THE HARDY-LITTLEWOOD PROPERTY OF FLAG VARIETIES

TAKAO WATANABE

Abstract

We study the asymptotic distribution of rational points on a generalized flag variety which are of bounded height and satisfy some congruence conditions in the formulation analogous to a strongly Hardy-Littlewood variety.

Let X be an affine variety in an affine space V over \mathbb{Q} and B_{T} the set of $x \in X(\mathbb{R})$ with $\|x\| \leq T$ for a Euclidean norm $\|\cdot\|$ on $V(\mathbb{R})$. The HardyLittlewood method allows us to expect that the cardinality of $B_{T} \cap X(\mathbb{Z})$ is asymptotically equal to the volume of B_{T} with respect to some measure on $X(\mathbb{R})$. On the basis of such expectation, Borovoi and Rudnick [BR] introduced the notion of a Hardy-Littlewood variety in the adelic manner. Namely, an affine variety X is called a strongly Hardy-Littlewood variety if the asymptotic behavior

$$
\left|\left(B_{T} \times B_{f}\right) \cap X(\mathbb{Q})\right| \sim \omega_{X\left(\mathbb{A}_{\mathbb{Q}}\right)}\left(B_{T} \times B_{f}\right) \quad \text { as } T \rightarrow \infty
$$

holds for any open compact subset B_{f} of the finite adele $X\left(\mathbb{A}_{\mathbb{Q}, f}\right)$, where $\omega_{X\left(\mathbb{A}_{\mathbb{Q}}\right)}$ denotes the measure on $X\left(\mathbb{A}_{\mathbb{Q}}\right)$ attached to a gauge form on X. It is known that many affine symmetric spaces have the strongly HardyLittlewood property.

In this paper, we study the asymptotic distribution of rational points of bounded height on a generalized flag variety in the formulation analogous to a strongly Hardy-Littlewood variety. Let k be an algebraic number field, G a connected reductive algebraic group defined over k, Q a maximal k parabolic subgroup of G and $X=Q \backslash G$ a generalized flag variety over k. The adele group $G(\mathbb{A})$ of G has the unimodular subgroup $G(\mathbb{A})^{1}$ consisting of all elements $g \in G(\mathbb{A})$ that satisfy $|\chi(g)|_{\mathbb{A}}=1$ for any k-rational character χ of G. Similarly, the unimodular subgroup $Q(\mathbb{A})^{1}$ of $Q(\mathbb{A})$ is defined, see Notation below for its precise definition. The homogeneous space $Y=$ $Q(\mathbb{A})^{1} \backslash G(\mathbb{A})^{1}$ is appropriate to our purpose by the reason that the set $X(k)$

[^0]of k-rational points of X is naturally regarded as a subset of Y and there is a unique right $G(\mathbb{A})^{1}$-invariant measure ω_{Y} on Y matching with Tamagawa measures $\omega_{G(\mathbb{A})^{1}}$ and $\omega_{Q(\mathbb{A})^{1}}$ of $G(\mathbb{A})^{1}$ and $Q(\mathbb{A})^{1}$, respectively. It is observed that Y is decomposed into the direct product of the infinite part Y_{∞} and the finite part Y_{f}, and Y_{f} is naturally identified with the homogeneous space $Q\left(\mathbb{A}_{f}\right) \backslash G\left(\mathbb{A}_{f}\right)$. By a strongly k-rational representation π of G, the variety X is embedded into a projective space, and the height H_{π} is defined on $X(k)$. Since H_{π} is extended to a positive real valued function on Y, we can define the "ball" B_{T} of radius T as the set of $y \in Y_{\infty}$ with $H_{\pi}(y) \leq T$. Then the main theorem of this paper is stated that the asymptotic behavior
\[

$$
\begin{equation*}
\left|\left(B_{T} \times B_{f}\right) \cap X(k)\right| \sim \frac{\tau(Q)}{\tau(G)} \omega_{Y}\left(B_{T} \times B_{f}\right) \quad \text { as } T \rightarrow \infty \tag{0.1}
\end{equation*}
$$

\]

holds for any open subset B_{f} of Y_{f}. Here $\tau(G)$ and $\tau(Q)$ stand for the Tamagawa numbers of G and Q, respectively. In view of the equality $\left(B_{T} \times Y_{f}\right) \cap X(k)=\left\{x \in X(k): H_{\pi}(x) \leq T\right\},(0.1)$ yields the asymptotic distribution of rational points $x \in X(k)$ which satisfy $H_{\pi}(x) \leq T$ together with congruence conditions provided by B_{f}. The volume $\omega_{Y}\left(B_{T} \times B_{f}\right)$ is explicitly computed in the following sense. If K_{f} is a good maximal compact subgroup of the finite adele group $G\left(\mathbb{A}_{f}\right)$ and B_{f} is the image of an open subgroup $D_{f} \subset K_{f}$ to $Y_{f}=Q\left(\mathbb{A}_{f}\right) \backslash G\left(\mathbb{A}_{f}\right)$, then

$$
\omega_{Y}\left(B_{T} \times B_{f}\right)=\frac{\left[D_{f}\left(K_{f} \cap Q\left(\mathbb{A}_{f}\right)\right): D_{f}\right] C_{G} d_{Q}}{\left[K_{f}: D_{f}\right] C_{Q} d_{G} e_{Q}} T^{e_{Q}[k: \mathbb{Q}] / e_{\pi}}
$$

where d_{G}, d_{Q} and e_{Q} are positive integers depending on G and Q, e_{π} is a positive rational numbers depending on π and these constants are easily computed. Both C_{G} and C_{Q} are also positive real constants depending on G and Q, however the determination of their explicit values is more complicated than other constants. In some particular cases, e.g., the case that G splits over k or G is a special orthogonal group, we can describe C_{G} / C_{Q} by using the special values of the Dedekind zeta function of k (cf. Section 7).

Our result gives an affirmative partial answer to a question mentioned in the last paragraph of [MW2, Section 4.3]. The asymptotic formula of rational points of bounded height on any generalized flag variety was first obtained by Franke, Manin and Tschinkel [FMT]. In the case of $B_{f}=Y_{f}$, Corollary to Theorem 5 in [FMT] deduces the asymptotic behavior of the
form $\left|\left(B_{T} \times Y_{f}\right) \cap X(k)\right| \sim c T^{e_{Q}}{ }^{[k: \mathbb{Q}] / e_{\pi}}$, where c is a constant. However, it is not clear in [FMT] that the leading term $c T^{e_{Q}}[k: \mathbb{Q}] / e_{\pi}$ is described in terms of the volume of $B_{T} \times Y_{f}$. In order to explain it more precisely, we mention the difference between the method of [FMT] and that of this paper. A crucial observation in [FMT] is that the height zeta function can be identified with one of the Langlands-Eisenstein series. Then, by using the analytic properties of Langlands-Eisenstein series and a standard Tauberian argument, Franke, Manin and Tschinkel established their asymptotic formula. Thus the volume $\omega_{Y}\left(B_{T} \times Y_{f}\right)$ does not occur in [FMT]. In this paper, we investigate directly the function $F_{T}(g)=\left|\left(B_{T} \times B_{f}\right) \cap X(k) g\right| \omega_{Y}\left(B_{T} \times B_{f}\right)^{-1}$ on $G(k) \backslash G(\mathbb{A})^{1}$. By using the theory of constant terms of Eisenstein series, we will prove that the inner product $\left\langle\theta, F_{T}\right\rangle$ of any pseudo-Eisenstein series θ on $G(k) \backslash G(\mathbb{A})^{1}$ and F_{T} satisfies

$$
\left\langle\theta, F_{T}\right\rangle \longrightarrow \frac{\tau(Q)}{\tau(G)}\langle\theta, 1\rangle \quad \text { as } T \rightarrow \infty
$$

This and the argument similar to [DRS] and [MW1] lead us to

$$
F_{T}(g) \longrightarrow \frac{\tau(Q)}{\tau(G)} \quad \text { as } T \rightarrow \infty
$$

for every $g \in G(k) \backslash G(\mathbb{A})^{1}$, and hence we immediately obtain (0.1). In view of this, the expression of the main term of $\left|\left(B_{T} \times B_{f}\right) \cap X(k)\right|$ by $\omega_{Y}\left(B_{T} \times B_{f}\right)$ is a significant point of our result.

Notation. As usual, $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} denote the ring of integers, the field of rational, real and complex numbers, respectively. The group of positive real numbers is denoted by \mathbb{R}_{+}^{\times}.

Let k be an algebraic number field of finite degree over \mathbb{Q}, \mathfrak{O} the ring of integers in k and \mathfrak{V} the set of all places of k. We write \mathfrak{V}_{∞} and \mathfrak{V}_{f} for the sets of all infinite places and all finite places of k, respectively. For $v \in \mathfrak{V}, k_{v}$ denotes the completion of k at v. If v is finite, \mathfrak{O}_{v} denotes the ring of integers in k_{v}. We fix, once and for all, a Haar measure μ_{v} on k_{v} normalized so that $\mu_{v}\left(\mathfrak{O}_{v}\right)=1$ if $v \in \mathfrak{V}_{f}, \mu_{v}([0,1])=1$ if v is a real place and $\mu_{v}\left(\left\{a \in k_{v}: a \bar{a} \leq 1\right\}\right)=2 \pi$ if v is an imaginary place. Then the absolute value $|\cdot|_{v}$ on k_{v} is defined as $|a|_{v}=\mu_{v}(a C) / \mu_{v}(C)$, where C is an arbitrary compact subset of k_{v} with nonzero measure. We denote by \mathbb{A} the adele ring of k, by \mathbb{A}_{f} the finite adele ring of k and by $|\cdot|_{\mathbb{A}}=\prod_{v \in \mathfrak{V}}|\cdot|_{v}$ the idele norm on the idele group \mathbb{A}^{\times}.

Let G be a connected affine algebraic group defined over k. For any k algebra $R, G(R)$ stands for the set of R-rational points of G. Let $\mathbf{X}^{*}(G)$ and $\mathbf{X}_{k}^{*}(G)$ be the free \mathbb{Z}-modules consisting of all rational characters and all k rational characters of G, respectively. The absolute Galois group $\operatorname{Gal}(\bar{k} / k)$ acts on $\mathbf{X}^{*}(G)$. The representation of $\operatorname{Gal}(\bar{k} / k)$ in the space $\mathbf{X}^{*}(G) \otimes_{\mathbb{Z}}$ \mathbb{Q} is denoted by σ_{G} and the corresponding Artin L-function is denoted by $L\left(s, \sigma_{G}\right)=\prod_{v \in \mathfrak{V}_{f}} L_{v}\left(s, \sigma_{G}\right)$. We set $\sigma_{k}(G)=\lim _{s \rightarrow 1}(s-1)^{n} L\left(s, \sigma_{G}\right)$, where $n=\operatorname{rank} \mathbf{X}_{k}^{*}(G)$. Let ω^{G} be a nonzero right invariant gauge form on G defined over k. From ω^{G} and the fixed Haar measure μ_{v} on k_{v}, one can construct a right invariant Haar measure ω_{v}^{G} on $G\left(k_{v}\right)$. Then, the Tamagawa measure on $G(\mathbb{A})$ is well defined by $\omega_{\mathbb{A}}^{G}=\left|D_{k}\right|^{-\operatorname{dim} G / 2} \omega_{\infty}^{G} \omega_{f}^{G}$, where $\omega_{\infty}^{G}=\prod_{v \in \mathfrak{V}_{\infty}} \omega_{v}^{G}, \omega_{f}^{G}=\sigma_{k}(G)^{-1} \prod_{v \in \mathfrak{V}_{f}} L_{v}\left(1, \sigma_{G}\right) \omega_{v}^{G}$ and $\left|D_{k}\right|$ is the absolute value of the discriminant of k. For $\chi \in \mathbf{X}_{k}^{*}(G)$, let $|\chi|_{\mathbb{A}}$ be the continuous homomorphism $G(\mathbb{A}) \rightarrow \mathbb{R}_{+}^{\times}$defined by $|\chi|_{\mathbb{A}}(g)=|\chi(g)|_{\mathbb{A}}$. We write $G(\mathbb{A})^{1}$ for the intersection of kernels of all such $|\chi|_{\mathbb{A}}$'s. If $\chi_{1}, \ldots, \chi_{n}$ is a \mathbb{Z}-basis of $\mathbf{X}_{k}^{*}(G)$, then the mapping

$$
g \longmapsto\left(\left|\chi_{1}(g)\right|_{\mathbb{A}}, \ldots,\left|\chi_{n}(g)\right|_{\mathbb{A}}\right)
$$

yields an isomorphism from the quotient group $G(\mathbb{A})^{1} \backslash G(\mathbb{A})$ to $\left(\mathbb{R}_{+}^{\times}\right)^{n}$. We put the Lebesgue measure $d t$ on \mathbb{R} and the invariant measure $d t / t$ on \mathbb{R}_{+}^{\times}. Then there exists uniquely a Haar measure $\omega_{G(\mathbb{A})^{1}}$ of $G(\mathbb{A})^{1}$ such that the Haar measure on $G(\mathbb{A})^{1} \backslash G(\mathbb{A})$ matching with $\omega_{\mathbb{A}}^{G}$ and $\omega_{G(\mathbb{A})^{1}}$ is equal to the pull-back of the measure $\prod_{i=1}^{n} d t_{i} / t_{i}$ on $\left(\mathbb{R}_{+}^{\times}\right)^{n}$ by the above isomorphism. The measure $\omega_{G(\mathbb{A})^{1}}$ is independent of the choice of a \mathbb{Z}-basis of $\mathbf{X}_{k}^{*}(G)$. Since $G(k)$ is a discrete subgroup of $G(\mathbb{A})^{1}$, we put the counting measure $\omega_{G(k)}$ on $G(k)$. Then the Tamagawa number $\tau(G)$ is defined to be the volume of the quotient space $G(k) \backslash G(\mathbb{A})^{1}$ with respect to the measure $\omega_{G}=$ $\omega_{G(k)} \backslash \omega_{G(\mathbb{A})^{1}}$. Here, in general, if μ_{A} and μ_{B} denote Haar measures on a locally compact unimodular group A and its closed unimodular subgroup B, respectively, then $\mu_{B} \backslash \mu_{A}$ (resp. μ_{A} / μ_{B}) denotes a unique right (resp. left) A-invariant measure on the homogeneous space $B \backslash A$ (resp. A / B) matching with μ_{A} and μ_{B}.

If X is an algebraic variety defined over k, then $X(k)$ denotes the set of k-rational points of X. In addition, if X is affine, then $X(\mathbb{A})$ and $X\left(\mathbb{A}_{f}\right)$ stands for the adele and the finite adele of X, respectively. We say that a subset D of $X(\mathbb{A})$ is decomposable if D is of the form $D_{\infty} \times D_{f}$, where D_{∞} and D_{f} are subsets of $\prod_{v \in \mathfrak{V}_{\infty}} X\left(k_{v}\right)$ and $X\left(\mathbb{A}_{f}\right)$, respectively.

If X is a locally compact topological space, $C_{0}(X)$ denotes the space of all compactly supported continuous functions on X. If X is a finite set, $|X|$ denotes the cardinal number of X. For two non-decreasing functions $F_{1}(T)$, $F_{2}(T)$ of real variable $T, F_{1}(T) \sim F_{2}(T)$ means $\lim _{T \rightarrow \infty} F_{1}(T) / F_{2}(T)=1$ if $F_{2}(T) \neq 0$ for T large enough, otherwise, $F_{1}(T) \equiv 0$.

§1. Preliminaries

In the following, let G be a connected reductive group defined over k. We fix a maximally k-split torus S of G, a maximal k-torus S_{1} of G containing S, a minimal k-parabolic subgroup P of G containing S and a Borel subgroup B of P containing S_{1}. Then, we denote by Φ_{k} the relative root system of G with respect to S and by Δ_{k} the set of simple roots of Φ_{k} corresponding to P.

Let M be the centralizer of S in G. Then P has a Levi decomposition $P=M U$, where U is the unipotent radical of P. For every standard k parabolic subgroup R of G, R has a unique Levi subgroup M_{R} containing M. We denote by U_{R} the unipotent radical of R. Throughout this paper, we fix a maximal compact subgroup K of $G(\mathbb{A})$ satisfying the following property; For every standard k-parabolic subgroup R of $G, K \cap M_{R}(\mathbb{A})$ is a maximal compact subgroup of $M_{R}(\mathbb{A})$ and $M_{R}(\mathbb{A})$ possesses an Iwasawa decomposition $\left(M_{R}(\mathbb{A}) \cap U(\mathbb{A})\right) M(\mathbb{A})\left(K \cap M_{R}(\mathbb{A})\right)$. It is known that such maximal compact subgroup of $G(\mathbb{A})$ exists. We set $K^{R}=K \cap R(\mathbb{A}), K^{M_{R}}=$ $K \cap M_{R}(\mathbb{A}), P^{R}=M_{R} \cap P$ and $U^{R}=M_{R} \cap U$.

Let R be a standard k-parabolic subgroup of G. We include the case $R=G$. Let Z_{R} be the greatest central k-split torus in M_{R}. The restriction $\operatorname{map} \mathbf{X}_{k}^{*}\left(M_{R}\right) \rightarrow \mathbf{X}^{*}\left(Z_{R}\right)$ is injective. Since $\mathbf{X}_{k}^{*}\left(M_{R}\right)$ has the same rank as $\mathbf{X}^{*}\left(Z_{R}\right)$, the index

$$
\begin{equation*}
d_{R}=\left[\mathbf{X}^{*}\left(Z_{R}\right): \mathbf{X}_{k}^{*}\left(M_{R}\right)\right] \tag{1.1}
\end{equation*}
$$

is finite. If $\chi_{1}, \ldots, \chi_{r}$ is a \mathbb{Z}-basis of $\mathbf{X}^{*}\left(Z_{R}\right)$, then the mapping $z \mapsto$ $\left(\chi_{1}(z), \ldots, \chi_{r}(z)\right)$ yields an isomorphism from $Z_{R}(\mathbb{A})$ to $\left(\mathbb{A}^{\times}\right)^{r}$. We regard \mathbb{R}_{+}^{\times}as a subgroup of \mathbb{A}^{\times}by identifying $t \in \mathbb{R}_{+}^{\times}$with the idele $t_{\mathbb{A}}=\left(t_{v}\right)$ such that $t_{v}=t$ if $v \in \mathfrak{V}_{\infty}$ and $t_{v}=1$ if $v \in \mathfrak{V}_{f}$. Let A_{R} denote the inverse image of $\left(\mathbb{R}_{+}^{\times}\right)^{r}$ by the isomorphism $Z_{R}(\mathbb{A}) \rightarrow\left(\mathbb{A}^{\times}\right)^{r}$. Then $M_{R}(\mathbb{A})$ has the direct product decomposition: $M_{R}(\mathbb{A})=A_{R} M_{R}(\mathbb{A})^{1}$. The Haar measure $\mu_{A_{R}}$ on A_{R} is defined to be the pull-back of the invariant measure $\prod_{i=1}^{r} d t_{i} / t_{i}$ on $\left(\mathbb{R}_{+}^{\times}\right)^{r}$ with respect to the isomorphism $z \mapsto\left(\left|\chi_{1}(z)\right|_{\mathbb{A}}, \ldots,\left|\chi_{r}(z)\right|_{\mathbb{A}}\right)$ from
A_{R} onto $\left(\mathbb{R}_{+}^{\times}\right)^{r}$. It follows from the definition of $\omega_{M_{R}(\mathbb{A})^{1}}$ that the Tamagawa measure $\omega_{\mathbb{A}}^{M_{R}}$ is decomposed into $d_{R} \mu_{A_{R}} \cdot \omega_{M_{R}(\mathbb{A})^{1}}$. Both A_{R} and $\mu_{A_{R}}$ are independent of the choice of a basis of $\mathbf{X}^{*}\left(Z_{R}\right)$. We set $A_{R}^{G}=A_{R} / A_{G}$.

We define another Haar measure $\nu_{M_{R}(\mathbb{A})}$ of $M_{R}(\mathbb{A})$ as follows. Let $\omega_{\mathbb{A}}^{M}$ and $\omega_{\mathbb{A}}^{U^{R}}$ be the Tamagawa measures of $M(\mathbb{A})$ and $U^{R}(\mathbb{A})$, respectively. There is the function $\delta_{P^{R}}$ on $M(\mathbb{A})$ such that the integration formula

$$
\int_{U^{R}(\mathbb{A})} f\left(m u m^{-1}\right) d \omega_{\mathbb{A}}^{U^{R}}(u)=\delta_{P^{R}}(m)^{-1} \int_{U^{R}(\mathbb{A})} f(u) d \omega_{\mathbb{A}}^{U^{R}}(u)
$$

holds for $f \in C_{0}\left(U^{R}(\mathbb{A})\right)$. In other words, $\delta_{P R}^{-1}$ is the modular character of $P^{R}(\mathbb{A})$. Let $\nu_{K^{M_{R}}}$ be the Haar measure on $K^{M_{R}}$ normalized so that the total volume equals one. Then the mapping

$$
\begin{array}{r}
f \longmapsto \int_{U^{R}(\mathbb{A}) \times M(\mathbb{A}) \times K^{M_{R}}} f(u m h) \delta_{P^{R}}(m)^{-1} d \omega_{\mathbb{A}}^{U^{R}}(u) d \omega_{\mathbb{A}}^{M}(m) d \nu_{K^{M_{R}}}(h), \\
\left(f \in C_{0}\left(M_{R}(\mathbb{A})\right)\right)
\end{array}
$$

defines an invariant measure on $M_{R}(\mathbb{A})$ and is denoted by $\nu_{M_{R}(\mathbb{A})}$. There exists a positive constant C_{R} such that

$$
\begin{equation*}
\omega_{\mathbb{A}}^{M_{R}}=C_{R} \nu_{M_{R}(\mathbb{A})} \tag{1.2}
\end{equation*}
$$

We have the following compatibility formula:

$$
\begin{align*}
& \int_{G(\mathbb{A})} f(g) d \omega_{\mathbb{A}}^{G}(g) \tag{1.3}\\
& \quad=\frac{C_{G}}{C_{R}} \int_{U_{R}(\mathbb{A}) \times M_{R}(\mathbb{A}) \times K} f(u m h) \delta_{R}(m)^{-1} d \omega_{\mathbb{A}}^{U_{R}}(u) d \omega_{\mathbb{A}}^{M_{R}}(m) d \nu_{K}(h)
\end{align*}
$$

for $f \in C_{0}(G(\mathbb{A}))$, where δ_{R}^{-1} is the modular character of $R(\mathbb{A})$.
On the homogeneous space $Y_{R}=R(\mathbb{A})^{1} \backslash G(\mathbb{A})^{1}$, we define the right $G(\mathbb{A})^{1}$-invariant measure $\omega_{Y_{R}}$ by $\omega_{R(\mathbb{A})^{1}} \backslash \omega_{G(\mathbb{A})^{1}}$. We note that both $G(\mathbb{A})^{1}$ and $R(\mathbb{A})^{1}$ are unimodular. We identify Y_{R} with $A_{G} R(\mathbb{A})^{1} \backslash G(\mathbb{A})$. Then the mapping

$$
\iota_{R}: K / K^{R} \times A_{R}^{G} \longrightarrow Y_{R}:(\bar{h}, \bar{z}) \longmapsto A_{G} R(\mathbb{A})^{1} z^{-1} h^{-1}
$$

is a bijection, where $\bar{h}=h K^{R}$ and $\bar{z}=z A_{G}$ for $h \in K$ and $z \in A_{R}$. Set $\nu_{A_{R}^{G}}=\mu_{A_{R}} / \mu_{A_{G}}$.

Lemma 1. Let D be an open subgroup of K and $\left\{h_{1}, \ldots, h_{s}\right\}$ be a complete set of coset representatives of K / D. Then, for any right D-invariant function $f \in C_{0}\left(Y_{R}\right)$, one has

$$
\int_{Y_{R}} f(y) d \omega_{Y_{R}}(y)=\frac{C_{G} d_{R}}{[K: D] C_{R} d_{G}} \sum_{i=1}^{s} \int_{A_{R}^{G}} f\left(\iota_{R}\left(\bar{h}_{i}^{-1}, \bar{z}\right)\right) \delta_{R}(z) d \nu_{A_{R}^{G}}(\bar{z}) .
$$

Proof. If we set

$$
\varphi(y)=\int_{K} f(y h) d \nu_{K}(h)=\frac{1}{[K: D]} \sum_{i=1}^{s} f\left(y h_{i}\right)
$$

then φ is a right K-invariant function on Y_{R}. By [W, Corollary to Lemma 1],

$$
\int_{Y_{R}} \varphi(y) d \omega_{Y_{R}}(y)=\frac{C_{G} d_{R}}{C_{R} d_{G}} \int_{A_{R}^{G}} \varphi\left(\iota_{R}(\bar{e}, \bar{z})\right) \delta_{R}(z) d \nu_{A_{R}^{G}}(\bar{z})
$$

Since $\omega_{Y_{R}}$ is right $G(\mathbb{A})^{1}$-invariant, the left hand side equals the integral of $f(y)$ over Y_{R}.

§2. Heights on flag varieties

Let V_{π} be a finite dimensional \bar{k}-vector space endowed with a k structure $V_{\pi}(k)$ and $\pi: G \rightarrow G L\left(V_{\pi}\right)$ be an absolutely irreducible k-rational representation. The highest weight space in V_{π} with respect to B is denoted by x_{π}. Let Q_{π} be the stabilizer of x_{π} in G and λ_{π} the \bar{k}-rational character of Q_{π} by which Q_{π} acts on x_{π}. The representation π is said to be strongly k-rational if x_{π} is defined over k. Then Q_{π} is a standard k-parabolic subgroup of G and λ_{π} is a k-rational character of Q_{π}. It is known that $\left.\lambda_{\pi}\right|_{S}$ is a non-negative integral linear combination of the fundamental k-weights ([W, Section 1]). We say π is maximal if Q_{π} is a standard maximal k-parabolic subgroup. This is equivalent to the condition that $\left.\lambda_{\pi}\right|_{S}$ is a positive integer multiple of a single fundamental k-weight.

Let π be a strongly k-rational representation. For convenience, we use a right action of G on V_{π} defined by $a \cdot g=\pi\left(g^{-1}\right) a$ for $g \in G$ and $a \in V_{\pi}$. Then the mapping $g \mapsto x_{\pi} \cdot g$ gives rise to a k-rational embedding of $Q_{\pi} \backslash G$ into the projective space $\mathbb{P} V_{\pi}$.

We write $X_{Q_{\pi}}$ for $Q_{\pi} \backslash G$. Since Q_{π} is a k-parabolic subgroup, $X_{Q_{\pi}}(k)$ is naturally identified with $Q_{\pi}(k) \backslash G(k)$ ([B, Proposition 20.5]). Let us define
a height on $X_{Q_{\pi}}(k)$. We fix a k-basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ of the k-vector space $V_{\pi}(k)$ and define a local height H_{v} on $V_{\pi}\left(k_{v}\right)$ for each $v \in \mathfrak{V}$ as follows:
$H_{v}\left(a_{1} \mathbf{e}_{1}+\cdots+a_{n} \mathbf{e}_{n}\right)= \begin{cases}\left(\left|a_{1}\right|_{v}^{2}+\cdots+\left|a_{n}\right|_{v}^{2}\right)^{1 /(2[k: \mathbb{Q}])} & \text { (if } v \text { is real) } \\ \left(\left|a_{1}\right|_{v}+\cdots+\left|a_{n}\right|_{v}\right)^{1 /[k: \mathbb{Q}]} & \text { (if } v \text { is imaginary) } \\ \sup \left(\left|a_{1}\right|_{v}, \ldots,\left|a_{n}\right|_{v}\right)^{1 /[k: \mathbb{Q}]} & \left.\text { (if } v \in \mathfrak{V}_{f}\right)\end{cases}$
The global height H_{π} on $V_{\pi}(k)$ is defined to be the product of all H_{v}, that is, $H_{\pi}(a)=\prod_{v \in \mathfrak{V}} H_{v}(a)$. By the product formula, H_{π} is invariant by scalar multiplications. Thus, H_{π} defines a height on $\mathbb{P} V_{\pi}(k)$, and on $X_{Q_{\pi}}(k)$ by restriction. The height H_{π} is extended to $G L\left(V_{\pi}, \mathbb{A}\right) \mathbb{P} V_{\pi}(k)$ by

$$
H_{\pi}(\xi \bar{a})=\prod_{v \in \mathfrak{N}} H_{v}\left(\xi_{v} a\right)
$$

for $\xi=\left(\xi_{v}\right) \in G L\left(V_{\pi}, \mathbb{A}\right)$ and $\bar{a}=k a \in \mathbb{P} V_{\pi}(k), a \in V_{\pi}(k)-\{0\}$. We set

$$
\Phi_{\pi, \xi}(g)=H_{\pi}\left(\xi\left(x_{\pi} \cdot g\right)\right) / H_{\pi}\left(\xi x_{\pi}\right)
$$

for $g \in G(\mathbb{A})$. Obviously, $\Phi_{\pi, \xi}$ is a continuous function on $G(\mathbb{A})$ and satisfies

$$
\Phi_{\pi, \xi}(q g)=\left|\lambda_{\pi}(q)^{-1}\right|_{\mathbb{A}}^{1 /[k: \mathbb{Q}]} \Phi_{\pi, \xi}(g)
$$

for any $q \in Q_{\pi}(\mathbb{A})$ and $g \in G(\mathbb{A})$. Thus $\Phi_{\pi, \xi}$ defines a function on $Y_{Q_{\pi}}=Q_{\pi}(\mathbb{A})^{1} \backslash G(\mathbb{A})^{1}$. It is always possible that one choose an element $\xi \in G L\left(V_{\pi}, \mathbb{A}\right)$ so that $\Phi_{\pi, \xi}$ is right K-invariant. In many examples, one can take the identity as such ξ.

§3. The Hardy-Littlewood property of flag varieties

In the following, we assume π is maximal and strongly k-rational. We fix, once and for all, an element $\xi \in G L\left(V_{\pi}, \mathbb{A}\right)$ such that $\Phi_{\pi, \xi}$ is right K invariant. We simply write Q for Q_{π} and Φ_{π} for $\Phi_{\pi, \xi}$. Let Δ_{Q} be the set of nonzero roots $\left.\beta\right|_{Z_{Q}}, \beta \in \Delta_{k}$. Since Q is maximal, Δ_{Q} consists of a single element $\left.\alpha\right|_{Z_{Q}}$. Let n_{Q} be the positive integer such that $\left.n_{Q}^{-1} \alpha\right|_{Z_{Q}}$ is a \mathbb{Z}-base of $\mathbf{X}^{*}\left(Z_{G} \backslash Z_{Q}\right)$. We set $\alpha_{Q}=\left.n_{Q}^{-1} \alpha\right|_{Z_{Q}}$. Then the Haar measure $\nu_{A_{Q}}$ equals the pull-back of the measure $d t / t$ by the isomorphism $\left|\alpha_{Q}\right|_{\mathbb{A}}: A_{Q}^{G} \rightarrow \mathbb{R}_{+}^{\times}$. If we set $e_{Q}=n_{Q} \operatorname{dim} U_{Q}$, we have

$$
\begin{equation*}
\delta_{Q}(z)=\left|\alpha_{Q}(z)\right|_{\mathbb{A}}^{e_{Q}}, \quad\left(z \in Z_{Q}(\mathbb{A})\right) \tag{3.1}
\end{equation*}
$$

The quotient morphism $Z_{Q} \rightarrow Z_{G} \backslash Z_{Q}$ induces an isomorphism $\mathbf{X}^{*}\left(Z_{G} \backslash Z_{Q}\right)$ $\otimes_{\mathbb{Z}} \mathbb{Q} \rightarrow \mathbf{X}^{*}\left(Z_{Q} \cap G^{s s}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$, where $G^{s s}$ denotes the derived group of G. Under the identification $\mathbf{X}^{*}\left(Z_{Q} \cap G^{s s}\right) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbf{X}^{*}\left(Z_{G} \backslash Z_{Q}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$, there exists the positive rational number e_{π} such that

$$
\begin{equation*}
\left.\lambda_{\pi}\right|_{Z_{Q} \cap G^{s s}}=e_{\pi} \alpha_{Q} \tag{3.2}
\end{equation*}
$$

Then $\Phi_{\pi}\left(\iota_{Q}(\bar{h}, \bar{z})\right)=\left|\alpha_{Q}(z)\right|_{\mathbb{A}}^{e_{\pi} /[k: \mathbb{Q}]}$ holds for any $(\bar{h}, \bar{z}) \in K / K^{Q} \times A_{Q}^{G}$.
For an open subset D of K and $0<T$, we set

$$
E_{\pi}(D, T)=\left\{\iota_{Q}(\bar{h}, \bar{z}): \bar{h} \in D K^{Q} / K^{Q}, \bar{z} \in A_{Q}^{G},\left|\alpha_{Q}(\bar{z})\right|_{\mathbb{A}} \leq T^{[k: \mathbb{Q}] / e_{\pi}}\right\}
$$

Obviously, $E_{\pi}(D, T)$ is contained in $\left\{y \in Y_{Q}: \Phi_{\pi}(y) \leq T\right\}$, and in particular, the set $E_{\pi}(K, T) \cap X_{Q}(k)$ coincides with the set $\left\{x \in X_{Q}(k): H_{\pi}(\xi x) \leq\right.$ $\left.H_{\pi}\left(\xi x_{\pi}\right) T\right\}$. The next is the main theorem of this paper.

Theorem 1. Let π and Q be as above and $D=D_{\infty} \times D_{f}$ a decomposable open subset of K such that D_{∞} equals the infinite part K_{∞} of K. Then one has

$$
\begin{equation*}
\left|E_{\pi}(D, T) \cap X_{Q}(k) g\right| \sim \frac{\tau(Q)}{\tau(G)} \omega_{Y_{Q}}\left(E_{\pi}(D, T)\right) \quad \text { as } T \rightarrow \infty \tag{3.3}
\end{equation*}
$$

for any $g \in G(\mathbb{A})^{1}$.
We fix a decomposable open subset D of K with $D_{\infty}=K_{\infty}$. Since the finite part of K is totally disconnected, there is a decomposable open normal subgroup D_{1} of K and $b_{0} \in D$ such that $D_{1} b_{0}^{-1} D=b_{0}^{-1} D$ and $D_{1, \infty}=K_{\infty}$. If $b_{1}, \ldots, b_{s} \in D$ is a complete set of coset representatives of $D_{1} K^{Q} \backslash b_{0}^{-1} D K^{Q}$, then $E_{\pi}\left(b_{0}^{-1} D, T\right)=E_{\pi}(D, T) b_{0}$ decomposes into a disjoint union of $E_{\pi}\left(D_{1}, T\right) b_{i}, i=1,2, \ldots, s$. It is easy to see that the truth of (3.3) for D_{1} implies the truth of (3.3) for D. Hence, we may assume without loss of generality that D is an open normal subgroup of K to begin with. Then, by Lemma $1, \omega_{Y_{Q}}\left(E_{\pi}(D, T)\right)$ equals

$$
\frac{\left[D K^{Q}: D\right] C_{G} d_{Q}}{[K: D] C_{Q} d_{G}} \int_{0}^{T^{[k: \mathbb{Q}] / e_{\pi}}} t^{e_{Q}} \frac{d t}{t}=\frac{\left[D K^{Q}: D\right] C_{G} d_{Q}}{[K: D] C_{Q} d_{G} e_{Q}} T^{e_{Q}[k: \mathbb{Q}] / e_{\pi}}
$$

Let χ_{T} be the characteristic function of $E_{\pi}(D, T)$. Define the function F_{T} on $G(k) \backslash G(\mathbb{A})^{1}$ as

$$
F_{T}(g)=\frac{1}{\omega_{Y_{Q}}\left(E_{\pi}(D, T)\right)} \sum_{x \in X_{Q}(k)} \chi_{T}(x g)=\frac{\left|E_{\pi}(D, T) \cap X_{Q}(k) g\right|}{\omega_{Y_{Q}}\left(E_{\pi}(D, T)\right)}
$$

(3.3) is equivalent to the assertion that

$$
\lim _{T \rightarrow \infty} F_{T}(g)=\frac{\tau(Q)}{\tau(G)}
$$

holds for every $g \in G(\mathbb{A})^{1}$. For a pair of functions ψ_{1}, ψ_{2} on $G(k) \backslash G(\mathbb{A})^{1}$, we set

$$
\left\langle\psi_{1}, \psi_{2}\right\rangle=\int_{G(k) \backslash G(\mathbb{A})^{1}} \psi_{1}(g) \overline{\psi_{2}(g)} d \omega_{G}(g)
$$

if the integral has the meaning.
Proposition 1. If

$$
\lim _{T \rightarrow \infty}\left\langle\psi, F_{T}\right\rangle=\frac{\tau(Q)}{\tau(G)}\langle\psi, 1\rangle
$$

holds for any $\psi \in C_{0}\left(G(k) \backslash G(\mathbb{A})^{1}\right)$, then

$$
\lim _{T \rightarrow \infty} F_{T}(g)=\frac{\tau(Q)}{\tau(G)}
$$

for every $g \in G(\mathbb{A})^{1}$.
Proof. Let $\left\{U_{m}\right\}_{m=1,2,3, \ldots}$ be a descending family of neighborhoods of the identity e in $G(\mathbb{A})^{1}$ such that U_{m} is decomposable, i.e., $U_{m}=\left(U_{m}\right)_{\infty} \times$ $\left(U_{m}\right)_{f}, U_{m}^{-1}=U_{m},\left(U_{m}\right)_{f}=D_{f},\left(U_{m}\right)_{\infty}$ is compact and $\bigcap_{m=1}^{\infty}\left(U_{m}\right)_{\infty}=$ $\{e\}$. Since Φ_{π} is continuous and $K U_{m}$ is compact, there exists the maximum

$$
\beta_{m}=\max _{g \in K U_{m}} \Phi_{\pi}(g)=\max _{g_{\infty} \in K_{\infty}\left(U_{m}\right)_{\infty}} \Phi_{\pi}\left(g_{\infty}\right) .
$$

From the right K-invariance of Φ_{π} and $\Phi_{\pi}(e)=1$, it follows that $\beta_{m} \downarrow 1$ as $m \rightarrow \infty$. By $D_{\infty}=K_{\infty}$ and the definition of $E_{\pi}(D, T)$, it is evident that

$$
E_{\pi}(D, T) U_{m} \subset E_{\pi}\left(D, \beta_{m} T\right)
$$

for every m. Therefore,

$$
E_{\pi}\left(D, \beta_{m}^{-1} T\right) g^{-1} g_{0}^{-1} \subset E_{\pi}(D, T) g_{0}^{-1} \subset E_{\pi}\left(D, \beta_{m} T\right) g^{-1} g_{0}^{-1}
$$

holds for every $g \in U_{m}=U_{m}^{-1}$ and a fixed $g_{0} \in G(\mathbb{A})^{1}$. This implies the inequality

$$
\begin{aligned}
\omega_{Y_{Q}}\left(E_{\pi}\left(D, \beta_{m}^{-1} T\right)\right) F_{\beta_{m}^{-1} T}\left(g_{0} g\right) & \leq \omega_{Y_{Q}}\left(E_{\pi}(D, T)\right) F_{T}\left(g_{0}\right) \\
& \leq \omega_{Y_{Q}}\left(E_{\pi}\left(D, \beta_{m} T\right)\right) F_{\beta_{m} T}\left(g_{0} g\right)
\end{aligned}
$$

for $g \in U_{m}$. Let U_{m}^{\prime} be the image of $g_{0} U_{m}$ to the quotient $G(k) \backslash G(\mathbb{A})^{1}$. We choose a real-valued and non-negative function $\psi_{m} \in C_{0}\left(G(k) \backslash G(\mathbb{A})^{1}\right)$ such that the support of ψ_{m} is contained in U_{m}^{\prime} and $\left\langle\psi_{m}, 1\right\rangle=1$. Then the above inequality yields

$$
\begin{aligned}
\frac{\omega_{Y_{Q}}\left(E_{\pi}\left(D, \beta_{m}^{-1} T\right)\right)}{\omega_{Y_{Q}}\left(E_{\pi}(D, T)\right)}\left\langle\psi_{m}, F_{\beta_{m}^{-1} T}\right\rangle & \leq F_{T}\left(g_{0}\right) \\
& \leq \frac{\omega_{Y_{Q}}\left(E_{\pi}\left(D, \beta_{m} T\right)\right)}{\omega_{Y_{Q}}\left(E_{\pi}(D, T)\right)}\left\langle\psi_{m}, F_{\beta_{m} T}\right\rangle
\end{aligned}
$$

By $\omega_{Y_{Q}}\left(E_{\pi}\left(D, \beta_{m} T\right)\right) / \omega_{Y_{Q}}\left(E_{\pi}(D, T)\right)=\beta_{m}^{e_{Q}[k: \mathbb{Q}] / e_{\pi}}$ and the assumption on F_{T}, one has

$$
\beta_{m}^{-e_{Q}[k: \mathbb{Q}] / e_{\pi}} \frac{\tau(Q)}{\tau(G)} \leq \liminf _{T \rightarrow \infty} F_{T}\left(g_{0}\right) \leq \limsup _{T \rightarrow \infty} F_{T}\left(g_{0}\right) \leq \beta_{m}^{e_{Q}[k: \mathbb{Q}] / e_{\pi}} \frac{\tau(Q)}{\tau(G)}
$$

Hence, letting $m \rightarrow \infty$, we get the assertion.
For every function ψ on $G(k) \backslash G(\mathbb{A})^{1}$, we set

$$
\begin{aligned}
\Pi_{Q}^{1}(\psi)(g) & =\int_{U_{Q}(k) \backslash U_{Q}(\mathbb{A})} \psi(u g) d \omega_{U_{Q}}(u) \\
\Pi_{Q}(\psi)(g) & =\int_{Q(k) \backslash Q(\mathbb{A})^{1}} \psi(q g) d \omega_{Q}(q) \\
& =\int_{M_{Q}(k) \backslash M_{Q}(\mathbb{A})^{1}} \Pi_{Q}^{1}(\psi)(m g) d \omega_{M_{Q}}(m)
\end{aligned}
$$

when the integrals have the meaning. By the unfolding argument and Lemma 1, we have

$$
\begin{align*}
\left\langle\psi, F_{T}\right\rangle & =\int_{G(k) \backslash G(\mathbb{A})^{1}} \psi(g) F_{T}(g) d \omega_{G}(g) \tag{3.4}\\
& =\frac{1}{\omega_{Y_{Q}}\left(E_{\pi}(D, T)\right)} \int_{Y_{Q}} \Pi_{Q}(\psi)(y) \chi_{T}(y) d \omega_{Y_{Q}}(y) \\
& =\frac{e_{Q}}{T^{e_{Q}}[k: \mathbb{Q}] / e_{\pi}} \int_{0}^{T^{[k: \mathbb{Q}] / e_{\pi}}} t^{e_{Q}} \Pi_{Q}(\psi)\left(\iota_{Q}\left(\bar{e},\left|\alpha_{Q}\right|_{\mathbb{A}}^{-1}(t)\right)\right) \frac{d t}{t}
\end{align*}
$$

for every right D-invariant $\psi \in C_{0}\left(G(k) \backslash G(\mathbb{A})^{1}\right)$, where $\left|\alpha_{Q}\right|_{\mathbb{A}}^{-1}$ stands for the inverse map of $\left|\alpha_{Q}\right|_{\mathbb{A}}: A_{Q}^{G} \rightarrow \mathbb{R}_{+}^{\times}$.

§4. Preliminaries on Eisenstein series

We recall the theory of Eisenstein series following [H], [MW]. Let R be a standard k-parabolic subgroup of G. We set

$$
\operatorname{Re} \mathfrak{a}_{R}=X^{*}\left(Z_{G} \backslash Z_{R}\right) \otimes_{\mathbb{Z}} \mathbb{R}, \quad \mathfrak{a}_{R}=\operatorname{Re} \mathfrak{a}_{R} \otimes_{\mathbb{R}} \mathbb{C}=\operatorname{Re} \mathfrak{a}_{R}+\sqrt{-1} \operatorname{Re} \mathfrak{a}_{R}
$$

Every $\Lambda \in \mathfrak{a}_{R}$ of the form $\chi_{1} \otimes s_{1}+\cdots+\chi_{r} \otimes s_{r}, \chi_{i} \in X^{*}\left(Z_{G} \backslash Z_{R}\right), s_{i} \in \mathbb{C}$ gives rise to a quasi-character of A_{R}^{G} by

$$
z \longmapsto z^{\Lambda}=\left|\chi_{1}(z)\right|_{\mathbb{A}}^{s_{1}} \cdots\left|\chi_{r}(z)\right|_{\mathbb{A}}^{s_{r}}
$$

for $z \in A_{R}^{G}$. By this way, \mathfrak{a}_{R} is identified with the group of quasi-characters of A_{R}^{G}. There is a unique $\rho_{R} \in \operatorname{Re} \mathfrak{a}_{R}$ such that $z^{2 \rho_{R}}=\delta_{R}(z)$. If R^{\prime} is a standard k-parabolic subgroup of G such that $R^{\prime} \subset R$, then $Z_{G} \backslash Z_{R}\left(\right.$ resp. $\left.A_{R}^{G}\right)$ is a subgroup of $Z_{G} \backslash Z_{R^{\prime}}$ (resp. $A_{R^{\prime}}^{G}$) and hence there is a natural surjection from $\mathfrak{a}_{R^{\prime}}$ onto \mathfrak{a}_{R}. The kernel of this surjection is denoted by $\mathfrak{a}_{R^{\prime}}^{R}$. Since the quasi-characters of $M_{R}(\mathbb{A})^{1} \backslash M_{R}(\mathbb{A})$ is restricted to $M_{R^{\prime}}(\mathbb{A})^{1} \backslash M_{R^{\prime}}(\mathbb{A})$ ([MW, I.1.4.(2)]), there is a splitting $\mathfrak{a}_{R} \rightarrow \mathfrak{a}_{R^{\prime}}$, and hence a direct product decomposition: $\mathfrak{a}_{R^{\prime}}=\mathfrak{a}_{R} \oplus \mathfrak{a}_{R^{\prime}}^{R}$. The subspace $\mathfrak{a}_{R^{\prime}}^{R}$ is identified with the group of quasi-characters of $A_{R^{\prime}}^{R}=A_{R^{\prime}} / A_{R}$ by the similar way as above. If $\left(\delta_{R^{\prime}}^{R}\right)^{-1}$ denotes the modular character of $\left(M_{R} \cap R^{\prime}\right)(\mathbb{A})$, there is a unique $\rho_{R^{\prime}}^{R} \in \operatorname{Re} \mathfrak{a}_{R^{\prime}}^{R}$ such that $z^{2 \rho_{R^{\prime}}^{R}}=\delta_{R^{\prime}}^{R}(z)$ for $z \in A_{R^{\prime}}^{R}$. One has $\rho_{R^{\prime}}=\rho_{R}+\rho_{R^{\prime}}^{R}$. We always consider \mathfrak{a}_{R} as a subspace of \mathfrak{a}_{P} and fix an admissible inner product (\cdot, \cdot) on $\operatorname{Re} \mathfrak{a}_{P}$. Then $\operatorname{Re} \mathfrak{a}_{R^{\prime}}=\operatorname{Re} \mathfrak{a}_{R} \oplus \operatorname{Re} \mathfrak{a}_{R^{\prime}}^{R}$ is an orthogonal decomposition. For each root $\beta \in \Phi_{k}, \beta^{\vee}$ denotes the coroot $2(\beta, \beta)^{-1} \beta$. Let Δ_{R} denote the set consisting of nonzero roots $\left.\beta\right|_{Z_{R}}, \beta \in \Delta_{k}$. It is obvious that Δ_{R} is contained in $\operatorname{Re} \mathfrak{a}_{R}$ and spans \mathfrak{a}_{R} as a \mathbb{C}-vector space. We set

$$
\mathfrak{c}_{R}=\left\{\Lambda \in \mathfrak{a}_{R}:\left(\operatorname{Re} \Lambda-\rho_{R},\left.\beta^{\vee}\right|_{Z_{R}}\right)>0 \text { for all }\left.\beta\right|_{Z_{R}} \in \Delta_{R}\right\}
$$

and

$$
\begin{aligned}
\mathfrak{c}_{R^{\prime}}^{R}=\left\{\Lambda \in \mathfrak{a}_{R^{\prime}}^{R}:\left(\operatorname{Re} \Lambda-\rho_{R^{\prime}}^{R},\left.\beta^{\vee}\right|_{Z_{R^{\prime}}}\right)>0 \text { for all }\left.\beta\right|_{Z_{R^{\prime}}}\right. & \in \Delta_{R^{\prime}} \\
& \text { with } \left.\left.\beta\right|_{Z_{R}}=0\right\} .
\end{aligned}
$$

A map $z_{R}: G(\mathbb{A}) \rightarrow A_{R}^{G}=A_{G} M_{R}(\mathbb{A})^{1} \backslash M_{R}(\mathbb{A})$ is defined by $z_{R}(g)=$ $A_{G} M_{R}(\mathbb{A})^{1} m$ if $g=u m h, u \in U_{R}(\mathbb{A}), m \in M_{R}(\mathbb{A})$ and $h \in K$.

For a smooth function $\eta \in C_{0}^{\infty}\left(A_{R}^{G}\right)$, its Mellin transform is defined to be

$$
\widehat{\eta}(\Lambda)=\int_{A_{R}^{G}} \eta(z) z^{-\left(\Lambda+\rho_{R}\right)} d \nu_{A_{R}^{G}}(z)
$$

We choose the measure $d \Lambda$ on \mathfrak{a}_{R} so that the following inversion formula holds for any $\eta \in C_{0}^{\infty}\left(A_{R}^{G}\right)$:

$$
\eta(z)=\int_{\Lambda \in \Lambda_{0}+\sqrt{-1} \operatorname{Re} \mathfrak{a}_{R}} \widehat{\eta}(\Lambda) z^{\Lambda+\rho_{R}} d \Lambda
$$

where $\Lambda_{0} \in \operatorname{Re} \mathfrak{a}_{R}$ is a base point.
Let $\mathcal{A}_{0, R}=\mathcal{A}_{0}\left(A_{R}^{G} U_{R}(\mathbb{A}) M_{R}(k) \backslash G(\mathbb{A})^{1}\right)$ be the space of cuspidal automorphic forms on $A_{R}^{G} U_{R}(\mathbb{A}) M_{R}(k) \backslash G(\mathbb{A})^{1}$. For an open subgroup $D \subset K$, $\mathcal{A}_{0, R}^{D}$ denotes the set of right D-invariant cusp forms in $\mathcal{A}_{0, R}$. For $\varphi \in \mathcal{A}_{0, R}$, $\eta \in C_{0}^{\infty}\left(A_{R}^{G}\right)$ and $\Lambda \in \mathfrak{c}_{R}$, the pseudo-Eisenstein series $\theta_{\varphi, \eta}$ and the Eisenstein series $E(\varphi, \Lambda)$ on $G(k) \backslash G(\mathbb{A})^{1}$ are defined as follows:

$$
\begin{aligned}
\theta_{\varphi, \eta}(g) & =\sum_{\gamma \in R(k) \backslash G(k)} \varphi(\gamma g) \eta\left(z_{R}(\gamma g)\right), \\
E(\varphi, \Lambda)(g) & =\sum_{\gamma \in R(k) \backslash G(k)} z_{R}(\gamma g)^{\Lambda+\rho_{R}} \varphi(\gamma g) .
\end{aligned}
$$

It is known that both series are absolutely convergent, $\theta_{\varphi, \eta}$ is a rapidly decreasing function on $G(k) \backslash G(\mathbb{A})^{1}$ and $E(\varphi, \Lambda)$ is meromorphically continued on the whole \mathfrak{a}_{R}. If $\Lambda_{0} \in \operatorname{Re} \mathfrak{a}_{R} \cap \mathfrak{c}_{R}$ is fixed, then $\theta_{\varphi, \eta}$ is expressed as

$$
\theta_{\varphi, \eta}(g)=\int_{\Lambda \in \Lambda_{0}+\sqrt{-1} \operatorname{Re} \mathfrak{a}_{R}} \widehat{\eta}(\Lambda) E(\varphi, \Lambda)(g) d \Lambda
$$

We need intertwining operators to describe constant terms of pseudoEisenstein series. Let W_{G} be the relative Weyl groups of (G, S). We take a pair of a standard k-parabolic subgroup R^{\prime} and an element $w \in W_{G}$ such that $w M_{R} w^{-1}=M_{R^{\prime}}$. Then, for $\Lambda \in \mathfrak{c}_{R}$ and $\varphi \in \mathcal{A}_{0, R}$, we consider

$$
\begin{aligned}
& (M(w, \Lambda) \varphi)(g)=z_{R^{\prime}}(g)^{-\left(w \Lambda+\rho_{R^{\prime}}\right)} \\
& \quad \times \int_{\left(U_{R^{\prime}}(\mathbb{A}) \cap w U_{R}(\mathbb{A}) w^{-1}\right) \backslash U_{R^{\prime}}(\mathbb{A})} \varphi\left(w^{-1} u g\right) z_{R}\left(w^{-1} u g\right)^{\Lambda+\rho_{R}} d \omega_{\mathbb{A}}^{U_{R^{\prime}}}(u) .
\end{aligned}
$$

The integral of the right-hand side converges absolutely and $M(w, \Lambda) \varphi$ is contained in $\mathcal{A}_{0, R^{\prime}}$. Moreover, the operator $M(w, \Lambda)$ is meromorphically continued to the whole \mathfrak{a}_{R}. The adjoint operator $M(w, \Lambda)^{*}$ of $M(w, \Lambda)$ with respect to the L^{2}-inner product on $\mathcal{A}_{0, R}$ equals $M\left(w^{-1},-w \bar{\Lambda}\right)$.

§5. Proof of Theorem 1

Let π, Q, D and F_{T} be the same as in Section 3. On account of Proposition 1, we must prove

$$
\lim _{T \rightarrow \infty}\left\langle\psi, F_{T}\right\rangle=\frac{\tau(Q)}{\tau(G)}\langle\psi, 1\rangle
$$

for every $\psi \in C_{0}(G(k) \backslash G(\mathbb{A}))$. By [DRS, Lemma 2.4], it is enough to prove

$$
\lim _{T \rightarrow \infty}\left\langle\theta_{\varphi, \eta}, F_{T}\right\rangle=\frac{\tau(Q)}{\tau(G)}\left\langle\theta_{\varphi, \eta}, 1\right\rangle
$$

for all pseudo-Eisenstein series $\theta_{\varphi, \eta}$.
Proposition 2. Let R be a standard k-parabolic subgroup of $G, \varphi \in$ $\mathcal{A}_{0, R}$ and $\eta \in C_{0}^{\infty}\left(A_{R}^{G}\right)$. If $R \neq P$, i.e., R is not a minimal k-parabolic subgroup, then

$$
\left\langle\theta_{\varphi, \eta}, F_{T}\right\rangle=\left\langle\theta_{\varphi, \eta}, 1\right\rangle=0
$$

Proof. First, by (1.3) and $\omega_{G(\mathbb{A})^{1}}=\left(d_{G} \mu_{A_{G}}\right) \backslash \omega_{\mathbb{A}}^{G}$, one has

$$
\begin{align*}
\left\langle\theta_{\varphi, \eta}, 1\right\rangle= & \int_{R(k) \backslash G(\mathbb{A})^{1}} \varphi(g) \eta\left(z_{R}(g)\right) d\left(\omega_{R(k)} \backslash \omega_{G(\mathbb{A})^{1}}\right)(g) \tag{5.1}\\
= & \frac{C_{G}}{C_{R} d_{G}} \int_{U_{R}(k) \backslash U_{R}(\mathbb{A}) \times A_{G} M_{R}(k) \backslash M_{R}(\mathbb{A}) \times K} \varphi(m h) \eta\left(z_{R}(m)\right) \\
& \quad \times \delta_{R}(m)^{-1} d \omega_{U_{R}}(u) d\left(\mu_{A_{G}} \omega_{G(k)} \backslash \omega_{\mathbb{A}}^{M_{R}}\right)(m) d \nu_{K}(h) \\
= & \frac{C_{G} d_{R}}{C_{R} d_{G}} \int_{M_{R}(k) \backslash M_{R}(\mathbb{A})^{1} \times K} \varphi(m h)\left\{\int_{A_{R}^{G}} \eta(z) z^{-2 \rho_{R}} d \nu_{A_{R}^{G}}(z)\right\} \\
& \quad \times d \omega_{M_{R}}(m) d \nu_{K}(h) \\
= & \frac{C_{G} d_{R}}{C_{R} d_{G}} \widehat{\eta}\left(\rho_{R}\right)\langle\varphi, 1\rangle_{R},
\end{align*}
$$

where we set

$$
\langle\varphi, 1\rangle_{R}=\int_{M_{R}(k) \backslash M_{R}(\mathbb{A})^{1} \times K} \varphi(m h) d \omega_{M_{R}}(m) d \nu_{K}(h)
$$

From the cuspidality of φ, it follows $\langle\varphi, 1\rangle_{R}=0$, and hence $\left\langle\theta_{\varphi, \eta}, 1\right\rangle=0$.

Next we compute $\Pi_{Q}\left(\theta_{\varphi, \eta}\right)$. Since Q is maximal, there is an only one simple root $\alpha \in \Delta_{k}$ such that $\left.\alpha\right|_{Z_{Q}} \neq 0$. We define a subset $W\left(M_{R}, M_{Q}\right)$ of the Weyl group W_{G} by

$$
\begin{aligned}
W\left(M_{R}, M_{Q}\right)=\left\{w \in W_{G}: w^{-1}(\beta)>0\right. & \text { for all } \beta \in \Delta_{k}-\{\alpha\} \\
& \left.\quad \text { and } w R w^{-1} \subset Q\right\}
\end{aligned}
$$

Then the constant term of the Eisenstein series $E(\varphi, \Lambda)$ along U_{Q} is given by the formula

$$
\begin{aligned}
& \Pi_{Q}^{1}(E(\varphi, \Lambda))(g) \\
& \quad=\sum_{w \in W\left(M_{R}, M_{Q}\right)} \sum_{\gamma \in M_{Q}(k) \cap R^{w}(k) \backslash M_{Q}(k)}(M(w, \Lambda) \varphi)(\gamma g) z_{R^{w}}(\gamma g)^{w \Lambda+\rho_{R} w},
\end{aligned}
$$

where R^{w} denotes $w R w^{-1}$ ([MW, Proposition II.1.7]). If $W\left(M_{R}, M_{Q}\right)$ is empty, this constant term is zero. Thus $\Pi_{Q}^{1}\left(\theta_{\varphi, \eta}\right)(g)$ equals

$$
\begin{align*}
& \sum_{w \in W\left(M_{R}, M_{Q}\right)} \int_{\Lambda \in \Lambda_{0}+\sqrt{-1} \operatorname{Re}_{R}} \widehat{\eta}(\Lambda) \tag{5.2}\\
& \quad \times \sum_{\gamma \in M_{Q}(k) \cap R^{w}(k) \backslash M_{Q}(k)}(M(w, \Lambda) \varphi)(\gamma g) z_{R^{w}}(\gamma g)^{w \Lambda+\rho_{R} w} d \Lambda \\
& =\sum_{w \in W\left(M_{R}, M_{Q}\right)} \int_{\Lambda \in w \Lambda_{0}+\sqrt{-1} \operatorname{Re}_{R^{w}}} \widehat{\eta}\left(w^{-1} \Lambda\right) \\
& \quad \times \sum_{\gamma \in M_{Q}(k) \cap R^{w}(k) \backslash M_{Q}(k)}\left(M\left(w, w^{-1} \Lambda\right) \varphi\right)(\gamma g) z_{R^{w}}(\gamma g)^{\Lambda+\rho_{R} w} d \Lambda
\end{align*}
$$

We take $m \in A_{G} \backslash M_{Q}(\mathbb{A})$ and $m_{1} \in M_{Q}(\mathbb{A})^{1}$ so that $m=m_{1} z_{Q}(m)$. Then one has $z_{R^{w}}(\gamma m)=z_{Q}(m) z_{R^{w}}\left(\gamma m_{1}\right)$ and $z_{R^{w}}(\gamma m)^{\Lambda}=z_{Q}(m)^{\Lambda_{1}} z_{R^{w}}\left(\gamma m_{1}\right)^{\Lambda_{2}}$ for $\Lambda=\Lambda_{1}+\Lambda_{2}, \Lambda_{1} \in \mathfrak{a}_{Q}$ and $\Lambda_{2} \in \mathfrak{a}_{R^{w}}^{Q}$ because of $\gamma m_{1} \in M_{Q}(\mathbb{A})^{1}$. We choose a base point $\Lambda_{1,0} \in \operatorname{Re} \mathfrak{a}_{Q}$ and $\Lambda_{w, 0} \in \operatorname{Re} \mathfrak{a}_{R^{w}}^{Q}$ as follows: $\left(-\Lambda_{1,0},\left.\alpha^{\vee}\right|_{Z_{Q}}\right)$ is sufficiently large, and $\left(\Lambda_{w, 0}-\rho_{R^{w}}^{Q},\left.\beta^{\vee}\right|_{Z_{R^{w}}}\right)>0$ for all $\left.\beta\right|_{Z_{R^{w}}} \in \Delta_{R^{w}}$ with $\left.\beta\right|_{Z_{Q}}=0$. Then we can shift the integral domain of (5.2) from $w \Lambda_{0}+\sqrt{-1} \operatorname{Re} \mathfrak{a}_{R^{w}}$ to $\Lambda_{1,0}+\Lambda_{w, 0}+\sqrt{-1} \operatorname{Re} \mathfrak{a}_{R^{w}}$ ([MW, Lemma II.2.2]).

Summing up, (5.2) at $g=m$ is equal to

$$
\begin{aligned}
\sum_{w \in W\left(M_{R}, M_{Q}\right)} \int_{\Lambda_{1} \in \Lambda_{1,0}+\sqrt{-1} \operatorname{Re} \mathfrak{a}_{Q}} & z_{Q}(m)^{\Lambda_{1}+\rho_{Q}} \\
& \times \sum_{\gamma \in M_{Q}(k) \cap R^{w}(k) \backslash M_{Q}(k)} \Psi_{w}\left(\Lambda_{1}, \gamma m_{1}\right) d \Lambda_{1}
\end{aligned}
$$

where

$$
\begin{aligned}
\Psi_{w}\left(\Lambda_{1}, m_{1}\right)= & \int_{\Lambda_{2} \in \Lambda_{w, 0}+\sqrt{-1} \operatorname{Re} \mathfrak{a}_{R^{w}}^{Q}} \widehat{\eta}\left(w^{-1}\left(\Lambda_{1}+\Lambda_{2}\right)\right) \\
& \times\left(M\left(w, w^{-1}\left(\Lambda_{1}+\Lambda_{2}\right)\right) \varphi\right)\left(m_{1}\right) z_{R^{w}}\left(m_{1}\right)^{\Lambda_{2}+\rho_{R^{w}}^{Q}} d \Lambda_{2}
\end{aligned}
$$

Therefore, for $z \in A_{Q}^{G}$,

$$
\begin{aligned}
& \Pi_{Q}\left(\theta_{\varphi, \eta}\right)(z) \\
& =\int_{M_{Q}(k) \backslash M_{Q}(\mathbb{A})^{1}} \Pi_{Q}^{1}\left(\theta_{\varphi, \eta}\right)\left(m_{1} z\right) d \omega_{M_{Q}}\left(m_{1}\right) \\
& =\sum_{w \in W\left(M_{R}, M_{Q}\right)} \int_{\Lambda_{1} \in \Lambda_{1,0}+\sqrt{-1} \operatorname{Re}_{Q}} z^{\Lambda_{1}+\rho_{Q}} \\
& \\
& \quad \times\left\{\int_{M_{Q}(k) \backslash M_{Q}(\mathbb{A})^{1}} \sum_{\gamma \in M_{Q}(k) \cap R^{w}(k) \backslash M_{Q}(k)} \Psi_{w}\left(\Lambda_{1}, \gamma m_{1}\right) d \omega_{M_{Q}}\left(m_{1}\right)\right\} d \Lambda_{1} .
\end{aligned}
$$

By the calculation similar to (5.1), the inner integral equals

$$
\begin{aligned}
& \frac{C_{Q} d_{R^{w}}}{C_{R^{w}} d_{Q}} \int_{A_{R^{w}}^{Q}}\left\{\int_{M_{R^{w}}(k) \backslash M_{R^{w}}(\mathbb{A})^{1} \times K^{M_{Q}}} \Psi_{w}\left(\Lambda_{1}, z_{2} m_{2} h\right)\right. \\
& \left.\quad \times d \omega_{M_{R^{w}}}\left(m_{2}\right) d \nu_{K^{M_{Q}}}(h)\right\}\left(\delta_{R^{w}}^{Q}\right)^{-1}\left(z_{2}\right) d\left(\mu_{A_{Q}} \backslash \mu_{A_{R^{w}}}\right)\left(z_{2}\right) \\
& =\frac{C_{Q} d_{R^{w}}}{C_{R^{w}} d_{Q}} \int_{A_{R^{w}}^{Q}} \int_{\Lambda_{2} \in \Lambda_{w, 0}+\sqrt{-1}} \operatorname{Re}_{R^{w}}^{Q} \\
& \quad \times \\
& \quad\left\{\int_{M_{R^{w}}(k) \backslash M_{R^{w}}(\mathbb{A})^{1} \times K^{M_{Q}}}\left(\Lambda_{1}+\Lambda_{2}\right)\right) \\
& \left.\left.\left.\quad \times d \omega_{M_{R^{w}}}\left(m_{2}\right) d \nu_{K^{M}}(h)\right\} w^{-1}\left(\Lambda_{1}+\Lambda_{2}\right)\right) \varphi\right)\left(m_{2} h\right)
\end{aligned}
$$

The cuspidality of $M\left(w, w^{-1} \Lambda\right) \varphi$ implies

$$
\int_{M_{R^{w}}(k) \backslash M_{R^{w}}(\mathbb{A})^{1} \times K^{M_{Q}}}\left(M\left(w, w^{-1} \Lambda\right) \varphi\right)\left(m_{2} h\right) d \omega_{M_{R^{w}}}\left(m_{2}\right) d \nu_{K^{M_{Q}}}(h)=0
$$

Hence $\left.\Pi_{Q}\left(\theta_{\varphi, \eta}\right)\right|_{M_{Q}(\mathbb{A})} \equiv 0$. This implies $\left\langle\theta_{\varphi, \eta}, F_{T}\right\rangle=0$ by (3.4).
Next, we consider the case $R=P$. Since P is a minimal k-parabolic subgroup, the constant function $\varphi_{0} \equiv 1$ is contained in $\mathcal{A}_{0, P}$. We define the inner product on $\mathcal{A}_{0, P}^{K}=\mathcal{A}_{0}\left(M(k) \backslash M(\mathbb{A})^{1}\right)^{K^{M}}$ by

$$
\left\langle\psi_{1}, \psi_{2}\right\rangle_{M}=\int_{M(k) \backslash M(\mathbb{A})^{1}} \psi_{1}(m) \overline{\psi_{2}(m)} d \omega_{M}(m) \quad\left(\psi_{1}, \psi_{2} \in \mathcal{A}_{0, P}^{K}\right)
$$

Let $W_{M_{Q}}$ be the relative Weyl group of $\left(M_{Q}, S\right)$. As a subgroup of W_{G}, $W_{M_{Q}}$ is identified with the point wise stabilizer of \mathfrak{a}_{Q} in W_{G}. For $w \in W_{G}$ and a generic $\Lambda \in \mathfrak{a}_{P}$, the operator $M(w, \Lambda)$ maps $\mathcal{A}_{0, P}^{D K^{Q}}$ into itself. If $w \in$ $W_{M_{Q}}$, then the equality $M\left(w, \Lambda_{1}+\Lambda_{2}\right)=M\left(w, \Lambda_{2}\right)$ holds for $\Lambda_{1} \in \mathfrak{a}_{Q}, \Lambda_{2} \in$ \mathfrak{a}_{P}^{Q}, and $M\left(w, \Lambda_{2}\right)$ is regarded as an operator on $\mathcal{A}_{0}\left(A_{P}^{Q} U(\mathbb{A}) M(k) \backslash Q(\mathbb{A})^{1}\right)$. We denote by $w_{0}\left(\right.$ resp. $\left.w_{1}\right)$ the longest element of W_{G} (resp. $W_{M_{Q}}$). It is known from the theory of local intertwining operators and the Langlands classification theorem that the residue

$$
M\left(w_{0}\right)=\lim _{\substack{\Lambda \in \mathfrak{c}_{P} \\ \Lambda \rightarrow \rho_{P}}}\left(\prod_{\beta \in \Delta_{k}}\left(\Lambda-\rho_{P}, \beta^{\vee}\right)\right) M\left(w_{0}, \Lambda\right)
$$

exists and yields a projection from $\mathcal{A}_{0, P}$ onto the trivial representation $\mathbb{C} \varphi_{0}$ of $G(\mathbb{A})^{1}([F M T$, Section $10(\mathrm{~b})])$. By the argument of [L] or [Lai], one has

$$
M\left(w_{0}\right) \varphi_{0}=\frac{C_{G} d_{P} \tau(P)}{d_{G} \tau(G)} \varphi_{0}
$$

In a similar fashion, the residue

$$
M\left(w_{1}\right)=\lim _{\substack{\Lambda_{2} \in \mathfrak{c}_{P}^{Q} \\ \Lambda_{2} \rightarrow \rho_{P}^{Q}}}\left(\prod_{\beta \in \Delta_{k}-\{\alpha\}}\left(\Lambda_{2}-\rho_{P}^{Q}, \beta^{\vee}\right)\right) M\left(w_{1}, \Lambda_{2}\right)
$$

yields a projection from $\mathcal{A}_{0}\left(A_{P}^{Q} U(\mathbb{A}) M(k) \backslash Q(\mathbb{A})^{1}\right)$ onto $\mathbb{C} \varphi_{0}$ and one has

$$
M\left(w_{1}\right) \varphi_{0}=\frac{C_{Q} d_{P} \tau(P)}{d_{Q} \tau(Q)} \varphi_{0}
$$

Lemma 2. For any $\varphi \in \mathcal{A}_{0, P}$,

$$
M\left(w_{0}\right) \varphi=\frac{C_{G} d_{P}}{d_{G} \tau(G)}\langle\varphi, 1\rangle_{P} \varphi_{0}
$$

Proof. If $M\left(w_{0}\right) \varphi=c \varphi_{0}$, then

$$
c=\frac{1}{\tau(P)}\left\langle M\left(w_{0}\right) \varphi, \varphi_{0}\right\rangle_{P}=\frac{1}{\tau(P)}\left\langle\varphi, M\left(w_{0}\right)^{*} \varphi_{0}\right\rangle_{P}=\frac{C_{G} d_{P}}{d_{G} \tau(G)}\left\langle\varphi, \varphi_{0}\right\rangle_{P}
$$

Here note that the constant $C_{G} d_{P} /\left(d_{G} \tau(G)\right)$ is a positive real value.
Lemma 3. Let $\tau \in W\left(M, M_{Q}\right), \sigma=\tau^{-1} w_{1} \in W_{G}$ and $\varphi \in \mathcal{A}_{0, P}^{D K^{Q}}$. If we fix a $\Lambda_{1} \in \mathfrak{a}_{Q}$ with $\left(-\operatorname{Re} \Lambda_{1},\left.\alpha^{\vee}\right|_{Z_{Q}}\right) \gg 0$, then the function

$$
\Lambda_{2} \longmapsto\left\langle\left.\left(M\left(\tau, \tau^{-1}\left(\Lambda_{1}+\Lambda_{2}\right)\right) \varphi\right)\right|_{M(\mathbb{A})^{1}}, \varphi_{0}\right\rangle_{M}
$$

is holomorphic at $\Lambda_{2}=\rho_{P}^{Q}$. Moreover, one has

$$
\begin{aligned}
& \left\langle\left.\left(M\left(\tau, \tau^{-1}\left(\Lambda_{1}+\rho_{P}^{Q}\right)\right) \varphi\right)\right|_{M(\mathbb{A})^{1}}, \varphi_{0}\right\rangle_{M} \\
& \quad=\frac{d_{Q} \tau(Q)}{C_{Q} d_{P} \tau(P)}\left\langle\left.\left(M_{1}\left(\sigma^{-1}, \sigma\left(\Lambda_{1}-\rho_{P}^{Q}\right)\right) \varphi\right)\right|_{M(\mathbb{A})^{1}}, \varphi_{0}\right\rangle_{M}
\end{aligned}
$$

where $M_{1}\left(\sigma^{-1}, \sigma\left(\Lambda_{1}-\rho_{P}^{Q}\right)\right)$ is defined by

$$
\lim _{\substack{\Lambda_{2} \in \mathfrak{c}_{P}^{Q} \\ \Lambda_{2} \rightarrow \rho_{P}^{Q}}}\left(\prod_{\beta \in \Delta_{k}-\{\alpha\}}\left(\Lambda_{2}-\rho_{P}^{Q}, \beta^{\vee}\right)\right) M\left(\sigma^{-1}, \sigma\left(\Lambda_{1}-\Lambda_{2}\right)\right)
$$

Proof. By [MW, Lemma II.2.2], the function $M\left(\tau, \tau^{-1}\left(\Lambda_{1}+\Lambda_{2}\right)\right) \varphi$ in Λ_{2} is holomorphic on the tube domain of the form $\left\{\Lambda_{2} \in \mathfrak{a}_{P}^{Q}:\left(\operatorname{Re} \Lambda_{2}, \operatorname{Re} \Lambda_{2}\right)\right.$ $\left.<c_{0}^{2}\right\}$, where c_{0} is a positive real constant with $c_{0}^{2}>\left(\rho_{P}, \rho_{P}\right)$. By the functional equations of $M(w, \Lambda)$,

$$
\begin{aligned}
\langle(M & \left.\left.\left(\tau, \tau^{-1} \Lambda\right) \varphi\right)\left.\right|_{M(\mathbb{A})^{1}}, \varphi_{0}\right\rangle_{M} \\
\quad & =\left\langle\left.\left(M\left(w_{1}, w_{1}^{-1} \Lambda\right) M\left(\sigma^{-1}, \sigma w_{1}^{-1} \Lambda\right) \varphi\right)\right|_{M(\mathbb{A})^{1}}, \varphi_{0}\right\rangle_{M} \\
\quad & =\left\langle\left.\left(M\left(\sigma^{-1}, \sigma w_{1}^{-1} \Lambda\right) \varphi\right)\right|_{M(\mathbb{A})^{1}}, M\left(w_{1}, w_{1}^{-1} \Lambda\right)^{*} \varphi_{0}\right\rangle_{M} \\
& =\left\langle\left.\left(M\left(\sigma^{-1}, \sigma w_{1}^{-1} \Lambda\right) \varphi\right)\right|_{M(\mathbb{A})^{1}}, M\left(w_{1}^{-1},-\bar{\Lambda}\right) \varphi_{0}\right\rangle_{M}
\end{aligned}
$$

Here we identify $\mathcal{A}_{0, P}^{K}$ with $\mathcal{A}_{0}\left(A_{P}^{Q} U(\mathbb{A}) M(k) \backslash Q(\mathbb{A})^{1}\right)^{K^{M_{Q}}}$ and regard $M\left(w_{1}, w_{1}^{-1} \Lambda\right)$ as an operator on it. Therefore,

$$
\left\langle\left.\left(M\left(\tau, \tau^{-1}\left(\Lambda_{1}+\rho_{P}^{Q}\right)\right) \varphi\right)\right|_{M(\mathbb{A})^{1}}, \varphi_{0}\right\rangle_{M}
$$

equals

$$
\begin{aligned}
& \left\langle\left.\left(M_{1}\left(\sigma^{-1}, \sigma\left(\Lambda_{1}-\rho_{P}^{Q}\right)\right) \varphi\right)\right|_{M(\mathbb{A})^{1}},\right. \\
& \left.\lim _{\substack{\Lambda_{2} \in \mathfrak{c}_{P}^{Q} \\
\Lambda_{2} \rightarrow \rho_{P}^{Q}}}{\overline{\left(\prod_{\beta \in \Delta_{k}-\{\alpha\}}\right.}{ }^{\left.\left(\Lambda_{2}-\rho_{P}^{Q}, \beta^{\vee}\right)\right)^{-1}}}^{-1} M\left(w_{1}^{-1},-\bar{\Lambda}_{2}\right) \varphi_{0}\right\rangle_{M} .
\end{aligned}
$$

If we regard $\overline{M\left(w_{1}^{-1},-\bar{\Lambda}_{2}\right)}$ acting on $\mathbb{C} \varphi_{0}$ as a scalar valued function, then

$$
\begin{aligned}
& \lim _{\substack{\Lambda_{2} \in \mathfrak{c}_{P}^{Q} \\
\Lambda_{2} \rightarrow \rho_{P}^{Q}}}\left(\prod_{\beta \in \Delta_{k}-\{\alpha\}}\left(\Lambda_{2}-\rho_{P}^{Q}, \beta^{\vee}\right)\right)^{-1} \overline{M\left(w_{1}^{-1},-\bar{\Lambda}_{2}\right)} \\
& \quad=\lim _{\substack{\Lambda_{2} \in \mathfrak{c}_{P}^{Q} \\
\Lambda_{2} \rightarrow \rho_{P}^{Q}}}\left(\prod_{\beta \in \Delta_{k}-\{\alpha\}}\left(\Lambda_{2}-\rho_{P}^{Q}, \beta^{\vee}\right)\right)^{-1} \overline{M\left(w_{1},-w_{1}^{-1} \bar{\Lambda}_{2}\right)}-1 \\
& \quad={\overline{M\left(w_{1}\right)}}^{-1} .
\end{aligned}
$$

This implies the assertion.

Lemma 4. Being the notation as above, one has

$$
\lim _{\substack{\Lambda_{1} \in-\mathfrak{c}_{Q} \\ \Lambda_{1} \rightarrow-\rho_{Q}}}\left(\Lambda_{1}+\rho_{Q}, \alpha^{\vee}\right) M_{1}\left(\sigma^{-1}, \sigma\left(\Lambda_{1}-\rho_{P}^{Q}\right)\right) \varphi= \begin{cases}M\left(w_{0}\right) \varphi & \left(\sigma=w_{0}\right) \\ 0 & \left(\sigma \neq w_{0}\right)\end{cases}
$$

If $0<\varepsilon$ is sufficiently small, then the function

$$
\Lambda_{1} \longmapsto\left\langle\left.\left(M_{1}\left(\sigma^{-1}, \sigma\left(\Lambda_{1}-\rho_{P}^{Q}\right)\right) \varphi\right)\right|_{M(\mathbb{A})^{1}}, \varphi_{0}\right\rangle_{M}
$$

is holomorphic on $\left\{\Lambda_{1} \in \mathfrak{a}_{Q}: 1-\epsilon<\left(\operatorname{Re} \Lambda_{1}, \rho_{Q}\right) /\left(\rho_{Q}, \rho_{Q}\right)<1\right\}$ with polynomial growth as $\left|\Im \Lambda_{1}\right| \rightarrow \infty$.

Proof. For any $\psi \in \mathcal{A}_{0, P}^{D K^{Q}}$,

$$
\begin{aligned}
& \left\langle\lim _{\substack{\Lambda_{1} \in-\mathfrak{c}_{Q} \\
\Lambda_{1} \rightarrow-\rho_{Q}}}\left(\Lambda_{1}+\rho_{Q}, \alpha^{\vee}\right) M_{1}\left(\sigma^{-1}, \sigma\left(\Lambda_{1}-\rho_{P}^{Q}\right)\right) \varphi, \psi\right\rangle_{P} \\
& \quad=\left\langle\varphi, \lim _{\substack{\Lambda_{1} \in-\mathfrak{c}_{Q} \\
\Lambda_{1} \rightarrow-\rho_{Q}}} \overline{\left(\Lambda_{1}+\rho_{Q}, \alpha^{\vee}\right)} M_{1}\left(\sigma^{-1}, \sigma\left(\Lambda_{1}-\rho_{P}^{Q}\right)\right)^{*} \psi\right\rangle_{P} \\
& \left.\quad=\left\langle\varphi, \lim _{\substack{\Lambda_{1} \in-\mathfrak{c}_{Q} \\
\Lambda_{1} \rightarrow-\rho_{Q}}} \overline{\left(\Lambda_{1}+\rho_{Q}, \alpha^{\vee}\right)} M_{1}\left(\sigma,-\bar{\Lambda}_{1}+\rho_{P}^{Q}\right)\right) \psi\right\rangle_{P} \\
& \quad=\left\langle\varphi, \lim _{\substack{\Lambda \in \mathfrak{c}_{P} \\
\Lambda \rightarrow \rho_{P}}} \overline{\left(\prod_{\beta \in \Delta_{k}}\left(\Lambda-\rho_{P}, \beta^{\vee}\right)\right)} M(\sigma, \bar{\Lambda}) \psi\right\rangle_{P}
\end{aligned}
$$

It is known that

$$
\lim _{\substack{\Lambda \in \mathfrak{c}_{P} \\ \Lambda \rightarrow \rho_{P}}}\left(\prod_{\beta \in \Delta_{k}}\left(\Lambda-\rho_{P}, \beta^{\vee}\right)\right) M(\sigma, \Lambda)= \begin{cases}M\left(w_{0}\right) & \left(\sigma=w_{0}\right) \\ 0 & \left(\sigma \neq w_{0}\right)\end{cases}
$$

(cf. [FMT, Lemma 7]). By this and Lemma 2, the equalities

$$
\begin{aligned}
\left\langle M\left(w_{0}\right) \varphi, \psi\right\rangle_{P} & =\left\langle\varphi, M\left(w_{0}\right) \psi\right\rangle_{P} \\
& =\left\langle\lim _{\substack{\Lambda_{1} \in-\mathfrak{c}_{Q} \\
\Lambda_{1} \rightarrow-\rho_{Q}}}\left(\Lambda_{1}+\rho_{Q}, \alpha^{\vee}\right) M_{1}\left(\sigma^{-1}, \sigma\left(\Lambda_{1}-\rho_{P}^{Q}\right)\right) \varphi, \psi\right\rangle_{P}
\end{aligned}
$$

hold for all $\psi \in \mathcal{A}_{0, P}^{D K^{Q}}$. The remains of the assertion follows from $[\mathrm{H}$, Lemma 118].

Proposition 3. Let $\varphi \in \mathcal{A}_{0, P}$ and $\eta \in C_{0}^{\infty}\left(A_{P}^{G}\right)$. Then one has

$$
\lim _{T \rightarrow \infty}\left\langle\theta_{\varphi, \eta}, F_{T}\right\rangle=\frac{\tau(Q)}{\tau(P)}\left\langle\theta_{\varphi, \eta}, 1\right\rangle .
$$

Proof. It is sufficient to prove the assertion for right $D K^{Q_{\text {-invariant }}}$ $\varphi \in \mathcal{A}_{0, P}$. The calculations of $\left\langle\theta_{\varphi, \eta}, 1\right\rangle$ and $\Pi_{Q}\left(\theta_{\varphi, \eta}\right)$ are the same as in the proof of Proposition 2. We have

$$
\left\langle\theta_{\varphi, \eta}, 1\right\rangle=\frac{C_{G} d_{P}}{C_{P} d_{G}} \widehat{\eta}\left(\rho_{P}\right)\langle\varphi, 1\rangle_{P} .
$$

We need a further calculation of $\Pi_{Q}\left(\theta_{\varphi, \eta}\right)$. Since φ is right $D K^{Q}$-invariant, $\Pi_{Q}\left(\theta_{\varphi, \eta}\right)(z)$ equals

$$
\begin{equation*}
\frac{C_{Q} d_{P}}{C_{P} d_{Q}} \sum_{\tau \in W\left(M, M_{Q}\right)} \int_{\Lambda_{1} \in \Lambda_{1,0}+\sqrt{-1} \operatorname{Re}_{Q}} z^{\Lambda_{1}+\rho_{Q}} \widehat{f}_{\tau}\left(\Lambda_{1}\right) d \Lambda_{1} \tag{5.3}
\end{equation*}
$$

where

$$
\begin{aligned}
\widehat{f}_{\tau}\left(\Lambda_{1}\right)=\int_{A_{P}^{Q}} & \int_{\Lambda_{2} \in \Lambda_{\tau, 0}+\sqrt{-1} \operatorname{Re} a_{P}^{Q}} \widehat{\eta}\left(\tau^{-1}\left(\Lambda_{1}+\Lambda_{2}\right)\right) \\
& \times\left\langle\left.\left(M\left(\tau, \tau^{-1}\left(\Lambda_{1}+\Lambda_{2}\right)\right) \varphi\right)\right|_{M(\mathbb{A})^{1}}, \varphi_{0}\right\rangle_{M} z_{2}^{\Lambda_{2}-\rho_{P}^{Q}} \\
& \times d \Lambda_{2} d\left(\mu_{A_{Q}} \backslash \mu_{A_{P}}\right)\left(z_{2}\right)
\end{aligned}
$$

If $\Lambda_{1} \in \Lambda_{1,0}+\sqrt{-1} \operatorname{Re} \mathfrak{a}_{Q}$ is fixed, the function

$$
\Lambda_{2} \longmapsto \widehat{\eta}\left(\tau^{-1}\left(\Lambda_{1}+\Lambda_{2}\right)\right)\left\langle\left.\left(M\left(\tau, \tau^{-1}\left(\Lambda_{1}+\Lambda_{2}\right)\right) \varphi\right)\right|_{M(\mathbb{A})^{1}}, \varphi_{0}\right\rangle_{M}
$$

is holomorphic on the tube domain $\left\{\Lambda_{2} \in \mathfrak{a}_{P}^{Q}:\left(\operatorname{Re} \Lambda_{2}, \operatorname{Re} \Lambda_{2}\right)<c_{0}^{2}\right\}$ as mentioned in the proof of Lemma 3. We can take $\Lambda_{\tau, 0}$ in this domain. Then, from the inversion formula, it follows

$$
\widehat{f}_{\tau}\left(\Lambda_{1}\right)=\widehat{\eta}\left(\tau^{-1}\left(\Lambda_{1}+\rho_{P}^{Q}\right)\right)\left\langle\left(M\left(\tau, \tau^{-1}\left(\Lambda_{1}+\rho_{P}^{Q}\right)\right) \varphi\right)_{M(\mathbb{A})^{1}}, \varphi_{0}\right\rangle_{M}
$$

We shift the integral domain in (5.3) from $\Lambda_{1,0}+\sqrt{-1} \operatorname{Re} \mathfrak{a}_{Q}$ to $(\epsilon-1) \rho_{Q}+$ $\sqrt{-1} \operatorname{Re} \mathfrak{a}_{Q}$, where ϵ is a sufficiently small positive number so that all \widehat{f}_{τ} are holomorphic on the domain $B_{\epsilon}=\left\{\Lambda_{1} \in \mathfrak{a}_{Q}: 1-2 \epsilon<\left(-\operatorname{Re} \Lambda_{1}, \rho_{Q}\right) /\left(\rho_{Q}, \rho_{Q}\right)\right.$ $<1\}$. Taking account the residue at $-\rho_{Q}$, we obtain

$$
\begin{aligned}
& \int_{\Lambda_{1} \in \Lambda_{1,0}+\sqrt{-1} \operatorname{Re} \mathfrak{a}_{Q}} z^{\Lambda_{1}+\rho_{Q}} \widehat{f}_{\tau}\left(\Lambda_{1}\right) d \Lambda_{1} \\
& \quad=\int_{\Lambda_{1} \in(\epsilon-1) \rho_{Q}+\sqrt{-1} \operatorname{Re} \mathfrak{a}_{Q}} z^{\Lambda_{1}+\rho_{Q}} \widehat{f}_{\tau}\left(\Lambda_{1}\right) d \Lambda_{1}+\operatorname{Res}_{\Lambda_{1}=-\rho_{Q}} \widehat{f}_{\tau}\left(\Lambda_{1}\right)
\end{aligned}
$$

We write $f_{\tau}(z)$ for the first term. By Lemmas 2,3 and $4, \Pi_{Q}\left(\theta_{\varphi, \eta}\right)(z)$ equals

$$
\begin{aligned}
& \frac{C_{Q} d_{P}}{C_{P} d_{Q}} \sum_{\tau \in W\left(M, M_{Q}\right)} f_{\tau}(z)+\frac{C_{Q} d_{P}}{C_{P} d_{Q}} \cdot \frac{d_{Q} \tau(Q)}{C_{Q} d_{P} \tau(P)} \widehat{\eta}\left(\rho_{P}\right)\left\langle\left. M\left(w_{0}\right) \varphi\right|_{M(\mathbb{A})^{1}}, \phi_{0}\right\rangle_{M} \\
& \quad=\frac{C_{Q} d_{P}}{C_{P} d_{Q}} \sum_{\tau \in W\left(M, M_{Q}\right)} f_{\tau}(z)+\frac{C_{G} d_{P} \tau(Q)}{C_{P} d_{G} \tau(G)} \widehat{\eta}\left(\rho_{P}\right)\langle\varphi, 1\rangle_{P}
\end{aligned}
$$

Here note that $\left\langle\varphi_{0}, \varphi_{0}\right\rangle_{M}=\tau(M)=\tau(P)$. Since $\widehat{\eta}$ is a function of Paley Wiener type and $\widehat{f}_{\tau}\left(\Lambda_{1}\right) / \widehat{\eta}\left(\tau^{-1}\left(\Lambda_{1}+\rho_{P}^{Q}\right)\right)$ is of polynomial growth on B_{ϵ} as $\left|\Im \Lambda_{1}\right| \rightarrow \infty$ by Lemma 4 , we have an estimate of the formula

$$
\begin{equation*}
\left|f_{\tau}(z)\right| \leq z^{\epsilon \rho_{Q}} \int_{\sqrt{-1} \operatorname{Re} \mathfrak{a}_{Q}}\left|z^{\Lambda}\right|\left|\widehat{f}_{\tau}\left((\epsilon-1) \rho_{Q}+\Lambda\right)\right| d \Lambda \leq c_{1} z^{\epsilon \rho_{Q}} \tag{5.4}
\end{equation*}
$$

where c_{1} is a constant depending on $\widehat{f_{\tau}}$. This implies

$$
\begin{aligned}
& \limsup _{T \rightarrow \infty} \frac{e_{Q}}{T^{e}[k: \mathbb{Q}] / e_{\pi}} \int_{0}^{T^{[k: \mathbb{Q}] / e_{\pi}}} t^{e_{Q}}\left|f_{\tau}\left(\iota_{Q}\left(\bar{e},\left|\alpha_{Q}\right|_{\mathbb{A}}^{-1}(t)\right)\right)\right| \frac{d t}{t} \\
& \quad \leq \limsup _{T \rightarrow \infty} \frac{e_{Q}}{T^{e_{Q}}[k: \mathbb{Q}] / e_{\pi}} \int_{0}^{T^{[k: \mathbb{Q}] / e_{\pi}}} c_{1} t^{(1-\epsilon / 2) e_{Q}} \frac{d t}{t}=0 .
\end{aligned}
$$

As a consequence, we have

$$
\lim _{T \rightarrow \infty}\left\langle\theta_{\varphi, \eta}, F_{T}\right\rangle=\frac{C_{G} d_{P} \tau(Q)}{C_{P} d_{G} \tau(G)} \widehat{\eta}\left(\rho_{P}\right)\langle\varphi, 1\rangle_{P}=\frac{\tau(Q)}{\tau(G)}\left\langle\theta_{\varphi, \eta}, 1\right\rangle .
$$

This completes the proof of Proposition 3, and therefore we are led to Theorem 1.

§6. Error terms

We give some estimates of error terms of (3.3).
Lemma 5. Let $a>0$ be a constant. If

$$
\lim _{T \rightarrow \infty}\left\langle\psi, \frac{F_{T}-\tau(Q) / \tau(G)}{T^{a}}\right\rangle=0
$$

holds for any $\psi \in C_{0}\left(G(k) \backslash G(\mathbb{A})^{1}\right)$, then one has

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{F_{T}(g)-\tau(Q) / \tau(G)}{T^{a}}=0 \tag{6.1}
\end{equation*}
$$

for every $g \in G(\mathbb{A})^{1}$.
Proof. Using the same notations as in the proof of Proposition 1, we have

$$
\begin{aligned}
& \beta_{m}^{-a-e_{Q}[k: \mathbb{Q}] / e_{\pi}} \frac{\left\langle\psi_{m}, F_{\beta_{m}^{-1} T}-\tau(Q) / \tau(G)\right\rangle}{\left(\beta_{m}^{-1} T\right)^{a}}+\frac{\left(\beta_{m}^{-e_{Q}[k: \mathbb{Q}] / e_{\pi}}-1\right) \tau(Q) / \tau(G)}{T^{a}} \\
& \quad \leq \frac{F_{T}\left(g_{0}\right)-\tau(Q) / \tau(G)}{T^{a}} \\
& \quad \leq \beta_{m}^{a+e_{Q}[k: \mathbb{Q}] / e_{\pi}} \frac{\left\langle\psi_{m}, F_{\beta_{m} T}-\tau(Q) / \tau(G)\right\rangle}{\left(\beta_{m} T\right)^{a}}+\frac{\left(\beta_{m}^{e_{Q}[k: \mathbb{Q}] / e_{\pi}}-1\right) \tau(Q) / \tau(G)}{T^{a}}
\end{aligned}
$$

The assertion follows immediately from this.
By [DRS, Lemma 2.4] and Proposition 2, if

$$
\lim _{T \rightarrow \infty}\left\langle\theta_{\varphi, \eta}, \frac{F_{T}-\tau(Q) / \tau(G)}{T^{a}}\right\rangle=0
$$

holds for all $\theta_{\varphi, \eta}, \varphi \in \mathcal{A}_{0, P}^{D K^{Q}}, \eta \in C_{0}^{\infty}\left(A_{P}^{G}\right)$, then we get (6.1). Let ϵ_{0} be the superior of $\epsilon \in(0,1 / 2)$ such that all $M\left(\tau, \tau^{-1}\left(\Lambda_{1}+\delta_{P}^{Q}\right)\right), \tau \in W\left(M, M_{Q}\right)$ are holomorphic on B_{ϵ}, where B_{ϵ} is the same as in the proof of Proposition 3. Then, for any $0<a<\epsilon_{0}$, we can shift the integral domain of (5.3) from $\Lambda_{1,0}+\sqrt{-1} \operatorname{Re} \mathfrak{a}_{Q}$ to $(2 a-1) \rho_{Q}+\sqrt{-1} \operatorname{Re} \mathfrak{a}_{Q}$ and the estimate similar to (5.4) leads to

$$
\lim _{T \rightarrow \infty} \frac{\left\langle F_{T}, f_{\tau}\right\rangle}{T^{(1-a) e_{Q}[k: \mathbb{Q}] / e_{\pi}}}=0
$$

Thus we proved the following.
Proposition 4. For any $0<a<\epsilon_{0}$, one has

$$
\left|E_{\pi}(D, T) \cap X_{Q}(k) g\right|=\frac{\tau(Q)}{\tau(G)} \omega_{Y_{Q}}\left(E_{\pi}(D, T)\right)+o\left(T^{(1-a) e_{Q}[k: \mathbb{Q}] / e_{\pi}}\right)
$$

We note that, in some cases, the holomorphic domain of $M\left(\tau, \tau^{-1}\left(\Lambda_{1}+\right.\right.$ $\left.\rho_{O}^{Q}\right)$) is extendable to the right side of the imaginary axis $\sqrt{-1} \operatorname{Re} \mathfrak{a}_{Q}$, however we do not know in general the asymptotic behavior of f_{τ} as $\left|\Im \Lambda_{1}\right| \rightarrow \infty$ in this region.

§7. Examples

Example 1. Let V be an n-dimensional vector space defined over k, G a group of linear automorphisms of V and $\pi: G \rightarrow G$ the natural representation. We fix a free \mathfrak{O}-lattice L in $V(k)$ and its \mathfrak{O}-basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$. Then $V(k)$ and G are identified with the column vector space k^{n} and the general linear group $G L_{n}$, respectively. Let P be the subgroup of upper triangular matrices and Q the stabilizer in G of the line spanned by \mathbf{e}_{1}. Then the map $g \mapsto \mathbf{e}_{1} \cdot g=g^{-1} \mathbf{e}_{1}$ yields an isomorphism from $X_{Q}=Q \backslash G$ to the projective space $\mathbb{P} V=\mathbb{P}^{n-1}$. Let H_{π} be a height on $X_{Q}(k)$ defined as in Section 2. We take a maximal compact subgroup $K=\prod_{v \in \mathfrak{V}} K_{v}$ as follows:

$$
K_{v}= \begin{cases}G L_{n}\left(\mathfrak{O}_{v}\right) & \left(v \in \mathfrak{V}_{f}\right) \\ O(n) & (v \text { is a real place }) \\ U(n) & (v \text { is an imaginary place })\end{cases}
$$

For each $v \in \mathfrak{V}_{f}, \mathfrak{p}_{v}$ and \mathfrak{f}_{v} stand for the maximal ideal of \mathfrak{O}_{v} and the residual field $\mathfrak{O}_{v} / \mathfrak{p}_{v}$, respectively. If we set

$$
D_{v}=\left\{g \in K_{v}: g \equiv\left(\begin{array}{cc}
* & * \\
0 & \\
\vdots & * \\
0 &
\end{array}\right) \quad \bmod \mathfrak{p}_{v}\right\}
$$

then $D_{v} \backslash K_{v}$ is isomorphic to $\mathbb{P}^{n-1}\left(\mathfrak{f}_{v}\right)$ by the reduction homomorphism. For every $x \in \mathbb{P}^{n-1}\left(k_{v}\right)$, there is an $h_{x} \in K_{v}$ such that $x=k_{v}\left(\mathbf{e}_{1} \cdot h_{x}\right)$. We denote by $[x]_{v}$ the reduction of x modulo \mathfrak{p}_{v}, i.e., $[x]_{v}=\mathfrak{f}_{v}\left(\mathbf{e}_{1} \cdot h_{x} \bmod \mathfrak{p}_{v}\right)$. Let \mathfrak{S} be a finite subset of \mathfrak{V}_{f}. We fix a point $\left(a_{v}\right)_{v \in \mathfrak{S}}$ in $\prod_{v \in \mathfrak{S}} \mathbb{P}^{n-1}\left(k_{v}\right)$ and set

$$
\begin{aligned}
& N\left(\mathbb{P}^{n-1}(k), T,\left(a_{v}\right)_{v \in \mathfrak{S}}\right) \\
& \quad=\mid\left\{x \in \mathbb{P}^{n-1}(k): H_{\pi}(x) \leq T \text { and }[x]_{v}=\left[a_{v}\right]_{v} \text { for all } v \in \mathfrak{S}\right\} \mid
\end{aligned}
$$

It is obvious that

$$
N\left(\mathbb{P}^{n-1}(k), T,\left(a_{v}\right)_{v \in \mathfrak{S}}\right)=\left|E_{\pi}(D, T) \cdot h \cap X(k)\right|
$$

where $D=K_{\infty} \times \prod_{v \in \mathfrak{S}} D_{v} \times \prod_{v \in \mathfrak{V}_{f}-\mathfrak{S}} K_{v}$ and $h=\left(h_{a_{v}}\right)_{v \in \mathfrak{S}} \times(e)_{v \in \mathfrak{V}-\mathfrak{S}} \in$ K. By Theorem 1 and the calculation of [W, Example 2], we have

$$
\begin{array}{r}
N\left(\mathbb{P}^{n-1}(k), T,\left(a_{v}\right)_{v \in \mathfrak{S}}\right) \sim \prod_{v \in \mathfrak{S}} \frac{\left|\mathfrak{f}_{v}\right|-1}{\left|\mathfrak{f}_{v}\right|^{n}-1} \cdot \frac{\operatorname{Res}_{s=1} \zeta_{k}(s)}{\left|D_{k}\right|^{(n-1) / 2} n Z_{k}(n)} \cdot T^{n[k: \mathbb{Q}]} \\
\text { as } T \rightarrow \infty
\end{array}
$$

Here $\zeta_{k}(s)$ is the Dedekind zeta function of k,

$$
Z_{k}(s)=\left(\pi^{-s / 2} \Gamma(s / 2)\right)^{r_{1}}\left((2 \pi)^{1-s} \Gamma(s)\right)^{r_{2}} \zeta_{k}(s)
$$

and r_{1} (resp. r_{2}) denotes a number of real (resp. imaginary) places of k. If $k=\mathbb{Q}$, this formula was proved in $[\mathrm{S}]$.

Example 2. Let V, L and $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ be the same as in Example 1. Let Φ be a non-degenerate isotropic quadratic form on $V(k), G=S O_{\Phi}$ the special orthogonal group of Φ and $\pi: G \rightarrow G L(V)$ the natural representation. The height H_{π} is the same as Example 1. We assume $n \geq 4$ and Φ has the following matrix form with respect to the basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$:

$$
\Phi=\left(\begin{array}{lll}
& & 1 \\
& \Phi_{0} & \\
1 & &
\end{array}\right)
$$

where Φ_{0} is a non-degenerate $(n-2) \times(n-2)$ symmetric matrix. Thus \mathbf{e}_{1} is an isotropic vector of Φ. Let Q be the stabilizer in G of the isotropic line spanned by \mathbf{e}_{1}. The map $g \mapsto \mathbf{e}_{1} \cdot g=g^{-1} \mathbf{e}_{1}$ gives rise to a k-rational embedding from $X_{\Phi}=Q \backslash G$ into \mathbb{P}^{n-1}. The image of $X_{\Phi}(k)$ is the set of all Φ-isotropic lines $x \in \mathbb{P}^{n-1}(k)$. We put

$$
N\left(X_{\Phi}(k), T\right)=\left|\left\{x \in X_{\Phi}(k): H_{\pi}(x) \leq T\right\}\right|
$$

Since the Levi-subgroup M_{Q} is isomorphic to $G L_{1} \times S O_{\Phi_{0}}$, we have $\tau(G)=$ $\tau(Q)=2$ and $d_{G}=d_{Q}=1$, and furthermore, $e_{Q}=\operatorname{dim} U_{Q}=n-2$ and $e_{\pi}=1$. Therefore, Theorem 1 implies

$$
N\left(X_{\Phi}(k), T\right) \sim \frac{C_{G}}{(n-2) C_{Q}} T^{(n-2)[k: \mathbb{Q}]} \quad \text { as } T \rightarrow \infty
$$

Here we supposed that H_{π} is invariant by a good maximal compact subgroup K of $G(\mathbb{A})$. The formula due to Ikeda [I, Theorems 9.6 and 9.7] deduces an explicit value of C_{G} / C_{Q} for some choice of K. In the following, we state this formula. Let $\mathfrak{V}_{\infty}^{\prime}$ be the set of all real places of k. For every $v \in \mathfrak{V}, \mathbb{H}\left(k_{v}\right)$ denotes the hyperbolic plane k_{v}^{2} endowed with the quadratic form $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Then $V\left(k_{v}\right)$ is decomposed into the following form on k_{v} :

$$
V\left(k_{v}\right)=\mathbb{H}\left(k_{v}\right)^{m_{v}} \oplus V_{v}^{0}
$$

where V_{v}^{0} is a Φ-anisotropic subspace. We put $\ell_{v}=\operatorname{dim} V_{v}^{0}$. In other words, $\left(n-\ell_{v}\right) / 2$ is the Witt index of Φ on $V\left(k_{v}\right)$. If $v \in \mathfrak{V}_{f}$, then ℓ_{v} is at most 4. If $v \in \mathfrak{V}_{f}$ and $\ell_{v}=3$, then V_{v}^{0} is identified with the space of pure quaternions of the division quaternion algebra \mathbb{D}_{v} over k_{v}.

First, let n be odd. We may assume without loss of generality that $\operatorname{det} \Phi_{0} \equiv 2(-1)^{(n-3) / 2}$ module $\left(k^{\times}\right)^{2}([I, ~ p .207])$. For every $v \in \mathfrak{V}_{f}$ with $\ell_{v}=3$, we take a maximal compact subgroup K_{v} as the stabilizer in $G\left(k_{v}\right)$ of the lattice $\mathbb{H}\left(\mathfrak{O}_{v}\right)^{(n-3) / 2} \oplus\left(\mathfrak{D}_{\mathbb{D}_{v}} \cap V_{v}^{0}\right)$. Here $\mathfrak{O}_{\mathbb{D}_{v}}$ denotes the maximal order of \mathbb{D}_{v}. In other places v, we take K_{v} as in [I, pp. 209-210]. Then

$$
\begin{aligned}
\frac{C_{G}}{C_{Q}}= & \frac{\operatorname{Res}_{s=1} \zeta_{k}(s)}{\left|D_{k}\right|^{(n-2) / 2} Z_{k}(n-1)} \prod_{\substack{v \in \mathfrak{V}_{f} \\
\ell_{v}=3}} \frac{1-\left|\mathfrak{f}_{v}\right|^{-n+3}}{\left|\mathfrak{f}_{v}\right|\left(1-\left|\mathfrak{f}_{v}\right|^{-n+1}\right)} \\
& \times \prod_{v \in \mathfrak{V}_{\infty}^{\prime}} \prod_{i=1}^{\left[\left(\ell_{v}-1\right) / 4\right]} \frac{n-\ell_{v}+4 i-2}{n+\ell_{v}-4 i-2} .
\end{aligned}
$$

Next, let n be even. We take a maximal compact subgroup K_{v} as in [I, pp. 209-210] for every $v \in \mathfrak{V}$. Let $k^{\prime}=k\left(\sqrt{(-1)^{n / 2}} \operatorname{det} \Phi\right)$ be an extension of degree at most 2 over k and let $\mathfrak{V}_{f}^{\prime}$ (resp. $\mathfrak{V}_{f}^{\prime \prime}$) be the set of $v \in \mathfrak{V}_{f}$ such that $\ell_{v}=2\left(\right.$ resp. $\left.\ell_{v}=4\right), v$ is unramified (resp. split) over k^{\prime} / k and $\left.\Phi\right|_{V_{v}^{0}}$ is equivalent to the form $2 \varpi_{v} \cdot \operatorname{Norm}_{k_{v}^{\prime} / k_{v}}$, where ϖ_{v} is a prime element of k_{v} and $\operatorname{Norm}_{k_{v}^{\prime} / k_{v}}$ the norm form of the unramified quadratic extension k_{v}^{\prime} / k_{v}. Then

$$
\begin{aligned}
\frac{C_{G}}{C_{Q}}= & \frac{1}{\left|\mathfrak{f}_{\chi_{\Phi}}\right|^{1 / 2}\left|D_{k}\right|^{(n-2) / 2}} \frac{\operatorname{Res}_{s=1} \zeta_{k}(s)}{Z_{k}(n-2)} \frac{L\left(-1+n / 2, \chi_{\Phi}\right)}{L\left(n / 2, \chi_{\Phi}\right)} \\
& \times \prod_{v \in \mathfrak{V}_{f}^{\prime}}\left|\mathfrak{f}_{v}\right|^{1-n / 2} \prod_{v \in \mathfrak{V}_{f}^{\prime \prime}} \frac{1-\left|\mathfrak{f}_{v}\right|^{2-n / 2}}{\mathfrak{f}_{v} \mid\left(1-\left|\mathfrak{f}_{v}\right|^{-n / 2}\right)} \\
& \times \prod_{\substack{v \in \mathfrak{V}_{\infty}^{\prime} \\
\ell_{v} \equiv 0(4)}} \prod_{i=1}^{\ell_{v} / 4} \frac{n-4 i}{n+4 i-4} \prod_{\substack{v \in \mathfrak{V}_{N_{\infty}^{\prime}}^{\prime} \\
\ell_{v} \equiv 2(4)}} \prod_{i=1}^{\left(\ell_{v}-2\right) / 4} \frac{n-4 i-2}{n+4 i-2} .
\end{aligned}
$$

Here χ_{Φ} is the quadratic character of \mathbb{A}^{\times}associated with Φ, i.e.,

$$
\chi_{\Phi}(a)=\left\langle(-1)^{n / 2} \operatorname{det} \Phi, a\right\rangle
$$

for $a \in \mathbb{A}^{\times}$, where $\langle\cdot, \cdot\rangle$ is the Hilbert symbol, and $\mathfrak{f}_{\chi_{\Phi}}$ denotes the conductor of χ_{Φ} and $L\left(s, \chi_{\Phi}\right)$ the Hecke L-function of χ_{Φ}.

References

[B] A. Borel, Linear Algebraic Groups, Springer Verlag, 1991.
[BW] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Princeton Univ. Press, 1980.
[BR] M. Borovoi and Z. Rudnick, Hardy-Littlewood varieties and semisimple groups, Invent. Math., 119 (1995), 37-66.
[DRS] W. Duke, Z. Rudnick and P. Sarnak, Density of integer points on affine homogeneous varieties, Duke Math. J., 71 (1993), 143-179.
[FMT] J. Franke, Y. I. Manin and Y. Tschinkel, Rational points of bounded height on Fano varieties, Invent. Math., 95 (1989), 421-435.
[G] R. Godement, Domaines fondamentaux des groupes arithmétiques, Exp. 257, Sém. Bourbaki, 15 (1962/1963).
[H] Harish-Chandra, Automorphic Forms on Semisimple Lie Groups, Lec. Notes in Math. 62, Springer Verlag, 1986.
[I] T. Ikeda, On the residue of the Eisenstein series and the Siegel-Weil formula, Comp. Mathematics., 103 (1996), 183-218.
[Lai] K. F. Lai, Tamagawa number of reductive algebraic groups, Comp. Math., 47 (1980), 153-188.
[L] R. P. Langlands, The volume of the fundamental domain for some arithmetical subgroups of Chevalley groups, Proc. Symp. Pure Math. 9, Amer. Math. Soc. (1966), 143-148.
[MW] C. Moeglin and J.-L. Waldspurger, Spectral Decomposition and Eisenstein Series, Cambridge Univ. Press, 1995.
[MW1] M. Morishita and T. Watanabe, On S-Hardy-Littlewood homogeneous spaces, Int. J. Math., 9 (1998), 723-757.
[MW2] _, Adele geometry of numbers, Class Field Theory - Its Centenary and Prospect, Adv. Studies in Pure Math. 30, Japan Math. Soc. (2001), pp. 509-536.
[S] A. Sato, Counting rational points on projective space with certain congruent conditions, preprint.
[W] T. Watanabe, On an analog of Hermite's constant, J. Lie Theory, 10 (2000), 33-52.

Department of Mathematics
Graduate School of Science
Osaka University
Toyonaka
Osaka, 560-0043
Japan
watanabe@math.wani.osaka-u.ac.jp

[^0]: Received April 6, 2001.
 2000 Mathematics Subject Classification: Primary 14G05; Secondary 11G35.

