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REAL CANONICAL CYCLE AND ASYMPTOTICS OF

OSCILLATING INTEGRALS

DANIEL BARLET

Abstract. Let XR ⊂ R
N a real analytic set such that its complexification

XC ⊂ C
N is normal with an isolated singularity at 0. Let fR : XR → R a real

analytic function such that its complexification fC : XC → C has an isolated
singularity at 0 in XC. Assuming an orientation given on X∗

R, to a connected
component A of X∗

R we associate a compact cycle Γ(A) in the Milnor fiber
of fC which determines completely the poles of the meromorphic extension
of

R

A
fλ

� or equivalently the asymptotics when τ → ±∞ of the oscillating

integrals
R

A
eiτf

�. A topological construction of Γ(A) is given. This completes
the results of [BM] paragraph 6.

§0. Introduction

Let XC be a normal complex space of dimension n + 1 (n ≥ 1) having

an isolated singularity at 0, and let f : XC → C be an holomorphic function

on XC with an isolated singularity at 0. We shall assume that (XC, f) is

the complexification of a real analytic function (XR, fR) on a real analytic

space XR. In such a situation, we shall consider A, non zero, in H 0(X∗
R
, C).

Assuming that an orientation is given on the smooth real manifolds X ∗
R
,

we have defined in [BM] a compactly supported cohomology class γ(A) ∈

Hn
c (F, C)1 associated to A, where F denotes the complex Milnor’s fiber

of f on XC and Hn
c (F, C)1 the spectral part for the eigenvalue 1 of the

monodromy acting on Hn
c (F, C). The definition is the following:

For any e ∈ Hn(F, C)1 represented by semi-meromorphic forms on XC,

with poles along f = 0, w0, . . . , wk, so satisfying the conditions

(A)





1) dwj =
df

f
∧ wj−1 ∀j ∈ [1, k], w0 = 0

2) [wk/F ] = e ∈ Hn(F, C)1
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we have

I
(
e, γ(A)

)
= (2iπ)−n Res

(
λ = 0,

∫

A
fλρw ∧

df

f

)
.

Here I : Hn
c (F, C) ×Hn(F, C) → C denotes the hermitian Poincaré duality

defined by I(a, b) = 1
(2iπ)n

∫
F a ∧ b̄ and ρ is in C∞

c (XR) with ρ ≡ 1 near 0.

We use here the notation iπ
∫
A fλ df

f ∧� for the R
∗-Mellin transform of the

function defined on R
∗ by ϕ(s) =

∫
f(s)∩A � where � is a semi-meromorphic

n-form on XR with compact support(∗) and poles in {fR = 0}.

Recall that the R
∗-Mellin transform of ϕ is given (see [B99]) by defini-

tion by

iπMϕ(λ) :=

∫ +∞

0
xλ−1ϕ(x) dx − e−iπλ

∫ +∞

0
xλ−1ϕ(−x) dx.

The purpose of this article is to give a topological construction of a compact

n-cycle whose class in Hn
c (F, C)1 is γ(A). This complete the results of

the paragraph 6 in [BM]. In fact it appears from our proof and [BM]

results that the class of our cycle Γ(A) in Hn
c (F, C) controls completely the

poles of
∫
A fλ

� for the given A. So the same holds for the asymptotics

when τ → ±∞ of the oscillating integrals
∫
A eiτf

� where � denotes a

C∞-compactly supported (n + 1)-form on XR.

So to prove existence of a pole in our context it is enough (but also

necessary) to prove that the class of Γ(A) in Hn(F, C) ' Hn
c (F, C) is not

zero. This gives some new light on Jeddi’s proof of Palamodov’s conjecture

(see [J]).

This article was written during a stay in Nagoya graduate School of

Mathematics and I want to thank this Institute for its very nice hospitality.

§1. Some more notations

We continue with the hypothesis and notations introduced in para-

graph 0 (still assuming that an orientation is given on X ∗
R
).

We shall fix a Milnor representative of f , denoted by f : XC → Dδ by

choosing a real embedding XR ↪→ R
N (so XC ↪→ C

N and XC ∩ R
N = XR)

and choosing 0 < ε � 1 and 0 < δ � ε such that XC := B(0, ε) ∩ f−1(Dδ);

we fix a base point s0 ∈ Dδ ∩ R
+∗ and define the Milnor fiber of f to be

f−1(s0) = F .

(∗) Remark that f -proper support is enough to define the polar parts of
R

A
fλ df

f
∧ �.
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Recall now that, given A in H0(XR − {fR = 0}, C) (we shall use here

the obvious restriction map from H0(X∗
R
, C) to H0(XR − f−1

R
(0), C)), we

have defined in [BM] the closed n cycles δ(A)+ := A ∩ f−1
R

(s0), oriented as

the boundary of the (oriented) open set A+ ∩ {fR < s0} and δ(A)− := A ∩
f−1

R
(−s0) oriented as the boundary of the open set A−∩{−s0 < fR}, where

A = A+ + A− is the decomposition of the sum A =
∑

α aαAα according to

the sign of fR on each connected component Aα of XR − f−1
R

(0).

Now, using a C∞ trivialization of Milnor’s fibration along the half-circle

{s0e
iθ, θ ∈ [−π, 0]} we define M 1/2δ(A)− as the closed oriented n-cycle in

F obtained from δ(A)− by direct image along the projection on F given by

this trivialisation.

Then we set δ(A) := δ(A)+−M1/2δ(A)− and denote by [δ(A)] the classe

defined by δ(A) in Hn(F, C). To be precise, the class [δ(A)] is defined via

the hermitian duality I by the formula

I
(
[a], δ(A)

)
:= ⊥

(2iπ)n

∫

δ(A)
a

where a is a compactly supported closed C∞ n-form on F defining the class

[a] in Hn
c (F, C).

§2. Construction of Γ(A) in Hn(F, C) ' Hn
c (F, C)

We fix ε′ < ε′′ < ε with ε − ε′ � ε and define

X := B(0, ε) ∩ f−1(Dδ)

X ′ := B(0, ε′) ∩ f−1(Dδ)

X ′′ := B(0, ε′′) ∩ f−1(Dδ)

and then ∂A := A ∩ ∂X ′′ for our given non zero A in Hn(X∗
R
, C). The

orientation of this compact n-cycle in X∗
R

is given as the boundary of the

open set A ∩ X ′′. As a compact n-chain ∂A has three pieces:

∂A =
(
δ(A−) ∩ X

′′)
∪

(
δ(A)+ ∩ X

′′)
∪ ∆

where the two “vertical” pieces δ(A)± ∩ X
′′

are obtained by cutting δ(A)±

by B(0, ε′′), and where the compact n-chain ∆ lies in X−X
′
is fibered by f

over [−s0, s0] as a family of compact (n−1)-cycles which gives an homology

in X − X
′
between δ(A)− ∩ ∂B(0, ε′′) and δ(A)+ ∩ ∂B(0, ε′′).

The proof of our theorem will follow precisely a move from this compact

n-cycle ∂A to a compact n-cycle Γ(A) contained in F . To move ∂A to Γ(A),
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first fix a C∞ trivialisation of Milnor’s fibration over the punctured half disc

D
−

s0
−{0} = {s ∈ C/ Im s ≤ 0, |s| ≤ s0, s 6= 0} which induces the previously

fixed trivialisation on the half-circle {s0e
iθ, θ ∈ [−π, 0]} used to define

M1/2δ(A)−. We shall also fix a C∞ trivialisation of f |X − X ∩ B(0, ε′) →

Dδ which corresponds to a commutative diagram

X − X ∩ B(0, ε′) −−−→ Dδ × F ′

yf

yP1

Dδ = Dδ

where F ′ := F ∩
(
X − X ∩ B(0, ε′)

)
, also compatible with the previous

trivialisation.

First we begin by moving ∆ to ∆0 using the above trivialisation (recall

that ∆ ⊂ X − X ∩ B(0, ε′)) without moving its boundary part, so that we

get

-s 0 s0

-s 0 s0
O

O

∆ :

:∆0

Then we move the compact n-cycle ∂A0 := ∂A − ∆ + ∆0 ⊂

f−1
(
D

−

s0
− {0}

)
using the above trivialisation of f over this set, so that

the vertical part δ(A)− ∩ X
′′

will follow the half-circle {s0e
iθ, θ ∈ [−π, 0]},

the vertical part δ(A)+ ∩ X
′′

will be fixed, and the ∆0 part moves, using

the trivialisation of f on X −X ∩ B(0, ε′) from the path γ0 to the constant

path γ1 equal to {s0} as follows

-s 0 s0

γ
0

γ
t1

γ
t2

γ
t3 γ

t4

={s  }0γ
1
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Let us call (∆t)t∈[0,1] this deformation. We shall denote by (∂At)t∈[0,1]

the family of compact n-cycles in f−1
(
D

−
s0

− {0}
)

defined for t ∈ [0, 1] by

(∂A)t := −δ̃(A)−
s0e−iπ(1−t) + δ̃(A)+ + ∆t

where δ̃(A)± is δ(A)± ∩ X
′′

and where δ̃(A)−
s0eiθ is obtained by following

the compact δ̃(A)− in the above trivialisation along the half-circle.

So we define now the compact oriented n-cycle

Γ(A) := (∂A)1 ⊂ F.

By definition we have

Γ(A) = δ̃(A)+ − M1/2δ̃(A)− + ∆1

where ∆1 is a compact n-chain in F ′ so that ∂Γ(A) = ∅.
Remark that this already shows that we have

can[Γ(A)] = [δ(A)] in Hn(F, C)

because our initial chain ∆ was the boundary in X − X ∩ B(0, ε′) of the

closed (n + 1)-chain
(
A − A ∩ B(0, ε′′)

)
∩ f−1(Ds0)

(and ∆0 similarily).

As we know that ∂
(
δ̃(A)+

)
and ∂

(
δ̃(A)−

)
are homologuous in X −

X ∩ B(0, ε′) as (n− 1)-compact cycles, for any choice of a compact n-chain

∆2 in F ′ such that δ̃(A)+ − M1/2δ̃(A)− + ∆2 is a compact n-cycle in F

(M1/2 preserves the homology between boundaries), we obtain a compact

n-cycle in F whose image by

can : Hn(F, C) ' Hn
c (F, C) −→ Hn(F, C)

is the class [δ(A)]. But the choice of ∆2 is defined up to a compact n-cycle

of F ′. As Hn(F ′) ' Hn(∂F ) ' Hn−1(∂F ) is exactly the kernel of can (via

the exact sequence 0 → Ker can ' Hn−1(∂F ) → Hn
c (F )

can
−→ Hn(F )) to

make this construction is just to lift [δ(A)] to Hn
c (A), and this is possible

by [BM].

What we have done in the construction of Γ(A) is to make a precise

choice of ∆2 ⊂ F ′ by using the component A again.

The following theorem shows that our choice is the good one.
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Theorem. The cycle Γ(A) constructed above satifies the following

property :
For any e ∈ Hn(F, C)1 we have

I
(
e,Γ(A)

)
= (2iπ)−n Res

(
λ = 0,

∫

A
fλwk ∧

df

f

)

where w1, . . . , wk are semi-meromorphic n-forms representing e (i.e. satis-

fying the condition (A) of paragraph 0).

Moreover we have can([Γ(A)]) = [δ(A)] so, using [BM], we deduce that

[Γ(A)] satisfies also:

For any e ∈ Hn(F, C)1 represented by w1, . . . , wk

h
(
e, can(Γ(A)1)

)
= (2iπ)nP2

(
λ = 0,

∫

A
fλwk

df

f

)

where P2(λ = 0, F (λ)) is the coefficient of 1/λ2 of the Laurent expansion

of the meromorphic function f at 0, and where

h : Hn(F, C)1 × Hn(F, C)1 −→ C

is the canonical hermitian form defined in [BM] in our context.

For any e ∈ Hn(F, C)e−2iπr , 0 < r < 1, represented by w1, . . . , wk
(†) we

have

I
(
e,Γ(A)

)
=

sr
0

(2iπ)n
Res

(
λ = −r,

∫

A
fλwk ∧

df

f

)
.

As an easy consequence we obtain the following corollary, which com-

pletes results of [BM] paragraph 6.

Corollary.

1) we have [Γ(A)]1 = γ(A)

2)
∫
A fλ

� has no poles iff [Γ(A)] = 0 in Hn(F, C).

Proof of the theorem. In order to follow easily the moving cycle (∂A)t

and integral on it, it is convenient to introduce a d-closed n-form W associ-
ated to e ∈ Hn(F, C)1. Let us fix the logarithm function on Dδ −Dδ ∩ iR+

such that the argument is in ]−3π/2, π/2[. Now define

W :=

k−1∑

j=0

(−1)jwj
(Log f)j

j!

(†) in this case we have replaced (A) of paragraph 0 by dwj = r df

f
∧ wj + df

f
∧ wj−1

∀j ∈ [1, k] (w0 = 0) and [wk/F ] = e
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on the open set f−1(Dδ − Dδ ∩ iR+) of X, where w1, . . . , wk are semi-
meromorphic n-forms on X satisfying (A) of paragraph 0.

Then we have dW = 0 and also

[W |F ] =

j=0∑

k−1

(−1)j (Log s0)
j

j!
ek−j

where ek−j := [wj |F ] for j ∈ [0, k − 1] in Hn(F, C). So e0 = e.
So we have

∫

(∂A)0

W =

∫

Γ(A)
W =

k−1∑

j=0

(−1)j (Log s0)
j

j!
(2iπ)nI

(
ek−j,Γ(A)

)
.

Now we have to go from (∂A)0 to ∂A.
We define

∫
∂A W as follows:

∫

∂A
W := Pf

(
λ = 0,

∫

∂A
fλW

)
.

And we shall precise later on why
∫
∂A W =

∫
(∂A)0

W . But thanks to

Stokes formula (for Reλ � 0) and analytic continuation we get

∫

∂A
W = Res

(
λ = 0,

∫

A∩X
′′
fλdf

f
∧ W

)
.

So, modulo our Lemma 2 which will allow us to replace the integration on
A∩X

′′
by a smooth cut off function ρ ∈ C∞

c (XR), ρ ≡ 1 near X
′′
, without

changing the polar parts, we obtain, by the definition of γ(A) ∈ Hn
c (F, C)1

recalled in paragraph 0

k−1∑

j=0

(−1)j (Log s0)
j

j!
I
(
ek−j, γ(A)

)
=

k−1∑

j=0

(−1)j (Log s0)
j

j!
I
(
ek−j ,Γ(A)

)
.

Now we can conclude easily because we already know from [BM] that
can[γ(A)] = can[Γ(A)]1. So for e1, . . . , ek−1 which are in Im can (be-
cause Im(T − 1) ⊂ Im can) we know that I

(
ek−j , γ(A)

)
= I

(
ek−j,Γ(A)

)

for j ∈ [1, k − 1]. So we conclude that

I
(
ek, γ(A)

)
= I

(
ek,Γ(A)

)

and we obtain [γ(A)] = [Γ(A)]1 in Hn(F, C)1.
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To pass from ∆ to ∆0 we first remark that now we are considering
a compact n-chain (with fixed boundary) in X − X ∩ B(0, ε′) where no
singularity occurs for XR or fR. So locally we can assume that A = R

n+1

and f = x0 is the first coordinnate. Now let us define a push down of W
on C: via our fixed C∞ trivialisation of X − X ∩ B(0, ε′) → Dδ we can
consider ∆ near f−1

R
(0) as a family (δt)t∈[−η,η] of compact (n− 1)-cycles in

F ′ which are smooth. Let us then consider the submanifold ∇ defined near
δ0 as the union of all (t + iτ, δt) for τ ∈ [−ξ, ξ] and t near 0. So, in fact,
we just translate ∆ near 0 along the imaginary axis in our trivialisation
compatible with f .

Now ∇ is a piece of smooth (n+1)-submanifold containing ∆ and with
a proper smooth fibration f |∇ : ∇ → C near 0 in C.

Define α := (f |∇)∗(W |∇). Then α is a semi-meromorphic n-form near
0 in C which is d-closed because W is semi-meromorphic and d-closed. Now
the following lemma with allow us to pass from

∫
∂A W to

∫
(∂A)0

W :

Lemma 1. Let η > 0 and denote by α a d-closed semi-meromorphic

1-form (with pole at s = 0) in a neighbourhood of D(0, η) in C.

Then we have

Pf
(∫ η

0
sλi∗+(α) − e−iπλ

∫ η

0
sλi∗−(α)

)
=

∫ 0

−π
j∗(α)

where i+ : [0, η] → D(0, η) and i− : [−η, 0] → D(0, η) are the obvious

inclusion and where j is given by j : [−π, 0] → D(0, η), j(θ) = ηeiθ.

Proof. After reduction to the case α = ds/sk this is an elementary
exercice.

To finish the proof of our theorem, it is enough to prove our second
lemma:

Lemma 2. Let ρ ∈ C∞
c (XR) with ρ ≡ 1 near X

′′
and let w be a semi-

meromorphic n-form on X − X ∩ B(0, ε′) with poles in f = 0.

Then for any k ∈ N the meromorphic function

λ −→

∫

(X−X
′′
)∩A

fλ(Log f)kρ
df

f
∧ w

has no pole.
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Proof. Of course we have here our previous choice of logarithm. Our
assertion is local on (X−X

′′
)∩Suppρ so we can assume again that A = R

n+1

and that fR = x0 is the first coordinnate.

Far from {fR = 0} there is nothing to prove (and this is the case along

the vertical boundary parts of X
′′

for instance, where fR = ±s0).

Far from ∂B(0, ε′) (i.e. far from ∆) we are reduced to the case of

(∗)

∫ +∞

0
xλ−j

0 (Log x0)
kσ(x0)

dx0

x0

− e−iπλ

∫ +∞

0
(−1)jxλ−j(Log x0 − iπ)kσ(−x0)

dx0

x0

where σ ∈ C∞
c (R) is obtained by integrating first in x1, . . . , xn (x−j

0 comes
from the poles of the semi-meromorphic form ρw).

Near ∂B(0, ε′′) we are reduced to the same situation but σ ∈ C
∞
c (R) is

now obtained by integration of w along x1 ≥ 0, x2, . . . , xn where we assume
the coordinnates chosen in such a way that X ′′ is locally defined by x1 < 0.

To treat (∗), use a Taylor expansion of σ at x0 = 0 to reduce to the
case of

(∗∗)

∫ η

0
xλ−j(Log x)k dx

x
− e−iπλ

∫ η

0
(−1)jxλ−j(Log x − iπ)k dx

x

which is given, thanks to Cauchy’s theorem, by the integral over the half
circle {z = ηeiθ, θ ∈ [−π, 0]}

∫
zλ−j(Log z)k dz

z

But this is clearly an entire function of λ.
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