L^{p} EXTENSION OF HOLOMORPHIC FUNCTIONS FROM SUBMANIFOLDS TO STRICTLY PSEUDOCONVEX DOMAINS WITH NON-SMOOTH BOUNDARY

KENZŌ ADACHI

Abstract

Let D be a bounded strictly pseudoconvex domain in \mathbb{C}^{n} (with not necessarily smooth boundary) and let X be a submanifold in a neighborhood of \bar{D}. Then any $L^{p}(1 \leq p<\infty)$ holomorphic function in $X \cap D$ can be extended to an L^{p} holomorphic function in D.

§1. Introduction

Let D be a bounded strictly pseudoconvex domain in \mathbb{C}^{n} with smooth boundary and let X be a submanifold in a neighborhood of \bar{D} which intersects ∂D transversally. Then Henkin [4] proved that any bounded holomorphic function f in $X \cap D$ can be extended to a bounded holomorphic function F in D. Moreover, he proved that if f is holomorphic in $X \cap D$ and continuous on $\overline{X \cap D}$, then F is holomorphic in D and continuous on \bar{D}. Henkin-Leiterer [5] obtained the above results in the case when D is a bounded strictly pseudoconvex domain in \mathbb{C}^{n} with non-smooth boundary, without assuming that the submanifold X and ∂D intersect transversally. On the other hand, Beatrous [1] and Cumenge [3] obtained L^{p} extensions of holomorphic functions from a submanifold $X \cap D$ of a bounded strictly pseudoconvex domain D in \mathbb{C}^{n} with smooth boundary under the hypothesis that the submanifold X and ∂D intersect transversally. Using a quite different method, Ohsawa-Takegoshi [6] have done the remarkable discovery concerning L^{2} extensions. They obtained the L^{2} extension of holomorphic functions from the intersection of a complex hyperplane and a bounded pseudoconvex domain which involves weight functions. In their theorem

[^0]the transversality is not assumed. When $p>2$, Cho [2] gave a counterexample in some pseudoconvex domain such that the L^{p} extension does not hold. In this paper, we show that any $L^{p}(1 \leq p<\infty)$ holomorphic function in $X \cap D$ can be extended to an L^{p} holomorphic function in D in the case when D is a bounded strictly pseudoconvex domain in \mathbb{C}^{n} with non-smooth boundary, without assuming that the submanifold X and ∂D intersect transversally. The proof is based on the estimates of the integral formula for holomorphic functions in $X \cap D$ which was used to prove the bounded and continuous extension of holomorphic functions by HenkinLeiterer [5]. We also use the estimate of the volume form by means of local coordinates in a neighborhood of a singular points of $X \cap \partial D$ obtained by Schmalz [7].

The author is pleased to acknowledge his gratitude to the referee for valuable suggestions and helps during the improvement of this paper.

§2. Preliminaries

Let $D \Subset \mathbb{C}^{n}$ be a strictly pseudoconvex open set and let $\theta \Subset \mathbb{C}^{n}$ be a neighborhood of ∂D, and let ρ be a strictly plurisubharmonic C^{2} function in a neighborhood of $\bar{\theta}$ such that

$$
D \cap \theta=\{z \in \theta: \rho(z)<0\}
$$

Let $N(\rho)=\{z \in \bar{\theta}: \rho(z)=0\}$, and assume that $N(\rho) \Subset \theta$. By HenkinLeiterer [4], we can choose numbers $\varepsilon, \beta>0$ and C^{1} functions $a_{j k}$ on $\bar{\theta}$ such that the following estimates hold:

$$
\begin{gathered}
\operatorname{dist}(N(\rho), \partial \theta)>2 \varepsilon \\
\inf _{\zeta \in \bar{\theta}} \sum_{j, k=1}^{n} \frac{\partial^{2} \rho(\zeta)}{\partial \zeta_{j} \partial \bar{\zeta}_{k}} \xi_{j} \bar{\xi}_{k}>3 \beta|\xi|^{2} \quad \text { for all } 0 \neq \xi \in \mathbb{C}^{n} \\
\sup _{\zeta \in \bar{\theta}}\left|\frac{\partial^{2} \rho(\zeta)}{\partial \zeta_{j} \partial \zeta_{k}}-a_{j k}(\zeta)\right|<\frac{\beta}{n^{2}} \\
\left|\frac{\partial^{2} \rho(\zeta)}{\partial x_{j} \partial x_{k}}-\frac{\partial^{2} \rho(z)}{\partial x_{j} \partial x_{k}}\right|<\frac{\beta}{2 n^{2}} \quad \text { for } \zeta, z \in \bar{\theta} \text { with }|\zeta-z| \leq 2 \varepsilon
\end{gathered}
$$

where $\zeta_{j}=x_{j}+i x_{j+n}$. We define

$$
F(z, \zeta)=2 \sum_{j=1}^{n} \frac{\partial \rho(\zeta)}{\partial \zeta_{j}}\left(\zeta_{j}-z_{j}\right)-\sum_{j, k=1}^{n} a_{j k}(\zeta)\left(\zeta_{j}-z_{j}\right)\left(\zeta_{k}-z_{k}\right)
$$

Then, by Henkin-Leiterer [5] there exist $\varepsilon>0$ and $c>0$ such that

$$
\operatorname{Re} F(z, \zeta) \geq \rho(\zeta)-\rho(z)+c|\zeta-z|^{2} \quad(\zeta, z \in \bar{\theta},|\zeta-z| \leq 2 \varepsilon)
$$

Moreover, Henkin-Leiterer [5] proved the following:
Theorem 1. There exist a neighborhood $U \Subset \theta$ of $N(\rho)$ and C^{1} functions $\Phi(z, \zeta), \widetilde{\Phi}(z, \zeta), M(z, \zeta)$ and $\widetilde{M}(z, \zeta)$ for $\zeta \in U$ and $z \in U \cup D$ such that the following conditions are fulfilled:
(i) $\Phi(z, \zeta)$ and $\widetilde{\Phi}(z, \zeta)$ depends holomorphically on $z \in U \cup D$.
(ii) $\Phi(z, \zeta) \neq 0$ and $\widetilde{\Phi}(z, \zeta) \neq 0$ for $\zeta \in U, z \in U \cup D$ with $|\zeta-z| \geq \varepsilon$.
(iii) $M(z, \zeta) \neq 0$ and $\widetilde{M}(z, \zeta) \neq 0$ for $\zeta \in U, z \in U \cup D$.
(iv) $\Phi(z, \zeta)=F(z, \zeta) M(z, \zeta)$ and $\widetilde{\Phi}(z, \zeta)=(F(z, \zeta)-2 \rho(\zeta)) \widetilde{M}(z, \zeta)$ for $\zeta \in U, z \in U \cup D$ with $|\zeta-z| \leq \varepsilon$.
(v) Let V_{1}, V_{0} be neighborhoods of $N(\rho)$ such that $V_{0} \cup D$ is a strictly pseudoconvex open set and $V_{1} \Subset V_{0} \Subset U$. Then there exist the C^{1} map $w(z, \zeta)=\left(w_{1}(z, \zeta), \ldots, w_{n}(z, \zeta)\right)$ for $\zeta \in V_{0}, z \in V_{0} \cup D$ with the following properties:
(a)

$$
\langle w(z, \zeta), \zeta-z\rangle=\Phi(z, \zeta) \quad\left(\zeta \in V_{0}, z \in V_{0} \cup D\right)
$$

(b) We choose a neighborhood V_{2} of $N(\rho)$ such that $V_{2} \Subset V_{1}$ and a C^{∞} function χ on \mathbb{C}^{n} such that

$$
\chi=0 \quad \text { on } \mathbb{C}^{n} \backslash V_{1} \text { and } \chi=1 \text { on } V_{2} .
$$

Then there exist constants $\alpha>0$ and $c<\infty$ such that

$$
\begin{gathered}
|\widetilde{\Phi}(z, \zeta)| \geq \alpha\left(|\rho(\zeta)|+|\rho(z)|+|\operatorname{Im} F(z, \zeta)|+|\zeta-z|^{2}\right) \quad \text { for } z, \zeta \in V_{2} \cap D \\
|w(z, \zeta)| \leq c(\|d \rho(\zeta)\|+|\zeta-z|) \quad \text { for } \zeta, z \in V_{2} \\
\left|\frac{\partial \widetilde{\Phi}(z, \zeta)}{\partial \bar{\zeta}_{j}}\right| \leq c\left(\left|\frac{\partial \rho(\zeta)}{\partial \bar{\zeta}_{j}}\right|+|\zeta-z|+|\rho(\zeta)|\right) \quad \text { for } \zeta, z \in V_{2}, j=1, \ldots, n
\end{gathered}
$$

§3. L^{p} extension

We define

$$
\zeta^{\prime}=\left(\zeta_{1}, \ldots, \zeta_{n-1}\right), \quad(w(z, \zeta))^{\prime}=\left(w_{1}(z, \zeta), \ldots, w_{n-1}(z, \zeta)\right)
$$

$$
\begin{aligned}
& \bar{\partial}_{\zeta^{\prime}}=\sum_{j=1}^{n-1} \frac{\partial}{\partial \bar{\zeta}_{j}} d \bar{\zeta}_{j}, \quad \omega_{\zeta^{\prime}}(\zeta)=d \zeta_{1} \wedge \cdots \wedge d \zeta_{n-1} \\
& \bar{\omega}_{\zeta^{\prime}}\left(\frac{\chi(\zeta)(w(z, \zeta))^{\prime}}{\widetilde{\Phi}(z, \zeta)}\right)=\bigwedge_{j=1}^{n-1} \bar{\partial}_{\zeta^{\prime}}\left(\frac{\chi(\zeta) w_{j}(z, \zeta)}{\widetilde{\Phi}(z, \zeta)}\right)
\end{aligned}
$$

Let $X=\left\{z \in \mathbb{C}^{n}: z_{n}=0\right\}$. We denote by $d V$ and $d V^{\prime}$ the volume form on \mathbb{C}^{n} and \mathbb{C}^{n-1}, respectively. For an L^{p} holomorphic function f in $D \cap X$ ($p \geq 1$) and $z \in D$, we define

$$
\begin{equation*}
E f(z)=\frac{(n-1)!}{(2 \pi i)^{n-1}} \int_{D \cap X} f(\zeta) \bar{\omega}_{\zeta^{\prime}}\left(\frac{\chi(\zeta)(w(z, \zeta))^{\prime}}{\widetilde{\Phi}(z, \zeta)}\right) \wedge \omega_{\zeta^{\prime}}(\zeta) \tag{3.1}
\end{equation*}
$$

Then $E f$ is holomorphic in D and satisfies $\left.E f\right|_{D \cap X}=f$.
Using Schmalz [7], we have the following lemma:

Lemma 1. Let $t(z, \zeta)=\operatorname{Im}\langle w(z, \zeta), \zeta-z\rangle$. We set $\zeta_{j}=\xi_{j}+i \xi_{j+n}$, $z_{j}=\eta_{j}+i \eta_{j+n}$ and $E_{\delta}(z)=\{\zeta \in D:|\zeta-z|<\delta\|d \rho(z)\|\}$ for all $\delta>0$. Then there are constants $c<\infty, \gamma>0$, and numbers $\mu, \nu \in\{1, \ldots, 2 n\}$ such that, $\left\{\rho, t(z, \zeta), \xi_{1}, \ldots, \hat{\mu}, \hat{\nu}, \ldots, \xi_{2 n}\right\}\left(\xi_{\mu}\right.$ and ξ_{ν} have to be omitted) forms coordinates system in $E_{\gamma}(z)\left(\left\{\rho, t(z, \zeta), \eta_{1}, \ldots, \hat{\mu}, \hat{\nu}, \ldots, \eta_{2 n}\right\}\right.$ forms coordinates system in $E_{\gamma}(\zeta)$, respectively) and we have the estimates

$$
\begin{aligned}
d V & \leq \frac{c}{\|d \rho(z)\|^{2}}\left|d \rho(\zeta) \wedge d_{\zeta} t(z, \zeta) \wedge \ldots, \hat{\mu}, \hat{\nu}, \cdots \wedge d \xi_{2 n}\right| \quad \text { on } E_{\gamma}(z) \\
d V & \leq \frac{c}{\|d \rho(\zeta)\|^{2}}\left|d \rho(z) \wedge d_{z} t(z, \zeta) \wedge \ldots, \hat{\mu}, \hat{\nu}, \cdots \wedge d \eta_{2 n}\right| \quad \text { on } E_{\gamma}(\zeta)
\end{aligned}
$$

where $d V$ is the Euclidean volume form on \mathbb{C}^{n}.

Using Lemma 1, we prove the following theorem:

ThEOREM 2. Let X be a closed complex submanifold of some neighborhood of \bar{D}. Let f be an L^{p} holomorphic function in $D \cap X(p \geq 1)$. Then there exists an L^{p} holomorphic function F in D such that $\left.F\right|_{D \cap X}=f$.

Proof. We may assume $X=\left\{z_{n}=0\right\}$. We set $\widetilde{U}=D \cap U$. The integral of the right hand side of (3.1) consists of the following two types
integrals:

$$
\begin{aligned}
& I_{1}(z)=\int_{X \cap \widetilde{U}} f(\zeta) \frac{G(z, \zeta)}{\widetilde{\Phi}(z, \zeta)^{n-1}} d V^{\prime}(\zeta) \\
& I_{2}(z)=\int_{X \cap \widetilde{U}} f(\zeta) G(z, \zeta) \frac{w_{j}(z, \zeta) \frac{\partial}{\partial \zeta_{\nu}} \widetilde{\Phi}(z, \zeta)}{\widetilde{\Phi}(z, \zeta)^{n}} d V^{\prime}(\zeta)
\end{aligned}
$$

where $G(z, \zeta)$ is a smooth function in $\bar{D} \times \bar{D}$. At first we prove the theorem in the case when $p=1$. Using Fubini's theorem, we have

$$
\begin{aligned}
\int_{D}\left|I_{1}(z)\right| d V(z) & \lesssim \int_{X \cap \widetilde{U}}|f(\zeta)|\left\{\int_{D} \frac{1}{|\widetilde{\Phi}(z, \zeta)|^{n-1}} d V(z)\right\} d V^{\prime}(\zeta) \\
& \lesssim \int_{X \cap \widetilde{U}}|f(\zeta)|\left\{\int_{|\zeta-z| \leq M} \frac{1}{\left(|\zeta-z|^{2}\right)^{n-1}} d V(z)\right\} d V^{\prime}(\zeta) \\
& \lesssim \int_{X \cap \widetilde{U}}|f(\zeta)| d V^{\prime}(\zeta)
\end{aligned}
$$

Using the inequality

$$
\left|w_{j}(z, \zeta)\right|\left|\frac{\partial \widetilde{\Phi}(z, \zeta)}{\partial \bar{\zeta}_{\nu}}\right| \lesssim\left(\|d \rho(\zeta)\|^{2}+|\zeta-z|+|\rho(\zeta)|\right)
$$

we have

$$
\begin{aligned}
& \int_{D}\left|I_{2}(z)\right| d V(z) \\
& \quad \lesssim \int_{X \cap \widetilde{U}}|f(\zeta)|\left(\int_{D} \frac{\|d \rho(\zeta)\|^{2}+|\zeta-z|+|\rho(\zeta)|}{|\widetilde{\Phi}(z, \zeta)|^{n}} d V(z)\right) d V^{\prime}(\zeta)
\end{aligned}
$$

In view of Lemma 1 , if we set $t^{\prime}=\left(t_{3}, \ldots, t_{2 n}\right)$, we obtain

$$
\begin{aligned}
& \int_{D} \frac{\|d \rho(\zeta)\|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{n}} d V(z) \\
& \quad=\int_{z \in E_{\gamma}(\zeta)} \frac{\|d \rho(\zeta)\|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{n}} d V(z)+\int_{z \notin E_{\gamma}(\zeta)} \frac{\|d \rho(\zeta)\|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{n}} d V(z) \\
& \quad \lesssim \int_{|t| \leq M} \frac{d t_{1} d t_{2} d t^{\prime}}{\left(\left|t_{1}\right|+\left|t_{2}\right|+\left|t^{\prime}\right|^{2}\right)^{n}}+\int_{z \notin E_{\gamma}(\zeta)} \frac{|\zeta-z|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{n}} d V(z) \\
& \quad \lesssim \int_{0}^{M} \frac{r^{2 n-3}}{\left(r^{2}\right)^{n-2}} d r \lesssim 1 .
\end{aligned}
$$

The other cases are similar. Thus we have

$$
\int_{D}\left|I_{2}(z)\right| d V(z) \lesssim \int_{X \cap \widetilde{U}}|f(\zeta)| d V^{\prime}(\zeta)
$$

which completes the proof when $p=1$. Next we assume $1<p<\infty$. Let q be a positive number such that $p^{-1}+q^{-1}=1$. We choose $\varepsilon>0$ so small that $2 \varepsilon p<1$ and $2 \varepsilon q<1$. Using Hölder's inequality, we have

$$
\begin{aligned}
\left|I_{1}(z)\right|^{p} & \lesssim\left(\int_{X \cap \widetilde{U}} \frac{|f(\zeta)|^{p}}{|\widetilde{\Phi}(z, \zeta)|^{n-1+\varepsilon p}} d V^{\prime}(\zeta)\right)\left(\int_{X \cap \widetilde{U}} \frac{d V^{\prime}(\zeta)}{|\widetilde{\Phi}(z, \zeta)|^{n-1-\varepsilon q}}\right)^{p / q} \\
& \lesssim \int_{X \cap \widetilde{U}} \frac{|f(\zeta)|^{p}}{|\widetilde{\Phi}(z, \zeta)|^{n-1+\varepsilon p}} d V^{\prime}(\zeta)
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\int_{D}\left|I_{1}(z)\right|^{p} d V(z) & \lesssim \int_{X \cap \widetilde{U}}|f(\zeta)|^{p}\left(\int_{D} \frac{d V(z)}{|\widetilde{\Phi}(z, \zeta)|^{n-1+\varepsilon p}}\right) d V^{\prime}(\zeta) \\
& \lesssim \int_{X \cap \widetilde{U}}|f(\zeta)|^{p} d V^{\prime}(\zeta) .
\end{aligned}
$$

Next we estimate $I_{2}(z)$. It is sufficient to prove that the following $I_{2}^{1}(z)$, $I_{2}^{2}(z)$ and $I_{2}^{3}(z)$ belong to $L^{p}(D)$:

$$
\begin{aligned}
I_{2}^{1}(z) & =\int_{X \cap \widetilde{U}} \frac{|f(\zeta)|| | d \rho(\zeta) \|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{n}} d V^{\prime}(\zeta) \\
I_{2}^{2}(z) & =\int_{X \cap \widetilde{U}} \frac{|f(\zeta)|| | d \rho(\zeta) \||\zeta-z|}{|\widetilde{\Phi}(z, \zeta)|^{n}} d V^{\prime}(\zeta) \\
I_{2}^{3}(z) & =\int_{X \cap \widetilde{U}} \frac{|f(\zeta)|| | d \rho(\zeta) \|||\rho(\zeta)|}{|\widetilde{\Phi}(z, \zeta)|^{n}} d V^{\prime}(\zeta)
\end{aligned}
$$

We prove that $I_{2}^{1}(z)$ belongs to $L^{p}(D)$. The other cases are similar. Using Hölder's inequality

$$
\begin{aligned}
I_{2}^{1}(z)^{p} \leq\left(\int_{X \cap \widetilde{U}}|f(\zeta)|^{p} \frac{\|d \rho(\zeta)\|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{n+\varepsilon p}}\right. & \left.d V^{\prime}(\zeta)\right) \\
& \times\left(\int_{X \cap \widetilde{U}} \frac{\|d \rho(\zeta)\|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{n-\varepsilon q}} d V^{\prime}(\zeta)\right)^{p / q}
\end{aligned}
$$

We set $\zeta^{\prime}=\left(\zeta_{1}, \ldots, \zeta_{n-1}\right), z^{\prime}=\left(z_{1}, \ldots, z_{n-1}\right)$. Then we have

$$
\begin{aligned}
\int_{X \cap \widetilde{U}} & \frac{\|d \rho(\zeta)\|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{n-\varepsilon q}} d V^{\prime}(\zeta) \\
& =\int_{\zeta^{\prime} \in E_{\gamma}\left(z^{\prime}\right)} \frac{\|d \rho(\zeta)\|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{n-\varepsilon q}} d V^{\prime}(\zeta)+\int_{\zeta^{\prime} \notin E_{\gamma}\left(z^{\prime}\right)} \frac{\|d \rho(\zeta)\|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{n-\varepsilon q}} d V^{\prime}(\zeta)
\end{aligned}
$$

In view of Lemma 1, if we set $t^{\prime}=\left(t_{3}, \ldots, t_{2 n-2}\right)$, then there exists a positive constant M such that

$$
\begin{aligned}
\int_{\zeta^{\prime} \in E_{\gamma}\left(z^{\prime}\right)} \frac{\|d \rho(\zeta)\|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{n-\varepsilon q}} d V^{\prime}(\zeta) & \lesssim \int_{|t| \leq M} \frac{d t_{1} d t_{2} d t^{\prime}}{\left(\left|t_{1}\right|+\left|t_{2}\right|+\left|t^{\prime}\right|^{2}\right)^{n-\varepsilon q}} \\
& \lesssim \int_{0}^{M} \frac{d r}{r^{1-2 \varepsilon q}} \lesssim 1 . \\
\int_{\zeta^{\prime} \notin E_{\gamma}\left(z^{\prime}\right)} \frac{\|d \rho(\zeta)\|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{n-\varepsilon q}} d V^{\prime}(\zeta) & \lesssim \int_{X \cap \tilde{U}} \frac{\left|\zeta^{\prime}-z^{\prime}\right|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{n-\varepsilon q}} d V^{\prime}(\zeta) \\
& \lesssim \int_{0}^{M} \frac{d r}{r^{1-2 \varepsilon q} \lesssim 1 .}
\end{aligned}
$$

By Fubini's theorem, we obtain

$$
\int_{D} I_{2}^{1}(z)^{p} d V(z) \lesssim \int_{X \cap \widetilde{U}}|f(\zeta)|^{p}\left(\int_{D} \frac{\|d \rho(\zeta)\|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{n+\varepsilon p}} d V(z)\right) d V^{\prime}(\zeta)
$$

Using the inequality

$$
\|d \rho(\zeta)\| \lesssim\|d \rho(z)\|+|\zeta-z|
$$

it is sufficient to estimate the following two integrals $J_{1}(\zeta)$ and $J_{2}(\zeta)$:

$$
\begin{aligned}
& J_{1}(\zeta)=\int_{D} \frac{\|d \rho(z)\|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{n+\varepsilon p}} d V(z) \\
& J_{2}(\zeta)=\int_{D} \frac{|\zeta-z|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{n+\varepsilon p}} d V(z)
\end{aligned}
$$

We estimate $J_{1}(\zeta)$. The other case is similar. In view of Lemma 1 , we have

$$
\begin{aligned}
J_{1}(\zeta) & =\int_{z \in E_{\gamma}(\zeta)} \frac{\|d \rho(z)\|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{n+\varepsilon p}} d V(z)+\int_{z \notin E_{\gamma}(\zeta)} \frac{\|d \rho(z)\|^{2}}{|\widetilde{\Phi}(z, \zeta)|^{n+\varepsilon p}} d V(z) \\
& \lesssim \int_{|t| \leq M} \frac{d t_{1} d t_{2} d t^{\prime}}{\left(\left|t_{1}\right|+\left|t_{2}\right|+\left|t^{\prime}\right|^{2}\right)^{n+\varepsilon p}}+\int_{D} \frac{d V(z)}{\left(|\zeta-z|^{2}\right)^{n-1+\varepsilon p}} \\
& \lesssim \int_{0}^{M} r^{1-2 \varepsilon p} d r \lesssim 1 .
\end{aligned}
$$

Thus we have proved that

$$
\int_{D} I_{2}^{1}(z)^{p} d V(z) \lesssim \int_{X \cap \widetilde{U}}|f(\zeta)|^{p} d V^{\prime}(\zeta)
$$

This completes the proof of Theorem 2.

References

[1] F. Beatrous, L^{p} estimates for extensions of holomorphic functions, Michigan Math. J., 32 (1985), 361-380.
[2] H. R. Cho, A counterexample to the L^{p} extension of holomorphic functions from subvarieties to pseudoconvex domains, Complex Variables, 35 (1998), 89-91.
[3] A. Cumenge, Extension dan des classes de Hardy de fonctions holomorphes et estimations de type "mesures de Carleson" pour l'equation D, Ann. Inst. Fourier, 33 (1983), 59-97.
[4] G. M. Henkin, Continuation of bounded holomorphic functions from submanifolds in general position in a strictly pseudoconvex domain, Math. USSR Izv., 6 (1972), 536-563.
[5] G. M. Henkin and J. Leiterer, Theory of functions on complex manifolds, Birkhäuser, 1984.
[6] T. Ohsawa and K. Takegoshi, On the extension of L^{2} holomorphic functions, Math. Z., 195 (1987), 197-204.
[7] G. Schmalz, Solution of the $\bar{\partial}$-equation with uniform estimates on strictly q-convex domains with non-smooth boundary, Math. Z., 202 (1989), 409-430.

Department of Mathematics
Nagasaki University
Nagasaki, 852-8521
Japan
k-adachi@net.nagasaki-u.ac.jp

[^0]: Received February 21, 2002.
 Revised June 21, 2002.
 2000 Mathematics Subject Classification: 32A26, 32D15.
 This research was partially supported by Grant-in-Aid for Scientific Research (No. 13640180), Ministry of Education, Culture, Sports, Science and Technology, Japan.

