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ISOMONODROMIC DEFORMATION OF FUCHSIAN

PROJECTIVE CONNECTIONS ON ELLIPTIC CURVES

SHINGO KAWAI

Abstract. We consider isomonodromic deformations of second-order Fuchsian
differential equations on elliptic curves. The isomonodromic deformations are
described as a completely integrable Hamiltonian system.

Introduction

We consider isomonodromic deformations of second-order Fuchsian dif-

ferential equations on elliptic curves. Our primary object of study is the

monodromy mapping F : E → R, where E is the space of deformation

parameters of Fuchsian equations, and R is the space of conjugacy classes

of representations of the fundamental group of the nonsingular locus of the

equations. Our goal is to describe the tangential directions to the fibers of

F by a completely integrable system of partial differential equations on the

space E . For this purpose we use the fact that there is defined a canonical

closed nondegenerate 2-form (i.e., a symplectic structure) ω on the space R.

By pulling back this 2-form onto E via F , we obtain a closed 2-form F ∗ω

that describes the isomonodromic deformations as the directions making

F∗ω degenerate. As a result we find that the isomonodromic deformations

are described as a completely integrable Hamiltonian system.

Our specific setting of Fuchsian equations on elliptic curves was origi-

nally treated by Okamoto [16]–[18] and then generalized by Iwasaki [6] to

the case of higher genera. The main new features of our discussion here

are that (i) we allow the underlying elliptic curve also vary, and that (ii)

we use fully the “pulling-back” principle which was inspired by Iwasaki

[7]. Isomonodromic deformations on elliptic curves have also appeared in
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Korotkin-Samtleben [13], Levin-Olshanetsky [14] and Takasaki [19], [20] via

different methods and motivations.

This article is organized as follows: In Section 1 we introduce the linear

equations, illustrate our method of studying isomonodromic deformations,

and then present our main results. Section 2 contains the construction

of the space R of representations with particular emphasis on its smooth

structure and the description of its tangent spaces. In Section 3 we develop

the variational theory of monodromy representations. Section 4 contains

the description of the symplectic structure on R. In view of the results

of the preceding two sections, we evaluate the symplectic form on R in

Section 5. The details of the calculation are given in Section 6 and the

explicit form of the pulled-back 2-form is then obtained. Analyzing that

2-form closely, we derive the desired isomonodromy equation in Section 7.

Finally in Section 8 we examine in more detail the isomonodromy equation

in the simplest setting.

This article is a revised and extended version of my thesis [9] at the

University of Tokyo, 1995. Part of the results here has been announced in

[11].
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§1. Setting, method and results

1.1. Linear equations

Let M be an elliptic curve over C, and H = {τ ∈ C ; Im τ > 0} the

upper half-plane. Selecting a suitable point τ ∈ H realizesM as the quotient

C/Γτ under the action of the lattice group Γτ of translations γτ
l,n : z 7→

z+ l+nτ , (l, n) ∈ Z
2; and then equations on M are described as equations

on C with coefficients doubly periodic with respect to Γτ . Consider now a
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Fuchsian equation of the form

(1)
d2w

dz2
= q(z)w,

where the coefficient q(z) is given by

q(z) = L+

m∑

i=0

[
Hiζ(z − ti, τ) +

1

4
(θ2

i − 1)℘(z − ti, τ)
]

(2)

+
m∑

α=0

[
−µαζ(z − λα, τ) +

3

4
℘(z − λα, τ)

]
,

m∑

i=0

Hi −
m∑

α=0

µα = 0.(3)

Here ζ(z, τ) and ℘(z, τ) are Weierstrass’ ζ-function and ℘-function with

fundamental periods 1, τ ; and the L,Hi, ti, θi, µα, λα are complex parame-

ters. In particular, we assume that the points ti, λα ∈ C are so chosen that

t0 = 0 and

(4)

ti 6≡ tj, ti 6≡ λα, λα 6≡ λβ mod Γτ (i, j, α, β = 0, . . . ,m; i 6= j, α 6= β).

Equation (1)–(3) has its (regular) singularities at [ti] (i = 0, . . . ,m)

and [λα] (α = 0, . . . ,m) with characteristic exponents 1
2 (1± θi) and 1

2 (1±
2) respectively ([z] denotes the congruence class of a point z ∈ C) and

determines its monodromy representation

ρ : π1(M \ {[t0], . . . , [tm], [λ0], . . . , [λm]}) −→ SL(2,C) ⊂ GL(2,C)

up to conjugacy. The image group of the homomorphism ρ is indeed con-

tained in SL(2,C) because the Wronskian of any fundamental system of

solutions is independent of z. In particular, if we assume here that (A1)

the singularities [ti] are generic (i.e., the parameters θi are not integers),

and that (A2) the singularities [λα] are apparent (i.e., nonlogarithmic), then

the local monodromy representations around the points [ti] and [λα] respec-

tively become conjugate to

(5)

[
− exp(π

√
−1 θi) 0

0 − exp(−π
√
−1 θi)

]
and

[
−1 0
0 −1

]
.
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(For use in a later discussion, we assume further that (A3)
∑m

i=0 εiθi 6=
0,±2,±4, . . . for all (ε0, . . . , εm) ∈ {±1}m+1; see Section 2.3.)

At this point we note that, as explained in Okamoto [18, pp. 288–289,

292–293], assumption (A2) and equality (3) are explicitly written as the

following system of equations for the parameters L, Hi:

(6)




1 ζ(λ0 − t0, τ) · · · ζ(λ0 − tm, τ)
1 ζ(λ1 − t0, τ) · · · ζ(λ1 − tm, τ)
...

...
. . .

...
1 ζ(λm − t0, τ) · · · ζ(λm − tm, τ)
0 1 · · · 1







L
H0
...

Hm−1

Hm




=




ν0

ν1
...
νm∑m

α=0 µα



,

where for α = 0, . . . ,m,

να = µ2
α +

m∑

β=0,6=α

[
µβζ(λα − λβ, τ)−

3

4
℘(λα − λβ, τ)

]

−
m∑

i=0

1

4
(θ2

i − 1)℘(λα − ti, τ).

Consequently, viewing the θi as fixed non-integral constants satisfying (A3),

we find that the parameters L, Hi are then expressed as certain functions

(7)

{
L = L(τ, t, λ, µ),

Hi = Hi(τ, t, λ, µ) (i = 0, . . . ,m)

of the others under the condition that the coefficient matrix of (6) be

nonsingular. (We have introduced the vector notation t = (t1, . . . , tm),

λ = (λ0, . . . , λm), µ = (µ0, . . . , µm).) According to the general theory of

Fuchsian projective connections on Riemann surfaces that has been devel-

oped by Iwasaki [6, pp. 496–498, 505–507], the nonsingularity condition

above is in turn guaranteed if we assume further that the (τ, t, λ, µ) satisfy

the condition

(8)
m∑

α=0

λα −
m∑

i=0

ti 6≡ 0 mod Γτ .

1.2. Space of linear equations

Recalling the discussion in the previous paragraph and keeping in mind

that the θi are fixed non-integral constants satisfying (A3), let us introduce
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the space E of linear equations having the form (1)–(3) and satisfying as-

sumptions (4), (A2), (8) as follows:

E = {(τ, t, λ, µ) ∈ H× C
3m+2 ; conditions (4), (8) hold}.

Since (4) and (8) are open conditions for (τ, t, λ, µ), the space E is locally

parametrized by (τ, t, λ, µ) and therefore carries the structure of a complex

analytic manifold of dimension 3(m + 1). Actually, since (4) and (8) are

conditions only for (τ, t, λ), it is more to the point to view the space E as a

fiber space E → B over the set B of points (τ, t, λ) ∈ H× C
2m+1 satisfying

(4) and (8), or more specifically, a holomorphic affine bundle E → B of rank

m+ 1 over B. For details, see [6, pp. 505–507].

Let us denote by (τ(0), t(0), λ(0), µ(0)) some fixed point on E , and

consider a holomorphic family (τ(s), t(s), λ(s), µ(s)) of differential equations

passing through that point, where s is a complex parameter varying in the

unit disk ∆. (The corresponding values of the functions (7) will be denoted

by L(s) and Hi(s).) We emphasize here that this is a family of differential

equations on varying elliptic curves Mτ(s) = C/Γτ(s), where Γτ(s) =
{
γ

τ(s)
l,n :

z 7→ z+ l+nτ(s) ; (l, n) ∈ Z
2
}
, and that is exactly the main point we would

like to address in this article. Our primary interest then lies in the fact

that, while by construction the local monodromy representations around

the points [ti(s)] and [λα(s)] remain constant with respect to s, the global

monodromy of the equations (τ(s), t(s), λ(s), µ(s)) may in general change.

If the global monodromy of (τ(s), t(s), λ(s), µ(s)) still remains constant (up

to conjugacy), then the family will be called an isomonodromic family.

To be more precise in this respect, let us consider a sufficiently small

open neighborhood W of the point r0 = (τ(0), t(0), λ(0), µ(0)) in E , and

denote by r an arbitrary point (τ, t, λ, µ) in W. We write

Xr = Mτ \ {[t0], [t1], . . . , [tm], [λ0], . . . , [λm]} (Mτ = C/Γτ )

and denote by R(Xr0) = Hom(π1(Xr0), SL(2,C))/SL(2,C) the set of con-

jugacy classes of linear representations of π1(Xr0) into SL(2,C). Our

starting observation is then that the monodromy of each equation r =

(τ, t, λ, µ) ∈ W, which is a (conjugacy class of) homomorphism ρ(r) :

π1(Xr)→ SL(2,C), can be viewed as an element of a suitable subset R of

R(Xr0) via the canonical isomorphism π1(Xr) ∼= π1(Xr0), and hence that

there arises a (holomorphic) mapping

F :W −→ R r 7−→ [ρ(r)],
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where the set R carries the structure of a complex analytic manifold of di-

mension 2(m+1) (see Section 2). In terms of this mapping F , the condition

for the family (τ(s), t(s), λ(s), µ(s)) to be isomonodromic is geometrically

rephrased as the condition that there exist a fiber F−1(ρ) of F containing

the whole family; and our goal in this article will be to give an infinitesi-

mal description of the tangential directions to the fibers F−1(ρ) in terms

of a completely integrable system of partial differential equations on the

parameters (τ, t, λ, µ) of W.

Remark. The mapping F , which was defined on the open neighbor-
hood W of the point r0, cannot in general be extended to the whole space
E . One way to obtain a mapping defined globally is to introduce instead
of B (a suitable open subset of) the Teichmüller space T1,2m+2 of elliptic
curves with 2m+2 marked points. Another way is to construct instead ofR
another space R+ of representations with a local system structure R+ → B
(for details, see [6]).

1.3. Method

We move on to the key observation for describing the tangential di-

rections to the fibers of F , that is, that there exists a natural symplectic

structure ω on the space R of representations, which was found in these

settings by Iwasaki [7]. (For the symplectic structure on R, see also Biswas-

Guruprasad [1] and Goldman [2].) By definition, a (complex) symplectic

structure ω on R is a closed nondegenerate holomorphic 2-form on the

complex manifold R. By pulling back the 2-form ω onto W ⊂ E via F , we

obtain a possibly degenerate closed 2-form on W; and if we assume here

that the differential drF of F at an arbitrary point r ∈ W has maximal

rank (consequently the fibers of F turn out to be all smooth), then the

pulled-back 2-form above can be used to describe the tangential directions

to the fibers as follows: For a tangent vector ξ to W at a point r ∈ W, we

have

ξ is tangent to a fiber of F
⇐⇒ drF(ξ) = 0

⇐⇒ ωF(r)( · , drF(ξ)) ≡ 0 since ω is nondegenerate

⇐⇒ (F∗ω)r( · , ξ) ≡ 0 since drF is surjective.

It thus follows that the problem of describing the tangential directions

to the fibers of F reduces to that of determining precisely the vectors ξ
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such that F∗ω( · , ξ) ≡ 0 (we say that F ∗ω is degenerate in the direction ξ

if this happens); and consequently our task in this article will be to write

out the pulled-back 2-form F ∗ω in terms of the local coordinates (τ, t, λ, µ)

and then determine the directions making F ∗ω degenerate explicitly.

1.4. Results

With these remarks on the basic idea of our geometric approach made,

we are ready to state our main results.

Theorem 1. In terms of the local coordinate parameters (τ, t, λ, µ) on

W ⊂ E, the pulled-back 2-form F ∗ω takes the form

(9) F∗ω = −2

( m∑

α=0

dµα ∧ dλα −
m∑

i=1

dHi ∧ dti − dK ∧ dτ
)
,

where (i) the term K is defined by

K =
1

2π
√
−1

[
L+ η1(τ)

( m∑

α=0

λαµα −
m∑

i=1

tiHi

)]
,

(ii) the term η1(τ) is given by η1(τ) = ζ(z + 1, τ) − ζ(z, τ), and (iii) the L
and Hi are viewed as functions of (τ, t, λ, µ) that are determined by equation

(6).

In particular, if we consider the space E0 of differential equations (again

having the form (1)–(3) and satisfying assumptions (4), (A2) and (8)) on

the fixed elliptic curve Mτ(0) = C/Γτ(0), then the resulting 2-form F ∗ω

becomes

−2

( m∑

α=0

dµα ∧ dλα −
m∑

i=1

dHi ∧ dti
)

;

and that formula is indeed a special instance of Iwasaki’s result [7].

As we shall see in Section 7, the surjectivity condition for the differential

drF at an arbitrary point r ∈ W follows immediately from the explicit form

(9) of F∗ω. Therefore, writing out the null-distribution D = {ξ ∈ TW ;

F∗ω( · , ξ) ≡ 0} of F∗ω explicitly, we obtain the following result.
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Theorem 2. The isomonodromic deformations of equation (1)–(3)
are described by the completely integrable Hamiltonian system

(10)





dλα =
m∑

i=1

∂Hi

∂µα
dti +

∂K

∂µα
dτ,

dµα = −
m∑

i=1

∂Hi

∂λα
dti −

∂K

∂λα
dτ

(α = 0, . . . ,m).

If we regard again τ as a fixed constant, then the resulting system

becomes 



dλα =

m∑

i=1

∂Hi

∂µα
dti,

dµα = −
m∑

i=1

∂Hi

∂λα
dti

(α = 0, . . . ,m);

and that system has been obtained by Okamoto [17], [18] and Iwasaki [6].

Now we conclude this section with our one final result, which identifies

the solutions to the system (10) in the simplest case m = 0.

Theorem 3. For m = 0, the completely integrable Hamiltonian sys-

tem (10) reduces to the following nonlinear ordinary differential equation

d2λ

dτ2
= − θ2

8π2
℘′(λ, τ),

where we use the notation λ = λ0, θ = θ0 and ℘′(λ, τ) = ∂℘
∂λ (λ, τ).

According to Manin [15], this equation corresponds to a special one-pa-

rameter family of the elliptic form of the sixth Painlevé equation; and we

remark that a similar result (i.e., an interpretation of Manin’s formula as

an isomonodromy equation on elliptic curves) for this particular case has

been obtained by Levin-Olshanetsky [14] by considering a nonautonomous

analogue of the two-body elliptic Calogero-Moser system. Furthermore, a

similar interpretation for the full-parameter case has also been proposed

by Takasaki [20]. In a forthcoming article [12], we shall address the full-

parameter case again in our framework of projective connections.



FUCHSIAN PROJECTIVE CONNECTIONS 135

§2. Spaces of representations

In this section we construct the space R of representations as a suitable

subset of R(Xr0) = Hom(π1(Xr0), SL(2,C))/SL(2,C). Although most of

our discussion is by now standard (see Biswas-Guruprasad [1] and Gold-

man [2]), our primary concern will be on the fact that some of the local

representations around the deleted points are exactly −I. Since the set

of conjugacy classes in SL(2,C) ceases to be Hausdorff around the classes

{I} and {−I}, some special care must be taken to treat the space of such

representations.

2.1. Apparent singularities

Now let us recall first that the fundamental group π1(Xr0) is described

as a group with 2m + 4 generators {α, β, γ0, . . . , γm, δ0, . . . , δm} and one

defining relation αβα−1β−1γ0 · · · γmδ0 · · · δm = 1, where the γi and δα
are chosen to represent respectively the (homotopy classes of) loops en-

circling the points [ti(0)] and [λα(0)] counterclockwise; and the product

αβ of two elements α and β is represented by the loop that follows β

first and then α. By associating to each homomorphism ρ : π1(Xr0) →
SL(2,C) the 2m + 4 matrices corresponding to the generators above, the

set Hom(π1(Xr0), SL(2,C)) is then identified with the complex analytic

variety

S = {(A,B,C0, . . . , Cm, D0, . . . , Dm) ∈ SL(2,C)2m+4 ;

ABA−1B−1C0 · · ·CmD0 · · ·Dm = I},

which is easily seen to be smooth. Similarly, for the free group 〈δα〉 gener-

ated by the element δα (α = 0, . . . ,m), the set Hom(〈δα〉, SL(2,C)) is identi-

fied with the group SL(2,C) itself by associating to ρ ∈ Hom(〈δα〉, SL(2,C))

the matrix ρ(δα).

Recalling that the equations (τ, t, λ, µ) ∈ W have local monodromy −I
around the points [λα] (see (5)), let us consider the restriction mappings

ηα : S → SL(2,C) defined by ρ 7→ ρ(δα), and define a subset S1 ⊂ S by

S1 = {ρ ∈ S ; ηα(ρ) = −I (α = 0, . . . ,m)}, which is also seen to be smooth.

A standard argument (refer to [2, p. 203] and Gunning [4, pp. 184–185], [5,

p. 51]) shows that

(i) the differential of the mapping ηα at a point ρ is naturally identified

with the homomorphism

ια(ρ) : Z1(π1(Xr0), gAd ρ) −→ Z1(〈δα〉, gAd ρ|〈δα〉),
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where Z1(π1(Xr0), gAd ρ) denotes the space of cocycles of the group

π1(Xr0) with coefficients in the π1(Xr0)-module g = sl(2,C) under

the group representation Ad ρ, and similarly for Z 1(〈δα〉, gAd ρ|〈δα〉).

It thus follows from the definition that the tangent space TρS1 to the sub-

manifold S1 ⊂ S at a point ρ ∈ S1 is identified with the intersection of the

kernels of the mappings ια(ρ) (α = 0, . . . ,m):

(11) TρS1 =
m⋂

α=0

Ker ια(ρ).

2.2. Action by inner automorphisms

Let us consider next the action of SL(2,C), or more appropriately of

PSL(2,C) = SL(2,C)/{±I}, on the manifold S1 by inner automorphisms.

To obtain an action with a reasonable quotient space, we restrict attention

to the invariant open subset S−1 ⊂ S1 consisting of those representations

having only scalar commutants (compare with [2, pp. 204–205] and [5, pp.

51–53]). Exactly as in [5, Thm. 2] (see also [4, pp. 190–197]), we then find

that

(ii) the quotient spaceR1 = S−1 /PSL(2,C) has the structure of a complex

analytic manifold of dimension 3(m + 1), such that the natural pro-

jection S−1 → R1 is a complex analytic principal PSL(2,C) bundle,

(iii) the tangent space T[ρ]R1 to the manifold R1 at a point [ρ] corre-

sponding to ρ ∈ S−1 is identified with the image space of TρS−1 ⊂
Z1(π1(Xr0), gAd ρ) under the natural mapping Z1(π1(Xr0), gAd ρ) →
H1(π1(Xr0), gAd ρ), where

H1(π1(Xr0), gAd ρ) = Z1(π1(Xr0), gAd ρ)/B
1(π1(Xr0), gAd ρ).

Consequently it follows from (11) that T[ρ]R1 can be viewed as a vector

subspace of the intersection of the kernels of the natural mappings ῑα(ρ) :

H1(π1(Xr0), gAd ρ)→ H1(〈δα〉, gAd ρ|〈δα〉) that are induced from ια(ρ). Fur-

thermore, since it follows easily from the definition of one-coboundaries ([4,

p. 128]) that B1(〈δα〉, gAd ρ|〈δα〉) = 0 for ρ ∈ S−1 , we conclude that T[ρ]R1

coincides precisely with the intersection above:

(12) T[ρ]R1 =

m⋂

α=0

Ker ῑα(ρ).
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2.3. Generic singularities

Finally we take local representations around the points [ti(0)] into con-

sideration, and define the desired space R as a suitable subset of R1. As be-

fore, identifying the set Hom(〈γi〉, SL(2,C)) with the group SL(2,C) itself,

let us introduce the restriction mappings pi : R1 → C (i = 0, . . . ,m) defined

by [ρ] 7→ [ρ(γi)], where C denotes the set of conjugacy classes in SL(2,C),

and [ · ] indicates taking equivalence classes. Other than the sets {I} and

{−I}, conjugacy classes in SL(2,C) are determined by the trace function

tr : SL(2,C)→ C; they are of the form tr−1(c) for some c ∈ C \ {±2}, or of

the form tr−1(2) \ {I} or tr−1(−2) \ {−I}. Moreover a standard argument

again shows that

(iv) the subset C− = C \ {{I}, {−I}} of C has the structure of a complex

analytic manifold of dimension 1, and explicitly it is identified with

C under the trace function (compare with Iwasaki [7, p. 328]),

(v) the tangent space to the manifold C− at a point [ρ] corresponding

to ρ ∈ SL(2,C) \ {±I} is identified with the cohomology group

H1(〈γi〉, gAd ρ).

Now, recalling that the local monodromy of the equations (τ, t, λ, µ) ∈
W around the points [ti] are as in (5) and introducing the mapping p :

R1 → Cm+1 of the form [ρ] 7→ (p0([ρ]), . . . , pm([ρ])), we define the space R
by

R = {[ρ] ∈ R1 ; p([ρ]) = (−2 cos πθ0, . . . ,−2 cos πθm)},

where C− ⊂ C is identified with C as above. (Since the θi are non-integral by

assumption (A1), we have −2 cos πθi 6= ±2.) Under the additional assump-

tion that (A3)
∑m

i=0 εiθi 6= 0,±2,±4, . . . for all (ε0, . . . , εm) ∈ {±1}m+1, we

can prove that

(vi) the differential of the mapping p at any point [ρ] ∈ R corresponding to

ρ ∈ S−1 , which coincides with the restriction to T[ρ]R1 of the natural

homomorphism π(ρ) : H1(π1(Xr0), gAd ρ)→
⊕m

i=0H
1(〈γi〉, gAd ρ|〈γi〉),

is surjective,

(vii) therefore the space R thus defined has the structure of a complex

analytic manifold of dimension 2(m+ 1),

(viii) the tangent space T[ρ]R to the manifold R at a point [ρ] is iden-

tified with the intersection of the kernels of the mappings πi(ρ) :

H1(π1(Xr0), gAd ρ)→ H1(〈γi〉, gAd ρ|〈γi〉) and ῑα(ρ) (see (12)):
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(13) T[ρ]R =

( m⋂

i=0

Kerπi(ρ)

)
∩

( m⋂

α=0

Ker ῑα(ρ)

)
,

and these are the main observations necessary to our discussion in later

sections.

Remarks. Assertion (vi) above is verified by an elementary argument
using the following items:

(a) for any subgroup G ⊂ SL(2,C), G has only scalar commutants (in
gl(2,C)) if and only if G is non-abelian;

(b) the differential of the mapping ϕ : SL(2,C)2 → SL(2,C) defined by
(A,B) 7→ ABA−1B−1 is surjective at a point (A,B) precisely when
A and B do not commute;

(c) the differential of the mapping ψ : SL(2,C)m → C
m+1 defined by

(C1, . . . , Cm) 7−→ (trC1, . . . , trCm, tr(C1 · · ·Cm))

is surjective at a point (C1, . . . , Cm) precisely when C1, . . . , Cm,
C1 · · ·Cm 6= ±I and C1, . . . , Cm do not commute.

2.4. Holomorphic curve

In the course of the proof of assertion (vi) above, we find in particular

that under assumption (A3), any representation ρ : π1(Xr0) → SL(2,C)

satisfying tr ρ(γi) = −2 cos πθi, ρ(δα) = −I (i, α = 0, . . . ,m) necessar-

ily becomes non-abelian, hence has only scalar commutants by item (a).

Consequently the monodromy ρ(r) : π1(Xr) → SL(2,C) of each equation

r = (τ, t, λ, µ) ∈ W indeed determines an element of the set R via the

canonical isomorphism π1(Xr) ∼= π1(Xr0); and thus there arises in particu-

lar from the family (τ(s), t(s), λ(s), µ(s)) of equations (s varies in the unit

disk ∆; see Section 1.2) a holomorphic curve

(14) C : ∆ −→ R s 7−→ [ρ(s)]

in the manifold R, where [ρ(s)] denotes the monodromy of (τ(s), t(s), λ(s),

µ(s)). Our next goal will be to describe the tangent vector to this curve

at the point [ρ(0)] in terms of the twisted de Rham cohomology for flat

connections.
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§3. Variations of monodromy representations

Let us turn next to describing the infinitesimal variation of the mon-

odromy representations of the equations (τ(s), t(s), λ(s), µ(s)) at s = 0, or

in more geometric terms, the tangent vector to the holomorphic curve (14)

at the point [ρ(0)]. For this purpose we first reformulate the family in the

language of vector bundles and connections; compare with Gunning [3, pp.

192–201], Iwasaki [6] and [10, pp. 171–175]. In what follows we shall use

the notation Γs =
{
γ

τ(s)
l,n : z 7→ z + l + nτ(s) ; (l, n) ∈ Z

2
}
, Ms = C/Γs and

Xs = Ms \ {[t0], [t1(s)], . . . , [tm(s)], [λ0(s)], . . . , [λm(s)]}.
3.1. Bundles and connections

Let Es be a trivial holomorphic vector bundle of rank 2 overMs and fix a

trivialization Es = Ms×C
2 throughout. Via the representation Ms = C/Γs

above, a meromorphic connection ∇s : M(Es) → M(Es ⊗ Ks) on Es is

then described as ∇s = d+ Ωs, where Ωs is a 2× 2 matrix of meromorphic

differential forms of type (1, 0) on C that are invariant with respect to Γs.

(HereM(Es) andM(Es⊗Ks) are the sheaf of germs of meromorphic cross-

sections of Es and Es ⊗Ks respectively (Ks the canonical line bundle on

Ms).) From the differential equation

(15)
d2w

dz2
= qs(z)w

with qs(z) given by substituting (τ, t, λ, µ) = (τ(s), t(s), λ(s), µ(s)), L =

L(s) and Hi = Hi(s) into q(z) (see (1)–(3)), there naturally arises a mero-

morphic connection ∇s = d+ Ωs on Es by

(16) Ωs = As(z) dz =

(
0 −1

−qs(z) 0

)
dz;

and the monodromy representation ρ(∇s) : π1(Xs) → SL(2,C) of ∇s is

clearly the same as that of equation (15). See [3, pp. 197–201] and [6, pp.

447–449, 468–469].

We are now ready to describe the infinitesimal variation of the mon-

odromy representations of the connections∇s at s = 0. (A similar argument

can be found in [10, pp. 173–175].) Since the mapping C in (14) is defined

via the canonical isomorphisms π1(Xs) ∼= π1(X0) for s near 0, we first

need to pull back the connection ∇s on Es to a connection on E0 by some

C∞ isomorphism Φs : E0 → Es that covers an (orientation-preserving)

diffeomorphism ϕs : M0 → Ms. (The Φs and ϕs are required to depend
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holomorphically on s and to satisfy Φ0 = idE0 and ϕ0 = idM0 .) In terms

of the lattice groups Γ0 and Γs, such a diffeomorphism ϕs : M0 → Ms

is described by a diffeomorphism us : C → C that conjugates Γ0 into Γs

so that the generators γ
τ(0)
1,0 , γ

τ(0)
0,1 correspond to γ

τ(s)
1,0 , γ

τ(s)
0,1 respectively, or

more explicitly,

(17)

{
us(z + 1) = us(z) + 1,

us(z + τ(0)) = us(z) + τ(s)

for all z ∈ C. To avoid getting side-tracked, an explicit construction of such

a us will be given in Section 5. Then, letting Φs be simply the identity in

the fiber directions, the meromorphic connection ∇s pulls back to a C∞

flat connection ∇∗
s = d+ Ω∗

s on E0|(M0 \ (ϕs)
−1(Ds)) that is given by

(18) Ω∗
s = u∗sΩs,

where Ds = {[t0], [t1(s)], . . . , [tm(s)], [λ0(s)], . . . , [λm(s)]} denotes the set of

singular points of the connection ∇s; and thus we obtain a holomorphic

family of singular C∞ flat connections ∇∗
s on the fixed bundle E0.

3.2. Twisted de Rham cohomology

The main step for the description of the desired infinitesimal variation

is to differentiate the equality Ω∗
s = γ∗Ω∗

s (for each γ ∈ Γ0) with respect

to s and set s = 0. Before explaining the meaning of the resulting formula

Ω̇∗
0 = γ∗Ω̇∗

0 (the differentiation with respect to s will be denoted by dots),

remarks are in order. First, writing the matrix Ωs as in (16), we can

calculate the term Ω̇∗
0 as follows. Differentiating the defining formula Ω∗

s =

u∗sΩs = As(us(z)) d(us(z)) with respect to s and setting s = 0 gives

Ω̇∗
0 =

[
Ȧ0(u0(z)) +A′

0(u0(z))u̇0(z)
]
d(u0(z)) +A0(u0(z)) d(u̇0(z))(19)

=
(
Ȧ0 +A′

0u̇0

)
dz +A0 du̇0,

where we have used u0(z) = z. (The differentiation with respect to z will

be denoted by primes.) Second, to the vector bundle E0 = M0 × C
2, there

is canonically associated another vector bundle AdE0 = M0×sl(2,C). The

meromorphic connection ∇0 on E0 induces a connection ∇̂0 on AdE0 that

is described as ∇̂0 = d + [Ω0, · ], where [A,B] = AB − BA. As a C∞ flat

connection, ∇̂0 is defined on the restriction AdE−
0 of AdE0 to the open

subset X0 = M0 \D0 and determines the flat sheaf F(AdE−
0 ) of germs of

horizontal cross-sections of AdE−
0 .
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Let Ep(AdE−
0 ) (p = 0, 1, 2) be the sheaf of germs of C∞ p-forms with

coefficients in the bundle AdE−
0 . The connection ∇̂0 then induces the

covariant exterior differentiations ∇̂0 : Ep(AdE−
0 ) → Ep+1(AdE−

0 ) (p =

0, 1, 2); and from the flatness of ∇̂0 there arises an exact sequence of sheaves

0 −→ F(AdE−
0 ) −→ E0(AdE−

0 )
b∇0−→ E1(AdE−

0 )
b∇0−→ E2(AdE−

0 ) −→ 0.

Now, since the sheaves Ep(AdE−
0 ) are fine, we obtain from this exact se-

quence the (twisted) de Rham isomorphisms

(20)

H1(X0,F(AdE−
0 )) ∼= Ker ∇̂0 : Γ(X0, E1(AdE−

0 ))→ Γ(X0, E2(AdE−
0 ))

Im ∇̂0 : Γ(X0, E0(AdE−
0 ))→ Γ(X0, E1(AdE−

0 ))
,

H1
c (X0,F(AdE−

0 )) ∼= Ker ∇̂0 : Γc(X0, E1(AdE−
0 ))→ Γc(X0, E2(AdE−

0 ))

Im ∇̂0 : Γc(X0, E0(AdE−
0 ))→ Γc(X0, E1(AdE−

0 ))
,

where Γc(X0, Ep(AdE−
0 )) denotes the space of C∞ p-forms with compact

support and with coefficients in the bundle AdE−
0 . These isomorphisms

will be used throughout the discussion below. For an open subset U of

X0 with inclusion j : U → X0, we shall write simply F(AdE−
0 ) instead of

F(AdE−
0 )|U . The inclusion j then gives rise to the natural homomorphisms

j∗ : H1(X0,F(AdE−
0 )) −→ H1(U,F(AdE−

0 )),

j! : H1
c (U,F(AdE−

0 )) −→ H1
c (X0,F(AdE−

0 ));

in terms of differential forms, the first is expressed by restricting closed

forms on X0 to the subset U , and the second by extending closed forms on

U (with compact support) to those on X0 by zero.

3.3. Infinitesimal variations

Returning to the formula Ω̇∗
0 = γ∗Ω̇∗

0 above, we note from (16) that

the matrix Ω̇∗
0 can be viewed as defining a global C∞ 1-form on X0 with

coefficients in the bundle AdE−
0 , that is, Ω̇∗

0 ∈ Γ(X0, E1(AdE−
0 )). To see

that this 1-form is closed, we consider on the complex plane C the following

two systems of linear differential equations with parameter s:

dy + Ωsy = 0,(21)

dy + Ω∗
sy = 0.(22)

(Note that, whereas (21) is a system of ordinary differential equations with

meromorphic coefficients, (22) is a system with C∞ singular coefficients.)
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Let Y (z, s) be a fundamental solution of (21), which is by definition a

holomorphic nonsingular matrix solution of (21) at some point (z0, s0) such

that [z0] 6∈ Ds0 (see Iwasaki et al. [8, p. 155]). From the definition of the

pulled-back connection ∇∗
s (see (18)), it then follows that the matrix

(23) Y ∗(z, s) = Y (us(z), s)

in turn serves as a nonsingular matrix solution of (22) that is holomorphic

with respect to s; and the closedness of the 1-form Ω̇∗
0 now follows from the

following simple observation.

Lemma 1. When viewed as a local C∞ cross-section of the bundle

AdE−
0 , the matrix Ẏ ∗(z, 0)Y ∗(z, 0)−1 satisfies

∇̂0(Ẏ
∗(z, 0)Y ∗(z, 0)−1) = −Ω̇∗

0,

where ∇̂0 : E0(AdE−
0 ) → E1(AdE−

0 ) denotes the covariant exterior differ-

entiation.

Proof. This is a simple calculation using Ω∗
0 = Ω0. It should be noted

from (23) that the matrix Ẏ ∗(z, 0)Y ∗(z, 0)−1 can indeed be assumed to
have trace zero. For this we recall that the Wronskian of any fundamental
solution Y (z, s) of (21) is constant with respect to z and that, by setting a
suitable initial condition, it can also be assumed to be constant with respect

to s as well. See also [8, pp. 154–158].

In particular, the local behavior of the 1-form Ω̇∗
0 around the deleted

points [ti(0)] and [λα(0)] ∈M0 is seen in the following way. For convenience

let us write

(24)
a0(s) = t0, a1(s) = t1(s), . . . , am(s) = tm(s),

am+1(s) = λ0(s), . . . , a2m+1(s) = λm(s).

In view of (16), assumptions (A1) and (A2) (in Section 1.1) imply that the

system (21) admits local fundamental solutions Yk(z, s) (k = 0, . . . , 2m+1)

of the form

(25) Yk(z, s) = Pk(z, s) exp[Λk log(z − ak(s))],

where (i) Pk(z, s) is a nonsingular matrix of meromorphic functions in z

having at most a pole at z = ak(s) and depending holomorphically on
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s, and (ii) Λk is a constant diagonal matrix independent of s. An easy

calculation then shows that

(26)

Ẏk(z, 0)Yk(z, 0)−1 = Ṗk(z, 0)Pk(z, 0)−1 + Pk(z, 0)ΛkPk(z, 0)
−1 −ȧk(0)

z − ak(0)
,

hence that, while the matrix Yk(z, s) is multivalued around z = ak(s), the

resulting matrix Ẏk(z, 0)Yk(z, 0)−1 becomes single-valued around z = ak(0).

Furthermore the term Y ∗
k (z, s) = Yk(us(z), s) in turn becomes a matrix

solution of (22) as before, and we readily calculate

(27) Ẏ ∗
k (z, 0)Y ∗

k (z, 0)−1 = Ẏk(z, 0)Yk(z, 0)−1 + Y ′
k(z, 0)Yk(z, 0)−1u̇0(z).

We thus find from (26), (27) that the matrix Ẏ ∗
k (z, 0)Y ∗

k (z, 0)−1 also be-

comes single-valued around z = ak(0) and hence from Lemma 1 that the

1-form Ω̇∗
0 above becomes exact when restricted to a sufficiently small punc-

tured disk around each [ak(0)].

To be more precise, let us take sufficiently small open disks Uk (k =

0, . . . , 2m+1) (in C) centered at each point ak(0) and let U ′
k = Uk \{ak(0)}.

(In what follows we shall consider Uk and U ′
k also as disjoint open subsets

of M0 and X0 = M0 \D0 respectively.) It then follows from the argument

so far that via the first isomorphism in (20) the 1-form (−Ω̇∗
0) represents a

cohomology class [(−Ω̇∗
0)] ∈ H1(X0,F(AdE−

0 )) that is in the intersection

of the kernels of the homomorphisms

j∗k : H1(X0,F(AdE−
0 )) −→ H1(U ′

k,F(AdE−
0 )) (k = 0, . . . , 2m+ 1),

where jk : U ′
k → X0 denotes the inclusion; and this cohomology class just

represents the tangent vector to the holomorphic curve (14) at the point

[ρ(0)] (for details, see [4, Thm. 31]). Indeed it should be noted here from

[4, Thm. 19] that, with the same notation as before (Section 2), there are

natural isomorphisms

H1(X0,F(AdE−
0 )) ∼= H1(π1(X0), gAd ρ),

H1(U ′
k,F(AdE−

0 )) ∼= H1(〈γi〉, gAd ρ|〈γi〉) or H1(〈δα〉, gAd ρ|〈δα〉)

(we set ρ = ρ(0)), and under these identifications the homomorphisms

j∗k above coincide with the mappings πi(ρ) and ῑα(ρ) respectively. Con-

sequently, in view of (13), we have verified that the cohomology class

[(−Ω̇∗
0)] ∈ H1(X0,F(AdE−

0 )) indeed determines an element of the tangent

space T[ρ]R to the manifold R at [ρ] = [ρ(0)].
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§4. Symplectic structure on the space of representations

On the space R of representations there is defined a natural (complex)

symplectic structure that is induced by Poincaré duality (see Iwasaki [7]).

This duality theorem in particular asserts that there is a nondegenerate

pairing

H1(X0,F(AdE−
0 ))⊗H1

c (X0,F(AdE−
0 )) −→ C

which associates to cohomology classes

[Ψ] ∈ H1(X0,F(AdE−
0 )) and [Θ] ∈ H1

c (X0,F(AdE−
0 ))

the complex constant

〈[Ψ], [Θ]〉 =
1

2π
√
−1

∫

X0

tr(Ψ ∧Θ),

where Ψ and Θ are representative closed forms under the isomorphisms

(20).

With the same notation as in the previous section, let us consider the

open subset U =
⋃2m+1

k=0 U ′
k of X0 with inclusion j : U → X0 and recall the

diagram

0 −−−→ Ker j∗ −−−→ H1(X0,F(AdE−
0 ))

j∗

−−−→ H1(U,F(AdE−
0 ))

xy
xy

0←−−− Coker j! ←−−− H1
c (X0,F(AdE−

0 ))
j!←−−− H1

c (U,F(AdE−
0 )),

where the Poincaré-duality pairings are indicated by ←→. Since this dia-

gram is commutative in the sense that

〈A, j!B〉 = 〈j∗A,B〉

for all A ∈ H1(X0,F(AdE−
0 )) and B ∈ H1

c (U,F(AdE−
0 )) (recall the de-

scription of the mappings j∗ and j! in terms of differential forms), there

arises, on the one hand, a canonical nondegenerate pairing

(28) Ker j∗ ⊗ Coker j! −→ C

between the spaces Ker j∗ and Coker j!. On the other hand, we have the

following.
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Lemma 2. The space Ker j∗ is canonically isomorphic to the space

Coker j!.

Proof. Let A = [Ψ] be an element of Ker j∗ that is represented by a
closed 1-form Ψ ∈ Γ(X0, E1(AdE−

0 )); thus the restriction Ψ|U of Ψ to U
has the form

(29) Ψ|U = ∇̂0T

for some T ∈ Γ(U, E0(AdE−
0 )). To construct the corresponding element

of Coker j! under the desired isomorphism, we shall cut off the 1-form Ψ
in each neighborhood of the points [ak(0)] (k = 0, . . . , 2m + 1). In each

Uk ⊂M0, we take small open disks U
(1)
k ⊂ U

(0)
k ⊂ Uk both centered at the

point [ak(0)], and select a C∞ function σ on U =
⋃2m+1

k=0 U ′
k such that

{
σ = 1 in Uk \ U (0)

k (k = 0, . . . , 2m+ 1),

σ = 0 in U
(1)
k \ {[ak(0)]} (k = 0, . . . , 2m+ 1).

Then, multiplying the cross-section T in (29) by σ, we obtain another closed
1-form Ψ− ∈ Γc(X0, E1(AdE−

0 )) such that

{
Ψ− = Ψ in X0 \

⋃2m+1
k=0 U

(0)
k ,

Ψ− = 0 in U
(1)
k \ {[ak(0)]} (k = 0, . . . , 2m+ 1).

To verify the well-definedness of this cutting-off procedure, suppose now
that Ψ−− ∈ Γc(X0, E1(AdE−

0 )) is another closed 1-form having the same
property as Ψ−. It then follows that the difference Ψ−−Ψ−− has compact
support in U , hence that the cohomology classes [Ψ−], [Ψ−−] ∈ H1

c (X0,
F(AdE−

0 )) determine the same element of the quotient space

Coker j! = H1
c (X0,F(AdE−

0 ))/j!H
1
c (U,F(AdE−

0 )).

Furthermore, a similar argument shows that this procedure is also indepen-
dent of the choice of the representative 1-form Ψ ∈ Γ(X0, E1(AdE−

0 )); and
consequently we have obtained a well-defined mapping

Ker j∗ −→ Coker j!

[Ψ] 7−→ [Ψ−].

It is a straightforward matter to verify that this mapping is indeed an
isomorphism, and that completes the proof of the lemma.
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Combining the isomorphism Ker j∗ ∼= Coker j! with the pairing (28)

now establishes a (skew-symmetric) nondegenerate bilinear form

(30) Ker j∗ ⊗Ker j∗ −→ C

on Ker j∗; and via the natural identification

(31) T[ρ(0)]R ∼= Ker j∗ : H1(X0,F(AdE−
0 )) −→ H1(U,F(AdE−

0 ))

(recall the discussion in Section 3.3), there then arises a nondegenerate

2-form ω on the complex manifold R. Since it can be shown that this 2-

form is closed (see Goldman [2]), we obtain a natural (complex) symplectic

structure on the space R.

§5. Evaluation of the symplectic form

We have described the infinitesimal variation of the monodromy rep-

resentations of the equations (τ(s), t(s), λ(s), µ(s)) at s = 0 as a tangent

vector to the manifold R and then recalled the description of the symplectic

structure ω on R. In this section we consider another family of equations

passing through (τ(0), t(0), λ(0), µ(0)) and evaluate the symplectic form ω

for the resulting two tangent vectors.

5.1. Construction of diffeomorphisms

Before turning to the evaluation, we construct a diffeomorphism us :

C→ C satisfying (17). For this we choose a point e ∈ C such that e 6≡ ak(0)

mod Γ0 for k = 0, . . . , 2m + 1 (see (24)), and construct a meromorphic

function fs on C having poles only at points congruent to e and satisfying

(32)

{
fs(z + 1) = fs(z) + 1,

fs(z + τ(0)) = fs(z) + τ(s)

for all z ∈ C \ {poles}. Now, differentiating the equalities in (32) with

respect to z implies that the function fs must be an indefinite integral of

an elliptic function with fundamental periods 1, τ(0); and we assume here

that it has the form

fs(z) = κ(s)z + ε(s)ζ(z − e, τ(0))

for some holomorphic functions κ(s), ε(s) in s. Then, substituting this ex-

pression into (32) and using the Legendre relation η2(τ(0)) = η1(τ(0))τ(0)−
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2π
√
−1 yields

[
κ(s)
ε(s)

]
= − 1

2π
√
−1

[
η2(τ(0)) − η1(τ(0))τ(s)

τ(s)− τ(0)

]
,

leading to the desired function fs. (The term η2(τ(0)) is defined by ζ(z +

τ(0), τ(0)) − ζ(z, τ(0)) = η2(τ(0)).) It should be observed here that

(33) κ(s)→ 1 and ε(s)→ 0 as s→ 0.

To construct the desired diffeomorphism us : C→ C satisfying (17), we

use the cutting-off technique again for the function fs in a neighborhood of

the point e (recall the proof of Lemma 2). To this end we take sufficiently

small open disks V (1) ⊂ V (0) ⊂ V each centered at e, and select a C∞

function σ on C such that

(34)





σ = 1 in C \ (Γ0(V
(0))),

σ = 0 in Γ0(V (1)),

σ(z + l + nτ(0)) = σ(z) for all z ∈ C, (l, n) ∈ Z
2.

Then, selecting another (uniquely determined) C∞ function χs on C (de-

pending holomorphically on s and) satisfying

(35)

{
χs = 1 in C \ (Γ0(V

(0))),

χs = 1 in V ,

we find that the function us defined by

us(z) = χs(z)κ(s)z + σ(z)ε(s)ζ(z − e, τ(0))

satisfies (17), as desired. Note that χs has constantly value one in any

fundamental parallelogram containing the open disk V , and in particular

from (17), (33) that χ0(z) = 1 for all z ∈ C. Consequently, in view of (33),

the function us thus defined becomes indeed a diffeomorphism (for s near 0),

and moreover it is locally biholomorphic outside the disks Γ0(V
(0)). (In the

argument below we shall consider V also as an open subset of X0 = M0\D0

that is disjoint from the punctured disks U ′
k (k = 0, . . . , 2m+ 1).)



148 S. KAWAI

5.2. Evaluation of the symplectic form

Let us now consider another family (τ 2(s), t2(s), λ2(s), µ2(s)) of differ-

ential equations passing through the point (τ(0), t(0), λ(0), µ(0)) at s = 0

and write the original family as (τ 1(s), t1(s), λ1(s), µ1(s)). Applying the ge-

ometric formulation also to the second family, we thus obtain the following

objects (n = 1, 2):

(36)

Ωn
s =

(
0 −1

−qn
s (z) 0

)
dz,

[
κn(s)
εn(s)

]
= − 1

2π
√
−1

[
η2(τ(0)) − η1(τ(0))τ

n(s)
τn(s)− τ(0)

]
,

un
s (z) = χn

s (z)κn(s)z + σ(z)εn(s)ζ(z − e, τ(0)),

Ωn∗
s = (un

s )∗Ωn
s ,

where qn
s (z) is given by substituting (τ, t, λ, µ) = (τ n(s), tn(s), λn(s), µn(s)),

L = Ln(s) and Hi = Hn
i (s) into q(z) of (2), and χn

s is the uniquely deter-

mined C∞ function on C that makes the un
s as desired. The infinitesi-

mal variation of the monodromy representations of the family (τ n(s), tn(s),

λn(s), µn(s)) at s = 0 is then described by the cohomology class [(−Ω̇n∗
0 )] ∈

Ker j∗ (see (31)); and our goal in this section is to write out the complex

number
〈
[(−Ω̇1∗

0 )], [(−Ω̇2∗
0 )]

〉
associated to these cohomology classes by the

bilinear form (30).

For that purpose we first apply (19) to Ωn
s = An

s (z) dz and un
s above

and obtain

(37) Ω̇n∗
0 =

[
0 −d(u̇n

0 (z))(
−q̇n

0 (z)− qn′
0 (z)u̇n

0 (z)
)
dz − qn

0 (z) d(u̇n
0 (z)) 0

]
.

Next, recalling that the bilinear form (30) was established by combining

the isomorphism Ker j∗ ∼= Coker j! of Lemma 2 with the pairing (28), we

apply the cutting-off procedure of that lemma to the 1-form (−Ω2∗
0 ) ∈

Γ(X0, E1(AdE−
0 )) and obtain another closed 1-form (−Ω2∗−

0 ) ∈ Γc(X0,

E1(AdE−
0 )) satisfying

(38)

{
Ω2∗−

0 = Ω2∗
0 in X0 \

⋃2m+1
k=0 U

(0)
k ,

Ω2∗−
0 = 0 in U

(1)
k \ {[ak(0)]} (k = 0, . . . , 2m+ 1).

Then, by definition, we have

〈
[(−Ω̇1∗

0 )], [(−Ω̇2∗
0 )]

〉
=

1

2π
√
−1

∫

X0

tr
(
(−Ω̇1∗

0 ) ∧ (−Ω̇2∗−
0 )

)
.
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However, in view of (37), we find from (34)–(36) and (38) that the

1-forms (−Ω̇1∗
0 ) and (−Ω̇2∗−

0 ) are both of type (1, 0) outside the disk V (0)

and the punctured disks U
(0)
k \ {[ak(0)]} (k = 0, . . . , 2m + 1), hence that

tr
(
(−Ω̇1∗

0 )∧ (−Ω̇2∗−
0 )

)
= 0 there. (These disks are now viewed as open sub-

sets ofX0.) Moreover, it follows from the discussion in Section 3.3 that there

exist C∞ cross-sections T ∈ Γ(V, E0(AdE−
0 )) and Tk ∈ Γ(U ′

k, E0(AdE−
0 ))

(k = 0, . . . , 2m+ 1) satisfying
{
∇̂0T = −Ω̇1∗

0 in V ,

∇̂0Tk = −Ω̇1∗
0 in U ′

k (k = 0, . . . , 2m+ 1);

indeed, in view of (27) and (36), it suffices to set

(39)

{
T = Ẏ (z, 0)Y (z, 0)−1 + Y ′(z, 0)Y (z, 0)−1u̇1

0(z),

Tk = Ẏk(z, 0)Yk(z, 0)−1 + Y ′
k(z, 0)Yk(z, 0)−1u̇1

0(z),

where the Y (z, s) and Yk(z, s) are fundamental solutions of the system

dy + Ω1
sy = 0 around z = e and z = a1

k(s) respectively that are chosen to

have constant Wronskians with respect to both z and s, and also to have

the form (25) for k = 0, . . . , 2m + 1 (see the proof of Lemma 1). (We use

the notation a1
k(s) in an obvious manner.) Consequently, in view of (38)

again, we have

〈
[(−Ω̇1∗

0 )], [(−Ω̇2∗
0 )]

〉

=
1

2π
√
−1

[∫

V (0)

tr
(
(∇̂0T ) ∧ (−Ω̇2∗−

0 )
)

+
2m+1∑

k=0

∫

U
(0)
k

\U
(1)
k

tr
(
(∇̂0Tk) ∧ (−Ω̇2∗−

0 )
)]

=
1

2π
√
−1

[∫

V (0)

d tr
(
T (−Ω̇2∗−

0 )
)

+
2m+1∑

k=0

∫

U
(0)
k

\U
(1)
k

d tr
(
Tk(−Ω̇2∗−

0 )
)]

=
1

2π
√
−1

[∫

∂V (0)

tr
(
T (−Ω̇2∗

0 )
)

+
2m+1∑

k=0

∫

∂U
(0)
k

tr
(
Tk(−Ω̇2∗

0 )
)]
,

where we have used the closedness of the 1-form −Ω̇2∗−
0 at the second equal-

ity, and formula (38) and Stokes’ theorem at the final equality.

Now, looking at the final line of this last formula, we note from (39),

(37) and (36) that the Tk and −Ω̇2∗
0 are both meromorphic in Uk with at
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most a pole at z = ak(0) whereas the T and −Ω̇2∗
0 cannot be holomorphic

(nor meromorphic) in V because of the appearance of the terms u̇n
0 (z) (n =

1, 2) respectively. However, if we set

(40)

fn
s (z) = κn(s)z + εn(s)ζ(z − e, τ(0)),
T+ = Ẏ (z, 0)Y (z, 0)−1 + Y ′(z, 0)Y (z, 0)−1ḟ1

0 (z),

Ω̇n∗+
0 =

[
0 −d(ḟn

0 (z))

(−q̇n
0 (z) − qn′

0 (z)ḟn
0 (z)) dz − qn

0 (z) d(ḟn
0 (z)) 0

]
,

then T+ and −Ω̇n∗+
0 become both meromorphic in V with at most a pole at

z = e, and they satisfy T+ = T and −Ω̇n∗+
0 = −Ω̇n∗

0 respectively in V \V (0)

(see (34)–(36)). Therefore, putting this all together, we obtain from the

residue theorem

(41)

〈
[(−Ω̇1∗

0 )], [(−Ω̇2∗
0 )]

〉
= Res

z=e
tr

(
T+(−Ω̇2∗+

0 )
)

+

2m+1∑

k=0

Res
z=ak(0)

tr
(
Tk(−Ω̇2∗

0 )
)
.

Remark. Formula (41) is a generalization of Iwasaki’s result [7, Lem-
ma 6]. He obtained his main result by carrying out residue calculus explic-
itly in terms of the parameters of the linear equations in consideration. Our
goal will be to apply this method to our case of varying elliptic curves and
vector bundles.

5.3. Third-order equation

Finally, for use in the next section, we write out the equations

(42)

{
∇̂0T

+ = −Ω̇1∗+
0 in V ,

∇̂0Tk = −Ω̇1∗
0 in Uk (k = 0, . . . , 2m+ 1)

for the cross-sections T+ ∈ Γ(V,M(AdE0)) and Tk ∈ Γ(Uk,M(AdE0)) in

detail, where M(AdE0) denotes the sheaf of germs of meromorphic cross-

sections of the bundle AdE0. (The computation presented below is due to

M. Furuta.) Setting

(43) T+ =

[
g(z) h(z)
l(z) −g(z)

]

and recalling that the connection ∇̂0 takes the form ∇̂0 = d+ [Ω1
0, · ] (note

that Ω1
0 = Ω2

0), we find that the first equation in (42) reduces to the following
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formulas:

(44)





g(z) =
1

2

[
ḟ1
0 (z)− h(z)

]′
,

l(z) =
1

2

[
ḟ1
0 (z) − h(z)

]′′
+ q10(z)h(z),

h(z) = v(z) + ḟ1
0 (z),

where the function v(z) is a solution of the third-order equation

(45) − 1

2
v′′′(z) + 2q1

0(z)v
′(z) + q1′

0 (z)v(z) = q̇1
0(z, 0).

Similarly, by setting

(46) Tk =

[
gk(z) hk(z)
lk(z) −gk(z)

]
,

the second equation in (42) is written out explicitly as

(47)





gk(z) =
1

2

[
ḟ1
0 (z) − hk(z)

]′
,

lk(z) =
1

2

[
ḟ1
0 (z)− hk(z)

]′′
+ q10(z)hk(z),

hk(z) = vk(z) + ḟ1
0 (z),

where the function vk(z) is a solution of the equation

(48) − 1

2
v′′′k (z) + 2q1

0(z)v
′
k(z) + q1′

0 (z)vk(z) = q̇1
0(z, 0),

which has its (regular) singularity at z = ak(0). (Note that u̇1
0(z) = ḟ1

0 (z)

in Uk.)

Now we conclude this section with the following technical lemma.

Lemma 3. For any fundamental solution Y (z, s) of the system dy +
Ω1

sy = 0 at z = e that is chosen to have constant Wronskian with respect to

both z and s, the function v(z) defined by (40), (43) and (44) is holomorphic

in the disk V . Similarly, for any fundamental solution Yk(z, s) of that

system at z = a1
k(s) that is chosen to have constant Wronskian with respect

to both z and s and also to have the form (25), the function vk(z) defined

by (39), (46) and (47) is holomorphic in the disk Uk (k = 0, . . . , 2m+ 1).
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Proof. To verify the second half of the lemma first, let us take a fun-

damental system (w1(z, s), w2(z, s)) of solutions of the equation

(49)
d2w

dz2
= q1s(z)w

at z = a1
k(s) that has the explicit form

(50)

{
w1(z, s) = (z − a1

k(s))
(1+θk)/2ϕ(z, s),

w2(z, s) = (z − a1
k(s))

(1−θk)/2ψ(z, s),

where the ϕ(z, s) and ψ(z, s) are holomorphic in both z and s, and
ϕ(a1

k(s), s) 6= 0, ψ(a1
k(s), s) 6= 0; furthermore we have set θk = θi for

k = i = 0, . . . ,m and θk = 2 for k = m + 1, . . . , 2m + 1. (Recall the
assumptions on the singular points of our equations (see Section 1.1 and
Iwasaki et al. [8, pp. 163, 183–184]).) The matrix

Yk(z, s) =

[
w1(z, s) w2(z, s)
w1′(z, s) w2′(z, s)

]

then serves as a fundamental solution of the system dy + Ω1
sy = 0 having

the form (25); and conversely any such fundamental solution of that system
gives in an obvious manner a fundamental system of (49) having the form
(50). Now, by multiplying the w1 and w2 by nowhere-vanishing holomorphic
functions in s if necessary, we assume here that the Wronskian of Yk(z, s)
is constant with respect to z and s. By an easy calculation we then find
that the (1, 2)-component hk(z) of the matrix Tk defined by (39) equals

c−1
[
−ẇ1(z, 0)w2(z, 0) + ẇ2(z, 0)w1(z, 0)

]
+ ḟ1

0 (z),

where c denotes the constant Wronskian of Yk(z, s), so that

vk(z) = c−1
[
−ẇ1(z, 0)w2(z, 0) + ẇ2(z, 0)w1(z, 0)

]

by (47). However, substituting the explicit form (50) into the right-hand
side of this formula now yields

vk(z) = c−1(z − a1
k(0))

[
−ϕ̇(z, 0)ψ(z, 0) + ψ̇(z, 0)ϕ(z, 0)

]

+ c−1θkȧ
1
k(0)ϕ(z, 0)ψ(z, 0);

and therefore the function vk(z) is indeed holomorphic in the sufficiently
small disk Uk, as desired. Arguing the same way also establishes the result
for v(z), and the proof is thereby concluded.
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Remarks. This result should be compared to Iwasaki [7, p. 339], where
he examines the order of an arbitrary meromorphic function satisfying the
third-order equation (48) and concludes that it is either 0 or −1. We also
note that the requirement that the matrix Yk(z, s) have constant Wronskian
independent of z and s is crucial for the holomorphicity of the function
vk(z). See Iwasaki et al. [8, Lemma 4.4.2].

§6. Residue calculus

In this section we carry out residue calculus for formula (41) and ob-

tain an expression in terms of the local coordinates (τ, t, λ, µ) of E , thus

completing the proof of Theorem 1. Our method is basically the same as

that of Iwasaki [7].

6.1. First term

To compute Resz=e tr
(
T+(−Ω̇2∗+

0 )
)
, write the terms T+ and −Ω̇2∗+

0 as

in (43) and (40). We then find from (44) and the equality q1
0(z) = q2

0(z)

that

(51) tr
(
T+(−Ω̇2∗+

0 )
)

=
([
v(z) + ḟ1

0 (z)
][
q̇20(z) + q2′

0 (z)ḟ2
0 (z)

+ 2q2
0(z)ḟ

2′
0 (z)

]
− 1

2
v′′(z)ḟ2′

0 (z)
)
dz.

To find the desired residue, we expand out each term of this expression at

z = e. First, since the functions qn
s (z) (n = 1, 2) are holomorphic in the

disk V (for s near 0), their Taylor expansions at z = e are of the form

(52) qn
s (z) = cn0 (s) + cn1 (s)(z − e) + cn2 (s)(z − e)2 + higher terms,

where the coefficients cnj (s) depend holomorphically on s. (Note that

q10(z) = q2
0(z) implies c1j(0) = c2j (0) for all j.) Second, we find from (40)

and (36) that the function ḟn
0 (z) is expanded out as

(53)

ḟn
0 (z) = − τ̇n(0)

2π
√
−1

[ 1

z − e − η1(τ(0))e − η1(τ(0))(z − e) + higher terms
]
.

Third, recalling from Lemma 3 that the function v(z) can be chosen to be

holomorphic in V , let us expand it out as

(54) v(z) = α+ β(z − e) + γ(z − e)2 + δ(z − e)3 + higher terms.
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Now, substituting (54) and (52) into (45) and comparing the constant terms

of both sides, we obtain

−3δ + 2c10(0)β + c11(0)α = −3δ + 2c20(0)β + c21(0)α = ċ10(0).

On the other hand, substituting (52)–(54) into the right-hand side of (51),

we find

Res
z=e

tr
(
T+(−Ω̇2∗+

0 )
)

=
−1

2π
√
−1

[
(−αc21(0)−2βc20(0)+3δ)τ̇ 2(0)+τ̇ 1(0)ċ20(0)

]
;

and consequently putting these last two formulas together yields

(55) Res
z=e

tr
(
T+(−Ω̇2∗+

0 )
)

=
1

2π
√
−1

(
ċ10(0)τ̇

2(0) − τ̇ 1(0)ċ20(0)
)
.

6.2. Second term

We compute Resz=ak(0) tr
(
Tk(−Ω̇2∗

0 )
)

similarly. As before, we start with

the formula (see (46), (37) and (47))

(56) tr
(
Tk(−Ω̇2∗

0 )
)

=
([
vk(z) + ḟ1

0 (z)
][
q̇20(z) + q2′

0 (z)ḟ2
0 (z)

+ 2q2
0(z)ḟ

2′
0 (z)

]
− 1

2
v′′k(z)ḟ2′

0 (z)
)
dz,

and expand out each term of this expression at z = ak(0). First, in view of

(2), the Laurent expansions of the qn
s (z) at z = an

k(s) take the form

(57)

qn
s (z) =

bnk,−2

(z − an
k(s))2

+
bnk,−1(s)

z − an
k(s)

+ bnk,0(s) + bnk,1(s)(z − an
k(s))

+ higher terms,




bnk,−2 =
1

4
(θ2

i − 1), bnk,−1(s) = Hn
i (s) for k = i = 0, . . . ,m,

bnk,−2 =
3

4
, bnk,−1(s) = −µn

α(s)

for k = α+ (m+ 1) = m+ 1, . . . , 2m+ 1.

(Again we have b1k,j(0) = b2k,j(0) for all j because q1
0(z) = q2

0(z).) Second,

since the point e is away from the disk Uk, we can expand out the function
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ḟn
0 (z) as

(58)

ḟn
0 (z) = − τ̇n(0)

2π
√
−1

[
r0 + r1(z − ak(0)) + r2(z − ak(0))

2 + higher terms
]
,





r0 = −η1(τ(0))ak(0) + ζ(ak(0)− e, τ(0)),
r1 = −η1(τ(0)) + ζ ′(ak(0)− e, τ(0)),

r2 =
1

2
ζ ′′(ak(0) − e, τ(0)).

Third, it follows from Lemma 3 that the function vk(z) is expanded out as

(59) vk(z) = α+ β(z − ak(0)) + γ(z − ak(0))
2 + higher terms.

Then, substituting (59) and (57) into (48) and comparing the principal

parts yields

(60) α = −ȧ1
k(0), 2b2k,−2γ + b2k,−1(0)β = ḃ1k,−1(0),

where we have used bnk,−2 6= 0 and b1k,j(0) = b2k,j(0). On the other hand, we

substitute (57)–(59) into the right-hand side of (56) and then find that

Res
z=ak(0)

tr
(
Tk(−Ω̇2∗

0 )
)

(61)

=
−1

2π
√
−1

{[
α(2b2k,−2r2 + b2k,−1(0)r1)− (βb2k,−1(0) + 2γb2k,−2)r0

]
τ̇2(0)

+ τ̇1(0)
[
r0ḃ

2
k,−1(0) + r1b

2
k,−1(0)ȧ

2
k(0) + 2r2b

2
k,−2ȧ

2
k(0)

]}

+ αḃ2k,−1(0) + (βb2k,−1(0) + 2γb2k,−2)ȧ
2
k(0).

6.3. Proof of Theorem 1

At this point, to write out the term ċn0 (0) in (55) in detail, we note that

in terms of the notation in (57), the function qn
s (z) is written explicitly as

qn
s (z) = Ln(s)+

2m+1∑

k=0

[
bnk,−1(s)ζ(z−an

k (s), τn(s))+bnk,−2℘(z−an
k(s), τn(s))

]
.
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Since the cn0 (s) are the constant terms of the Taylor expansions (52), we

then have

ċn0 (0) = L̇n(0) +

2m+1∑

k=0

{
ḃnk,−1(0)ζ(e − ak(0), τ(0))

(62)

+ bnk,−1(0)
[
ζ ′(e− ak(0), τ(0))(−ȧn

k (0)) +
∂ζ

∂τ
(e− ak(0), τ(0))τ̇

n(0)
]

+ bnk,−2

[
℘′(e− ak(0), τ(0))(−ȧn

k (0)) +
∂℘

∂τ
(e− ak(0), τ(0))τ̇

n(0)
]}
.

In summary of all this, substituting (62) into (55), and (60), (58) into (61)

respectively, we finally conclude from (41) that

〈
[(−Ω̇1∗

0 )], [(−Ω̇2∗
0 )]

〉

=

2m+1∑

k=0

[
ḃ1k,−1(0)ȧ

2
k(0)− ḃ2k,−1(0)ȧ

1
k(0)

]

+
1

2π
√
−1

[
L̇1(0)τ̇2(0) − L̇2(0)τ̇1(0)

]

− η1(τ(0))

2π
√
−1

2m+1∑

k=0

{[
ak(0)ḃ

1
k,−1(0) + b1k,−1(0)ȧ

1
k(0)

]
τ̇2(0)

−
[
ak(0)ḃ

2
k,−1(0) + b2k,−1(0)ȧ

2
k(0)

]
τ̇1(0)

}
,

where we have used the equality b1k,j(0) = b2k,j(0) again; and consequently,

recalling the original notation for an
k(s) and bnk,−1(s), and in particular keep-

ing in mind that we have always t0 = dt0 = 0, we complete the proof of

Theorem 1. (Note that (i) the ζ-function ζ(z, τ) is odd (with respect to z)

whereas the ℘-function ℘(z, τ) is even, and that (ii) dη1(τ) ∧ dτ = 0.)

§7. The null-distribution

Taking a closer look at the explicit form (9) of the pulled-back 2-form

F∗ω, let us move on to the description of the infinitesimal directions that

make F∗ω degenerate.

We begin by showing that the differential drF of F at an arbitrary

point r ∈ W has maximal rank 2(m + 1). To see this we first note the in-

equality rank(F∗ω)r 5 rank drF . (This is an immediate consequence of the
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definition of the pulled-back form F ∗ω. Recall that the rank of the 2-form

F∗ω at the point r is precisely the rank of the linear mapping from TrW
to T ∗

rW which is defined by ξ 7→ (F ∗ω)r( · , ξ).) However, since the first

term −2
(∑m

α=0 dµα ∧ dλα

)
of F∗ω is clearly nondegenerate on the (locally

defined) (λ, µ)-space, it follows that 2(m+ 1) 5 rank(F ∗ω)r, which suffices

to conclude the proof of the result. From this we then find that

(i) the fibers F−1(ρ) of F are all smooth,

(ii) their connected components precisely serve as the maximal connected

integral manifolds of the distribution D = {ξ ∈ TW ; dF(ξ) = 0} of

rank m+ 1,

(iii) the distribution D is also described as D = {ξ ∈ TW ; F ∗ω( · , ξ) ≡ 0},
namely the null-distribution of F ∗ω (see Section 1).

With these observations made, it is now quite straightforward to write

out the null-distribution of F ∗ω explicitly. Indeed, from the nondegeneracy

of the first term of F∗ω again, it follows that any nonzero tangent vector

ξ satisfying F∗ω( · , ξ) ≡ 0 must have a nonzero component in the (τ, t)-

directions. However, since we already know that the null-distribution D
has rank m+ 1, which is exactly the dimension of the (τ, t)-space, we then

find that D must be spanned by the m+ 1 vector fields of the form





Hi =
∂

∂ti
+

m∑

α=0

(
Ai

α

∂

∂λα
+Bi

α

∂

∂µα

)
(i = 1, . . . ,m),

Hτ =
∂

∂τ
+

m∑

α=0

(
Cα

∂

∂λα
+Dα

∂

∂µα

)

for some holomorphic functions Ai
α, Bi

α, Cα, Dα in (τ, t, λ, µ). Furthermore

a simple calculation shows that the vectors Hi and Hτ above make the

2-form F∗ω degenerate precisely when

(63)





Ai
α =

∂Hi

∂µα
, Bi

α = − ∂Hi

∂λα
,

m∑

α=0

(
∂Hj

∂µα

∂Hi

∂λα
− ∂Hj

∂λα

∂Hi

∂µα

)
=

∂Hj

∂ti
− ∂Hi

∂tj
(j = 1, . . . ,m)
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and

(64)





Cα =
∂K

∂µα
, Dα = − ∂K

∂λα
,

m∑

α=0

(
∂Hj

∂µα

∂K

∂λα
− ∂Hj

∂λα

∂K

∂µα

)
=

∂Hj

∂τ
− ∂K

∂tj
(j = 1, . . . ,m)

respectively (see Manin [15, pp. 140–141]); and consequently we conclude

that the null-distribution D has as a local basis the vector fields




Hi =
∂

∂ti
+

m∑

α=0

(
∂Hi

∂µα

∂

∂λα
− ∂Hi

∂λα

∂

∂µα

)
(i = 1, . . . ,m),

Hτ =
∂

∂τ
+

m∑

α=0

(
∂K

∂µα

∂

∂λα
− ∂K

∂λα

∂

∂µα

)
.

Now, since these vector fields just describe the time-evolution directions of

the λα and µα with respect to the time-parameters ti and τ with Hamilto-

nians Hi and K (see Iwasaki [6, p. 522] and [15, pp. 140–141]), we complete

the proof of Theorem 2.

Remark. In the discussion above we did not need to verify the validity
of the third formulas of (63) and (64) nor even to examine the complex
analytic behavior of the partial derivatives of the Hamiltonian functions
Hi and K (compare with Okamoto [18, pp. 303–307] and [6, pp. 508–521]).
This is an advantage of our geometric approach, which ensures the existence
of integral manifolds of a specific dimension for the null-distribution D.

§8. The two-point case

In this section we examine the simplest case m = 0 of equation (1)–

(3) closely, and show that the resulting Hamiltonian system describing the

isomonodromic deformations reduces to a special instance of the expression

for the sixth Painlevé equation due to Manin [15].

When m = 0, the coefficient q(z) of equation (1)–(3) takes the simple

form

q(z) = L+Hζ(z, τ) +
1

4
(θ2 − 1)℘(z, τ) − µζ(z − λ, τ) +

3

4
℘(z − λ, τ),

where we dropped the suffix 0 for simplicity (recall the normalization t0 =

0); and equation (6) (corresponding to assumption (A2) and equality (3))
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reduces to 


L = µ2 − ζ(λ, τ)µ− 1

4
(θ2 − 1)℘(λ, τ),

H = µ.

(Assumptions (4) and (8) are simply that λ 6≡ 0 mod Γτ .) Consequently,

applying Theorem 2 to this setting then yields the following Hamiltonian

system:

(65)





dλ

dτ
=

1

2π
√
−1

[
2µ− ϕ(λ, τ)

]
,

dµ

dτ
=

1

2π
√
−1

[
µϕ′(λ, τ) − 1

4
(θ2 − 1)ϕ′′(λ, τ)

]
,

where we set ϕ(λ, τ) = ζ(λ, τ)− η1(τ)λ, and denote by primes the differen-

tiation with respect to λ.

To obtain the desired differential equation, we solve the first formula

in (65) for µ and then substitute it into the second formula. In the course

of the calculation, it should be remarked that the function ϕ(λ, τ) satisfies

the equation

∂ϕ

∂τ
(λ, τ) =

1

2π
√
−1

[ 1

2
ϕ′′(λ, τ) + ϕ(λ, τ)ϕ′(λ, τ)

]
,

which is shown by rewriting ϕ(λ, τ) as ϕ(λ, τ) = θ ′1(λ, τ)/θ1(λ, τ) via the

odd theta function

θ1(λ, τ) =
∑

n∈Z

exp
[
π
√
−1τ

(
n+

1

2

)2
+ 2π

√
−1

(
n+

1

2

)(
λ+

1

2

)]

and using the heat equation

θ′′1(λ, τ) = 4π
√
−1

∂θ1
∂τ

(λ, τ)

for θ1(λ, τ). As a result, we then obtain

d2λ

dτ2
= − θ2

8π2
℘′(λ, τ),

and thus complete the proof of Theorem 3.
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