrey
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spaces to get (see Lemma 2.3, Lemma 2.4 of [19], together with Facts 5,7)

||u(τ, ·)ν−lv(τ, ·)l||
N

−
2p0
p

p,r,∞

≤ C||u(τ, ·)ν−lv(τ, ·)l||N 0
p
ν , r

ν ,∞

≤ C||u(τ, ·)ν−l||M p
ν−l

, r
ν−l

||v(τ, ·)l ||M p
l

, r
l

≤ C||u(τ, ·)||ν−l
Mp,r

||v(τ, ·)||lMp,r

≤ C||u||ν−l
K ||v||lK,

||u(τ, ·)ν−lv(τ, ·)l||
N

−2− n
p0

+ n
p

p,r,∞

≤ C||u(τ, ·)ν−lv(τ, ·)l||N 0
p0
ν ,

rp0
νp ,∞

≤ C||u(τ, ·)ν−lv(τ, ·)l||M p0
ν ,

rp0
νp

≤ C||u(τ, ·)ν−lv(τ,·)l−1||M p
ν−1 , r

ν−1
||v(τ, ·)||Mq,

qr
p

≤ C||u(τ, ·)||ν−l
Mp,r

||v(τ, ·)||l−1
Mp,r

||v(τ, ·)||Mq,
qr
p

≤ C||u||ν−l
K ||v||lK,

||u(τ, ·)ν−lv(τ, ·)l||
N

−
2p0
p

q,
qr
p ,∞

≤ C||u(τ, ·)ν−lv(τ, ·)l||
N

−2− n
p0

+n
p

p,r,∞

,

||u(τ, ·)ν−lv(τ, ·)l||
N

−
2p0
q

q,
qr
p ,∞

≤ C||u(τ, ·)ν−lv(τ, ·)l||N 0
q
ν ,

qr
pν ,∞

≤ C||u(τ, ·)||ν−l
Mq,

qr
p

||v(τ, ·)||lMq,
qr
p

≤ C||u||ν−l
K ||v||lK.

Hence we get the following estimates:

||Φl[u, v](t, ·)||N s
p,r,1

≤ C

{
∫ t−1

−∞
(t − τ)

−
p0
p
− s

2 dτ +

∫ t

t−1
(t − τ)

−1− n
2p0

+ n
2p

− s
2 dτ

}

||u||ν−l
K ||v||lK

≤ C||u||ν−l
K ||v||lK,

||Φl[u, v](t, ·)||N s
q,

qr
p ,1

≤ C

{
∫ t−1

−∞
(t − τ)−

p0
p
− s

2 dτ +

∫ t

t−1
(t − τ)−

p0
q
− s

2 dτ

}

||u||ν−l
K ||v||lK

≤ C||u||ν−l
K ||v||lK,

which implies the proposition.
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Corollary 3.1. There exist positive constants C2,l such that

||Φl[u, v]||K ≤ C2,l||u||ν−l
K ||v||lK,

for every u(t, x), v(t, x) ∈ K, l = 0, 1, . . . , ν.

By virtue of Corollary 3.1 we can prove the next lemma.

Lemma 3.2. We have vj , uj ∈ K for every j = 0, 1, . . ., and the esti-

mates

||u0||K ≤ C2,ν ||v0||νK, ||uj ||K ≤
ν−1
∑

l=0

(

ν

l

)

C2,l||uj−1||ν−l
K ||vj−1||lK

hold for every j = 1, 2, . . ..

Proof. We proceed by induction on j. Since u0 =v1−v0 =Φν[v0,v0](t, ·),
the statement for v1, u0 follows immediately from Lemma 3.1 and Corollary
3.1. Assume that the assertion has been proved for j ≥ 1. We see that

uj = vj+1 − vj = Φν[vj , vj ] − Φν[vj−1, vj−1]

=

ν−1
∑

l=0

(

ν

l

)

Φl[uj−1, vj−1].

Corollary 3.1 implies that uj ∈ K and

||uj ||K ≤
ν−1
∑

l=0

(

ν

l

)

C2,l||uj−1||ν−l
K ||vj−1||lK.

Since vj+1 = vj + uj, the fact vj+1 ∈ K follows from the induction hypoth-
esis.

We now begin the proof of Theorem 2.1 with γ0 = 1
4C0C2

, κ0 = 1
2C2

,

where C0 is the constant in Lemma 3.1 and C2 =
∑ν

l=0

(

ν
l

)

C2,l2
ν.

Without loss of generality, let C0, C2 > 1.
First we define

Aj = ||vj||K, Bj = ||uj||K, j = 0, 1, . . . .

Then we have the following estimates.
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Lemma 3.3. There exist positive constants C0, C2 such that

Aj+1 ≤ C0γ + C2A
2
j

for every j = 0, 1, . . ..

Proof. From Lemma 3.1 and Corollary 3.1, we have

||vj+1||K = ||v0 + Φν [vj, vj ]||K ≤ ||v0||K + ||Φν [vj , vj ]||K
≤ C0||f ||L + C2,ν ||vj ||νK ≤ C0γ + C2||vj ||2K,

which completes the proof. The constant C2 =
∑ν

l=0 C2,l2
ν .

Let γ0 = 1
4C0C2

, κ0 = 1
2C2

. From Lemma 3.3 we see that if γ < γ0,
then we have

Aj ≤ ψ(γ) =
1 −√

1 − 4C0C2γ

2C2
< κ0 = ψ(γ0) =

1

2C2
< 1

for every j = 1, 2, . . ., by induction on j.
From Lemma 3.2 we obtain

Bj = ||uj||K ≤
ν−1
∑

l=0

(

ν

l

)

C2,l||uj−1||ν−l
K ||vj−1||lK

≤
ν−1
∑

l=0

(

ν

l

)

C2,l (||vj||K + ||vj−1||K)ν−l−1 ||vj−1||lK||uj−1||K

≤
ν−1
∑

l=0

(

ν

l

)

C2,l2
νψ(γ)ν−1Bj−1

≤ C2ψ(γ)Bj−1 < C2ψ(γ0)Bj−1 =
1

2
Bj−1,

for every j = 1, 2, . . ., which implies that
∑∞

j=0Bj < ∞. It follows

that
∑k

j=0 uj(t, ·) converges in Mp,r ∩ Mq, qr
p

as k → ∞ for almost

every t ∈ R, and that there exists a function v(t, ·) ∈ K such that
v0(t, ·) +

∑∞
j=0 uj(t, ·) = v(t, ·) for almost every t > 0. Moreover, we

have the estimate

||v||K ≤ 1 −√
1 − 4C0C2γ

2C2
< κ0 = ψ(γ0) =

1

2C2
.



140 X. ZHOU

Hence from the formula vj+1(t, ·) = v0(t, ·) + Φν[vj, vj](t, ·) it follows
that v satisfies the integral equation (2.1). This completes the proof
of the existence and the required sharper estimate (2.2) in Theorem
2.1.

Next we will show the uniqueness of the solutions of (2.1). Let
u(t, x) be another solution of (2.1) such that ||u||K < κ0. Putting
w(t, x) = u(t, x) − v(t, x), we have

w(t, ·) =
ν−1
∑

l=0

(

ν

l

)

Φl[w, v](t, ·).

Corollary 3.1 implies that

||w||K ≤
ν−1
∑

l=0

(

ν

l

)

C2,l||w||ν−l
K ||v||lK ≤

ν−1
∑

l=0

(

ν

l

)

C2,l2
νκ0

ν−1||w||K

≤ C2κ0||w||K =
1

2
||w||K,

we have ||w||K = 0, which implies u ≡ v. This proves the uniqueness
of the solutions of (2.1).

Lemma 3.4. v(t, x) is Hölder-continuous in t with values in Mp,r ∩
Mq, qr

p
.

Proof. For every s, t such that s < t ≤ s + 1, we have

v(t, ·) − v(s, ·) = I1 + I2 + I3,

where

I1 =

∫ t

s
exp((t − τ)∆){v(τ, ·)ν}dτ,

I2 =

∫ t

s
exp((t − τ)∆)f(τ, ·)dτ,

I3 = (exp((t − s)∆) − 1)v(s, ·).

First we consider ||v(t, ·) − v(s, ·)||Mp,r . Denote σ1 = nν
q − n

p , then we
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have 0 < σ1 < 2 and

||I1||Mp,r ≤ C

∫ t

s
|| exp((t − τ)∆){v(τ, ·)ν}||N 0

p,r,1
dτ

≤ C

∫ t

s
|| exp((t − τ)∆){v(τ, ·)ν}||Nσ1

q
ν ,

qr
pν ,1

dτ

≤ C

∫ t

s
(t − τ)−

σ1
2 ||{v(τ, ·)ν}||N 0

q
ν ,

qr
pν ,∞

dτ

≤ C

∫ t

s
(t − τ)−

σ1
2 ||v(τ, ·)||νMq,

qr
p

dτ

≤ C(t − s)1−
σ1
2 ||v(τ, ·)||νMq,

qr
p

≤ C(t − s)1−
σ1
2 ,

||I2||Mp,r ≤
∫ t

s
|| exp((t − τ)∆)f(τ, ·)||N 0

p,r,1
dτ

≤ C

∫ t

s
(t − τ)−1+ δ

2 ||f(τ, ·)||N−2+δ
p,r,∞

dτ ≤ C(t − s)
δ
2 ||f ||L.

On the other hand, choosing σ2 so that 0 < σ2 < min
{

δ, n
p − n

p0

}

, we apply

Lemma 3.1 and Proposition 3.1 to get

||I3||Mp,r ≤
∫ t

s

∥

∥

∥

∥

d

dτ
exp((τ − s)∆)v(s, ·)

∥

∥

∥

∥

Mp,r

dτ

≤ C

∫ t

s
(τ − s)−1+

σ2
2 ||v(s, ·)||Nσ2

p,r,1
dτ

≤ C(t − s)
σ2
2 (||f ||L + ||v||νK) ≤ C(t − s)

σ2
2 .

In view of the inequalities above, we conclude that

||v(t, ·) − v(s, ·)||Mp,r ≤ C
{

(t − s)
σ2
2 + (t − s)1−

σ1
2

}

.(3.1)
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Next we consider ||v(t, ·) − v(s, ·)||M
q,

qr
p

.

||I1||M
q,

qr
p
≤ C

∫ t

s
|| exp((t − τ)∆){v(τ, ·)ν}||N 0

q,
qr
p ,1

dτ

≤ C

∫ t

s
|| exp((t − τ)∆){v(τ, ·)ν}||

N
2p0

q
q
ν ,

qr
pν ,1

dτ

≤ C

∫ t

s
(t − τ)−

p0
q ||v(τ, ·)||νMq,

qr
p

dτ

≤ C(t − s)1−
p0
q ||v||νK.

Moreover, it is easy to obtain the following estimates in the same way
as in (3.1).

||I2||M
q,

qr
p
≤ C(t − s)

δ
2 ||f ||L,

||I3||M
q,

qr
p
≤ C

∫ t

s

∥

∥

∥

∥

d

dτ
exp((τ − s)∆)v(s, ·)

∥

∥

∥

∥

Mq,
qr
p

dτ

≤ C

∫ t

s
(τ − s)−1+

σ2
2 ||v(s, ·)||Nσ2

q,
qr
p ,1

dτ

≤ C(t − s)
σ2
2 (||f ||L + ||v||νK) ≤ C(t − s)

σ2
2 .

Hence we have

||v(t, ·) − v(s, ·)||Mq,
qr
p
≤
{

(t − s)
σ2
2 + (t − s)1−

p0
q

}

.(3.2)

By (3.1) and (3.2), v(t, x) is Hölder-continuous with values in Mp,r ∩
Mq, qr

p
.

Proposition 3.2. If f(t, ·) is Hölder-continuous with values in

N−2
p,r,∞∩N−2

q, qr
p

,∞
, then the solution v(t, x) ∈ K of (2.1) also solves the equa-

tion (1.1).

Proof. It is enough to show the required Hölder continuity of the func-
tion Γ(t, ·) ≡ v(t, ·)ν + f(t, ·). Then we can complete the proof in the same
way as in Theorem 5.1 of [19].

By Lemma 3.4 there exists a positive number θ such that

||v(t, ·) − v(s, ·)||Mp,r ≤ C(t − s)θ, ||v(t, ·) − v(s, ·)||Mq,
qr
p
≤ C(t − s)θ,
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for every s, t such that s < t ≤ s + 1.

Therefore

||v(t, ·)ν − v(s, ·)ν ||N−2
p,r,∞

≤ C

ν−1
∑

l=0

(

ν

l

)

||(v(t, ·) − v(s, ·))ν−lv(s, ·)l||N 0
np

n+2p , nr
n+2p ,∞

≤ C

ν−1
∑

l=0

(

ν

l

)

||(v(t, ·) − v(s, ·))ν−lv(s, ·)l||M np
n+2p , nr

n+2p

≤ C
ν−1
∑

l=0

(

ν

l

)

||v(t, ·)−v(s, ·)||Mp,r ||(v(t, ·)−v(s, ·))ν−1−lv(s, ·)l||M p0
ν−1 ,

p0r
(ν−1)p

≤ C
ν−1
∑

l=0

(

ν

l

)

(t − s)θ||v(t, ·) − v(s, ·)||ν−1−l
M

p0 ,
p0r
p

||v(s, ·)||lM
p0 ,

p0r
p

≤ C(t − s)θ,

||v(t, ·)ν − v(s, ·)ν ||N−2

q,
qr
p ,∞

≤ C

ν−1
∑

l=0

(

ν

l

)

||(v(t, ·) − v(s, ·))ν−lv(s, ·)l||N 0
nq

n+2q ,
nqr

(n+2q)p
,∞

≤ C
ν−1
∑

l=0

(

ν

l

)

||(v(t, ·) − v(s, ·))ν−lv(s, ·)l||M nq
n+2q ,

nqr
(n+2q)p

≤ C
ν−1
∑

l=0

(

ν

l

)

||v(t, ·) − v(s, ·)||M
q,

qr
p

×||(v(t, ·) − v(s, ·))ν−1−lv(s, ·)l||M p0
ν−1 ,

p0r
(ν−1)p

≤ C

ν−1
∑

l=0

(

ν

l

)

(t − s)θ||v(t, ·) − v(s, ·)||ν−1−l
M

p0 ,
p0r
p

||v(s, ·)||lM
p0 ,

p0r
p

≤ C(t − s)θ,

which complete the proof.

In order to prove the uniqueness of the solution of (1.1), we need
the following proposition.

Proposition 3.3. Assume that the solution v(t, x) ∈ K of (1.1) enjoys
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the estimate (2.2) and is Hölder-continuous in t with values in Mp,r∩Mq, qr
p
.

Then v(t, x) solves (2.1).

Proof. Put u(t, x) = v0(t, x) + Φν [v, v](t, x). Then Lemma 3.1 and
Corollary 3.1 implies that u(t, x) ∈ K. Moreover, the Hölder continuity of
v(t, x) implies that of Φν [v, v](t, x). Hence u(t, x) satisfies the differential
equation

∂u

∂t
= ∆u + vν + f.

Denote w(t, x) = u(t, x) − v(t, x), then w(t, x) ∈ K and

∂w

∂t
= ∆w.

Hence, for every s, t ∈ R such that s < t, we have the estimate

||w(t, ·)||M
q,

qr
p
≤ C||w(t, ·)||N 0

q,
qr
p ,1

≤ C||w(t, ·)||
N

n
p −n

q
p,r,1

≤ C(t − s)
n
2q

− n
2p ||w(s, ·)||N 0

p,r,∞

≤ C(t − s)
n
2q

− n
2p ||w(s, ·)||Mp,r .

Since ||w(s, ·)||Mp,r is bounded from above, we see that the right-hand side
of the formula above tends to 0 as s → −∞ for every fixed t ∈ R. Hence
||w(t, ·)||M

q,
qr
p

= 0 for every t ∈ R, which yields w ≡ 0. Hence v ≡ u =

v0(t, x) + Φν [v, v](t, x). It follows that v(t, x) solves (2.1).

Remark 3.1. Proposition 3.3 and the uniqueness of the solutions of
(2.1) imply the uniqueness of the solutions of (1.1).

Finally, it remains only to show the continuity of the mapping
T : f(t, x) 7→ v(t, x) to prove Theorem 2.1. Suppose that v(t, x) is the
unique solution of (2.1) with ||v||K < κ0 for f ∈ L such that ||f ||L < γ0,
and that u(t, x) is the unique solution of (2.1) with ||u||K < κ0 with
f(t, x) replaced by g(t, x) ∈ L such that ||g||L < γ0.

Since

u− v = u0 + Φν[u, u] − (v0 + Φν[v, v])

= (u0 − v0) +
ν−1
∑

l=0

(

ν

l

)

Φl[u− v, v],
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Lemma 3.1 and Corollary 3.1 imply that

||u0 − v0||K ≤ C0||f − g||L,
∥

∥

∥

∥

∥

ν−1
∑

l=0

(

ν

l

)

Φl[u− v, v]

∥

∥

∥

∥

∥

K

≤
ν−1
∑

l=0

(

ν

l

)

||Φl[u− v, v]||K

≤
ν−1
∑

l=0

(

ν

l

)

C2,l(||u||K + ||v||K)ν−1−l||v||lK||u− v||K

≤
ν−1
∑

l=0

(

ν

l

)

C2,l2
νκ0

ν−1||u− v||K =
1

2
κ0

ν−2||u− v||K.

It follows that

||u− v||K ≤ 2C0

2 − κ0
ν−2

||f − g||L,

which proves the continuity of the mapping T : f(t, x) 7→ v(t, x).
Thus we have completely proved Theorem 2.1.

§4. Stability of time-global solutions

In this section we prove the stability of the time-global solutions of
(1.1) given in Theorem 2.1 by applying the successive approximation.
Since the solution w(t, x) depends on t, it is hard to apply the per-
turbation theory of semigroups as in [19]. But w(t, x) has both better
decay property and better smoothness than the general elements of
Mp0,

p0r
p

, so we can use the heat semigroup to control the perturba-

tions.
In the sequel we always assume that p, q, r and l, m, α satisfy the

condition (H2), and w(t, x) ∈ K+ is a solution of (1.1) with ||w||K+ < 1
given in Theorem 2.1. Let T be either a positive number or ∞. We
introduce the set

Jα,T =

{

u(t, x)

∣

∣

∣

∣

∣

sup
0<t<T

t
n

2p0
− n

2αl ||u(t, ·)||Mαl,αm
<∞

}
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equipped with the norm

||u||Jα,T
= sup

0<t<T
t

n
2p0

− n
2αl ||v(t, ·)||Mαl,αm

.

The integral equation corresponding to (2.3)–(2.4) is as follows.

u(t, x) = exp(t∆)b(x) +

∫ t

0

exp((t− τ)∆)

ν−1
∑

k=0

(

ν

k

)

u(τ, ·)ν−kw(τ, ·)kdτ.

We also define

Ψ[u](t, ·) =

∫ t

0

exp((t− τ)∆)
ν−1
∑

k=0

(

ν

k

)

u(τ, ·)ν−kw(τ, ·)kdτ.

Then we have the following proposition.

Proposition 4.1. For every σ such that n
l − nν

αl < σ ≤ n
l − n

αl , there

exists a positive constant C independent of w ∈ K+ and T ∈ (0,∞] such

that the estimate

||Ψ[u] − Ψ[v]||Nσ
l,m,1

≤ C
ν−1
∑

k=1

ν−k−1
∑

j=0

Cν,k,j(||u||Jα,T
+ ||v||Jα,T

)ν−k−1−j ||v||jJα,T
||w||kK+

∫ s

0
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2p
−σ

2 τ
( n
2αl

− n
2p0

)(ν−k−1)||u(τ, ·) − v(τ, ·)||Mαl,αm
dτ

+C
ν−1
∑

k=1

ν−k−1
∑

j=0

Cν,k,j(||u||Jα,T
+ ||v||Jα,T

)ν−k−1−j||v||jJα,T
||w||kK+

∫ t

s
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2q
−σ

2 τ
( n
2αl

− n
2p0

)(ν−k−1)||u(τ, ·) − v(τ, ·)||Mαl,αm
dτ

+C

ν−1
∑

j=0

Cν,j(||u||Jα,T
+ ||v||Jα,T

)ν−j−1||v||jJα,T

∫ t

0
(t − τ)

n
2l
− nν

2αl
−σ

2 τ
p0
αl

−1||u(τ, ·) − v(τ, ·)||Mαl,αm
dτ

holds for all u, v ∈ Jα,T and every t ∈ (0, T ), where s = max{0, t − 1},
Cν,k,j =

(ν
k

)(ν−k
j

)

and Cν,j = Cν,0,j =
(ν

j

)

.
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Proof. By definition, we have

Ψ[u](τ, ·) − Ψ[v](τ, ·) = I1 + I2 + I3,

where

I1 =
ν−1
∑

k=1

ν−k−1
∑

j=0

Cν,k,j

∫ s

0
exp((t−τ)∆){(u(τ, ·)−v(τ, ·))ν−k−jv(τ, ·)jw(τ, ·)k}dτ,

I2 =
ν−1
∑

k=1

ν−k−1
∑

j=0

Cν,k,j

∫ t

s
exp((t−τ)∆){(u(τ, ·)−v(τ, ·))ν−k−jv(τ, ·)jw(τ, ·)k}dτ,

I3 =

ν−1
∑

j=0

Cν,j

∫ t

0
exp((t − τ)∆){(u(τ, ·) − v(τ, ·))ν−jv(τ, ·)j}dτ,

and s = max{0, t − 1}, Cν,k,j =
(

ν
k

)(

ν−k
j

)

, Cν,j =
(

ν
j

)

.
We first estimate I3. Since u, v ∈ Jα,T , it follows that

||I3||Nσ
l,m,1

≤
ν−1
∑

j=0

Cν,j

∫ t

0
|| exp((t − τ)∆){(u(τ, ·) − v(τ, ·))ν−jv(τ, ·)j}||Nσ

l,m,1
dτ

≤ C

ν−1
∑

j=0

Cν,j

∫ t

0
(t − τ)

n
2l
− nν

2αl
−σ

2 ||(u(τ, ·) − v(τ, ·))ν−jv(τ, ·)j ||
N

n
l
−nν

αl
l,m,∞

dτ

≤ C

ν−1
∑

j=0

Cν,j

∫ t

0
(t − τ)

n
2l
− nν

2αl
−σ

2 ||(u(τ, ·) − v(τ, ·))ν−jv(τ, ·)j ||Mαl/ν,αm/ν
dτ

≤ C
ν−1
∑

j=0

Cν,j

∫ t

0
(t − τ)

n
2l
− nν

2αl
−σ

2 ||u(τ, ·) − v(τ, ·)||ν−j
Mαl,αm

||v(τ, ·)||jMαl,αm
dτ

≤ C
ν−1
∑

j=0

Cν,j(||u||Jα,T
+ ||v||Jα,T

)ν−j−1||v||jJα,T

∫ t

0
(t − τ)

n
2l
− nν

2αl
−σ

2 τ
p0
αl

−1||u(τ, ·) − v(τ, ·)||Mαl,αm
dτ.

Next we estimate I2. Observing that w(t, ·) ∈ Mq, qr
p

, we put

1

p2
=

ν − k

αl
+

k

q
,

1

q2
=

ν − k

αm
+

pk

qr
,
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then we have p2 < l and

||I2||Nσ
l,m,1

≤
ν−1
∑

k=1

ν−k−1
∑

j=0

Cν,k,j

∫ t

s
|| exp((t − τ)∆)

{(u(τ, ·) − v(τ, ·))ν−k−jv(τ, ·)jw(τ, ·)k}||Nσ
l,m,1

dτ

≤
ν−1
∑

k=1

ν−k−1
∑

j=0

Cν,k,j

∫ t

s
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2q
−σ

2

||(u(τ, ·) − v(τ, ·))ν−k−jv(τ, ·)jw(τ, ·)k ||
N

n
l
−

n(ν−k)
αl

−nk
q

l,m,∞

dτ

≤
ν−1
∑

k=1

ν−k−1
∑

j=0

Cν,k,j

∫ t

s
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2q
−σ

2

||(u(τ, ·) − v(τ, ·))ν−k−jv(τ, ·)jw(τ, ·)k ||N 0
p2,q2,∞

dτ

≤
ν−1
∑

k=1

ν−k−1
∑

j=0

Cν,k,j

∫ t

s
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2q
−σ

2

||u(τ, ·) − v(τ, ·)||ν−k−j
Mαl,αm

||v(τ, ·)||jMαl,αm
||w(τ, ·)||kM

q,
qr
p

dτ

≤
ν−1
∑

k=1

ν−k−1
∑

j=0

Cν,k,j(||u||Jα,T
+ ||v||Jα,T

)ν−k−1−j||v||jJα,T
||w||kK+

∫ t

s
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2q
−σ

2 τ
( n
2αl

− n
2p0

)(ν−k−1)||u(τ, ·) − v(τ, ·)||Mαl,αm
dτ,

where n
2l − n(ν−k)

2αl − nk
2q − σ

2 > −1, ( n
2αl − n

2p0
)(ν − k) > −1, for each

k = 1, 2, . . . , ν − 1.

We finally estimate I1. If t ≤ 1, then we have I1 = 0. Suppose that
t > 1. Put

1

p1
=

ν − k

αl
+

k

p
,

1

q1
=

ν − k

αm
+

k

r
,
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then we have p1 < l and

||I1||Nσ
l,m,1

≤
ν−1
∑

k=1

ν−k−1
∑

j=0

Cν,k,j

∫ s

0
|| exp((t − τ)∆)

{(u(τ, ·) − v(τ, ·))ν−k−jv(τ, ·)jw(τ, ·)k}||Nσ
l,m,1

dτ

≤
ν−1
∑

k=1

ν−k−1
∑

j=0

Cν,k,j

∫ s

0
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2p
−σ

2

||(u(τ, ·) − v(τ, ·))ν−k−jv(τ, ·)jw(τ, ·)k ||
N

n
l
−

n(ν−k)
αl

−nk
p

l,m,∞

dτ

≤
ν−1
∑

k=1

ν−k−1
∑

j=0

Cν,k,j

∫ s

0
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2p
−σ

2

||(u(τ, ·) − v(τ, ·))ν−k−jv(τ, ·)jw(τ, ·)k ||N 0
p1,q1,∞

dτ

≤
ν−1
∑

k=1

ν−k−1
∑

j=0

Cν,k,j

∫ s

0
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2p
−σ

2

||u(τ, ·) − v(τ, ·)||ν−k−j
Mαl,αm

||v(τ, ·)||jMαl,αm
||w(τ, ·)||kMp,r

dτ

≤
ν−1
∑

k=1

ν−k−1
∑

j=0

Cν,k,j(||u||Jα,T
+ ||v||Jα,T

)ν−k−1−j||v||jJα,T
||w||kK+

∫ s

0
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2p
−σ

2 τ
( n
2αl

− n
2p0

)(ν−k−1)||u(τ, ·) − v(τ, ·)||Mαl,αm
dτ,

This completes the proof.

Proposition 4.2. For every σ such that n
l − nν

αl < σ ≤ n
l − n

αl , there

exists a positive constant C independent of w ∈ K+ and T ∈ (0,∞] such

that the estimate

sup
0<t<T

t
σ
2
− n

2l
+ n

2p0 ||Ψ[u] − Ψ[v]||Nσ
l,m,1

≤ C||u − v||Jα,T

ν−1
∑

k=0

ν−k−1
∑

j=0

Cν,k,j(||u||Jα,T
+||v||Jα,T

)ν−k−1−j||v||jJα,T
||w||kK+

holds for every u, v ∈ Jα,T .
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Proof. It is enough to estimate the integrals in Proposition 4.1. Denote

I′1,k =

∫ s

0
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2p
−σ

2 τ
( n
2αl

− n
2p0

)(ν−k−1)||u(τ, ·) − v(τ, ·)||Mαl,αm
dτ,

I′2,k =

∫ t

s
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2q
−σ

2 τ
( n
2αl

− n
2p0

)(ν−k−1)||u(τ, ·) − v(τ, ·)||Mαl,αm
dτ,

I′3 =

∫ t

0
(t − τ)

n
2l
− nν

2αl
−σ

2 τ
p0
αl

−1||u(τ, ·) − v(τ, ·)||Mαl,αm
dτ,

where k = 1, 2, . . . , ν − 1 and s = max{0, t − 1}.
For I′3, since σ ≤ n

l − n
αl , we have −1 < n

2l − nν
2αl − σ

2 < 0 and −1 <
nν
2αl − nν

2p0
< 0. It follows that

I′3 ≤ t
n
2l
− n

2p0
−σ

2 ||u − v||Jα,T

∫ 1

0
(1 − θ)

n
2l
− nν

2αl
−σ

2 θ
nν
2αl

− nν
2p0 dθ(4.1)

≤ B

(

n

2l
− nν

2αl
− σ

2
+ 1,

nν

2αl
− nν

2p0
+ 1

)

t
n
2l
− n

2p0
−σ

2 ||u − v||Jα,T
.

We next estimate I′1,k(k = 1, 2, . . . , ν − 1). If t ≤ 1, then we have
I′1,k = 0. Suppose that t > 1. Then we have

(4.2) I′1,k ≤ ||u − v||Jα,T

∫ t−1

0
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2p
−σ

2 τ
n(ν−k)

2αl
−n(ν−k)

2p0 dτ.

If 1 < t ≤ 2, we have t − 1 ≤ t
2 and

∫ t−1

0
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2p
−σ

2 τ
n(ν−k)

2αl
−n(ν−k)

2p0 dτ(4.3)

≤
∫ t

2

0
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2p
−σ

2 τ
n(ν−k)

2αl
−n(ν−k)

2p0 dτ.

On the other hand, if t > 2, then we can write

∫ t−1

0
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2p
−σ

2 τ
n(ν−k)

2αl
−n(ν−k)

2p0 dτ(4.4)

=

∫ t
2

0
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2p
−σ

2 τ
n(ν−k)

2αl
−n(ν−k)

2p0 dτ

+

∫ t−1

t
2

(t − τ)
n
2l
−n(ν−k)

2αl
−nk

2p
−σ

2 τ
n(ν−k)

2αl
−n(ν−k)

2p0 dτ.
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Furthermore, observing that t > 1 and p < p0, we have

∫ t
2

0
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2p
−σ

2 τ
n(ν−k)

2αl
−n(ν−k)

2p0 dτ(4.5)

≤ Ct
n
2l
− n

2p0
−σ

2
+k( n

2p0
− n

2p
)
∫ 1

2

0
(1 − θ)

n
2l
−n(ν−k)

2αl
−nk

2p
−σ

2 θ
n(ν−k)

2αl
−n(ν−k)

2p0 dθ

≤ Ct
n
2l
− n

2p0
−σ

2 .

If t > 2, we can estimate

∫ t−1

t
2

(t − τ)
n
2l
−n(ν−k)

2αl
−nk

2p
−σ

2 τ
n(ν−k)

2αl
−n(ν−k)

2p0 dτ(4.6)

≤ Ct
n(ν−k)

2αl
−n(ν−k)

2p0

∫ t
2

1
θ

n
2l
−n(ν−k)

2αl
−nk

2p
−σ

2 dθ

≤















Ct
n
2l
− n

2p0
−σ

2
+k( n

2p0
− n

2p
)
, if n

2l −
n(ν−k)

2αl − nk
2p − σ

2 + 1 > 0,

Ct
n
2l
− n

2p0
−σ

2
+k( n

2p0
− n

2p
)
ln t, if n

2l −
n(ν−k)

2αl − nk
2p − σ

2 + 1 = 0,

Ct
n(ν−k)

2αl
−n(ν−k)

2p0 , if n
2l −

n(ν−k)
2αl − nk

2p − σ
2 + 1 < 0.

Observe that t > 1 and p < p0, so we have

t
k( n

2p0
− n

2p
) ≤ C, t

k( n
2p0

− n
2p

)
ln t ≤ C,

t
n(ν−k)

2αl
−n(ν−k)

2p0 ≤ t
n

2αl
− n

2p0 ≤ t
n
2l
− n

2p0
−σ

2 , k = 1, 2, . . . , ν − 1.

Hence (4.6) implies that

(4.7)

∫ t−1

t
2

(t − τ)
n
2l
−n(ν−k)

2αl
−nk

2p
−σ

2 τ
n(ν−k)

2αl
−n(ν−k)

2p0 dτ ≤ Ct
n
2l
− n

2p0
−σ

2 .

It follows from (4.2), (4.3), (4.4), (4.5) and (4.7) that

(4.8) I′1,k ≤ Ct
n
2l
− n

2p0
−σ

2 ||u − v||Jα,T
, k = 1, 2, . . . , ν − 1.

We finally estimate I′2,k(k = 1, 2, . . . , ν − 1). We have

(4.9) I′2,k ≤ ||u − v||Jα,T

∫ t

s
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2q
−σ

2 τ
n(ν−k)

2αl
−n(ν−k)

2p0 dτ.



152 X. ZHOU

The assumptions σ ≤ n
l − n

αl and p > (ν−1)2

ν2−ν−1
p0 imply that

−1 <
n

2l
− n(ν − k)

2αl
− nk

2q
− σ

2
< 0, −1 <

n(ν − k)

2αl
− n(ν − k)

2p0
< 0,

for k = 1, 2, . . . , ν − 1.

If 0 < t ≤ 2, we have

∫ t

s
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2q
−σ

2 τ
n(ν−k)

2αl
−n(ν−k)

2p0 dτ(4.10)

≤
∫ t

0
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2q
−σ

2 τ
n(ν−k)

2αl
−n(ν−k)

2p0 dτ

≤ Ct
n
2l
− n

2p0
−σ

2
+k( n

2p0
− n

2q
) ≤ Ct

n
2l
− n

2p0
−σ

2 .

If t > 2, we have t − 1 > t
2 . It follows that

∫ t

s
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2q
−σ

2 τ
n(ν−k)

2αl
−n(ν−k)

2p0 dτ(4.11)

≤ (t − 1)
n(ν−k)

2αl
−n(ν−k)

2p0

∫ t

t−1
(t − τ)

n
2l
−n(ν−k)

2αl
−nk

2q
−σ

2 dτ

≤ C

(

t

2

)

n(ν−k)
2αl

−n(ν−k)
2p0 ≤ Ct

n
2αl

− n
2p0

≤ Ct
n
2l
− n

2p0
−σ

2 .

It follows from (4.9), (4.10) and (4.11) that

(4.12) I′2,k ≤ Ct
n
2l
− n

2p0
−σ

2 ||u − v||Jα,T
, k = 1, 2, . . . , ν − 1.

Summing up (4.1), (4.8) and (4.12) we obtain the conclusion.

Corollary 4.1. If v ∈ Jα,T , then we have Ψ[v] ∈ Jα,T . Furthermore,

there exists a positive constant Cα,3 independent of w ∈ K+ and T ∈ (0,∞]
such that the estimate

||Ψ[u] − Ψ[v]||Jα,T
≤ Cα,3(||w||K+ + ||u||Jα,T

+ ||v||Jα,T
)||u − v||Jα,T

holds for every u, v ∈ Jα,T satisfying ||u||Jα,T
< 1, ||v||Jα,T

< 1.
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Proof. Putting σ = n
l − n

αl in Proposition 4.2, we have

||Ψ[u] − Ψ[v]||Mαl,αm

≤ C||Ψ[u] − Ψ[v]||N 0
αl,αm,1

≤ C||Ψ[u] − Ψ[v]||
N

n
l
− n

αl
l,m,1

≤ Ct
n

2αl
− n

2p0

ν−1
∑

k=0

ν−k−1
∑

j=0

Cν,k,j(||u||Jα,T
+ ||v||Jα,T

)ν−k−1−j

×||v||jJα,T
||w||kK+

||u − v||Jα,T

≤ Cα,3t
n

2αl
− n

2p0 (||w||K+ + ||u||Jα,T
+ ||v||Jα,T

)||u − v||Jα,T
.

This implies the conclusion.

Corollary 4.2. For every β such that 1 < β < α, there exists a

positive constant Cα,β independent of w ∈ K+ and T ∈ (0,∞] such that the

estimate

sup
0<t<T

t
n

2p0
− n

2βl ||Ψ[v]||Mβl,βm
≤ Cα,β(||w||K+ + ||v||Jα,T

)||v||Jα,T

holds for every v ∈ Jα,T with ||v||Jα,T
< 1. In particular, we have Ψ[v] ∈

Jβ,T .

Proof. This is proved in the same way as in Corollary 4.1.

Corollary 4.3. Suppose that v ∈ Jα,T satisfying ||v||Jα,T
< 1. Then

we have Ψ[v](t, ·) → 0 weakly∗ in Ḃ
− n

p0
∞,∞ as t → +0.

Proof. Let a(x) be a function in Ḃ
n
p0
1,1 and let ε be a positive number.

Then there exists a function ϕ(x) ∈ S such that suppF [ϕ](ξ) is a com-
pact subset of Rn away from the origin and that ||a − ϕ||

Ḃ
n
p0
1,1

< ε. From

Proposition 4.2 with u = 0 and σ = n
l − n

p0
, it follows that

|(a,Ψ[v](t, ·)) − (ϕ,Ψ[v](t, ·))|(4.13)

≤ ||a − ϕ||
Ḃ

n
p0
1,1

||Ψ[v](t, ·)||
Ḃ

− n
p0

∞,∞

≤ Cε||Ψ[v](t, ·)||
N

n
l
− n

p0
l,m,1

≤ C(v)ε.
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Moreover, in view of Proposition 4.2 with u = 0 and σ = σ0 ∈
(

n
l − nν

αl ,
n
l − n

p0

)

, we have

|(ϕ,Ψ[v](t, ·))| ≤ ||ϕ||
Ḃ

−σ0+ n
l

1,1

||Ψ[v](t, ·)||
Ḃ

σ0−n
l

∞,∞

≤ C||ϕ||
Ḃ

−σ0+n
l

1,1

||Ψ[v](t, ·)||Nσ0
l,m,1

≤ C(v)t
n
2l
− n

2p0
−

σ0
2 .

This, together with (4.13), implies that

lim sup
t→+0

|(a,Ψ[v](t, ·))| ≤ C(v)ε.

Since ε > 0 is arbitrary, we obtain the conclusion.

Lemma 4.1. For every b(x) ∈ Ḃ
− n

p0
∞,∞, we have exp(t∆)b → b weakly∗

in Ḃ
− n

p0
∞,∞ as t → +0.

Proof. For every ϕ ∈ Ḃ
n
p0
1,1, the strong continuity of the semigroup

exp(t∆) on the space Ḃ
n
p0
1,1 implies

|(ϕ, exp(t∆)b − b)| = |(exp(t∆)ϕ − ϕ, b)|(4.14)

≤ || exp(t∆)ϕ − ϕ||
Ḃ

n
p0
1,1

||b||
Ḃ

− n
p0

∞,∞

→ 0 as t → +0.

This implies the conclusion.

Now we prove the main results on the stability of time-global so-
lutions. First we have the following theorem.

Theorem 4.1. Let 0 < T ≤ ∞ and w ∈ K+ be a solution of (1.1)
satisfying the estimate ||w||K+ < 1

2Cα,3
. Then for every b(x) ∈ S ′, the

solution u(t, x) ∈ Jα,T of the equation

(4.15) u(t, ·) = exp(t∆)b + Ψ[u](t, ·)
satisfying the conditions

(4.16) ||u||Jα,T
< 1, lim sup

T→+0
||u||Jα,T

<
1

4Cα,3

is unique.
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Proof. Assume that u1(t, x), u2(t, x) ∈ Jα,T enjoy (4.15) and (4.16)
with u = uj , j = 1, 2. Let u0 = u1 − u2, we have u0 = Ψ[u1] − Ψ[u2].
Form (4.16) we can take T0 > 0 such that ||uj ||Jα,T0

< 1
4Cα,3

for j = 1, 2.

Corollary 4.1 implies that

||u0||Jα,T0
≤ Cα,3(||w||K+ + ||u1||Jα,T0

+ ||u2||Jα,T0
)||u0||Jα,T0

.

Moreover, it follows from the assumptions that

Cα,3(||w||K+ + ||u1||Jα,T0
+ ||u2||Jα,T0

) < 1.

We have ||u0||Jα,T0
= 0, which implies that u1 ≡ u2 on (0, T0) ×Rn

x.

Next, in view of Proposition 4.1 with σ = n
l − n

αl and the inclusion

relation N
n
l
− n

αl
l,m,1 ⊂ N 0

αl,αm,1 ⊂ Mαl,αm, we have

||u0(t, ·)||Mαl,αm
(4.17)

≤
ν−1
∑

k=1

C(k)

∫ t

0
Fk(t − τ)τ

( n
2αl

− n
2p0

)(ν−k−1)||u0(τ, ·)||Mαl,αm
dτ

+C

∫ t

0
(t − τ)−

p0
αl τ

p0
αl

−1||u0(τ, ·)||Mαl,αm
dτ,

where Fk(θ) = min
{

θ
−

p0
αl

+k( n
2αl

− n
2p

)
, θ

−
p0
αl

+k( n
2αl

− n
2q

)
}

(k = 1, 2, . . . , ν − 1).

If we take ε > 0 so small that

{

ν−1
∑

k=1

C(k)T0
( n
2αl

− n
2p0

)(ν−k−1)
∫ ε

0
Fk(θ)dθ + CT0

p0
αl

−1

∫ ε

0
θ−

p0
αl dθ

}

≤ 1

2

holds, then

ν−1
∑

k=1

C(k)

∫ t

s
Fk(t − τ)τ

( n
2αl

− n
2p0

)(ν−k−1)
dτ(4.18)

+ C

∫ t

s
(t − τ)−

p0
αl τ

p0
αl

−1dτ ≤ 1

2

holds for every s, t such that T0 ≤ s ≤ t < s + ε ≤ T .
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Now suppose that u0(t, x) ≡ 0 on (0, s) × Rn
x, for some s ≥ T0. Let

t ∈ [s, s + ε). Then

||u0(t, ·)||Mαl,αm

≤
ν−1
∑

k=1

C(k)

∫ t

s
Fk(t − τ)τ

( n
2αl

− n
2p0

)(ν−k−1)||u0(τ, ·)||Mαl,αm
dτ

+C

∫ t

s
(t − τ)−

p0
αl τ

p0
αl

−1||u0(τ, ·)||Mαl,αm
dτ

≤ sup
s≤τ<s+ε

||u0(τ, ·)||Mαl,αm

×
(

ν−1
∑

k=1

C(k)

∫ t

s
Fk(t − τ)τ

( n
2αl

− n
2p0

)(ν−k−1)
dτ + C

∫ t

s
(t − τ)−

p0
αl τ

p0
αl

−1dτ

)

≤ 1

2
sup

s≤τ<s+ε
||u0(τ, ·)||Mαl,αm

.

Taking the supremum with respect to t ∈ [s, s + ε), we obtain

sup
s≤τ<s+ε

||u0(τ, ·)||Mαl,αm
= 0,

which together with the assumption yields that u1(t, x) ≡ u2(t, x) on (0, s+
ε) × Rn

x. Starting at t = T0 and repeating this process, we arrive at t = T
after finite steps, which implies that u1(t, x) ≡ u2(t, x) on (0, T ) ×Rn

x.

Proposition 4.3. Let u(t, ·) ∈ Jα,T be a solution of (4.15). Then

for every β such that 1 < β < α, u(t, ·) ∈ Jβ,T . Moreover, it is Hölder-

continuous in t ∈ (0, T ) with values in Mβl,βm.

Proof. Since b(x) ∈ N
n
l
− n

p0
l,m,∞ ⊂ N

n
βl

− n
p0

βl,βm,∞, it follows that exp(t∆)b ∈
Jβ,T for every β ∈ (1, α). Moreover, we can prove that Ψ[u](t, ·) ∈ Jβ,T in
the same way as in Corollary 4.2 without the restriction ||u||Jα,T

< 1. Thus
we conclude that u(t, ·) ∈ Jβ,T for every β ∈ (1, α).

We next prove the Hölder continuity. Suppose that 0 < s < t ≤ s + 1.
From the definition, we have

u(t, ·) − u(s, ·) = I1 + I2 + I3,
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where

I1 = (exp((t − s)∆) − 1)u(s, ·),

I2 =

∫ t

s
exp((t − τ)∆)

ν−1
∑

k=1

(

ν

k

)

u(τ, ·)ν−kw(τ, ·)kdτ,

I3 =

∫ t

s
exp((t − τ)∆)u(τ, ·)νdτ.

Put σ = n
l − n

αl . Since N
n
l
− n

αl
l,m,1 ⊂ N

n
βl

− n
αl

βl,βm,1, we have u(t, ·) ∈ N
n
βl

− n
αl

βl,βm,1
for every t > 0. It follows that

||I1||Mβl,βm
≤ C

∫ t

s

∥

∥

∥

∥

d

dτ
exp((τ − s)∆)u(s, ·)

∥

∥

∥

∥

N 0
βl,βm,1

dτ(4.19)

≤ C

∫ t

s
(τ − s)−1+ n

2βl
− n

2αl ||u(s, ·)||
N

n
βl

− n
αl

βl,βm,1

dτ

≤ C(s)(t − s)
n

2βl
− n

2αl ,

where C(s) is a constant depending on s > 0.
Next we consider I2. Since the condition (H2) implies that p0 < q

and 1
αl < 1

q , we can obtain the following estimate in the same way as in
Proposition 4.1.

||I2||Mβl,βm
(4.20)

≤ C

ν−1
∑

k=1

∫ t

s
|| exp((t − τ)∆){u(τ, ·)ν−kw(τ, ·)k}||

N
n
l
− n

βl
l,m,1

dτ

≤ C

ν−1
∑

k=1

||u||ν−k
Jα,T

||w||kK+

∫ t

s
(t−τ)

−
p0
αl

+ nk
2αl

−nk
2q

+ n
2βl

− n
2αl τ

( n
2αl

− n
2p0

)(ν−k)
dτ

≤ C ′(s)

ν−1
∑

k=1

(t − s)
1−

p0
αl

+ nk
2αl

−nk
2q

+ n
2βl

− n
2αl

≤ C ′(s)

ν−1
∑

k=1

(t − s)
1−

p0
αl

+( n
2αl

− n
2q

)(ν−1)+ n
2βl

− n
2αl

≤ C ′(s)(t − s)1−
p0
q

+ n
2βl

− n
2αl ,

where C ′(s) is another constant depending on s > 0.
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We finally estimate I3 in the same way as I2. We have

||I3||Mβl,βm
≤ C||u||νJα,T

∫ t

s
(t − τ)

−
p0
αl

+ n
2βl

− n
2αl τ

nν
2αl

− nν
2p0 dτ(4.21)

≤ C ′′(s)(t − s)
1−

p0
αl

+ n
2βl

− n
2αl ,

where C ′′(s) is another constant depending on s > 0.
Thus the Hölder continuity follows from (4.19), (4.20) and (4.21).

Proof of Theorem 2.2. Let ρ = 1
4Cα,3

, u(t, x) be a solution of (2.3) on

(0, T )×Rn
x enjoying the assumptions of Theorem 2.2. For every δ, t0 ∈ (0, T )

such that δ < t0, multiply exp((t0−t)∆) to both sides of (2.3) and integrate
on [δ, t0]. Then we have

u(t0, ·) = exp((t0 − δ)∆)u(δ, ·)(4.22)

+

∫ t0

δ
exp((t0 − t)∆)

ν−1
∑

k=0

u(t, ·)ν−kw(t, ·)kdt

= exp((t0 − δ)∆)u(δ, ·) + Ψ[u](t0, ·)
− exp((t0 − δ)∆)Ψ[u](δ, ·).

Let ϕ(x) be an arbitrary function in S, then we have

|(ϕ, exp((t0 − δ)∆)u(δ, ·) − exp(t0∆)b)|(4.23)

≤ |(exp((t0 − δ)∆)ϕ − exp(t0∆)ϕ, u(δ, ·))|
+|(exp(t0∆)ϕ, u(δ, ·) − b)|

≤ || exp((t0 − δ)∆)ϕ − exp(t0∆)ϕ||
Ḃ

n
p0
1,1

||u(δ, ·)||
Ḃ

− n
p0

∞,∞

+|(exp(t0∆)ϕ, u(δ, ·) − b)|.

In view of the condition (2.6) and the strong continuity of the semigroup

exp(t∆) on Ḃ
n
p0
1,1, together with the inclusion relation N

n
l
− n

p0
l,m,∞ ⊂ Ḃ

− n
p0

∞,∞, we
see that the first term of the right-hand side of (4.23) tends to 0 as δ → +0.
On the other hand, the condition (2.8) implies that the second term of the
right-hand side of (4.23) tends to 0 as δ → +0. It follows that the function
exp((t0 − δ)∆)u(δ, ·) tends to exp(t0∆)b in the weak-∗ topology of S ′ as
δ → +0. This fact and Corollary 4.3 implies that the right-hand side of
(4.22) tends to exp(t0∆)b+Ψ[u](t0, ·) in S ′ as δ → +0. This implies (4.15).

Now the conclusion immediately follows from Theorem 4.1 and Propo-
sition 4.3.
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Now we prove Theorem 2.3. First we construct a solution of (4.15)
by successive approximation, then show that it is the desired solution
of (2.3).

Define the sequence of functions {uj(t, x)}∞j=0 inductively by

u0(t, ·) = exp(t∆)b,

uj+1(t, ·) = u0(t, ·) + Ψ[uj](t, ·), j ≥ 0.

Then we have the following lemma.

Lemma 4.2. There exists a positive constant Cα,0 such that

||u0||Jα,∞ ≤ Cα,0||b||
N

n
l
− n

p0
l,m,∞

.

Proof. This is a direct consequence from the following estimate.

||u0(t, ·)||Mαl,αm
≤ C|| exp(t∆)b||N 0

αl,αm,1

≤ C|| exp(t∆)b||
N

n
l
− n

αl
l,m,1

≤ Ct
n

2αl
− n

2p0 ||b||
N

n
l
− n

p0
l,m,∞

.

Corollary 4.1 immediately yields the following lemma.

Lemma 4.3. For every j = 1, 2, . . ., we have uj ∈ Jα,∞ and

||u1 − u0||Jα,∞ ≤ Cα,3(||w||K+ + ||u0||Jα,∞)||u0||Jα,∞ ,(4.24)

||uj+1 − uj ||Jα,∞(4.25)

≤ Cα,3(||w||K+ + ||uj ||Jα,∞ + ||uj−1||Jα,∞)||uj − uj−1||Jα,∞ .

Corollary 4.4. For every j = 0, 1, . . ., we have the inequalities

||uj+1||Jα,∞(4.26)

≤ ||u0||Jα,∞ +

j
∑

k=0

||uk+1 − uk||Jα,∞

≤ ||u0||Jα,∞ + Cα,3

(

||u0||Jα,∞ +

j−1
∑

k=0

||uk+1 − uk||Jα,∞

)2

+Cα,3||w||K+

(

||u0||Jα,∞ +

j−1
∑

k=0

||uk+1 − uk||Jα,∞

)

.
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Proof. We proceed by induction on j. The assertion for j = 0 imme-
diately follows from Lemma 4.2 and (4.24). Assume that the conclusion
holds for j ≥ 0. Then (4.25) implies that

||uj+2||Jα,∞

≤ ||uj+1||Jα,∞ + ||uj+2 − uj+1||Jα,∞

≤ ||u0||Jα,∞ +

j
∑

k=0

||uk+1 − uk||Jα,∞ + ||uj+2 − uj+1||Jα,∞

≤ ||u0||Jα,∞ + Cα,3

(

||u0||Jα,∞ +

j−1
∑

k=0

||uk+1 − uk||Jα,∞

)2

+Cα,3||w||K+

(

||u0||Jα,∞ +

j−1
∑

k=0

||uk+1 − uk||Jα,∞

)

+Cα,3(||w||K+ + ||uj+1||Jα,∞ + ||uj ||Jα,∞)||uj+1 − uj ||Jα,∞

≤ ||u0||Jα,∞ + Cα,3

(

||u0||Jα,∞ +

j−1
∑

k=0

||uk+1 − uk||Jα,∞

)2

+Cα,3||w||K+

(

||u0||Jα,∞ +

j−1
∑

k=0

||uk+1 − uk||Jα,∞

)

+Cα,3||uj+1 − uj ||Jα,∞
(

||w||K+ + 2||u0||Jα,∞ + 2

j−1
∑

k=0

||uk+1 − uk||Jα,∞ + ||uj+1 − uj ||Jα,∞

)

≤ ||u0||Jα,∞ + Cα,3

(

||u0||Jα,∞ +

j
∑

k=0

||uk+1 − uk||Jα,∞

)2

+Cα,3||w||K+

(

||u0||Jα,∞ +

j
∑

k=0

||uk+1 − uk||Jα,∞

)

.

which implies the conclusion with j replace by j + 1.

Remark 4.1. If ||w||K+ < 1
2Cα,3

and ||b||
N

n
l
− n

p0
l,m,∞

< 1
16Cα,0Cα,3

, then
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(4.26) implies the estimate

||u0||Jα,∞ +

j
∑

k=0

||uk+1 − uk||Jα,∞(4.27)

≤ ωα

(

||b||
N

n
l
− n

p0
l,m,∞

)

=

1 −
√

1 − 16Cα,0Cα,3||b||
N

n
l
− n

p0
l,m,∞

4Cα,3
,

for every j ≥ 0, which implies that ||uj ||Jα,∞ ≤ 1
4Cα,3

< 1.

Theorem 4.2. Suppose that w ∈ K+ with ||w||K+ < 1
2Cα,3

and b(x) ∈

N
n
l
− n

p0
l,m,∞ satisfying the estimate

||b||
N

n
l
− n

p0
l,m,∞

<
1

16Cα,0Cα,3
.(4.28)

Then there exists a solution u(t, x) ∈ Jα,∞ of the equation (4.15) satisfying

the estimate

||u||Jα,∞ ≤ ωα

(

||b||
N

n
l
− n

p0
l,m,∞

)

=

1 −
√

1 − 16Cα,0Cα,3||b||
N

n
l
− n

p0
l,m,∞

4Cα,3
.(4.29)

Moreover, the function u(t, ·) enjoys (2.9), (2.10) with a suitable function

ω(ι), and (2.11).

Proof. Remark 4.1 imples that uj(t, ·) converges in Mαl,αm as j → ∞
for almost every t > 0. Hence there exists a function u(t, x) ∈ Jα,∞ such
that limj→∞uj(t, ·) = u(t, x) for almost every t > 0. Moreover, we have
(4.29). From this fact and the definition of uj we conclude that u(t, x)
satisfies (4.15). This completes the proof of the existence.

The fact (2.9) follows directly from Lemma 4.1 and Corollary 4.3.

Next we prove (2.11). It is easy to obtain the following estimate in the
same way as in Lemma 4.2.

|| exp(t∆)b||
N

n
l
− n

p0
l,m,∞

≤ C

(

||b||
N

n
l
− n

p0
l,m,∞

)

,(4.30)
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|| exp(t∆)b||Mβl,βm
≤ C|| exp(t∆)b||N 0

βl,βm,1
(4.31)

≤ C|| exp(t∆)b||
N

n
l
− n

βl
l,m,1

≤ Ct
n

2βl
− n

2p0 ||b||
N

n
l
− n

p0
l,m,∞

,

for every β such that 1 < β < α. This implies that exp(t∆)b ∈ Jβ,∞.
The inequality (4.31) and Corollary 4.2 yields (2.11) for every β ∈

(1, α).
Finally, in view of the fact u ∈ Jα,T , we can apply Proposition 4.2 with

σ = n
l − n

p0
to obtain

sup
t>0

||Ψ[u](t, ·)||
N

n
l
− n

p0
l,m,1

≤ Cω

(

||b||
N

n
l
− n

p0
l,m,∞

)

(4.32)

with some constant C. This fact and (4.30), together with the equality
(4.15), yield (2.10).

Proof of Theorem 2.3. In view of Theorem 4.2, the solution of (4.15)
constructed above satisfies the assumptions of Theorem 2.2 and (2.9), (2.10)
and (2.11). Moreover, the functions w(t, x) and u(t, x) are Hölder continu-
ous with respect to t ∈ (0,∞), with values in the spaces Mp,r ∩Mq, qr

p
and

Mβl,βm (for every β such that 1 < β < α) respectively. Now choose β such
that ν

α < ν
β < m, then the function u(t, ·)ν−kw(t, ·)k is Hölder-continuous

in t > 0 with values in N sk
p0,r,∞, where

sk = −n(k − 1)

p0
− n(ν − k)

βl
,

for every k = 0, 1, . . . , ν − 1. Then we can prove that the solution u(t, x) of
(4.15) also solves (2.3) in the same way as in Proposition 3.2.
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