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EXISTENCE AND UNIQUENESS OF

POSITIVE EIGENFUNCTIONS

FOR CERTAIN EIGENVALUE SYSTEMS

RU-YING XUE and YI-MIN YANG

Abstract. The existence and uniqueness of eigenvalues and positive eigenfunc-
tions for some quasilinear elliptic systems are considered. Some necessary and
sufficient conditions which guarantee the existence and uniqueness of eigenval-
ues and positive eigenfunctions are given.

§1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. For

p ∈ (1,∞), we denote by ∆p the p−Laplacian defined by ∆pu=div(| 5

u|p−25u). It is well-known that, when a(x) ∈ L∞(Ω) and max(a(x), 0) 6≡ 0,

the eigenvalue problem

−∆pu = λa(x)|u|p−2u in Ω, u = 0 on ∂Ω(1.1)

has a unique eigenvalue λ0 with nonnegative eigenfunctions. More precisely,

the eigenvalue λ0 is simple, i.e., the set of all solutions of (1.1) with λ = λ0

consists of {tφ0 : t ∈ R1}, where φ0 is an eigenfunction of (1.1) correspond-

ing to λ0 such that φ0 ∈ C1,β(Ω) for some β ∈ (0, 1) and φ0(x) > 0 for all

x ∈ Ω (see [1], [2]). In fact we have

λ0 = inf

{∫

Ω
| 5 u|pdx : u ∈W 1,p

0 (Ω),

∫

Ω
a(x)|u|pdx = 1

}

,(1.2)

and the solutions of (1.1) for λ = λ0 are the minimizers of (1.2) (see [2]).

When we consider the existence and uniqueness of nonnegative eigen-

functions for elliptic eigenvalue systems, the following example shows that

the situation is different.

Example. Let A(x) be a L∞(Ω) function satisfying max{A(x), 0} 6≡ 0

and max{−A(x), 0} 6≡ 0. For d > 2, we denote by k1 and k2 two positive
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constants satisfying 0 < k1 < 1 < k2 and k−1/2 + k1/2 = d. Choose C1 and

C2 such that (we assume α2 + β2 6= 2)

C1k
1−β2

1 − C2k
α2−1
1 = C1k

1−β2

2 −C2k
α2−1
2 = d.

Let λ0 and φ0 be the eigenvalue and the positive eigenfunction of

−∆u = λA(x)u in Ω, u = 0 on ∂Ω.

We choose a1(x) = A(x), b1(x) = −A(x), a2(x) = C2A(x), b2(x) = C1A(x)

and α2 + β2 6= 2. Then we have max{aj(x), 0} 6≡ 0 and max{bj(x), 0} 6≡ 0,

and (k1φ0, φ0) and (k2φ0, φ0) are two positive eigenfunctions associated with

eigenvalue λ0/d of the following eigenvalue system











−∆u = λ[a1(x)u
1/2v1/2 + a2(x)u

α2v1−α2 ] in Ω,

−∆v = λ[b1(x)u
1/2v1/2 + b2(x)u

1−β2vβ2 ] in Ω,
u = v = 0 on ∂Ω.

In this article, we shall prove that a similar uniqueness result holds for

certain elliptic eigenvalue systems with nonnegative coefficients. Consider

elliptic eigenvalue systems of the form











−∆pu = λ
∑K

i=1 ai(x)u
αivp−1−αi in Ω,

−∆qv = λ
∑N

j=1 bi(x)u
q−1−βjvβj in Ω,

u = v = 0 on ∂Ω,

(1.3)

where 1 < p < +∞, 1 < q < +∞, 0 ≤ αi ≤ p− 1(i = 1, 2, · · · ,K), 0 ≤ βj ≤

q− 1(j = 1, 2, · · · , N) , ai(x)(i = 1, 2, · · · ,K) and bj(x)(j = 1, 2, · · · , N) are

nonnegative L∞(Ω) functions.

The main theorems obtained in this article are

Theorem 1.1. The eigenvalue of (1.3) with nontrivial nonnegative
eigenfunctions is unique. Nontrivial nonnegative eigenfunctions of (1.3)
are positive.

Theorem 1.2. (1) When α1 < p − 1 and β1 < q − 1, or αi = p − 1
and βj < q − 1 for i = 1, 2, · · · ,K and j = 1, 2, · · · , N , (1.3) possesses a
unique eigenvalue with positive eigenfunctions, the corresponding positive
eigenfunction is unique up to a scalar multiple.
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(2) When αi = p− 1 for all i = 1, 2, · · · ,K, β1 = q − 1 and βj < q − 1
for j = 2, · · · , N , (1.3) has a unique eigenvalue with positive eigenfunctions
if and only if

inf

{

∫

Ω
|∇u|pdx :

∫

Ω

K
∑

i=1

ai(x)|u|
pdx = 1, u ∈W 1,p

0 (Ω)

}

< inf

{∫

Ω
|∇v|qdx :

∫

Ω
b1(x)|v|

qdx = 1, v ∈W 1,q
0 (Ω)

}

.

The corresponding positive eigenfunctions, if they exist, are unique up to a
scalar multiple.

(3) When αi = p− 1 and βj = q− 1 for i = 1, 2, · · · ,K, j = 1, 2, · · · , N ,
(1.3) possesses an eigenvalue with positive eigenfunctions if and only if

inf

{

∫

Ω
|∇u|pdx :

∫

Ω

[

K
∑

i=1

ai(x)

]

|u|pdx = 1, u ∈W 1,p
0 (Ω)

}

= inf







∫

Ω
|∇v|qdx :

∫

Ω





N
∑

j=1

bj(x)



 |v|qdx = 1, v ∈W 1,q
0 (Ω)







.

In this case, the corresponding positive eigenfunctions, if they exist, are not
unique up to a scalar multiple.

By a positive eigenfunction of the eigenvalue system (1.3) correspond-

ing to an eigenvalue λ we mean a weak solution (u, v) ∈W 1,p
0 (Ω)×W 1,q

0 (Ω)

satisfying u, v ∈ L∞(Ω) and u > 0, v > 0 in Ω. A nonnegative eigenfunc-

tion of (1.3) is a pair (u, v) ∈ W 1,p
0 (Ω) ×W 1,q

0 (Ω), which does not vanish

identically in Ω and satisfies u, v ∈ L∞(Ω) and u ≥ 0, v ≥ 0 in Ω. A non-

trivial nonnegative eigenfunction is a nonnegative eigenfunction of (1.3),

each component of which does not vanish identically in Ω.

This article is organized as follows. In section 2 we recall some well-

known results for the single equation with ∆p. That (1.3) has a unique

eigenvalue with nontrivial nonnegative eigenfunctions (Theorem 1.1) and

that the positive eigenfunctions are unique up to a scalar multiple are

proved in Section 3. In Section 4 we consider the existence of branches

of nonnegative (or positive ) solutions for some quasilinear elliptic systems.

The existence of positive eigenfunctions (Theorem 1.2) is considered in sec-

tion 5.
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In this article, we shall write (u1, v1) ≥ (u2, v2) if u1 ≥ u2 and v1 ≥ v2,

(u1, v1) > (u2, v2) if u1 > u2 and v1 > v2. We also denote by ‖(u, v)‖ =

sup
x∈Ω

[|u(x)| + |v(x)|].

§2. Some results for a single equation with ∆p

In this section we recall some well-known results for the single equation

with ∆p. Consider the following Dirichlet problem

−∆pu = f(x) in Ω, u = 0 on ∂Ω,(2.4)

where p > 1, f(x) ∈ L∞(Ω) with the norm ‖f‖
def.
= sup

x∈Ω
|f |. By the vari-

ational method we know that the Dirichlet problem (2.4) has a unique

solution u ∈ W 1,p
0 (Ω). We first introduce the weak comparison principle,

which follows from the same argument as that used in Lemma 4.1 in [3] and

the fact that [ψp(~x) − ψp(~y)] · (~x− ~y) = 0 implies ~x = ~y.

Lemma 2.1. Assume that u1, u2 ∈ W 1,p(Ω), respectively, are weak
solutions of

−∆pu1 = f1(x) in Ω, u = g1 on ∂Ω,(2.5)

−∆pu2 = f2(x) in Ω, u = g2 on ∂Ω,(2.6)

with f1 ≤ f2 in Lq(Ω) and g1 ≤ g2 in W
1
q
,p
(∂Ω), where q = p

p−1 . Then
u1 ≤ u2 almost everywhere in Ω.

Choose R0 so large that Ω ⊂ {x : |x| < R0}. Clearly,

0 ≤ U(|x|) = n
1

1−p (R
p

p−1

0 − |x|
p

p−1 ) ∈W 1,p(|x| < R0)

is a positive radial weak solution of the equation

−∆pU = 1 for |x| ≤ R0, U = 0 on |x| = R0.

The following lemma comes from Lemma 2.1.

Lemma 2.2. Assume that there exists a constant M such that 0 ≤
f(x) ≤ Mp−1 in Ω. Then the weak solution u of (2.4) satisfies 0 ≤ u(x) ≤
MU(|x|) almost everywhere in Ω.
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The following strong comparison principle comes from [4].

Lemma 2.3. ([4]) Assume u1, u2 ∈ W 1,p
0 (Ω), respectively, are weak so-

lution of (2.5) and (2.6) with g1 = g2 = 0, f1, f2 ∈ L∞(Ω) satisfying
0 ≤ f1 ≤ f2 in Ω. Then either u1 ≡ u2 ≥ 0 in Ω or else

0 ≤ u1 < u2 in Ω, 0 ≥
∂u1

∂ν
>
∂u2

∂ν
on ∂Ω,(2.7)

where ~ν denotes the outward unit normal vector at ∂Ω.

Denote by C(Ω) the space of all continuous functions defined on Ω with

the standard norm

‖u‖
def.
= sup

x∈Ω
|u(x)|,

and let V+ be the positive cone in C(Ω), V+ = {u ∈ C(Ω), u ≥ 0 in Ω}.

Let f(x, u, v), g(x, u, v) be nonnegative functions defined in Ω × [0,+∞) ×

[0,+∞) and satisfy, for any fixed positive constant M , f, g ∈ L∞(Ω ×

[0,M ] × [0,M ]) . For any (u, v) ∈ V+ × V+, by variational methods there

exists a unique weak solution (u, v) ∈W 1,p
0 (Ω) ×W 1,q

0 (Ω) satisfying











−∆pu = f(x, u, v) in Ω,
−∆qv = g(x, u, v) in Ω,
u = v = 0 on ∂Ω.

(2.8)

Lemma 2.2 and the regularity result proved in [5] mean there exists a con-

stant β ∈ (0, 1) depending solely upon p, q and n, and another constant

C depending solely upon p, q, n, ‖f(x, u, v)‖ and ‖g(x, u, v)‖, such that

u, v ∈ C1,β
0 (Ω) with the Hölder norm ‖u‖1+β,Ω ≤ C and ‖v‖1+β,Ω ≤ C.

Define a mapping

T : (u, v) 7−→ (u, v) = T (u, v).(2.9)

Obviously, T is a self-mapping of V+ × V+, and T : V+ × V+ → V+ × V+ is

continuous and relatively compact.

§3. Uniqueness of eigenvalues and eigenfunctions

In this section, we consider the uniqueness of eigenvalues with nontriv-

ial nonnegative eigenfunctions of (1.3). We first prove the uniqueness of

eigenvalues associated with nontrivial nonnegative eigenfunctions.
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Proof of Theorem 1.1. Suppose that (u1, v1), (u2, v2) are two nontrivial
nonnegative eigenfunctions associated with eigenvalues Λ1,Λ2, respectively,
for the eigenvalue system (1.3). Lemma 2.1, Lemma 2.3 and the regularity
result in [5] imply that Λ1,Λ2 > 0; uj , vj ∈ C1,β(Ω), j = 1, 2, are positive
in Ω; and

∂u1

∂ν
< 0,

∂u2

∂ν
< 0,

∂v1
∂ν

< 0 and
∂v2
∂ν

< 0 on ∂Ω.(3.10)

Thus, without loss of generality, we may assume that (0, 0) < (u1, v1) ≤
(u2, v2) and Λ1 ≤ Λ2. Let us consider the following elliptic system:

(3.11)


































−∆pu = Λ1

K
∑

i=1

ai(x)u
αivp−1−αi + (Λ2 − Λ1)

K
∑

i=1

ai(x)u
αiv

p−1−αi
2

2 in Ω,

−∆qv = Λ1

N
∑

j=1

bj(x)u
q−1−βjvβj + (Λ2 − Λ1)

N
∑

j=1

bj(x)u
q−1−βj

2 v
βj

2 in Ω,

u = v = 0 on ∂Ω.

Observe that (u2, v2) is a solution of (3.11). By Lemma 2.1, we have
(ξu1, ξv1 ≤ T (ξu1, ξv1) for all ξ ∈ (0,+∞) and T (ξu2, ξv2) ≤ (ξu2, ξv2)
for all ξ ∈ (1,+∞), where T is the mapping from V+ × V+ to V+ × V+

defined in (2.9) for

f(x, u, v) = Λ1

K
∑

i=1

ai(x)u
αivp−1−αi + (Λ2 − Λ1)

K
∑

i=1

ai(x)u
αi

2 v
p−1−αi

2 ,

g(x, u, v) = Λ1

N
∑

j=1

bj(x)u
q−1−βjvβj + (Λ2 − Λ1)

N
∑

j=1

bj(x)u
q−1−βj

2 v
βj

2 .

Making use of (3.10) and the fact that (0, 0) < (u1, v1) ≤ (u2, v2), we can
pick ξ > 1 so large that (u2, v2) ≤ ξ(u1, v1). Then, from Lemma 2.1 we
arrive at

(u2, v2) ≤ ξ(u1, v1) ≤ T (ξu1, ξv1) ≤ ... ≤ T k(ξu1, ξv1)(3.12)

≤ T k(ξu2, ξv2) ≤ ... ≤ T (ξu2, ξv2) ≤ ξ(u2, v2).

The compactness of T implies T k(ξu2, ξv2) → (u3, v3) in V+ as k → +∞
for some (u3, v3) ∈ V+ × V+ and

(u2, v2) ≤ (ξu1, ξv1) ≤ T (u3, v3) = (u3, v3) ≤ ξ(u2, v2).(3.13)
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Hence (u3, v3) is a positive solution of (3.11).We claim that (u3, v3) =
(u2, v2). If this is the case, (3.13) implies that (u2, v2) = ξ(u1, v1), and
hence Λ1 = Λ2 as desired.

On the contrary, suppose (u3, v3) 6≡ (u2, v2). We assume that (u3, v3) ≤

(u2, v2) is false. Consequently, by (3.10) we can pick t ∈ (1,+∞) which is

the smallest number satisfying

t−1(u3, v3) ≤ (u2, v2).(3.14)

We have

t1−pf(u3, v3) ≤ f(t−1u3, t
−1v3)(3.15)

≤ f(u2, v2), t
1−pf(u3, v3) 6≡ f(t−1u3, t

−1v3)

and










−∆p(t
−1u3) = t1−pf(u3, v3) in Ω,

−∆p(u2) = f(u2, v2) in Ω,
u3 = u2 = 0 on ∂Ω.

(3.16)

By (3.16) and (3.16), Lemma 2.3 implies

0 < t−1u3 < u2 in Ω, and
∂u2

∂ν
<
∂(t−1u3)

∂ν
< 0 on ∂Ω.

Then we find t ∈ (1, t) such that

0 < t
−1
u3 ≤ u2 in Ω,

a contradiction to our choice of t. That nontrivial nonnegative eigenfunc-

tions of (1.3) are positive follows from Lemma 2.3 directly.

Remark 3.1. It is obvious that (1.3) may have a unique eigenvalue for

which the eigenfunctions are of the form (u, 0) with u > 0, and a unique

eigenvalue for which the eigenfunctions are of the form (0, v) with v > 0.

If (1.3) has an eigenvalue with nontrivial nonnegative eigenfunctions, we

know that the eigenvalue is unique by Theorem A. Hence, (1.3) has at most

three eigenvalues associated with nonnegative eigenfunctions. It is possible

that (1.3) may have no eigenvalues with nontrivial nonnegative (positive)

eigenfunctions.
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Theorem 3.1. Except the case that αi = p − 1(i = 1, 2, · · · ,K) and
βj = q − 1(j = 1, 2, · · · , N), positive eigenfunctions of the eigenvalue prob-
lem (1.3) are unique up to scalar multiples.

Proof. By Theorem 1.1, an eigenvalue of (1.3) with positive eigen-
functions is positive and unique. Assume that (φ1, ψ1) and (φ2, ψ2) are
two positive eigenfunctions of (1.3), associated with an eigenvalues λ. It is
sufficient to prove that (φ1, ψ1) and (φ2, ψ2) are colinear. By Lemma 2.3 ,

φi(x) > 0, ψi(x) > 0 for x ∈ Ω, i = 1, 2,

∂φi

∂ν
< 0,

∂ψi

∂ν
< 0, for x ∈ ∂Ω, i = 1, 2.

Thus, we can choose two positive numbers C1 < C2 such that

C1(φ1, ψ1) ≤ (φ2, ψ2) ≤ C2(φ1, ψ1).

Without loss of generality, we assume that C1 = 1 and (φ1, ψ1) ≤ (φ2, ψ2).
We claim that (φ1, ψ1) and (φ2, ψ2) are linearly dependent. Indeed, other-
wise there exists the smallest number t0 > 1 such that

t0(φ1, ψ1) ≥ (φ2, ψ2), t0(φ1, ψ1) 6≡ (φ2, ψ2).(3.17)

Let

F (x, u, v) = λ
K

∑

i=1

ai(x)u
αivp−1−αi ,

G(x, u, v) = λ
N

∑

j=1

bj(x)u
q−1−βjvβj .

They satisfy

F (x, t0φ1, t0ψ1) ≥ F (x, φ2, ψ2), G(x, t0φ1, t0ψ1) ≥ G(x, φ2, ψ2).

We claim that

F (x, t0φ1, t0ψ1) 6≡ F (x, φ2, ψ2), G(x, t0φ1, t0ψ1) 6≡ G(x, φ2, ψ2).(3.18)

In fact, if

F (x, t0φ1, t0ψ1) ≡ F (x, φ2, ψ2),
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we deduce from (3.10) that t0φ1 = φ2. It is obvious that t0ψ1 and ψ2 are
two positive solutions of the following elliptic problem

−∆qv = G(x, φ2, v) x ∈ Ω, v = 0 x ∈ ∂Ω.(3.19)

When βj < q − 1 for some j ∈ {1, 2, · · · , N}, the same argument as that in
the proof of Theorem 2.1 in [3] shows that (3.19) possesses at most one posi-
tive solution. Thus, we have t0ψ1 = ψ2, hence (t0φ1, t0ψ1) = (φ2, ψ2), which
is impossible because of (3.17). When βj = q − 1 for all j = 1, 2, · · · , N ,
the uniquness of nonnegative eigenfunctions for the following eigenvalue
problem

−∆qv = λ





N
∑

j=1

bj(x)



 vq−1 x ∈ Ω, v = 0 x ∈ ∂Ω

shows that t0ψ1 and ψ2 are linearly dependent, and then there exists C0

such that t0ψ1 = C0ψ2. But in this case we must have αi < p−1 for some i ∈
{1, 2, · · · ,K}, so we obtain C0 = 1 from the hypothesis F (x, t0φ1, t0ψ1) ≡
F (x, φ2, ψ2). Thus (t0φ1, t0ψ1) = (φ2, ψ2), which is impossible because of
(3.17). Hence (3.18) holds.

By Lemma 2.2 and the regularity result of Lieberman [5],

(φi(x), ψi(x)) ∈ C1,β(Ω) × C1,β(Ω), i = 1, 2(3.20)

with some β ∈ (0, 1). A combination of (3.17) and (3.18) with Lemma 2.3
yields that

t0(φ1, ψ1) > (φ2, ψ2) x ∈ Ω,

(∂(t0φ1)

∂ν
,
∂(t0ψ1)

∂ν

)

<
(∂φ2

∂ν
,
∂ψ2

∂ν

)

< (0, 0) x ∈ ∂Ω.

Hence, there exists a positive number t1 ∈ (0, t0) such that

t1(φ1, ψ1) ≥ (φ2, ψ2),

a contradiction to our choice of the number t0. Hence (φ1, ψ1) and (φ2, ψ2)
are linearly dependent.
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§4. Bifurcation properties of nonnegative solutions

In this section, we consider the bifurcation properties of nonnegative

solutions of the following elliptic system











−∆pu = λ
∑K

i=1 ai(x)u
αivp−1−αi + f(x, u, v, λ), x ∈ Ω,

−∆qv = λ
∑N

j=1 bj(x)u
q−1−βjvβj + g(x, u, v, λ), x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(4.21)

We assume that

(F ). For any given M > 0, f(x, u, v, λ) and g(x, u, v, λ) are two non-

negative L∞ functions defined in Ω×[0,M ]×[0,M ]×[0,M ], f(x, u, v, 0) = 0,

g(x, u, v, 0) = 0, and

lim
t→0+

f(x, tu, tv, λ)t1−p = 0, lim
t→0+

g(x, tu, tv, λ)t1−q = 0,

uniformly with respect to (x, u, v) ∈ Ω × (0, 1] × (0, 1] and λ on bounded

intervals.

Theorem 4.1. Assume f(x, u, v, λ) and g(x, u, v, λ) satisfy (F ). If
(λ0, 0, 0) is a bifurcation point of nonnegative nontrivial solutions for (4.21),
then λ0 is an eigenvalue of (1.3) with nonnegative eigenfunctions.

Proof. Let

F (x, u, v, λ) = λ
K

∑

i=1

ai(x)u
αivp−1−αi + f(x, u, v, λ),

G(x, u, v, λ) = λ
N

∑

j=1

bj(x)u
q−1−βjvβj + g(x, u, v, λ).

For a function h ∈ L∞(Ω), we denote by u the weak solution of the following
elliptic boundary value problem

−∆pu = h(x), x ∈ Ω, u = 0 x ∈ ∂Ω.

Let Tp be the mapping defined by Tp(h(x)) = u(x). Lemma 2.1, Lemma
2.2 and the regularity results of Lieberman [5] imply Tp : V+ → V+ is a
completely continuous mapping. Let J be the mapping defined by

J [λ, u, v] = [Tp(F (x, u, v, λ)), Tq(G(x, u, v, λ))].
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and let {(λk, uk, vk)} be a sequence of nonnegative nontrivial solutions of
(4.21) satisfying lim

k→∞
λk = λ0, lim

k→∞
(uk, vk) = (0, 0) in V+ × V+ and

(uk, vk) = J [λk, uk, vk].(4.22)

Denote tk = ‖(uk, vk)‖. Let (uk, vk) = t−1
k (uk, vk). It follows from (4.22)

that

(uk, vk) = (Tp[t
1−p
k F (x, tkuk, tkvk, λk)], Tq [t

1−q
k G(x, tkuk, tkvk, λk)]).(4.23)

Notice that ‖(uk, vk)‖ = 1 and tk → 0+ as k → ∞. For any ε > 0, the
hypothesis (F ) shows that there exists k0 so large that

|t1−p
k f(x, tkuk, tkvk, λk)| < ε, |t1−q

k g(x, tkuk, tkvk, λk)| < ε,(4.24)

as k ≥ k0. (4.23) and ‖(uk, vk)‖ = 1 imply that F (x, tkuk, tkvk, λk) and
G(x, tkuk, tkvk, λk) are bounded sequences in V+. It follows from the reg-
ularity results of Lieberman[5] that {(uk, vk)} is a bounded sequence in

the Banach space C1,β
0 (Ω) for some positive constant β. Thus there exist

(u0, v0) ∈ C1
0 (Ω) × C1

0 (Ω) and a subsequence ( still denoted by {(uk, vk)} )
such that

lim
k→∞

(uk, vk) = (u0, v0) in C1
0 (Ω) × C1

0 (Ω),(4.25)

and ‖(u0, v0)‖ = lim
k→∞

‖(uk, vk)‖ = 1. Combining (4.24) with (4.25) yields

lim
k→∞

(t1−p
k F (x, tkuk, tkvk, λk), t

1−q
k G(x, tkuk, tkvk, λk))(4.26)

= (λ0

K
∑

i=1

ai(x)u
αi

0 v
p−1−αi

0 , λ0

N
∑

j=1

bj(x)u
q−1−βj

0 v
βj

0 ) in V+ × V+.

Since Tp and Tq are completely continuous operators mapping V+ into itself,
it follows from (4.23) and (4.27) that

(u0, v0) = (Tp[λ0

K
∑

i=1

ai(x)u
αi

0 v
p−1−αi

0 ], Tq[λ0

N
∑

j=1

bj(x)u
q−1−βj

0 v
βj

0 ]),

with ‖(u0, v0)‖ = 1. Hence λ0 is an eigenvalue of (1.3) with a nonnegative
eigenfunction (u0, v0). We complete the proof of Theorem 4.1.



76 R.-Y. XUE AND Y.-M. YANG

For x ∈ Ω, we denote 1
d(x) = inf{|x − y| : y ∈ ∂Ω}. Let {(λk, uk, vk)}

be a branch of nonnegative solutions of (4.21) such that lim
k→∞

λk = λ0 and

lim
k→∞

(uk, vk) = (0, 0) in V+ × V+. Denote by (uk, vk) = ‖(uk, vk)‖−1(uk, vk).

From the proof of Theorem 4.1 we know that

lim
k→∞

(uk, vk) = (u0, v0) in C1
0 (Ω) × C1

0 (Ω),(4.27)

and that λ0 is an eigenvalue of (1.3) with a nonnegative eigenfunction

(u0, v0) satisfying ‖(u0, v0)‖ = 1. (4.27) implies

lim
k→∞

(d(x)uk, d(x)vk) = (d(x)u0, d(x)v0) in V+ × V+.(4.28)

When (u0, v0) is a nontrivial nonnegative eigenfunction of (1.3) and

when there exists some i ∈ {1, 2, · · · ,K} (or j ∈ {1, 2, · · · , N}) such that

αi < p − 1 ( or βj < q − 1), Theorem 1.1, Theorem 3.1 and Lemma 2.3

mean that there exists a positive constant δ > 0, which is independent of

{(λk, uk, vk)}, such that inf{d(x)u0(x)|x ∈ Ω} ≥ δ and inf{d(x)v0(x)|x ∈

Ω} ≥ δ. By (4.28) we can choose two positive constant C1 < C2 satisfying

C1 ≤
δ − |d(x)(uk(x) − u0(x))|

|d(x)v0(x)| + |d(x)(vk(x) − v0(x))|
≤
uk(x)

vk(x)

=
d(x)uk(x)

d(x)vk(x)
≤

|d(x)u0(x)| + |d(x)(uk(x) − u0(x))|

δ − |d(x)(vk(x) − v0(x))|
≤ C2

for k large enough.

When (u0, v0) is a nonnegative eigenfunction of (1.3) with v0 ≡ 0, it

is obvious that nonnegative eigenfunctions of (1.3) of the form (u, 0) and

‖(u, 0)‖ = 1 are unique. As above we get

vk(x)

uk(x)
=
d(x)vk(x)

d(x)uk(x)
≤

|d(x)vk(x)|

δ − |d(x)(uk(x) − u0(x))|

for k large enough, which shows that vk(x) = o(uk(x)) uniformly for x ∈ Ω

as k → ∞. Thus, we have

Remark 4.1. Assume that (λ0, 0, 0) is a bifurcation point of (4.21)

and that {(λk, uk, vk)} is a branch of nonnegative solutions bifurcating from

(λ0, 0, 0). Then,

(1). If λ0 is an eigenvalue of (1.3) with nonnegative eigenfunctions of

the form (u, 0), then limk→∞
vk(x)
uk(x) = 0 uniformly for x ∈ Ω.
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(2). If λ0 is an eigenvalue of (1.3) with nonnegative eigenfunctions of

the form (0, v), then limk→∞
uk(x)
vk(x) = 0 uniformly for x ∈ Ω.

(3). If λ0 is an eigenvalue of (1.3) with nontrivial nonnegative eigen-

functions and there exists some i ∈ {1, 2, · · · ,K} (or j ∈ {1, 2, · · · , N})

such that αi < p − 1 ( or βj < q − 1), then there exist positive numbers

C1 ≤ C2, which are independent of the sequence {(λk, uk, vk)}
∞
k=1, such

that C1vk(x) ≤ uk(x) ≤ C2vk(x) for x ∈ Ω and k large enough.

In the sequel, we shall consider the existence of a branch of nonnegative

solutions of (4.21). Denote by Pε = {(u, v) ∈ V+ × V+ : ‖u‖ + ‖v‖ ≤ ε}.

Using an argument similar to that in proof of Lemma 2.4 of [7], we have

Lemma 4.2. Assume the functions f(x, u, v, λ) and g(x, u, v, λ) satisfy
(F ). Suppose that there is a positive number λ such that, for λ > λ, (λ, 0, 0)
is not a bifurcation point for (4.21) and deg(I − J [λ, ·, ·], Pε, (0, 0)) = 0 for
ε small enough. Then there exists λ0 ∈ (0, λ] such that the set of nontrivial
nonnegative solutions of (4.21) contains an unbounded subcontinuum bifur-
cating from (λ0, 0, 0), where J is a completely continuous mapping defined
in the proof of Theorem 4.1.

Let Λ1 be the eigenvalue of the problem

−∆pu = λa1(x)|u|
p−2u in Ω, u = 0 on ∂Ω,

with the positive eigenfunction φ(x) satisfying ‖φ‖ = 1. Let Λ2 be the

eigenvalue of the problem

−∆qv = λb1(x)|v|
q−2v in Ω, v = 0 on ∂Ω,

with the positive eigenfunction ψ(x) satisfying ‖ψ‖ = 1. It is obvious that

φ, ψ ∈ C1,β(Ω) and that there exist two positive constant C1 ≤ C2 satisfying

0 < C1ψ(x) ≤ φ(x) ≤ C2ψ(x) for all x ∈ Ω. Let

Λ3 = max{λ : λ is an eigenvalue of (1.3) with nonnegative eigenfunctions}

Λ = max{Λ1C
p−1−α1

2 ,Λ2C
β1+1−q
1 ,Λ3}.

By Remark 3.1 we deduce that 0 < Λ <∞.

Lemma 4.3. Let λ > Λ. For any ε > 0 small we have deg(I −
J [λ, ·, ·], Pε, (0, 0)) = 0.
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Proof. Define

Ft(x, u, v) = λ
K

∑

i=1

ai(x)u
αivp−1−αi + tf(x, u, v, λ),

Gt(x, u, v) = λ
N

∑

j=1

bj(x)u
q−1−βjvβj + tg(x, u, v, λ).

H[t, u, v] = (Tp[Ft(x, u, v)], Tq [Gt(x, u, v)]).

Clearly, H : [0, 1]×V+×V+ → V+×V+ is a completely continuous mapping.
We claim that the operator equation (u, v)−H[t, u, v] = (0, 0) has no solu-
tion on {(u, v) ∈ V+ × V+, ‖u‖ + ‖v‖ = ε} for t ∈ [0, 1] and ε small. Indeed,
otherwise there exist {(uk, vk)} and {tk} such that (0, 0) 6≡ (uk, vk) → (0, 0)
in V+ × V+, tk → t0 ∈ [0, 1] and (uk, vk) = H[tk, uk, vk]. Using the same
argument as that in the proof of Theorem 4.1, we can prove that λ is an
eigenvalue of (1.3) with nonnegative eigenfunctions. Thus λ ≤ Λ, which is
impossible. We have

deg(I − J [λ, ·, ·], Pε, (0, 0)) = deg(I −H[1, ·, ·], Pε, (0, 0))(4.29)

= deg(I −H[0, ·, ·], Pε, (0, 0)).

Define

At(x, u, v) = λ
K

∑

i=1

ai(x)u
αivp−1−αi + t,

Bt(x, u, v) = λ
N

∑

i=1

bj(x)u
q−1−βjvβj + t,

S[t, u, v] = (Tp[At(x, u, v)], Tq [Bt(x, u, v)]).

Clearly, S : [0, 1]×V+ ×V+ → V+×V+ is a completely continuous mapping
too. The choice of λ means that (u, v)−S[0, u, v] = (0, 0) has no solution on
{(u, v) ∈ V ×V, ‖u‖+‖v‖ = ε} for ε small. We claim that (u, v)−S[t, u, v] =
(0, 0) has no solution on Pε for t ∈ (0, 1] and ε small. Indeed, otherwise there
exist t0 ∈ (0, 1] and (u0, v0) ∈ Pε such that (u0, v0) = S[t0, u0, v0]. Lemma
2.3 shows

(u0, v0) > (0, 0) x ∈ Ω,
(∂u0

∂ν
,
∂v0
∂ν

)

< (0, 0) x ∈ ∂Ω.(4.30)

Moreover, (u0, v0) is a supersolution of (1.3). The fact that λ > Λ ≥

Λ1C
p−1−α1

2 and λ > Λ ≥ Λ2C
β1+1−q
1 means that (φ, ψ) is a subsolution
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of (1.3). Choose δ > 0 so small that δ(φ, ψ) ≤ (u0, v0) for all x ∈ Ω.
Thus, δ(φ, ψ) is a subsolution of (1.3), and by the supersolution-subsolution
method, (1.3) possesses a nonnegative solution (u, v) satisfying δ(φ, ψ) ≤
(u, v) ≤ (u0, v0) for all x ∈ Ω. Hence, λ is an eigenvalue of (1.3) with
a nonnegative eigenfunction (u, v). This is contrary to λ > Λ. Hence
(u, v) −S[t, u, v] = (0, 0) has no solution on Pε for t ∈ (0, 1] and ε small, by
(4.30)

deg(I − J [λ, ·, ·], Pε, (0, 0)) = deg(I −H[0, ·, ·], Pε, (0, 0))

= deg(I − S[0, ·, ·], Pε, (0, 0)) = deg(I − S[1, ·, ·], Pε, (0, 0)) = 0.

A combination of Theorem 4.1 with Lemma 4.2 and Lemma 4.3 yields

Theorem 4.4. Assume f(x, u, v, λ) and g(x, u, v, λ) satisfy (F). Then
(4.21) contains an unbounded component of nonnegative solutions bifurcat-
ing from (λ0, 0, 0), where λ0 is one of eigenvalues of (1.3) associated with
nonnegative eigenfunctions.

§5. The existence of positive eigenfunctions

In this section we shall consider the existence of positive eigenfunctions

for the elliptic eigenvalue system (1.3).

Proof of Theorem 1.2. (1). Consider the following elliptic system










−∆pu = λ
∑K

i=1 ai(x)u
αivp−1−αi + λvp+1, x ∈ Ω,

−∆qv = λ
∑N

j=1 bj(x)u
q−1−βjvβj + λuq+1, x ∈ Ω,

u = v = 0. x ∈ ∂Ω.

(5.31)

By Theorem 4.4 and Lemma 2.3 the system (5.31) possesses a sequence
of positive solutions {(uk, vk, λk)} such that lim

k→∞
λk = λ0, lim

k→∞
(uk, vk) =

(0, 0) in V+ × V+, and λ0 is an eigenvalue of (1.3) with nonnegative eigen-
functions. Thus, λ0 > 0. What we want to prove is to show that λ0 is an
eigenvalue associated with nontrivial nonnegative eigenfunctions of (1.3).
Denote by

Bk(x) =
K

∑

i=1

ai(x)(
vk

uk
)p−1−αi + vp+1

k u1−p
k ,

Ck(x) =
N

∑

j=1

bj(x)(
uk

vk
)q−1−βj + uq+1

k v1−q
k .
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By Lemma 2.3, Bk(x), Ck(x) ∈ L∞(Ω) and satisfy

−∆puk = λkBk(x)u
p−1
k x ∈ Ω, uk = 0 x ∈ ∂Ω(5.32)

and

−∆qvk = λkCk(x)v
q−1
k x ∈ Ω, vk = 0 x ∈ ∂Ω.(5.33)

The uniqueness of eigenvalues with nonnegative eigenfunctions for a signal
equation shows (for example see [2]) that

λk = inf

{

∫

Ω |∇u|pdx
∫

ΩBk(x)|u|pdx
, u ∈W 1,p

0 (Ω)

}

,

λk = inf

{

∫

Ω |∇v|qdx
∫

ΩCk(x)|v|qdx
, v ∈W 1,q

0 (Ω)

}

.

We claim that λ0 is an eigenvalue of (1.3) with nontrivial nonnegative eigen-
functions. Otherwise, Remark 4.1 shows

lim
k→∞

uk

vk
= 0 or lim

k→∞

vk

uk
= 0 uniformly for x ∈ Ω,

hence, for any ε > 0

uk

vk
≤ ε or

vk

uk
≤ ε uniformly for x ∈ Ω and for k large enough.

When α1 < p−1 and β1 < q−1, without loss of generality, we consider
the case

vk

uk
≤ ε uniformly for x ∈ Ω and k large enough.

We deduce from the definition of Bk and Ck

Bk ≤ 1 +
K

∑

i=1

ai(x) and Ck ≥ b1(x)ε
β1−q+1

for all x ∈ Ω and k large enough. Thus we get



















λk ≥ inf

{

∫

Ω
|∇u|pdx

∫

Ω
[1+

∑k

i=1
ai(x)]|u|pdx

, u ∈W 1,p
0 (Ω)

}

λk ≤ εq−1−β1 inf

{
∫

Ω
|∇v|qdx

∫

Ω
b1(x)|v|qdx

, v ∈W 1,q
0 (Ω)

}

,
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which is impossible for ε small enough and k large.
When αi = p− 1 and βj < q− 1 for i = 1, 2, · · · ,K and j = 1, 2, · · · , N

(we assume βj ≤ β1), we have

Bk(x) ≤ 1 +
K

∑

i=1

ai(x), Ck(x) ≥ b1(x)ε
β1−q+1

or

Bk(x) ≥
K

∑

i=1

ai(x), Ck(x) ≤ εq−1−β1



1 +
N

∑

j=1

bj(x)





for x ∈ Ω and k large enough. We deduce that














λk ≥ inf

{
∫

Ω
|∇u|pdx

∫

Ω

[

1+
∑K

i=1
ai(x)

]

|u|pdx
, u ∈W 1,p

0 (Ω)

}

λk ≤ εq−1−β1 inf

{
∫

Ω
|∇v|qdx

∫

Ω
b1(x)|v|qdx

, v ∈W 1,q
0 (Ω)

}

or






















λk ≤ inf

{
∫

Ω
|∇u|pdx

∫

Ω

∑K

i=1
ai(x)|u|pdx

, u ∈W 1,p
0 (Ω)

}

λk ≥ εβ1−q+1 inf







∫

Ω
|∇v|qdx

∫

Ω

[

1+
∑N

j=1
bj(x)

]

|v|qdx
, v ∈W 1,q

0 (Ω)







,

which is impossible when k large enough and ε small enough. Hence we
prove that λ0 is an eigenvalue of (1.3) with nontrivial nonnegative eigen-
functions, and by Lemma 2.3 λ0 is an eigenvalue with positive eigenfunc-
tions. The uniqueness of eigenvalues with positive eigenfunctions and the
uniqueness of positive eigenfunctions of (1.3) follow from Theorem 3.1 and
Theorem 1.1.

(2). Suppose that (1.3) possesses an eigenvalue λ0 with a positive eigen-
function (φ, ψ). It is obvious that λ0 > 0 and λ0 is an eigenvalue with
positive eigenfunctions of the following eigenvalue problems

−∆pu = λ

[

K
∑

i=1

ai(x)

]

up−1 x ∈ Ω, u = 0 x ∈ ∂Ω,(5.34)

and

−∆qv = λ





N
∑

j=1

bj(x)φ
q−1−βjψβj+1−q



 vq−1 x ∈ Ω, v = 0 x ∈ ∂Ω.(5.35)
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The uniqueness of eigenvalues with positive eigenfunctions for (5.34) or
(5.35)(see [2]) shows

λ0 =inf

{

∫

Ω
|∇u|pdx :

∫

Ω

K
∑

i=1

ai(x)|u|
pdx = 1, u ∈W 1,p

0 (Ω)

}

= inf







∫

Ω
|∇v|qdx :

∫

Ω
[

N
∑

j=1

bj(x)ψ
βj+1−qφq−1−βj ]vqdx = 1, v ∈W 1,q

0 (Ω)







< inf

{∫

Ω
|∇v|qdx :

∫

Ω
b1(x)|v|

qdx = 1, v ∈W 1,q
0 (Ω)

}

.

Now we prove that (1.3) possesses positive eigenfunctions. Denote by λ0 > 0
the unique eigenvalue of (5.34) with positive eigenfunctions, and let φ(x) ∈
C1,β(Ω) ⊂ L∞(Ω) be the positive eigenfunction associated to λ0 satisfying
‖φ(x)‖ = 1. By the existence results in [2], the following problem

{

−∆qv = λb2(x)φ
q−1−β2vq−1 x ∈ Ω,

v = 0 x ∈ ∂Ω,
(5.36)

has a unique eigenvalue λ1 > 0 associated with positive eigenfunctions. Let
us denote by ψ1(x) the positive eigenfunction of (5.36) satisfying ‖ψ1‖ = 1.

On the other hand, the condition implies

λ0 < inf

{
∫

Ω
|∇v|qdx :

∫

Ω
b1(x)v

qdx = 1, v ∈W 1,q
0 (Ω)

}

,

and hence we can choose a positive constant b0 so small that

λ0 < inf

{∫

Ω
|∇v|qdx :

∫

Ω
[b1(x) + b0]v

qdx = 1, v ∈W 1,q
0 (Ω)

}

.

Then the following eigenvalue problem

{

−∆qv = λ[b1(x) + b0]v
q−1 x ∈ Ω,

v = 0 x ∈ ∂Ω,
(5.37)

has an eigenvalue, λ2 > λ0, associated with positive eigenfunctions. We
denote by ψ2(x) a positive eigenfunction of (5.37) associated to λ2 satisfying
|ψ2(x)| = 1. By Lemma 2.3,

φ(x) > 0, ψ1(x) > 0, ψ2(x) > 0 for x ∈ Ω,
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∂φ

∂ν
< 0,

∂ψ1

∂ν
< 0,

∂ψ2

∂ν
< 0 for ∈ ∂Ω,

and hence we can choose two positive constants C1 and C2 such that

ψ1(x) ≤ C1φ(x), ψ2(x) ≥ C2φ(x) for x ∈ Ω.

Choose M > 0 large enough and ε > 0 small enough such that

λ2b0 ≥ λ0

N
∑

j=2

bj(x)(C2M)βj+1−q, λ1ε
q−1−β2ψq−1−β2

1 ≤ λ0,

Mψ2(x) ≥ εψ1(x) for x ∈ Ω.

Then εψ1(x) and Mψ2(x) are a subsolution and a supersolution, respec-
tively, of the following elliptic problem

{

−∆qv = λ0
∑N

j=1 bj(x)φ
q−1−βjvβj for x ∈ Ω,

v = 0 for ∈ ∂Ω.
(5.38)

The subsolution-supersolution method shows (5.38) possess a positive so-
lution ψ(x). Obviously, λ0 and (φ, ψ) are the eigenvalue and the positive
eigenfunction of (1.3), respectively. The uniqueness of the eigenvalue with
positive eigenfunctions and the uniqueness of positive eigenfunctions of (1.3)
follows from Theorem 3.1 and Theorem 1.1.

(3). The result is obvious, we omit its proof.
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