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A COMBINATORIAL IDENTITY

FOR THE DERIVATIVE OF A THETA SERIES

OF A FINITE TYPE ROOT LATTICE

SATOSHI NAITO

Abstract. Let g be a (not necessarily simply laced) finite-dimensional complex
simple Lie algebra with h the Cartan subalgebra and Q ⊂ h∗ the root lattice.
Denote by ΘQ(q) the theta series of the root lattice Q of g. We prove a curious
“combinatorial” identity for the derivative of ΘQ(q), i.e. for q d

dq
ΘQ(q), by using

the representation theory of an affine Lie algebra.

§1. Introduction

Let g = g(XN ) be a finite-dimensional complex simple Lie algebra of

type XN , where X = A,D,E,C,B, F,G and N ∈ Z≥1. We fix a Cartan

subalgebra h of g (note that dimC h = N). Denote by ∆ ⊂ h∗ the set of

roots, by ∆+ (resp. ∆−) the set of positive (resp. negative) roots, and by

Π = {αi}
N
i=1 (resp. Π∨ = {hi}

N
i=1) the set of simple roots (resp. coroots).

Also we set ρ := (1/2) ·
∑

α∈∆+
α (the Weyl vector) and Q :=

∑N
i=1 Zαi

(the root lattice). For a dominant integral weight λ ∈ P+ := {λ ∈ h∗ |

λ(hi) ∈ Z≥0, 1 ≤ i ≤ N}, we denote by L(λ) the irreducible highest weight

g-module of highest weight λ, and set d(λ) := dimC L(λ).

Let us normalize the Killing form ( · | · ) on g in such a way that (α|α) =

2 for all long roots α ∈ ∆long. Then the theta series ΘQ(q) of the root lattice

Q ⊂ h∗ is defined by

ΘQ(q) :=
∑

α∈Q

q
r
2

(α|α),

where the number r is given by:

r =





1 if X = A,D,E,

2 if X = C,B, F ,

3 if X = G.
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Our main result in this paper is the following theorem.

Theorem. Let Q =
∑N

i=1 Zαi ⊂ h∗ be the root lattice of type XN ,

( · | · ) the normalized Killing form on h∗, and ΘQ(q) =
∑

α∈Q q
r
2

(α|α) the

theta series of Q. Then we have

2r−1(1 + h∨) q
d

dq
ΘQ(q)

=
∑

λ∈Q∩P+

d(λ)(λ + 2ρ|λ)q
r
2

(λ|λ)
∏

α∈∆+

(
1 − qr(λ+ρ|α)

)
.

Here r is as above and h∨ is the dual Coxeter number given below.

The dual Coxeter number h∨ (see [K4, Chap. 6]) is given by:

h∨ =





N + 1 if XN = AN , r = 1,

2N − 2 if XN = DN , r = 1,

12 if XN = E6, r = 1,

18 if XN = E7, r = 1,

30 if XN = E8, r = 1,

2N if XN = CN , BN , r = 2,

12 if XN = F4, r = 2,

6 if XN = G2, r = 3.

We should note that in the cases where XN = AN , DN , EN , h∨ is the dual

Coxeter number of the generalized Cartan matrix of type X
(1)
N , and in the

cases where XN = CL, BL, F4, G2, h∨ is the dual Coxeter number of the

generalized Cartan matrix of type A
(2)
2L−1, D

(2)
L+1, E

(2)
6 , D

(3)
4 , respectively.

Remark. For λ ∈ P+, the dimension d(λ) of L(λ) is given by the Weyl
dimension formula:

d(λ) =
∏

α∈∆+

(λ + ρ|α)

(ρ|α)
.

Remark. We also have an expression for the theta series ΘQ(q) itself
of the root lattice Q (see Remark 3.4 and Proposition 4.4.3). However, this
expression (at least) in the cases where X = A,D,E is already known, and
similar identities can be found in [K2, Remark (d) below Proposition 2] and
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[KT, Remark 5.2], while the expression for the derivative of ΘQ(q) given in
Theorem is new. It seems to us that identities of this kind are, even in a
special case, not reduced to well-known ones in the classical literature (cf.
Example 3.3).

We prove our theorem by using the representation theory of affine Lie

algebras. Let ĝ = g(X
(r)
N ) be the affine Lie algebra of type X

(r)
N , where

X
(r)
N = A

(1)
N , D

(1)
N , E

(1)
6 , E

(1)
7 , E

(1)
8 , A

(2)
2L−1, D

(2)
L+1, E

(2)
6 , D

(3)
4 , and let ĥ = h⊕

Cc⊕Cd be the Cartan subalgebra, where c is the canonical central element

and d the scaling element. Denote by V := L̂(Λ̂0) the irreducible highest

weight ĝ-module (the basic representation) of highest weight Λ̂0 ∈ (ĥ)∗,
where Λ̂0 is the basic fundamental weight given by: Λ̂0(h) := 0, Λ̂0(c) := 1,

and Λ̂0(d) := 0. We can give a Z-gradation (called the basic gradation) of

V by setting

Vm := {v ∈ V | dv = −mv} for m ∈ Z.

Then our proof is carried out by calculating the graded trace

g(q) :=
∑

m∈Z

Tr(Ω|Vm) qm

of the Casimir element Ω ∈ Z(U(g)) on V = L̂(Λ̂0) in two different ways.

This paper is organized as follows. In Section 2, we calculate in one

way the graded trace g(q) above on the (general) irreducible highest weight

ĝ-module L̂(Λ) of dominant integral highest weight Λ in the cases where

X = A,D,E. In Section 3, we prove our main theorem in the cases where

X = A,D,E by calculating g(q) in another way, using some well-known

results of Kac. In Section 4, we prove our main theorem in the cases where

X = C,B, F,G by arguments similar to those in the A, D, E cases.

Throughout this paper, we assume that the reader is familiar with most

of Kac [K4], especially with Chapters 6, 7, 8, and 12.

§2. Graded trace of the Casimir element

2.1. Nontwisted affine Lie algebras

Here we recall from [K4, Chaps. 6 and 7] some standard notation and

facts about nontwisted affine Lie algebras.

Let g = g(XN ) be a finite-dimensional complex simple Lie algebra of

type XN , where X = A,D,E and N ∈ Z≥1. Fix a Cartan subalgebra h
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of g with dimC h = N , and denote by ∆ ⊂ h∗ = HomC(h, C) the set of

roots, by ∆+ (resp. ∆−) the set of positive (resp. negative) roots, and by

Π = {αi}
N
i=1 (resp. Π∨ = {hi}

N
i=1) the set of simple roots (resp. coroots).

We normalize the Killing form ( · | · ) on g in such a way that

(α|α) = 2 for all (long) roots α ∈ ∆.

Let us denote by ĝ = g(X
(1)
N ) a (nontwisted) affine Lie algebra of type

X
(1)
n over C, i.e.,

ĝ = L̂(g) = (C[t, t−1] ⊗C g) ⊕ Cc ⊕ Cd,

where C[t, t−1] is the algebra of Laurent polynomials in t, c the canonical

central element, and d the scaling element. Notice that the Lie algebra g

can be identified with the subalgebra Ct0 ⊗C g of ĝ.

We denote the Cartan subalgebra of ĝ by:

ĥ = (Ct0 ⊗C h) ⊕ Cc ⊕ Cd,

and introduce an element δ ∈ (ĥ)∗ (the null root) defined by: δ(h⊕Cc) = 0,

δ(d) = 1. Then the set ∆̂+ ⊂ (ĥ)∗ of positive roots is described as:

∆̂+ = {jδ | j ∈ Z≥1} t {jδ + α | j ∈ Z≥1, α ∈ ∆} t ∆+,

where an element α ∈ h∗ is regarded as an element of (ĥ)∗ by putting:

α(c) = α(d) = 0. Moreover, the root spaces ĝγ , γ ∈ ∆̂+, are written as:

ĝjδ = Ctj ⊗C h, ĝjδ+α = Ctj ⊗C gα, j ∈ Z, α ∈ ∆,

where gα is the root space of g corresponding to a root α ∈ ∆. Also

we denote by Π̂ = {α̂i}
N
i=0 ⊂ ∆̂+ the set of simple roots of ĝ, and by

Π̂∨ = {ĥi}
N
i=0 ⊂ ĥ the set of simple coroots of ĝ. (See [K4, Chap. 7] for the

explicit construction of Π̂ and Π̂∨.)

The normalized Killing form ( · | · ) on g can be extended to the nor-

malized invariant form (see [K4, Chap. 6]) ( · | · ) on ĝ by:




(tm ⊗ x|tn ⊗ y) = δm+n,0(x|y), x, y ∈ g, m, n ∈ Z;

(Cc ⊕ Cd|C[t, t−1] ⊗C g) = 0;

(c|c) = (d|d) = 0;

(c|d) = 1.

The restriction of this bilinear form ( · | · ) to the Cartan subalgebra ĥ in-

duces a nondegenerate symmetric bilinear form ( · | · ) on h∗. Note that in

this case, for every root α ∈ ∆ ⊂ h∗ ⊂ (ĥ)∗, we have (α|α) = 2.
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2.2. Casimir operators for g and ĝ

The Casimir element Ω for g is an element of the center Z(U(g)) of the

universal enveloping algebra U(g) of g defined by:

Ω =

M∑

i=1

uiu
i,

where {ui}
M
i=1 and {ui}M

i=1 with M := dimC g are arbitrary dual bases of

g with respect to the normalized Killing form ( · | · ) on g. Notice that the

element Ω ∈ Z(U(g)) is independent of the choice of dual bases, and that

Ω acts on each irreducible highest weight g-module L(λ) of highest weight

λ ∈ h∗ by the scalar (λ+2ρ|λ), where ρ = (1/2) ·
∑

α∈∆+
α ∈ h∗ is the Weyl

vector for g.

Recall from [K4, Chaps. 2 and 12] the definition and construction of

the (generalized) Casimir operator Ω̂ for ĝ, which is a well-defined operator

on a ĝ-module V such that for each v ∈ V , ĝγv = 0 for all but a finite

number of positive roots γ ∈ ∆̂+. Then we know that the operator Ω̂ can

be expressed in the following form:

Ω̂ = Ω + 2(c + h∨)d + 2

M∑

i=1

∑

n≥1

(t−n ⊗ ui)(t
n ⊗ ui),

where the scalar h∨, called the dual Coxeter number, is given by:

h∨ =





N + 1 if XN = AN ,

2N − 2 if XN = DN ,

12 if XN = E6,

18 if XN = E7,

30 if XN = E8.

Remark 2.2.1. It is easily checked that

M = dimC g = N(1 + h∨)

in all the cases where X = A,D,E.

Moreover, we know that the operator Ω̂ acts on the irreducible highest

weight ĝ-module L̂(Λ) of highest weight Λ ∈ (ĥ)∗ by the scalar (Λ + 2ρ̂|Λ),

where the element ρ̂ ∈ (ĥ)∗ (the Weyl vector for ĝ) is defined by: ρ̂(ĥi) = 1

for all 0 ≤ i ≤ N , and ρ̂(d) = 0.
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2.3. Calculation of the graded trace of Ω

Let

P̂+ := {Λ ∈ (ĥ)∗ | Λ(ĥi) ∈ Z≥0, 0 ≤ i ≤ N}

be the set of dominant integral weights. Fix Λ ∈ P̂+ such that Λ(d) = 0,

and put k := Λ(c) ∈ Z≥0 (the level of Λ). Let V := L̂(Λ) be the irreducible

highest weight ĝ-module of highest weight Λ. We give a Z-gradation, called

the basic gradation, of V by setting:

Vm = {v ∈ V | dv = −mv} for m ∈ Z.

Then we have (see [K4, Chap. 12])

V =
⊕

m∈Z≥0

Vm

with V−m = {0} for m > 0 and dimC Vm < +∞ for all m ≥ 0. Note that

each homogeneous subspace Vm for m ∈ Z≥0 is stable under the action of

g ∼= Ct0 ⊗C g ↪→ ĝ since [d, Ct0 ⊗C g] = 0. In particular, we have

ΩVm ⊂ Vm for each m ∈ Z≥0.

Thus we can define a formal power series g(q), called the graded trace of Ω

on V = L̂(Λ), by

g(q) :=
∑

m∈Z≥0

Tr(Ω|Vm) qm,

which is the generating function of the traces Tr(Ω|Vm), m ∈ Z≥0.

The following elementary fact in linear algebra will play an essential

role in the calculation of the graded trace g(q) in this subsection.

Lemma 2.3.1. Let X, Y be finite-dimensional vector spaces over C,

and let A : X → Y , B : Y → X be linear maps. Then we have

Tr(AB) = Tr(BA).

Set

c(k) :=
k(dimC g)

k + h∨ ∈ Q>0.

We now define the following formal power series in q:

φ(q) :=
∞∏

n=1

(1 − qn),
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(2.3.1) H(q) := −c(k) ·
∑

n≥1

log(1 − qn),

h(q) := exp(H(q)).

Remark 2.3.2. We often write h(q) = φ(q)−c(k) and H(q) = log(h(q)).

The following lemma immediately follows from the definition of h(q)

above.

Lemma 2.3.3. We have

d

dq
h(q) = h(q) ·

d

dq
H(q).

Furthermore, we can show the following:

Lemma 2.3.4. We have

q
d

dq
H(q) = c(k) ·

∑

n≥1

n
∑

j≥1

qnj.

Proof. By differentiating the right-hand side of (2.3.1) by terms, we
obtain

d

dq
H(q) = c(k) ·

∑

n≥1

nqn−1

1 − qn
.

Thus, multiplying both sides by q, we have

q
d

dq
H(q) = c(k) ·

∑

n≥1

nqn

1 − qn
.

Since, for each n ∈ Z≥1,

qn

1 − qn
=
∑

j≥1

qnj ,

we deduce that

q
d

dq
H(q) = c(k) ·

∑

n≥1

n
∑

j≥1

qnj.

This proves the lemma.
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Now we recall that the Casimir operator Ω̂ for ĝ can be written in the

form:

Ω̂ = Ω + 2(c + h∨)d + 2

M∑

i=1

∑

n≥1

(t−n ⊗ ui)(t
n ⊗ ui),

as an operator on V = L̂(Λ), and that Ω̂ acts on L̂(Λ) by the scalar (Λ +

2ρ̂|Λ). Since L̂(Λ) is a highest weight ĝ-module, we see that the canonical

central element c ∈ ĝ acts on L̂(Λ) by the scalar k = Λ(c). Also, by

definition, the scaling element d ∈ ĝ acts on each homogeneous subspace Vm

by the scalar −m for m ∈ Z≥0. In addition, it follows from the commutation

relation [d, tn ⊗ x] = ntn ⊗ x for x ∈ g, n ∈ Z that

(t−n ⊗ ui)(t
n ⊗ ui)Vm ⊂ (t−n ⊗ ui)Vm−n ⊂ Vm

for m ∈ Z≥0, n ∈ Z≥1. Hence we deduce that for each m ∈ Z≥0,

Tr(Ω|Vm) = (Λ + 2ρ̂|Λ)(dimC Vm) + 2(k + h∨)m(dimC Vm)(2.3.2)

− 2
M∑

i=1

∑

n≥1

Tr((t−n ⊗ ui)(t
n ⊗ ui)|Vm).

Proposition 2.3.5. For each 1 ≤ i ≤ M , n ∈ Z≥1, we have

Tr((t−n ⊗ ui)(t
n ⊗ ui)|Vm) = kn ·

∑

j≥1

dimC Vm−nj.

Here we understand dimC V−m = 0 for m < 0. In particular, the trace

above does not depend on 1 ≤ i ≤ M .

Proof. First we note that for 1 ≤ i ≤ M , n ≥ 1,

(tn ⊗ ui)Vm ⊂ Vm−n, (t−n ⊗ ui)Vm−n ⊂ Vm

by the commutation relation [d, tn ⊗ x] = ntn ⊗ x for x ∈ g, n ∈ Z. Thus
we have

(t−n ⊗ ui)(t
n ⊗ ui)Vm ⊂ Vm, (tn ⊗ ui)(t−n ⊗ ui)Vm−n ⊂ Vm−n.

Hence, by Lemma 2.3.1, we see that

(2.3.3) Tr((t−n ⊗ ui)(t
n ⊗ ui)|Vm) = Tr((tn ⊗ ui)(t−n ⊗ ui)|Vm−n

).
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Here we recall the commutation relation:

[tn ⊗ ui, t−n ⊗ ui] = t0 ⊗ [ui, ui] + n(ui|ui)c

= t0 ⊗ [ui, ui] + nc.

Therefore, we deduce that

Tr((tn ⊗ ui)(t−n ⊗ ui)|Vm−n
) = Tr((t−n ⊗ ui)(t

n ⊗ ui)|Vm−n
)

+ Tr([ui, ui]|Vm−n
) + kn(dimC Vm−n).

Since

Tr([ui, ui]|Vm−n
) = Tr(ui|Vm−n

◦ ui|Vm−n
− ui|Vm−n

◦ ui|Vm−n
)

= Tr(ui|Vm−n
ui|Vm−n

) − Tr(ui|Vm−n
ui|Vm−n

)

= 0

again by Lemma 2.3.1, we get

Tr((tn ⊗ ui)(t−n ⊗ ui)|Vm−n
)(2.3.4)

= Tr((t−n ⊗ ui)(t
n ⊗ ui)|Vm−n

) + kn(dimC Vm−n).

By combining (2.3.3) and (2.3.4), we obtain a recurrence relation:

Tr((t−n ⊗ ui)(t
n ⊗ ui)|Vm)

= Tr((t−n ⊗ ui)(t
n ⊗ ui)|Vm−n

) + kn(dimC Vm−n).

Note that Vm−nj = {0} for sufficiently large j ∈ Z≥1. Hence it follows from
the recurrence relation above that

Tr((t−n ⊗ ui)(t
n ⊗ ui)|Vm) = kn ·

∑

j≥1

dimC Vm−nj .

This proves the proposition.

By (2.3.2) and Proposition 2.3.5, we obtain

Tr(Ω|Vm) = (Λ + 2ρ̂|Λ)(dimC Vm) + 2(k + h∨)m(dimC Vm)(2.3.5)

− 2kM
∑

n≥1

n
∑

j≥1

dimC Vm−nj .
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Here we introduce the following formal power series, called the graded

dimension of V ,

f(q) :=
∑

m≥0

(dimC Vm) qm,

which is the generating function of the dimensions dimC Vm, m ∈ Z≥0. If

we set

F (q) := f(q) · h(q)−1 = f(q) · φ(q)c(k),

then we have

d

dq
f(q) =

( d

dq
F (q)

)
· h(q) + F (q) ·

( d

dq
h(q)

)(2.3.6)

=
( d

dq
F (q)

)
· h(q) + F (q) ·

(
h(q) ·

d

dq
H(q)

)
by Lemma 2.3.3

=
( d

dq
F (q)

)
· h(q) + f(q) ·

d

dq
H(q).

Now we calculate the graded trace g(q) =
∑

m≥0 Tr(Ω|Vm) qm. By

(2.3.5), we have

g(q) =
∑

m≥0

Tr(Ω|Vm) qm

= (Λ + 2ρ̂|Λ)f(q) + 2(k + h∨) q
d

dq
f(q)

− 2kM
∑

m≥0

(∑

n≥1

n
∑

j≥1

dimC Vm−nj

)
qm.

We further deduce that

∑

m≥0

(∑

n≥1

n
∑

j≥1

dimC Vm−nj

)
qm =

∑

m≥0

∑

n≥1
j≥1

n(dimC Vm−nj) qm

=
∑

n≥1
j≥1

∑

m≥0

n(dimC Vm−nj) qm

=
∑

n≥1
j≥1

∑

m≥0

n(dimC Vm) qm+nj
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=
∑

m≥0

∑

n≥1
j≥1

n(dimC Vm) qm · qnj

=

(∑

m≥0

(dimC Vm) qm

)
·

(∑

n≥1

n
∑

j≥1

qnj

)

= f(q) · c(k)−1q
d

dq
H(q) by Lemma 2.3.4.

Consequently, we obtain

g(q) = (Λ + 2ρ̂|Λ)f(q) + 2(k + h∨) q
d

dq
f(q) − 2kMc(k)−1f(q) · q

d

dq
H(q)

= (Λ + 2ρ̂|Λ)f(q) + 2(k + h∨) q
{ d

dq
f(q) − f(q) ·

d

dq
H(q)

}

by the definition of c(k)

= (Λ + 2ρ̂|Λ)h(q)F (q) + 2(k + h∨) q
{

h(q) ·
d

dq
F (q)

}
by (2.3.6)

= h(q) ·
{

(Λ + 2ρ̂|Λ)F (q) + 2(k + h∨) q
d

dq
F (q)

}

=

(Λ + 2ρ̂|Λ)F (q) + 2(k + h∨) q
d

dq
F (q)

∏

n≥1

(1 − qn)c(k)
.

Thus we have proved the following.

Theorem 2.3.6. Let ĝ = g(X
(1)
N ) be the affine Lie algebra of type X

(1)
N

with X = A,D,E, and let V = L̂(Λ) be the irreducible highest weight ĝ-

module of dominant integral highest weight Λ ∈ (ĥ)∗ (such that Λ(d) = 0)
given the basic gradation V =

⊕
m∈Z≥0

Vm. Then the graded trace g(q) =∑
m≥0 Tr(Ω|Vm) qm of the Casimir element Ω for the finite-dimensional sim-

ple Lie algebra g = g(XN ) of type XN is expressed in the following form:

g(q) =

(Λ + 2ρ̂|Λ)F (q) + 2(k + h∨) q
d

dq
F (q)

∏

n≥1

(1 − qn)
k(dimC g)

k+h∨

,

where

F (q) =

(∏

n≥1

(1 − qn)
k(dimC g)

k+h∨

)
·
∑

m≥0

(dimC Vm) qm.
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Remark 2.3.7. If Λ ∈ (ĥ)∗ is a dominant integral weight such that
k = Λ(c) = 1 and Λ(d) = 0, then we know from [K4, Chap. 12]

(Λ|Λ)h∨ = 2(ρ̂|Λ).

So we have
(Λ + 2ρ̂|Λ) = (Λ|Λ) · (1 + h∨).

Also, since M = dimC g = N(1 + h∨) by Remark 2.2.1, we have

c(1) =
dimC g

1 + h∨ = N.

Hence we obtain

g(q) =

(1 + h∨)
{

(Λ|Λ)F (q) + 2q
d

dq
F (q)

}

∏

n≥1

(1 − qn)N
.

In particular, if Λ is the basic fundamental weight Λ̂0 ∈ (ĥ)∗ defined by
Λ̂0(h) := 0, Λ̂0(c) := 1, Λ̂0(d) := 0, then we have

g(q) =

2(1 + h∨) q
d

dq
F (q)

∏

n≥1

(1 − qn)N

since (Λ̂0|Λ̂0) = 0.

Remark 2.3.8. Recall from [K4, Chap. 12] that a dominant integral
weight Λ ∈ (ĥ)∗ such that k = Λ(c) = 1 and Λ(d) = 0 is of the form Λ = Λ̂0

or Λ = Λ̂0 + Λ̄i with 1 ≤ i ≤ N such that â∨
i = 1, where {Λ̄i}

N
i=1 ⊂ h∗ ⊂

(ĥ)∗ are the fundamental weights of g = g(XN ) and c =
∑N

i=0 â∨i ĥi is the
canonical central element.

§3. Identity for the derivative of a theta series of type A,D,E

In this section, we assume that Λ ∈ (ĥ)∗ is a dominant integral weight

such that k = Λ(c) = 1 and Λ(d) = 0.

Recall from [K4, Chap. 6] that we have an orthogonal direct sum:

(ĥ)∗ = h∗ ⊕ (Cδ + CΛ̂0).
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For an element Λ ∈ (ĥ)∗, we denote by Λ̄ ∈ h∗ the orthogonal projection of

Λ on h∗. Note that we have

Λ = Λ̄ + Λ(c)Λ̂0 + Λ(d)δ,

and hence Λ = Λ̄ + Λ̂0 (cf. Remark 2.3.8). In particular, (Λ|Λ) = (Λ̄|Λ̄)

since (Λ̂0|Λ̂0) = 0.

We know the following fact due to Kac (see [K4, Chap. 12]).

Fact 1. The graded dimension f(q) =
∑

m≥0(dimC Vm) qm of the ir-

reducible highest weight ĝ-module V = L̂(Λ) of highest weight Λ with the

basic gradation is given by :

f(q) =
∑

m≥0

(dimC Vm) qm

=

q−
1
2

(Λ̄|Λ̄) ·
∑

α∈Λ̄+Q

q
1
2

(α|α)

∏

n≥1

(1 − qn)N
,

where Q :=
∑N

i=1 Zαi ⊂ h∗ is the root lattice of g = g(XN ) and ( · | · ) is

the normalized Killing form on h∗.

By Fact 1, we have

F (q) = f(q) ·
∏

n≥1

(1 − qn)N

= q−
1
2

(Λ̄|Λ̄) ·
∑

α∈Λ̄+Q

q
1
2

(α|α)

since c(1) = M
1+h∨ = N . We set

ΘQ,Λ̄(q) :=
∑

α∈Λ̄+Q

q
1
2

(α|α).

Then we deduce that

q
d

dq
F (q) = −

1

2
(Λ̄|Λ̄) · F (q) + q−

1
2

(Λ̄|Λ̄) · q
d

dq
ΘQ,Λ̄(q).
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Hence we obtain by Remark 2.3.7 that

(3.1) g(q) =

2(1 + h∨)q−
1
2

(Λ̄|Λ̄) · q
d

dq
ΘQ,Λ̄(q)

∏

n≥1

(1 − qn)N

since (Λ|Λ) = (Λ̄|Λ̄).

Here we recall that each homogeneous subspace Vm of V is a finite-

dimensional g (↪→ ĝ)-module for m ∈ Z≥0. Hence it decomposes into a

direct sum of irreducible highest weight g-modules L(λ) with λ ∈ P+ :=

{λ ∈ h∗ | λ(hi) ∈ Z≥0, 1 ≤ i ≤ N}. For each λ ∈ P+, we denote by

Φ(Λ, λ)m the multiplicity of L(λ) in Vm:

(3.2) Vm =
⊕

λ∈P+

Φ(Λ, λ)mL(λ),

and set

Φ(Λ, λ)(q) :=
∑

m≥0

Φ(Λ, λ)mqm.

Then we know the following fact due to Kac (see [K4, Chap. 12]).

Fact 2. Let λ ∈ P+. If λ /∈ Λ̄ + Q, then we have Φ(Λ, λ)(q) = 0. If

λ ∈ Λ̄ + Q, then we have

Φ(Λ, λ)(q) =

q
1
2
{(λ|λ)−(Λ̄|Λ̄)} ·

∏

α∈∆+

(
1 − q(λ+ρ|α)

)

∏

n≥1

(1 − qn)N
.

Since the Casimir element Ω ∈ Z(U(g)) acts on L(λ) by the scalar

(λ + 2ρ|λ), we see from the decomposition (3.2) that for each m ∈ Z≥0,

Tr(Ω|Vm) =
∑

λ∈(Λ̄+Q)∩P+

d(λ)(λ + 2ρ|λ)Φ(Λ, λ)m,
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where d(λ) = dimC L(λ). Therefore we deduce, by using Fact 2, that

g(q) =
∑

m≥0

Tr(Ω|Vm) qm

=
∑

m≥0

∑

λ∈(Λ̄+Q)∩P+

d(λ)(λ + 2ρ|λ)Φ(Λ, λ)mqm

=
∑

λ∈(Λ̄+Q)∩P+

d(λ)(λ + 2ρ|λ)

(∑

m≥0

Φ(Λ, λ)mqm

)

=
∑

λ∈(Λ̄+Q)∩P+

d(λ)(λ + 2ρ|λ)Φ(Λ, λ)(q)

=
∑

λ∈(Λ̄+Q)∩P+

d(λ)(λ + 2ρ|λ)

(
h(q)q

1
2
{(λ|λ)−(Λ̄|Λ̄)} ∏

α∈∆+

(1 − q(λ+ρ|α))

)

= q−
1
2

(Λ̄|Λ̄)h(q) ·
∑

λ∈(Λ̄+Q)∩P+

d(λ)(λ + 2ρ|λ)q
1
2

(λ|λ)
∏

α∈∆+

(
1 − q(λ+ρ|α)

)
,

where h(q) =
∏

n≥1(1 − qn)−N . By comparing this equality with (3.1), we

obtain

2(1 + h∨) q
d

dq
ΘQ,Λ̄(q)

=
∑

λ∈(Λ̄+Q)∩P+

d(λ)(λ + 2ρ|λ)q
1
2

(λ|λ)
∏

α∈∆+

(
1 − q(λ+ρ|α)

)
.

Thus we have proved the following.

Theorem 3.1. Let g = g(XN ) be a finite-dimensional simple Lie al-

gebra of type XN with X = A,D,E, and let Λ = Λ̄+ Λ̂0 ∈ (ĥ)∗ with Λ̄ ∈ h∗

be a dominant integral weight. Then we have

2(1 + h∨) q
d

dq
ΘQ,Λ̄(q)

=
∑

λ∈(Λ̄+Q)∩P+

d(λ)(λ + 2ρ|λ)q
1
2

(λ|λ)
∏

α∈∆+

(
1 − q(λ+ρ|α)

)
,

where ΘQ,Λ̄(q) =
∑

α∈Λ̄+Q q
1
2

(α|α) and d(λ) = dimC L(λ) for λ ∈ P+.
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Remark 3.2. For λ ∈ P+, the dimension d(λ) = dimC L(λ) is given by
the Weyl dimension formula:

d(λ) =
∏

α∈∆+

(λ + ρ|α)

(ρ|α)
.

Example 3.3. Let g be a simple Lie algebra of type A2, i.e.,

g = sl(3, C) = {X ∈ M(3, C) | Tr(X) = 0},

and Λ̄ = 0. Then we have

Π = {α1, α2}, ∆+ = {α1, α2, α1 + α2}, ρ = α1 + α2, h∨ = 3,

Q = Zα1 ⊕ Zα2 = {kα1 + mα2 | k,m ∈ Z},

(α1|α1) = (α2|α2) = 2, (α1|α2) = −1,

P+ ∩ Q = {kα1 + mα2 | 2k ≥ m ≥ 0, 2m ≥ k ≥ 0, k,m ∈ Z}.

Also, for λ = kα1 + mα2 ∈ P+ ∩ Q, we have

d(λ) =
1

2
(2k − m + 1)(2m − k + 1)(k + m + 2)

by Remark 3.2. Thus we can write the identity in Theorem 3.1 as follows:

8 ·
∑

k,m∈Z

(k2 − km + m2) qk2−km+m2

=
∑

2k≥m≥0
2m≥k≥0
k,m∈Z

(2k − m + 1)(2m − k + 1)(k + m + 2)(k2 − km + m2 + k + m)

× qk2−km+m2
(1 − q2k−m+1)(1 − q2m−k+1)(1 − qk+m+2).

Remark 3.4. It immediately follows from the decomposition (3.2) that
for each m ∈ Z≥0,

dimC Vm =
∑

λ∈(Λ̄+Q)∩P+

d(λ)Φ(Λ, λ)m.

Therefore, as above, we can easily deduce by using Fact 2 that

f(q) =
∑

m≥0

(dimC Vm) qm

= q−
1
2

(Λ̄|Λ̄)
∏

n≥1

(1 − qn)−N ·
∑

λ∈(Λ̄+Q)∩P+

d(λ)q
1
2

(λ|λ)
∏

α∈∆+

(
1 − q(λ+ρ|α)

)
.
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By comparing this with Fact 1, we obtain

ΘQ,Λ̄(q) =
∑

α∈Λ̄+Q

q
1
2

(α|α)

=
∑

λ∈(Λ̄+Q)∩P+

d(λ) q
1
2

(λ|λ)
∏

α∈∆+

(
1 − q(λ+ρ|α)

)
.

§4. Results in the C,B, F,G cases

4.1. Twisted affine Lie algebras

Here we recall from [K4, Chaps. 6 and 8] (and also [W]) some standard

notation and facts about twisted affine Lie algebras.

Let g = g(XN ) be a finite-dimensional complex simple Lie algebra

of type XN , where XN = A2L−1 (L ≥ 3), DL+1 (L ≥ 2), E6, or D4

(recall the notation of Section 2.1). Also we denote by µ : g → g the

Lie algebra automorphism induced by a Dynkin diagram automorphism

µ : {1, . . . , N} → {1, . . . , N} of order r.

Remark 4.1.1. In the case where XN = D4 above, we take one of two
Dynkin diagram automorphisms of order 3. In the case where XN = DL+1

with L = 3 above, we take one of three Dynkin diagram automorphisms of
order 2. In each of other cases above, there is only one nontrivial Dynkin
diagram automorphism, which is of order 2. Thus r = 2 if XN = A2L−1,
DL+1, E6, and r = 3 if XN = D4.

Let ζ := exp
( 2π

√
−1

r

)
∈ C∗ be a primitive r-th root of unity. Since

µr = id, we have µ-eigenspace decompositions of g and h:

g =
⊕

k̄∈Z/rZ

gk̄, gl̄ := {x ∈ g | µ(x) = ζ lx}.

h =
⊕

l̄∈Z/rZ

hl̄, hl̄ := gl̄ ∩ h,

where l̄ := l+rZ ∈ Z/rZ denotes the residue class of l ∈ Z. It is known (see

[K4, Chap. 8]) that the fixed point subalgebra g0̄ of g is, in fact, a finite-

dimensional simple Lie algebra of type YL with Cartan subalgebra h0̄, where

YL is given by:

YL =





CL if XN = A2L−1, r = 2,

BL if XN = DL+1, r = 2,

F4 if XN = E6, r = 2,

G2 if XN = D4, r = 3.
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Furthermore, for each l̄ ∈ Z/rZ, gl̄ admits a weight space decomposition

with respect to the Cartan subalgebra h0̄ of g0̄:

gl̄ = hl̄ ⊕
⊕

α∈∆l̄

gl̄.

In particular, ∆0̄ ⊂ (h0̄)
∗ is the set of roots of g0̄ = g(YL).

Let g̃ = g(X
(r)
N ) be a twisted affine Lie algebra of type X

(r)
N over C,

where X
(r)
N = A

(2)
2L−1, D

(2)
L+1, E

(2)
6 , D

(3)
4 . Namely, g̃ is the following subalge-

bra of ĝ:

g̃ = L̂(g, µ, r) =

(⊕

j∈Z

Ctj ⊗C gj̄

)
⊕ CK ⊕ CD,

where K := rc is the canonical central element and D := d is the scaling

element.

Remark 4.1.2. There are some misprints on the canonical central ele-

ment and the scaling element of the twisted affine Lie algebra g̃ = g(X
(r)
N )

in [K4, Section 8.3] and [W, Section 7.2]. Note also that a0 = 1 in the

notation therein unless X
(r)
N = A

(2)
2L .

The Cartan subalgebra of g̃ is the following subalgebra of ĥ:

h̃ = (Ct0 ⊗C h0̄) ⊕ CK ⊕ CD.

The set ∆̃+ ⊂ (h̃)∗ of positive roots of g̃ is described as:

∆̃+ = {jδ | j ∈ Z≥1} t {jδ + α | j ∈ Z≥1, α ∈ ∆j̄} t (∆0̄)+,

where δ ∈ (h̃)∗ is the restriction of the null root δ ∈ (ĥ)∗ of ĝ to the

subalgebra h̃ ⊂ ĥ and (∆0̄)+ ⊂ (h0̄)
∗ is the set of positive roots of g0̄ = g(YL)

regarded (as usual) as a subset of (h̃)∗. Moreover, the root spaces g̃γ ,

γ ∈ ∆̃+, are written as:

g̃jδ = Ctj ⊗C hj̄ , g̃jδ+α = Ctj ⊗C gj̄,α, j ∈ Z, α ∈ ∆j̄ .

Also we denote by Π̃ = {α̃i}
L
i=0 ⊂ ∆̃+ the set of simple roots of g̃, and by

Π̃∨ = {h̃i}
L
i=0 ⊂ h̃ the set of simple coroots of g̃. (See [K4, Chap. 8] for the

explicit construction of Π̃ and Π̃∨.)
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Remark 4.1.3. The finite-dimensional simple Lie algebra g0̄ = g(YL) of

type YL can be identified with the subalgebra Ct0 ⊗C g0̄ of g̃ = g(X
(r)
N ). In

fact, the Dynkin diagram of g(X
(r)
N ) with the 0-th vertex (enumerated as in

[K4, Chap. 4]) removed is nothing but the Dynkin diagram of g(YL). Thus
the simple roots of g(YL) = g0̄ are the restrictions of the α̃i’s, 1 ≤ i ≤ L, to
h0̄ ⊂ h̃. So

Q̇ :=

L∑

i=1

Zα̃i ⊂ (h0̄)
∗

is the root lattice of g0̄ = g(YL).

The normalized Killing form ( · | · ) on g = g(XN ) can be extended to

the normalized invariant form (see [K4, Chap. 6]) 〈 · | · 〉 on g̃ = g(X
(r)
N ) by:





〈ti ⊗ x|tj ⊗ y〉 = r−1δi+j,0(x|y), i, j ∈ Z, x ∈ gī, y ∈ gj̄;

〈CK ⊕ CD|Ctj ⊗C gj̄〉 = 0, j ∈ Z, x ∈ gj̄;

〈K|K〉 = 〈D|D〉 = 0;

〈K|D〉 = r〈c|d〉 = 1.

(We note that there are misprints in [K4, Eq. (8.3.8) on p. 131] and in

[W, Corollary 7.2E].) Namely, the normalized invariant form 〈 · | · 〉 on g̃ =

g(X
(r)
N ) is the restriction of the normalized invariant form ( · | · ) on ĝ =

g(X
(1)
n ) multiplied by r−1. Let x, y ∈ g0̄. Then (x|y) is defined since

g0̄ ⊂ g, and 〈x|y〉 is also defined since g0̄
∼= Ct0⊗C g0̄ ⊂ g̃. By the definition

of 〈 · | · 〉 above, we have

〈x|y〉 = r−1(x|y).

Hence, for λ, µ ∈ (h0̄)
∗ ⊂ (h̃)∗ ∩ h∗, we have

(4.1.1) 〈λ|µ〉 = r(λ|µ).

Remark 4.1.4. It is easily checked (see [K4, Chaps. 6 and 8]) that the
restriction of the normalized Killing form ( · | · ) on g = g(XN ) satisfies the
condition:

(α|α) = 2 for all long roots α ∈ (∆0̄)long ⊂ (h0̄)
∗ ⊂ h∗.

Hence the restriction of the normalized Killing form ( · | · ) on g = g(XN ) to
the fixed point subalgebra g0̄ coincides with the Killing form on g0̄ = g(YL)
normalized in such a way that the square length of every long root is 2. So
we denote this normalized Killing form on g(YL) = g0̄ also by ( · | · ).
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4.2. Casimir operators for g0̄ and g̃

The Casimir element Ω̇ ∈ Z(U(g0̄)) for g0̄ and the Casimir operator Ω̃

for g̃ are defined in the same way as Ω for g and Ω̂ for ĝ in Section 2.2,

respectively. Furthermore, using the explicit descriptions of the set of pos-

itive roots ∆̃+ of g̃ and the corresponding root spaces g̃γ , γ ∈ ∆̃+, we can

show that the Casimir operator Ω̃ can be expressed in the following form

(we need to be careful about the normalizations of the bilinear forms 〈 · | · 〉

and ( · | · )):

(4.2.1) Ω̃ = rΩ̇+2(K+h∨)D+2r
∑

l̄∈Z/rZ

∑

n≥1
n̄=l̄

dimC gl̄∑

i=1

(t−n⊗u(n̄)i)(tn⊗u(n̄)i).

Here, for each n ∈ Z≥1, {u(n̄)i | 1 ≤ i ≤ dimC gn̄} and {u(n̄)i | 1 ≤ i ≤

dimC gn̄} are bases of gn̄ and g−n̄ consisting of weight vectors with respect

to the adjoint action of h0̄ such that

(4.2.2)





(u(n̄)i|u(n̄)j) = δij , 1 ≤ i, j ≤ dimC gn̄,

dimC gn̄∑

i=1

[u(n̄)i, u(n̄)i] = 0 ∈ h0̄,

and the dual Coxeter number h∨ is given by:

h∨ =





2L if XN = A2L−1, r = 2,

2L if XN = DL+1, r = 2,

12 if XN = E6, r = 2,

6 if XN = D4, r = 3.

Remark 4.2.1. In all the cases where X
(r)
N = A

(2)
2L−1, D

(2)
L+1, E

(2)
6 , D

(3)
4 ,

we can check by direct computation that

dimC gn̄ = (1 + h∨) dimC hn̄

for all n ∈ Z≥0.

4.3. Graded trace of the Casimir element Ω̇ for g0̄

Let Λ ∈ (h̃)∗ be a dominant integral weight, i.e., Λ(h̃i) ∈ Z≥0 for all

0 ≤ i ≤ L. We assume that Λ(D) = 0. Put k := Λ(K) ∈ Z≥0, and

cl(k) :=
k(dimC gl̄)

k + h∨ ∈ Q>0 for 0 ≤ l ≤ r − 1.
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Let V := L̃(Λ) be the ireducible highest weight g̃-module of highest weight

Λ ∈ (h̃)∗ given the basic gradation:

V =
⊕

m∈Z≥0

Vm, Vm := {v ∈ V | Dv = −mv}.

Recall from [K4, Chap. 12] that dimC Vm < +∞ for all m ∈ Z≥0. Also note

that each homogeneous subspace Vm for m ∈ Z≥0 is stable under the action

of g0̄
∼= Ct0 ⊗C g0̄ ↪→ g̃ since [D, Ct0 ⊗C g0̄] = 0, and hence that

Ω̇Vm ⊂ Vm for each m ∈ Z≥0.

We set

f(q) :=
∑

m≥0

(dimC Vm) qm,

g(q) :=
∑

m≥0

Tr(Ω̇|Vm) qm.

Now we define the following formal power series in q for 0 ≤ l ≤ r − 1:

φl(q) :=
∏

n≥1
n≡l (mod r)

(1 − qn),

Hl(q) := −cl(k) ·
∑

n≥1
n≡l (mod r)

log(1 − qn),

hl(q) := exp(Hl(q)).

Remark 4.3.1. We often write

hl(q) = φl(q)
−cl(k) =

∏

n≥1
n≡l (mod r)

(1 − qn)−cl(k)

and Hl(q) = log(hl(q)).

We get the following lemmas in the same way as Lemmas 2.3.3

and 2.3.4.
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Lemma 4.3.2. For 0 ≤ l ≤ r − 1, we have

d

dq
hl(q) = hl(q) ·

d

dq
Hl(q).

Lemma 4.3.3. For 0 ≤ l ≤ r − 1, we have

q
d

dq
Hl(q) = cl(k) ·

∑

n≥1
n≡l (mod r)

n
∑

j≥1

qnj.

Furthermore, we can show the following proposition.

Proposition 4.3.4. For 0 ≤ l ≤ r − 1 and n ∈ Z≥1 such that n ≡
l (mod r), we have

Tr

( dimC gl̄∑

i=1

(t−n ⊗ u(n̄)i)(tn ⊗ u(n̄)i)|Vm

)

= r−1(dimC gl̄)kn ·
∑

j≥1

dimC Vm−nj.

Proof. First we note that for 0 ≤ l ≤ r − 1, n ∈ Z≥1 such that
n ≡ l (mod r), and 1 ≤ i ≤ dimC gl̄, we have the following commutation
relation (since c = r−1K):

[tn ⊗ u(n̄)i, t
−n ⊗ u(n̄)i] = t0 ⊗ [u(n̄)i, u(n̄)i] + n(u(n̄)i|u(n̄)i)c

= 1 ⊗ [u(n̄)i, u(n̄)i] + r−1nK.

Hence, by (4.2.2), we have

dimC gl̄∑

i=1

[tn ⊗ u(n̄)i, t
−n ⊗ u(n̄)i] = r−1(dimC gl̄)nK.

Using this equality, we obtain a recurrence relation by an argument similar
to the one in the proof of Proposition 2.3.5:

Tr

( dim gl̄∑

i=1

(t−n ⊗ u(n̄)i)(tn ⊗ u(n̄)i)|Vm

)

= Tr

( dim gl̄∑

i=1

(t−n ⊗ u(n̄)i)(tn ⊗ u(n̄)i)|Vm−n

)

+ r−1(dimC gl̄)kn(dimC Vm−n).
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Therefore, we deduce that

Tr

( dimC gl̄∑

i=1

(t−n⊗u(n̄)i)(tn⊗u(n̄)i)|Vm

)
= r−1(dimC gl̄)kn·

∑

j≥1

dimC Vm−nj .

This proves the proposition.

Here we recall that the Casimir operator Ω̃ acts on L̃(Λ) by the scalar

〈Λ + 2ρ̃|Λ〉, where ρ̃ is an element (called the Weyl vector) of (h̃)∗ defined

by: ρ̃(h̃i) = 1 for all 0 ≤ i ≤ L, and ρ̃(D) = 0. Hence, from the expres-

sion (4.2.1) of the Casimir operator Ω̃, we deduce in the same way as in

Section 2.3 that for each m ∈ Z≥0,

〈Λ + 2ρ̃|Λ〉(dimC Vm)

= r Tr(Ω̇|Vm) − 2(k + h∨)m(dimC Vm)

+ 2r

r−1∑

l=0

∑

n≥1
n≡l (mod r)

Tr

( dimC gl̄∑

i=1

(t−n ⊗ u(n̄)i)(tn ⊗ u(n̄)i)|Vm

)
.

Furthermore, by Proposition 4.3.4, we obtain

r Tr(Ω̇|Vm) = 〈Λ + 2ρ̃|Λ〉(dimC Vm) + 2(k + h∨)m(dimC Vm)

− 2k
r−1∑

l=0

(dimC gl̄)
∑

n≥1
n≡l (mod r)

n
∑

j≥1

dimC Vm−nj.

Consequently, the graded trace g(q) of the Casimir element Ω̇ on V =⊕
m∈Z≥0

Vm can be calculated as in Section 2.3:

g(q) =
∑

m≥0

Tr(Ω̇|Vm) qm

(4.3.1)

= r−1〈Λ + 2ρ̃|Λ〉f(q) + 2r−1(k + h∨) q
d

dq
f(q)

− 2r−1k
r−1∑

l=0

(dimC gl̄)cl(k)−1f(q) · q
d

dq
Hl(q) by Lemma 4.3.3

= r−1〈Λ + 2ρ̃|Λ〉 + 2r−1(k + h∨) q

{
d

dq
f(q) − f(q) ·

r−1∑

l=0

d

dq
Hl(q)

}
.
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If we set

F (q) := f(q) ·

r−1∏

l=0

hl(q)
−1 = f(q) ·

r−1∏

l=0

∏

n≥1
n≡l (mod r)

(1 − qn)cl(k),

then we have

d

dq
f(q) =

( d

dq
F (q)

)
·

r−1∏

l=0

hl(q) + F (q) ·

{
r−1∑

i=0

(
d

dq
hi(q)) ·

∏

0≤l≤r−1
l 6=i

hl(q)

}

=
( d

dq
F (q)

)
·

r−1∏

l=0

hl(q) + F (q) ·

{ r−1∑

i=0

(
d

dq
Hi(q)) ·

r−1∏

l=0

hl(q)

}

by Lemma 4.3.2

=
( d

dq
F (q)

)
·

r−1∏

l=0

hl(q) + f(q) ·

r−1∑

i=0

d

dq
Hi(q)

by the definition of F (q).

Combining this equality with (4.3.1), we obtain

g(q) = r−1〈Λ + 2ρ̃|Λ〉f(q) + 2r−1(k + h∨) q

{( d

dq
F (q)

)
·

r−1∏

l=0

hl(q)

}

=

r−1〈Λ + 2ρ̃|Λ〉F (q) + 2r−1(k + h∨) q
d

dq
F (q)

r−1∏

l=0

∏

n≥1
n≡l (mod r)

(1 − qn)cl(k)

.

Recall from [K4, Chap. 6] that we have an orthogonal direct sum:

(h̃)∗ = (h0̄)
∗ ⊕ (Cδ + CΛ̃0),

where Λ̃0 ∈ (h̃)∗ is the basic fundamental weight defined by: Λ̃0(h0̄) := 0,

Λ̃0(K) := 1, Λ̃0(D) := 0. For an element Λ ∈ (h̃)∗, we denote by Λ̄ ∈

(h0̄)
∗ the orthogonal projection of Λ on (h0̄)

∗. Since Λ(D) = 0, we have

Λ = Λ̄ + Λ(K)Λ̃0 = Λ̄ + kΛ̃0. Also we know that ρ̃ = ρ̇ + h∨Λ̃0, where
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ρ̇ = (1/2) ·
∑

α∈(∆0̄)+
α ∈ (h0̄)

∗ is the Weyl vector for g0̄. Hence, by (4.1.1),

we have

〈Λ + 2ρ̃|Λ〉 = 〈Λ̄ + 2ρ̇|Λ̄〉 = r(Λ̄ + 2ρ̇|Λ̄)

since 〈Λ̃0|Λ̃0〉 = 0. Thus we have proved the following.

Theorem 4.3.5. Let g̃ = g(X
(r)
N ) be the twisted affine Lie algebra of

type X
(r)
N with X

(r)
N = A

(2)
2L−1, D

(2)
L+1, E

(2)
6 , D

(3)
4 , and let V = L̃(Λ) be the

irreducible highest weight g̃-module of dominant integral highest weight Λ ∈
(h̃)∗ (such that Λ(D) = 0) given the basic gradation V =

⊕
m∈Z≥0

Vm.

Then the graded trace g(q) =
∑

m≥0 Tr(Ω̇|Vm) qm of the Casimir element Ω̇
for the finite-dimensional simple Lie algebra g0̄ = g(YL) of type YL (with

YL = CL, BL, F4, G2, respectively) is expressed in the following form:

g(q) =

r−1〈Λ + 2ρ̃|Λ〉F (q) + 2r−1(k + h∨) q
d

dq
F (q)

r−1∏

l=0

∏

n≥1
n≡l (mod r)

(1 − qn)
k(dimC g

l̄
)

k+h∨

,

where

F (q) =

(
r−1∏

l=0

∏

n≥1
n≡l (mod r)

(1 − qn)
k(dimC g

l̄
)

k+h∨

)
·
∑

m≥0

(dimC Vm) qm.

Remark 4.3.6. If Λ ∈ (h̃)∗ is a dominant integral weight such that
k = Λ(K) = 1 and Λ(D) = 0, then we know from [K4, Chap. 12] that
〈Λ|Λ〉h∨ = 2〈ρ̃|Λ〉. So we have

〈Λ + 2ρ̃|Λ〉 = 〈Λ|Λ〉 · (1 + h∨).

Also, since dimC gl̄ = (1 + h∨) dimC hl̄ for 0 ≤ l ≤ r − 1 by Remark 4.2.1,
we have

cl(k) =
dimC gl̄

1 + h∨ = dimC hl̄ for 0 ≤ l ≤ r − 1.

Hence we obtain

g(q) =

r−1(1 + h∨)
{
〈Λ|Λ〉F (q) + 2q

d

dq
F (q)

}

r−1∏

l=0

∏

n≥1
n≡l (mod r)

(1 − qn)dimC hl̄

.
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In particular, if Λ is the basic fundamental weight Λ̃0 ∈ (h̃)∗, then we get

g(q) =

2r−1(1 + h∨) q
d

dq
F (q)

r−1∏

l=0

∏

n≥1
n≡l (mod r)

(1 − qn)dimC hl̄

since 〈Λ̃0|Λ̃0〉 = 0.

Remark 4.3.7. Recall from [K4, Chap. 12] that a dominant integral
weight Λ ∈ (h̃)∗ such that k = Λ(K) = 1 and Λ(D) = 0 is of the form
Λ = Λ̃0 or Λ = Λ̃0 + Λ̇i with 1 ≤ i ≤ L such that ã∨

i = 1, where {Λ̇i}
L
i=1 ⊂

(h0̄)
∗ ⊂ (h̃)∗ are the fundamental weights of g0̄ = g(YL) and K =

∑L
i=0 ã∨i h̃i

is the canonical central element.

4.4. Identity for the derivative of a theta series of type C, B,
F , G

In this section, we assume that Λ ∈ (h̃)∗ is a dominant integral weight

such that k = Λ(K) = 1 and Λ(D) = 0. Hence we have Λ = Λ̄ + Λ̃0 with

Λ̄ ∈ (h0̄)
∗ (cf. Remark 4.3.7). In particular, 〈Λ|Λ〉 = 〈Λ̄|Λ̄〉 = r(Λ̄|Λ̄) by

(4.1.1).

We know the following fact due to Kac (see [K4, Chap. 12]).

Fact 3. The graded dimension f(q) =
∑

m≥0(dimC Vm) qm of the ir-

reducible highest weight g̃-module V = L̃(Λ) of highest weight Λ with the

basic gradation is given by :

f(q) =
∑

m≥0

(dimC Vm) qm

=

q−
r
2

(Λ̄|Λ̄) ·
∑

α∈Λ̄+Q̇

q
r
2

(α|α)

r−1∏

l=1

∏

n≥1
n≡l (mod r)

(1 − qn)dimC hl̄

,

where Q̇ =
∑L

i=1 Zα̃i ⊂ (h0̄)
∗ is the root lattice of g0̄ = g(YL) and ( · | · ) is

the normalized Killing form on (h0̄)
∗.
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By Fact 3, we have

F (q) = f(q) ·
r−1∏

l=0

∏

n≥1
n≡l (mod r)

(1 − qn)cl(k)

= q−
r
2

(Λ̄|Λ̄) ·
∑

α∈Λ̄+Q̇

q
r
2

(α|α)

since cl(1) = dimC hl̄ for 0 ≤ l ≤ r − 1. We set

ΘQ̇,Λ̄(q) :=
∑

α∈Λ̄+Q̇

q
r
2

(α|α).

Then we get

q
d

dq
F (q) = −

r

2
(Λ̄|Λ̄) · F (q) + q−

r
2

(Λ̄|Λ̄) · q
d

dq
ΘQ̇,Λ̄(q),

and hence from Remark 4.3.6

(4.4.1) g(q) =

2r−1(1 + h∨)q−
r
2

(Λ̄|Λ̄) · q
d

dq
ΘQ̇,Λ̄(q)

r−1∏

l=0

∏

n≥1
n≡l (mod r)

(1 − qn)dimC hl̄

since 〈Λ|Λ〉 = r(Λ̄|Λ̄) by (4.1.1).

Now, for λ ∈ Ṗ+ := {λ ∈ (h0̄)
∗ | λ(h̃i) ∈ Z≥0, 1 ≤ i ≤ L}, we denote

by L̇(λ) the irreducible highest weight g0̄-module of highest weight λ, and

by Φ(Λ, λ)m the multiplicity of L̇(λ) in the homogeneous subspace Vm of V

viewed as a g0̄-module:

Vm =
⊕

λ∈Ṗ+

Φ(Λ, λ)mL̇(λ).

Further we set

Φ(Λ, λ)(q) :=
∑

m≥0

Φ(Λ, λ)mqm.

Then we know the following fact due to Kac (see [K4, Chap. 12]).
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Fact 4. Let λ ∈ Ṗ+. If λ /∈ Λ̄ + Q̇, then we have Φ(Λ, λ)(q) = 0. If

λ ∈ Λ̄ + Q̇, then we have

Φ(Λ, λ)(q) =

q
r
2
{(λ|λ)−(Λ̄|Λ̄)} ·

∏

α∈(∆0̄)+

(
1 − qr(λ+ρ̇|α)

)

r−1∏

l=0

∏

n≥1
n≡l (mod r)

(1 − qn)dimC hl̄

.

Using Fact 4 instead of Fact 2, we deduce as in Section 3:

g(q) =
∑

m≥0

Tr(Ω̇|Vm) qm

=
∑

m≥0

∑

λ∈(Λ̄+Q̇)∩Ṗ+

ḋ(λ)(λ + 2ρ̇|λ)Φ(Λ, λ)mqm

= q−
r
2

(Λ̄|Λ̄)

( r−1∏

l=0

hl(q)

)

×
∑

λ∈(Λ̄+Q̇)∩Ṗ+

ḋ(λ)(λ + 2ρ̇|λ)q
r
2

(λ|λ)
∏

α∈(∆0̄)+

(
1 − qr(λ+ρ̇|α)

)
,

where ḋ(λ) := dimC L̇(λ) for λ ∈ (Λ̄ + Q̇) ∩ Ṗ+ and

hl(q) =
∏

n≥1
n≡l (mod r)

(1 − qn)− dimC hl̄

for 0 ≤ l ≤ r − 1. Comparing this equality with (4.4.1), we obtain the

following.

Theorem 4.4.1. Let g0̄ = g(YL) be a finite-dimensional simple Lie

algebra of type YL with YL = CL, BL, F4, G2, and let Λ = Λ̄ + Λ̃0 ∈ (h̃)∗

with Λ̄ ∈ (h0̄)
∗ be a dominant integral weight. Then we have

2r−1(1 + h∨) q
d

dq
ΘQ̇,Λ̄(q)

=
∑

λ∈(Λ̄+Q̇)∩Ṗ+

ḋ(λ)(λ + 2ρ̇|λ) q
r
2

(λ|λ)
∏

α∈(∆0̄)+

(
1 − qr(λ+ρ̇|α)

)
,

where ΘQ̇,Λ̄(q) =
∑

α∈Λ̄+Q̇ q
r
2

(α|α). Here r = 2 if Y = C,B, F and r = 3 if

Y = G.
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Remark 4.4.2. For λ ∈ Ṗ+, the dimension ḋ(λ) = dimC L̇(λ) is given
by the Weyl dimension formula:

ḋ(λ) =
∏

α∈(∆0̄)+

(λ + ρ̇|α)

(ρ̇|α)
.

By using Facts 3 and 4 instead of Facts 1 and 2, respectively, we can show

the following proposition as in Remark 3.4 (this identity is new, while the

identity in Remark 3.4 is already known).

Proposition 4.4.3. We have the following identity.

ΘQ̇,Λ̄(q) =
∑

α∈Λ̄+Q̇

q
r
2

(α|α)

=
∑

λ∈(Λ̄+Q̇)∩Ṗ+

ḋ(λ) q
r
2

(λ|λ)
∏

α∈(∆0̄)+

(
1 − qr(λ+ρ̇|α)

)
,

where r = 2 if Y = C,B, F and r = 3 if Y = G.
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