THE HARDY-LITTLEWOOD PROPERTY OF FLAG VARIETIES

TAKAO WATANABE

Abstract. We study the asymptotic distribution of rational points on a generalized flag variety which are of bounded height and satisfy some congruence conditions in the formulation analogous to a strongly Hardy-Littlewood variety.

Let X be an affine variety in an affine space V over \mathbb{Q} and B_T the set of $x \in X(\mathbb{R})$ with $||x|| \leq T$ for a Euclidean norm $||\cdot||$ on $V(\mathbb{R})$. The Hardy-Littlewood method allows us to expect that the cardinality of $B_T \cap X(\mathbb{Z})$ is asymptotically equal to the volume of B_T with respect to some measure on $X(\mathbb{R})$. On the basis of such expectation, Borovoi and Rudnick [BR] introduced the notion of a Hardy-Littlewood variety in the adelic manner. Namely, an affine variety X is called a strongly Hardy-Littlewood variety if the asymptotic behavior

$$|(B_T \times B_f) \cap X(\mathbb{Q})| \sim \omega_{X(\mathbb{A}_{\mathbb{Q}})}(B_T \times B_f)$$
 as $T \to \infty$

holds for any open compact subset B_f of the finite adele $X(\mathbb{A}_{\mathbb{Q},f})$, where $\omega_{X(\mathbb{A}_{\mathbb{Q}})}$ denotes the measure on $X(\mathbb{A}_{\mathbb{Q}})$ attached to a gauge form on X. It is known that many affine symmetric spaces have the strongly Hardy-Littlewood property.

In this paper, we study the asymptotic distribution of rational points of bounded height on a generalized flag variety in the formulation analogous to a strongly Hardy-Littlewood variety. Let k be an algebraic number field, G a connected reductive algebraic group defined over k, Q a maximal k-parabolic subgroup of G and $X = Q \setminus G$ a generalized flag variety over k. The adele group $G(\mathbb{A})$ of G has the unimodular subgroup $G(\mathbb{A})^1$ consisting of all elements $g \in G(\mathbb{A})$ that satisfy $|\chi(g)|_{\mathbb{A}} = 1$ for any k-rational character χ of G. Similarly, the unimodular subgroup $Q(\mathbb{A})^1$ of $Q(\mathbb{A})$ is defined, see Notation below for its precise definition. The homogeneous space $Y = Q(\mathbb{A})^1 \setminus G(\mathbb{A})^1$ is appropriate to our purpose by the reason that the set X(k)

Received April 6, 2001.

²⁰⁰⁰ Mathematics Subject Classification: Primary 14G05; Secondary 11G35.

of k-rational points of X is naturally regarded as a subset of Y and there is a unique right $G(\mathbb{A})^1$ -invariant measure ω_Y on Y matching with Tamagawa measures $\omega_{G(\mathbb{A})^1}$ and $\omega_{Q(\mathbb{A})^1}$ of $G(\mathbb{A})^1$ and $Q(\mathbb{A})^1$, respectively. It is observed that Y is decomposed into the direct product of the infinite part Y_{∞} and the finite part Y_f , and Y_f is naturally identified with the homogeneous space $Q(\mathbb{A}_f)\backslash G(\mathbb{A}_f)$. By a strongly k-rational representation π of G, the variety X is embedded into a projective space, and the height H_{π} is defined on X(k). Since H_{π} is extended to a positive real valued function on Y, we can define the "ball" B_T of radius T as the set of $y \in Y_{\infty}$ with $H_{\pi}(y) \leq T$. Then the main theorem of this paper is stated that the asymptotic behavior

$$(0.1) |(B_T \times B_f) \cap X(k)| \sim \frac{\tau(Q)}{\tau(G)} \omega_Y(B_T \times B_f) \text{ as } T \to \infty$$

holds for any open subset B_f of Y_f . Here $\tau(G)$ and $\tau(Q)$ stand for the Tamagawa numbers of G and Q, respectively. In view of the equality $(B_T \times Y_f) \cap X(k) = \{x \in X(k) : H_\pi(x) \leq T\}, (0.1)$ yields the asymptotic distribution of rational points $x \in X(k)$ which satisfy $H_\pi(x) \leq T$ together with congruence conditions provided by B_f . The volume $\omega_Y(B_T \times B_f)$ is explicitly computed in the following sense. If K_f is a good maximal compact subgroup of the finite adele group $G(\mathbb{A}_f)$ and B_f is the image of an open subgroup $D_f \subset K_f$ to $Y_f = Q(\mathbb{A}_f) \setminus G(\mathbb{A}_f)$, then

$$\omega_Y(B_T \times B_f) = \frac{[D_f(K_f \cap Q(\mathbb{A}_f)) : D_f]C_G d_Q}{[K_f : D_f]C_Q d_G e_Q} T^{e_Q[k:\mathbb{Q}]/e_\pi},$$

where d_G , d_Q and e_Q are positive integers depending on G and G, e_{π} is a positive rational numbers depending on π and these constants are easily computed. Both C_G and C_Q are also positive real constants depending on G and G, however the determination of their explicit values is more complicated than other constants. In some particular cases, e.g., the case that G splits over G is a special orthogonal group, we can describe G_G/G_Q by using the special values of the Dedekind zeta function of G (cf. Section 7).

Our result gives an affirmative partial answer to a question mentioned in the last paragraph of [MW2, Section 4.3]. The asymptotic formula of rational points of bounded height on any generalized flag variety was first obtained by Franke, Manin and Tschinkel [FMT]. In the case of $B_f = Y_f$, Corollary to Theorem 5 in [FMT] deduces the asymptotic behavior of the

form $|(B_T \times Y_f) \cap X(k)| \sim cT^{e_Q[k:\mathbb{Q}]/e_\pi}$, where c is a constant. However, it is not clear in [FMT] that the leading term $cT^{e_Q[k:\mathbb{Q}]/e_\pi}$ is described in terms of the volume of $B_T \times Y_f$. In order to explain it more precisely, we mention the difference between the method of [FMT] and that of this paper. A crucial observation in [FMT] is that the height zeta function can be identified with one of the Langlands-Eisenstein series. Then, by using the analytic properties of Langlands-Eisenstein series and a standard Tauberian argument, Franke, Manin and Tschinkel established their asymptotic formula. Thus the volume $\omega_Y(B_T \times Y_f)$ does not occur in [FMT]. In this paper, we investigate directly the function $F_T(g) = |(B_T \times B_f) \cap X(k)g|\omega_Y(B_T \times B_f)^{-1}$ on $G(k)\backslash G(\mathbb{A})^1$. By using the theory of constant terms of Eisenstein series, we will prove that the inner product $\langle \theta, F_T \rangle$ of any pseudo-Eisenstein series θ on $G(k)\backslash G(\mathbb{A})^1$ and F_T satisfies

$$\langle \theta, F_T \rangle \longrightarrow \frac{\tau(Q)}{\tau(G)} \langle \theta, 1 \rangle \text{ as } T \to \infty.$$

This and the argument similar to [DRS] and [MW1] lead us to

$$F_T(g) \longrightarrow \frac{\tau(Q)}{\tau(G)}$$
 as $T \to \infty$

for every $g \in G(k)\backslash G(\mathbb{A})^1$, and hence we immediately obtain (0.1). In view of this, the expression of the main term of $|(B_T \times B_f) \cap X(k)|$ by $\omega_Y(B_T \times B_f)$ is a significant point of our result.

Notation. As usual, \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} denote the ring of integers, the field of rational, real and complex numbers, respectively. The group of positive real numbers is denoted by \mathbb{R}_+^{\times} .

Let k be an algebraic number field of finite degree over \mathbb{Q} , \mathfrak{D} the ring of integers in k and \mathfrak{V} the set of all places of k. We write \mathfrak{V}_{∞} and \mathfrak{V}_f for the sets of all infinite places and all finite places of k, respectively. For $v \in \mathfrak{V}$, k_v denotes the completion of k at v. If v is finite, \mathfrak{D}_v denotes the ring of integers in k_v . We fix, once and for all, a Haar measure μ_v on k_v normalized so that $\mu_v(\mathfrak{D}_v) = 1$ if $v \in \mathfrak{V}_f$, $\mu_v([0,1]) = 1$ if v is a real place and $\mu_v(\{a \in k_v : a\overline{a} \leq 1\}) = 2\pi$ if v is an imaginary place. Then the absolute value $|\cdot|_v$ on k_v is defined as $|a|_v = \mu_v(aC)/\mu_v(C)$, where C is an arbitrary compact subset of k_v with nonzero measure. We denote by \mathbb{A} the adele ring of k, by \mathbb{A}_f the finite adele ring of k and by $|\cdot|_{\mathbb{A}} = \prod_{v \in \mathfrak{V}} |\cdot|_v$ the idele norm on the idele group \mathbb{A}^{\times} .

Let G be a connected affine algebraic group defined over k. For any k-algebra R, G(R) stands for the set of R-rational points of G. Let $\mathbf{X}^*(G)$ and $\mathbf{X}_k^*(G)$ be the free \mathbb{Z} -modules consisting of all rational characters and all k-rational characters of G, respectively. The absolute Galois group $\operatorname{Gal}(\overline{k}/k)$ acts on $\mathbf{X}^*(G)$. The representation of $\operatorname{Gal}(\overline{k}/k)$ in the space $\mathbf{X}^*(G) \otimes_{\mathbb{Z}} \mathbb{Q}$ is denoted by σ_G and the corresponding Artin L-function is denoted by $L(s,\sigma_G) = \prod_{v \in \mathfrak{V}_f} L_v(s,\sigma_G)$. We set $\sigma_k(G) = \lim_{s \to 1} (s-1)^n L(s,\sigma_G)$, where $n = \operatorname{rank} \mathbf{X}_k^*(G)$. Let ω^G be a nonzero right invariant gauge form on G defined over k. From ω^G and the fixed Haar measure μ_v on k_v , one can construct a right invariant Haar measure ω_v^G on $G(k_v)$. Then, the Tamagawa measure on $G(\mathbb{A})$ is well defined by $\omega_{\mathbb{A}}^G = |D_k|^{-\dim G/2} \omega_{\infty}^G \omega_f^G$, where $\omega_{\infty}^G = \prod_{v \in \mathfrak{V}_{\infty}} \omega_v^G$, $\omega_f^G = \sigma_k(G)^{-1} \prod_{v \in \mathfrak{V}_f} L_v(1,\sigma_G) \omega_v^G$ and $|D_k|$ is the absolute value of the discriminant of k. For $\chi \in \mathbf{X}_k^*(G)$, let $|\chi|_{\mathbb{A}}$ be the continuous homomorphism $G(\mathbb{A}) \to \mathbb{R}_+^\times$ defined by $|\chi|_{\mathbb{A}}(g) = |\chi(g)|_{\mathbb{A}}$. We write $G(\mathbb{A})^1$ for the intersection of kernels of all such $|\chi|_{\mathbb{A}}$'s. If χ_1, \ldots, χ_n is a \mathbb{Z} -basis of $\mathbf{X}_k^*(G)$, then the mapping

$$g \longmapsto (|\chi_1(g)|_{\mathbb{A}}, \dots, |\chi_n(g)|_{\mathbb{A}})$$

yields an isomorphism from the quotient group $G(\mathbb{A})^1 \backslash G(\mathbb{A})$ to $(\mathbb{R}_+^{\times})^n$. We put the Lebesgue measure dt on \mathbb{R} and the invariant measure dt/t on \mathbb{R}_+^{\times} . Then there exists uniquely a Haar measure $\omega_{G(\mathbb{A})^1}$ of $G(\mathbb{A})^1$ such that the Haar measure on $G(\mathbb{A})^1 \backslash G(\mathbb{A})$ matching with $\omega_{\mathbb{A}}^G$ and $\omega_{G(\mathbb{A})^1}$ is equal to the pull-back of the measure $\prod_{i=1}^n dt_i/t_i$ on $(\mathbb{R}_+^{\times})^n$ by the above isomorphism. The measure $\omega_{G(\mathbb{A})^1}$ is independent of the choice of a \mathbb{Z} -basis of $\mathbf{X}_k^*(G)$. Since G(k) is a discrete subgroup of $G(\mathbb{A})^1$, we put the counting measure $\omega_{G(k)}$ on G(k). Then the Tamagawa number $\tau(G)$ is defined to be the volume of the quotient space $G(k)\backslash G(\mathbb{A})^1$ with respect to the measure $\omega_G = \omega_{G(k)}\backslash \omega_{G(\mathbb{A})^1}$. Here, in general, if μ_A and μ_B denote Haar measures on a locally compact unimodular group A and its closed unimodular subgroup B, respectively, then $\mu_B\backslash \mu_A$ (resp. μ_A/μ_B) denotes a unique right (resp. left) A-invariant measure on the homogeneous space $B\backslash A$ (resp. A/B) matching with μ_A and μ_B .

If X is an algebraic variety defined over k, then X(k) denotes the set of k-rational points of X. In addition, if X is affine, then $X(\mathbb{A})$ and $X(\mathbb{A}_f)$ stands for the adele and the finite adele of X, respectively. We say that a subset D of $X(\mathbb{A})$ is decomposable if D is of the form $D_{\infty} \times D_f$, where D_{∞} and D_f are subsets of $\prod_{v \in \mathfrak{V}_{\infty}} X(k_v)$ and $X(\mathbb{A}_f)$, respectively.

If X is a locally compact topological space, $C_0(X)$ denotes the space of all compactly supported continuous functions on X. If X is a finite set, |X| denotes the cardinal number of X. For two non-decreasing functions $F_1(T)$, $F_2(T)$ of real variable T, $F_1(T) \sim F_2(T)$ means $\lim_{T\to\infty} F_1(T)/F_2(T) = 1$ if $F_2(T) \neq 0$ for T large enough, otherwise, $F_1(T) \equiv 0$.

§1. Preliminaries

In the following, let G be a connected reductive group defined over k. We fix a maximally k-split torus S of G, a maximal k-torus S_1 of G containing S, a minimal k-parabolic subgroup P of G containing S and a Borel subgroup P of P containing P. Then, we denote by P the relative root system of P with respect to P and by P the set of simple roots of P corresponding to P.

Let M be the centralizer of S in G. Then P has a Levi decomposition P = MU, where U is the unipotent radical of P. For every standard k-parabolic subgroup R of G, R has a unique Levi subgroup M_R containing M. We denote by U_R the unipotent radical of R. Throughout this paper, we fix a maximal compact subgroup K of $G(\mathbb{A})$ satisfying the following property; For every standard k-parabolic subgroup R of G, $K \cap M_R(\mathbb{A})$ is a maximal compact subgroup of $M_R(\mathbb{A})$ and $M_R(\mathbb{A})$ possesses an Iwasawa decomposition $(M_R(\mathbb{A}) \cap U(\mathbb{A}))M(\mathbb{A})(K \cap M_R(\mathbb{A}))$. It is known that such maximal compact subgroup of $G(\mathbb{A})$ exists. We set $K^R = K \cap R(\mathbb{A})$, $K^{M_R} = K \cap M_R(\mathbb{A})$, $P^R = M_R \cap P$ and $U^R = M_R \cap U$.

Let R be a standard k-parabolic subgroup of G. We include the case R = G. Let Z_R be the greatest central k-split torus in M_R . The restriction map $\mathbf{X}_k^*(M_R) \to \mathbf{X}^*(Z_R)$ is injective. Since $\mathbf{X}_k^*(M_R)$ has the same rank as $\mathbf{X}^*(Z_R)$, the index

$$(1.1) d_R = [\mathbf{X}^*(Z_R) : \mathbf{X}_k^*(M_R)]$$

is finite. If χ_1, \ldots, χ_r is a \mathbb{Z} -basis of $\mathbf{X}^*(Z_R)$, then the mapping $z \mapsto (\chi_1(z), \ldots, \chi_r(z))$ yields an isomorphism from $Z_R(\mathbb{A})$ to $(\mathbb{A}^\times)^r$. We regard \mathbb{R}_+^\times as a subgroup of \mathbb{A}^\times by identifying $t \in \mathbb{R}_+^\times$ with the idele $t_{\mathbb{A}} = (t_v)$ such that $t_v = t$ if $v \in \mathfrak{V}_{\infty}$ and $t_v = 1$ if $v \in \mathfrak{V}_f$. Let A_R denote the inverse image of $(\mathbb{R}_+^\times)^r$ by the isomorphism $Z_R(\mathbb{A}) \to (\mathbb{A}^\times)^r$. Then $M_R(\mathbb{A})$ has the direct product decomposition: $M_R(\mathbb{A}) = A_R M_R(\mathbb{A})^1$. The Haar measure μ_{A_R} on A_R is defined to be the pull-back of the invariant measure $\prod_{i=1}^r dt_i/t_i$ on $(\mathbb{R}_+^\times)^r$ with respect to the isomorphism $z \mapsto (|\chi_1(z)|_{\mathbb{A}}, \ldots, |\chi_r(z)|_{\mathbb{A}})$ from

 A_R onto $(\mathbb{R}_+^{\times})^r$. It follows from the definition of $\omega_{M_R(\mathbb{A})^1}$ that the Tamagawa measure $\omega_{\mathbb{A}}^{M_R}$ is decomposed into $d_R\mu_{A_R}\cdot\omega_{M_R(\mathbb{A})^1}$. Both A_R and μ_{A_R} are independent of the choice of a basis of $\mathbf{X}^*(Z_R)$. We set $A_R^G=A_R/A_G$.

We define another Haar measure $\nu_{M_R(\mathbb{A})}$ of $M_R(\mathbb{A})$ as follows. Let $\omega_{\mathbb{A}}^M$ and $\omega_{\mathbb{A}}^{U^R}$ be the Tamagawa measures of $M(\mathbb{A})$ and $U^R(\mathbb{A})$, respectively. There is the function δ_{P^R} on $M(\mathbb{A})$ such that the integration formula

$$\int_{U^R(\mathbb{A})} f(mum^{-1}) d\omega_{\mathbb{A}}^{U^R}(u) = \delta_{P^R}(m)^{-1} \int_{U^R(\mathbb{A})} f(u) d\omega_{\mathbb{A}}^{U^R}(u)$$

holds for $f \in C_0(U^R(\mathbb{A}))$. In other words, δ_{PR}^{-1} is the modular character of $P^R(\mathbb{A})$. Let $\nu_{K^{M_R}}$ be the Haar measure on K^{M_R} normalized so that the total volume equals one. Then the mapping

$$f \longmapsto \int_{U^R(\mathbb{A}) \times M(\mathbb{A}) \times K^{M_R}} f(umh) \delta_{P^R}(m)^{-1} d\omega_{\mathbb{A}}^{U^R}(u) d\omega_{\mathbb{A}}^M(m) d\nu_{K^{M_R}}(h) ,$$

$$(f \in C_0(M_R(\mathbb{A})))$$

defines an invariant measure on $M_R(\mathbb{A})$ and is denoted by $\nu_{M_R(\mathbb{A})}$. There exists a positive constant C_R such that

(1.2)
$$\omega_{\mathbb{A}}^{M_R} = C_R \nu_{M_R(\mathbb{A})}.$$

We have the following compatibility formula:

$$(1.3) \int_{G(\mathbb{A})} f(g) d\omega_{\mathbb{A}}^{G}(g)$$

$$= \frac{C_{G}}{C_{R}} \int_{U_{R}(\mathbb{A}) \times M_{R}(\mathbb{A}) \times K} f(umh) \delta_{R}(m)^{-1} d\omega_{\mathbb{A}}^{U_{R}}(u) d\omega_{\mathbb{A}}^{M_{R}}(m) d\nu_{K}(h)$$

for $f \in C_0(G(\mathbb{A}))$, where δ_R^{-1} is the modular character of $R(\mathbb{A})$.

On the homogeneous space $Y_R = R(\mathbb{A})^1 \backslash G(\mathbb{A})^1$, we define the right $G(\mathbb{A})^1$ -invariant measure ω_{Y_R} by $\omega_{R(\mathbb{A})^1} \backslash \omega_{G(\mathbb{A})^1}$. We note that both $G(\mathbb{A})^1$ and $R(\mathbb{A})^1$ are unimodular. We identify Y_R with $A_G R(\mathbb{A})^1 \backslash G(\mathbb{A})$. Then the mapping

$$\iota_R: K/K^R \times A_R^G \longrightarrow Y_R: (\overline{h}, \overline{z}) \longmapsto A_G R(\mathbb{A})^1 z^{-1} h^{-1}$$

is a bijection, where $\overline{h}=hK^R$ and $\overline{z}=zA_G$ for $h\in K$ and $z\in A_R$. Set $\nu_{A_R^G}=\mu_{A_R}/\mu_{A_G}$.

LEMMA 1. Let D be an open subgroup of K and $\{h_1, \ldots, h_s\}$ be a complete set of coset representatives of K/D. Then, for any right D-invariant function $f \in C_0(Y_R)$, one has

$$\int_{Y_R} f(y) \, d\omega_{Y_R}(y) = \frac{C_G d_R}{[K:D] C_R d_G} \sum_{i=1}^s \int_{A_R^G} f(\iota_R(\overline{h}_i^{-1}, \overline{z})) \delta_R(z) \, d\nu_{A_R^G}(\overline{z}) \, .$$

Proof. If we set

$$\varphi(y) = \int_{K} f(yh) d\nu_{K}(h) = \frac{1}{[K:D]} \sum_{i=1}^{s} f(yh_{i}),$$

then φ is a right K-invariant function on Y_R . By [W, Corollary to Lemma 1],

$$\int_{Y_R} \varphi(y) \, d\omega_{Y_R}(y) = \frac{C_G d_R}{C_R d_G} \int_{A_R^G} \varphi(\iota_R(\overline{e}, \overline{z})) \delta_R(z) \, d\nu_{A_R^G}(\overline{z}) \, .$$

Since ω_{Y_R} is right $G(\mathbb{A})^1$ -invariant, the left hand side equals the integral of f(y) over Y_R .

§2. Heights on flag varieties

Let V_{π} be a finite dimensional \overline{k} -vector space endowed with a k-structure $V_{\pi}(k)$ and $\pi: G \to GL(V_{\pi})$ be an absolutely irreducible k-rational representation. The highest weight space in V_{π} with respect to B is denoted by x_{π} . Let Q_{π} be the stabilizer of x_{π} in G and λ_{π} the \overline{k} -rational character of Q_{π} by which Q_{π} acts on x_{π} . The representation π is said to be strongly k-rational if x_{π} is defined over k. Then Q_{π} is a standard k-parabolic subgroup of G and λ_{π} is a k-rational character of Q_{π} . It is known that $\lambda_{\pi}|_{S}$ is a non-negative integral linear combination of the fundamental k-weights ([W, Section 1]). We say π is maximal if Q_{π} is a standard maximal k-parabolic subgroup. This is equivalent to the condition that $\lambda_{\pi}|_{S}$ is a positive integer multiple of a single fundamental k-weight.

Let π be a strongly k-rational representation. For convenience, we use a right action of G on V_{π} defined by $a \cdot g = \pi(g^{-1})a$ for $g \in G$ and $a \in V_{\pi}$. Then the mapping $g \mapsto x_{\pi} \cdot g$ gives rise to a k-rational embedding of $Q_{\pi} \setminus G$ into the projective space $\mathbb{P}V_{\pi}$.

We write $X_{Q_{\pi}}$ for $Q_{\pi}\backslash G$. Since Q_{π} is a k-parabolic subgroup, $X_{Q_{\pi}}(k)$ is naturally identified with $Q_{\pi}(k)\backslash G(k)$ ([B, Proposition 20.5]). Let us define

a height on $X_{Q_{\pi}}(k)$. We fix a k-basis $\mathbf{e}_1, \dots, \mathbf{e}_n$ of the k-vector space $V_{\pi}(k)$ and define a local height H_v on $V_{\pi}(k_v)$ for each $v \in \mathfrak{V}$ as follows:

$$H_{v}(a_{1}\mathbf{e}_{1} + \dots + a_{n}\mathbf{e}_{n}) = \begin{cases} (|a_{1}|_{v}^{2} + \dots + |a_{n}|_{v}^{2})^{1/(2[k:\mathbb{Q}])} & \text{(if } v \text{ is real)} \\ (|a_{1}|_{v} + \dots + |a_{n}|_{v})^{1/[k:\mathbb{Q}]} & \text{(if } v \text{ is imaginary)} \\ \sup(|a_{1}|_{v}, \dots, |a_{n}|_{v})^{1/[k:\mathbb{Q}]} & \text{(if } v \in \mathfrak{V}_{f}) \end{cases}$$

The global height H_{π} on $V_{\pi}(k)$ is defined to be the product of all H_v , that is, $H_{\pi}(a) = \prod_{v \in \mathfrak{V}} H_v(a)$. By the product formula, H_{π} is invariant by scalar multiplications. Thus, H_{π} defines a height on $\mathbb{P}V_{\pi}(k)$, and on $X_{Q_{\pi}}(k)$ by restriction. The height H_{π} is extended to $GL(V_{\pi}, \mathbb{A})\mathbb{P}V_{\pi}(k)$ by

$$H_{\pi}(\xi \overline{a}) = \prod_{v \in \mathfrak{V}} H_{v}(\xi_{v} a)$$

for $\xi = (\xi_v) \in GL(V_\pi, \mathbb{A})$ and $\overline{a} = ka \in \mathbb{P}V_\pi(k), \ a \in V_\pi(k) - \{0\}$. We set

$$\Phi_{\pi,\xi}(g) = H_{\pi}(\xi(x_{\pi} \cdot g)) / H_{\pi}(\xi x_{\pi})$$

for $g \in G(\mathbb{A})$. Obviously, $\Phi_{\pi,\xi}$ is a continuous function on $G(\mathbb{A})$ and satisfies

$$\Phi_{\pi,\xi}(qg) = |\lambda_{\pi}(q)^{-1}|_{\mathbb{A}}^{1/[k:\mathbb{Q}]} \Phi_{\pi,\xi}(g)$$

for any $q \in Q_{\pi}(\mathbb{A})$ and $g \in G(\mathbb{A})$. Thus $\Phi_{\pi,\xi}$ defines a function on $Y_{Q_{\pi}} = Q_{\pi}(\mathbb{A})^{1} \backslash G(\mathbb{A})^{1}$. It is always possible that one choose an element $\xi \in GL(V_{\pi}, \mathbb{A})$ so that $\Phi_{\pi,\xi}$ is right K-invariant. In many examples, one can take the identity as such ξ .

§3. The Hardy-Littlewood property of flag varieties

In the following, we assume π is maximal and strongly k-rational. We fix, once and for all, an element $\xi \in GL(V_{\pi}, \mathbb{A})$ such that $\Phi_{\pi,\xi}$ is right K-invariant. We simply write Q for Q_{π} and Φ_{π} for $\Phi_{\pi,\xi}$. Let Δ_Q be the set of nonzero roots $\beta|_{Z_Q}$, $\beta \in \Delta_k$. Since Q is maximal, Δ_Q consists of a single element $\alpha|_{Z_Q}$. Let n_Q be the positive integer such that $n_Q^{-1}\alpha|_{Z_Q}$ is a \mathbb{Z} -base of $\mathbf{X}^*(Z_G\backslash Z_Q)$. We set $\alpha_Q=n_Q^{-1}\alpha|_{Z_Q}$. Then the Haar measure ν_{A_Q} equals the pull-back of the measure dt/t by the isomorphism $|\alpha_Q|_{\mathbb{A}}:A_Q^G\to\mathbb{R}_+^\times$. If we set $e_Q=n_Q\dim U_Q$, we have

(3.1)
$$\delta_Q(z) = |\alpha_Q(z)|_{\mathbb{A}}^{e_Q}, \quad (z \in Z_Q(\mathbb{A})).$$

The quotient morphism $Z_Q \to Z_G \backslash Z_Q$ induces an isomorphism $\mathbf{X}^*(Z_G \backslash Z_Q) \otimes_{\mathbb{Z}} \mathbb{Q} \to \mathbf{X}^*(Z_Q \cap G^{ss}) \otimes_{\mathbb{Z}} \mathbb{Q}$, where G^{ss} denotes the derived group of G. Under the identification $\mathbf{X}^*(Z_Q \cap G^{ss}) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbf{X}^*(Z_G \backslash Z_Q) \otimes_{\mathbb{Z}} \mathbb{Q}$, there exists the positive rational number e_{π} such that

$$(3.2) \lambda_{\pi}|_{Z_Q \cap G^{ss}} = e_{\pi}\alpha_Q.$$

Then $\Phi_{\pi}(\iota_Q(\overline{h},\overline{z})) = |\alpha_Q(z)|_{\mathbb{A}}^{e_{\pi}/[k:\mathbb{Q}]}$ holds for any $(\overline{h},\overline{z}) \in K/K^Q \times A_Q^G$. For an open subset D of K and 0 < T, we set

$$E_{\pi}(D,T) = \left\{ \iota_{Q}(\overline{h},\overline{z}) : \overline{h} \in DK^{Q}/K^{Q}, \ \overline{z} \in A_{Q}^{G}, \ |\alpha_{Q}(\overline{z})|_{\mathbb{A}} \le T^{[k:\mathbb{Q}]/e_{\pi}} \right\}.$$

Obviously, $E_{\pi}(D,T)$ is contained in $\{y \in Y_Q : \Phi_{\pi}(y) \leq T\}$, and in particular, the set $E_{\pi}(K,T) \cap X_Q(k)$ coincides with the set $\{x \in X_Q(k) : H_{\pi}(\xi x) \leq H_{\pi}(\xi x_{\pi})T\}$. The next is the main theorem of this paper.

Theorem 1. Let π and Q be as above and $D=D_{\infty}\times D_f$ a decomposable open subset of K such that D_{∞} equals the infinite part K_{∞} of K. Then one has

(3.3)
$$|E_{\pi}(D,T) \cap X_Q(k)g| \sim \frac{\tau(Q)}{\tau(G)} \omega_{Y_Q}(E_{\pi}(D,T)) \quad as \ T \to \infty$$

for any $g \in G(\mathbb{A})^1$.

We fix a decomposable open subset D of K with $D_{\infty} = K_{\infty}$. Since the finite part of K is totally disconnected, there is a decomposable open normal subgroup D_1 of K and $b_0 \in D$ such that $D_1b_0^{-1}D = b_0^{-1}D$ and $D_{1,\infty} = K_{\infty}$. If $b_1, \ldots, b_s \in D$ is a complete set of coset representatives of $D_1K^Q\backslash b_0^{-1}DK^Q$, then $E_{\pi}(b_0^{-1}D,T) = E_{\pi}(D,T)b_0$ decomposes into a disjoint union of $E_{\pi}(D_1,T)b_i$, $i=1,2,\ldots,s$. It is easy to see that the truth of (3.3) for D_1 implies the truth of (3.3) for D. Hence, we may assume without loss of generality that D is an open normal subgroup of K to begin with. Then, by Lemma 1, $\omega_{Y_Q}(E_{\pi}(D,T))$ equals

$$\frac{[DK^Q:D]C_G d_Q}{[K:D]C_Q d_G} \int_0^{T^{[k:\mathbb{Q}]/e_{\pi}}} t^{e_Q} \frac{dt}{t} = \frac{[DK^Q:D]C_G d_Q}{[K:D]C_Q d_G e_Q} T^{e_Q[k:\mathbb{Q}]/e_{\pi}}.$$

Let χ_T be the characteristic function of $E_{\pi}(D,T)$. Define the function F_T on $G(k)\backslash G(\mathbb{A})^1$ as

$$F_T(g) = \frac{1}{\omega_{Y_Q}(E_{\pi}(D, T))} \sum_{x \in X_Q(k)} \chi_T(xg) = \frac{|E_{\pi}(D, T) \cap X_Q(k)g|}{\omega_{Y_Q}(E_{\pi}(D, T))}.$$

(3.3) is equivalent to the assertion that

$$\lim_{T \to \infty} F_T(g) = \frac{\tau(Q)}{\tau(G)}$$

holds for every $g \in G(\mathbb{A})^1$. For a pair of functions ψ_1, ψ_2 on $G(k) \setminus G(\mathbb{A})^1$, we set

$$\langle \psi_1, \psi_2 \rangle = \int_{G(k) \backslash G(\mathbb{A})^1} \psi_1(g) \overline{\psi_2(g)} \, d\omega_G(g)$$

if the integral has the meaning.

Proposition 1. If

$$\lim_{T \to \infty} \langle \psi, F_T \rangle = \frac{\tau(Q)}{\tau(G)} \langle \psi, 1 \rangle$$

holds for any $\psi \in C_0(G(k)\backslash G(\mathbb{A})^1)$, then

$$\lim_{T \to \infty} F_T(g) = \frac{\tau(Q)}{\tau(G)}$$

for every $g \in G(\mathbb{A})^1$.

Proof. Let $\{U_m\}_{m=1,2,3,\dots}$ be a descending family of neighborhoods of the identity e in $G(\mathbb{A})^1$ such that U_m is decomposable, i.e., $U_m = (U_m)_{\infty} \times (U_m)_f$, $U_m^{-1} = U_m$, $(U_m)_f = D_f$, $(U_m)_{\infty}$ is compact and $\bigcap_{m=1}^{\infty} (U_m)_{\infty} = \{e\}$. Since Φ_{π} is continuous and KU_m is compact, there exists the maximum

$$\beta_m = \max_{g \in KU_m} \Phi_{\pi}(g) = \max_{g_{\infty} \in K_{\infty}(U_m)_{\infty}} \Phi_{\pi}(g_{\infty}).$$

From the right K-invariance of Φ_{π} and $\Phi_{\pi}(e) = 1$, it follows that $\beta_m \downarrow 1$ as $m \to \infty$. By $D_{\infty} = K_{\infty}$ and the definition of $E_{\pi}(D, T)$, it is evident that

$$E_{\pi}(D,T)U_m \subset E_{\pi}(D,\beta_m T)$$

for every m. Therefore,

$$E_{\pi}(D, \beta_m^{-1}T)g^{-1}g_0^{-1} \subset E_{\pi}(D, T)g_0^{-1} \subset E_{\pi}(D, \beta_m T)g^{-1}g_0^{-1}$$

holds for every $g \in U_m = U_m^{-1}$ and a fixed $g_0 \in G(\mathbb{A})^1$. This implies the inequality

$$\omega_{Y_Q}(E_{\pi}(D, \beta_m^{-1}T))F_{\beta_m^{-1}T}(g_0g) \le \omega_{Y_Q}(E_{\pi}(D, T))F_T(g_0)$$

$$\le \omega_{Y_Q}(E_{\pi}(D, \beta_mT))F_{\beta_mT}(g_0g)$$

for $g \in U_m$. Let U'_m be the image of g_0U_m to the quotient $G(k)\backslash G(\mathbb{A})^1$. We choose a real-valued and non-negative function $\psi_m \in C_0(G(k)\backslash G(\mathbb{A})^1)$ such that the support of ψ_m is contained in U'_m and $\langle \psi_m, 1 \rangle = 1$. Then the above inequality yields

$$\frac{\omega_{Y_Q}(E_{\pi}(D, \beta_m^{-1}T))}{\omega_{Y_Q}(E_{\pi}(D, T))} \langle \psi_m, F_{\beta_m^{-1}T} \rangle \leq F_T(g_0)$$

$$\leq \frac{\omega_{Y_Q}(E_{\pi}(D, \beta_m T))}{\omega_{Y_Q}(E_{\pi}(D, \beta_m T))} \langle \psi_m, F_{\beta_m T} \rangle.$$

By $\omega_{Y_Q}(E_{\pi}(D,\beta_m T))/\omega_{Y_Q}(E_{\pi}(D,T)) = \beta_m^{e_Q[k:\mathbb{Q}]/e_{\pi}}$ and the assumption on F_T , one has

$$\beta_m^{-e_Q[k:\mathbb{Q}]/e_\pi} \frac{\tau(Q)}{\tau(G)} \le \liminf_{T \to \infty} F_T(g_0) \le \limsup_{T \to \infty} F_T(g_0) \le \beta_m^{e_Q[k:\mathbb{Q}]/e_\pi} \frac{\tau(Q)}{\tau(G)}.$$

Hence, letting $m \to \infty$, we get the assertion.

For every function ψ on $G(k)\backslash G(\mathbb{A})^1$, we set

$$\begin{split} \Pi_Q^1(\psi)(g) &= \int_{U_Q(k)\backslash U_Q(\mathbb{A})} \psi(ug) \, d\omega_{U_Q}(u) \,, \\ \Pi_Q(\psi)(g) &= \int_{Q(k)\backslash Q(\mathbb{A})^1} \psi(qg) \, d\omega_Q(q) \\ &= \int_{M_Q(k)\backslash M_Q(\mathbb{A})^1} \Pi_Q^1(\psi)(mg) \, d\omega_{M_Q}(m) \end{split}$$

when the integrals have the meaning. By the unfolding argument and Lemma 1, we have

$$(3.4) \qquad \langle \psi, F_T \rangle = \int_{G(k) \backslash G(\mathbb{A})^1} \psi(g) F_T(g) \, d\omega_G(g)$$

$$= \frac{1}{\omega_{Y_Q}(E_\pi(D, T))} \int_{Y_Q} \Pi_Q(\psi)(y) \chi_T(y) \, d\omega_{Y_Q}(y)$$

$$= \frac{e_Q}{T^{e_Q[k:\mathbb{Q}]/e_\pi}} \int_0^{T^{[k:\mathbb{Q}]/e_\pi}} t^{e_Q} \Pi_Q(\psi) (\iota_Q(\overline{e}, |\alpha_Q|_{\mathbb{A}}^{-1}(t))) \frac{dt}{t}$$

for every right *D*-invariant $\psi \in C_0(G(k)\backslash G(\mathbb{A})^1)$, where $|\alpha_Q|_{\mathbb{A}}^{-1}$ stands for the inverse map of $|\alpha_Q|_{\mathbb{A}}: A_Q^G \to \mathbb{R}_+^{\times}$.

196 T. WATANABE

§4. Preliminaries on Eisenstein series

We recall the theory of Eisenstein series following [H], [MW]. Let R be a standard k-parabolic subgroup of G. We set

$$\operatorname{Re} \mathfrak{a}_R = X^*(Z_G \setminus Z_R) \otimes_{\mathbb{Z}} \mathbb{R}, \quad \mathfrak{a}_R = \operatorname{Re} \mathfrak{a}_R \otimes_{\mathbb{R}} \mathbb{C} = \operatorname{Re} \mathfrak{a}_R + \sqrt{-1} \operatorname{Re} \mathfrak{a}_R.$$

Every $\Lambda \in \mathfrak{a}_R$ of the form $\chi_1 \otimes s_1 + \cdots + \chi_r \otimes s_r$, $\chi_i \in X^*(Z_G \backslash Z_R)$, $s_i \in \mathbb{C}$ gives rise to a quasi-character of A_R^G by

$$z \longmapsto z^{\Lambda} = |\chi_1(z)|_{\mathbb{A}}^{s_1} \cdots |\chi_r(z)|_{\mathbb{A}}^{s_r}$$

for $z \in A_R^G$. By this way, \mathfrak{a}_R is identified with the group of quasi-characters of A_R^G . There is a unique $\rho_R \in \operatorname{Re} \mathfrak{a}_R$ such that $z^{2\rho_R} = \delta_R(z)$. If R' is a standard k-parabolic subgroup of G such that $R' \subset R$, then $Z_G \setminus Z_R$ (resp. A_R^G) is a subgroup of $Z_G \setminus Z_{R'}$ (resp. $A_{R'}^G$) and hence there is a natural surjection from $\mathfrak{a}_{R'}$ onto \mathfrak{a}_R . The kernel of this surjection is denoted by $\mathfrak{a}_{R'}^R$. Since the quasi-characters of $M_R(\mathbb{A})^1\backslash M_R(\mathbb{A})$ is restricted to $M_{R'}(\mathbb{A})^1\backslash M_{R'}(\mathbb{A})$ ([MW, I.1.4.(2)]), there is a splitting $\mathfrak{a}_R \to \mathfrak{a}_{R'}$, and hence a direct product decomposition: $\mathfrak{a}_{R'} = \mathfrak{a}_R \oplus \mathfrak{a}_{R'}^R$. The subspace $\mathfrak{a}_{R'}^R$ is identified with the group of quasi-characters of $A_{R'}^{R} = A_{R'}/A_{R}$ by the similar way as above. If $(\delta_{R'}^R)^{-1}$ denotes the modular character of $(M_R \cap R')(\mathbb{A})$, there is a unique $\rho_{R'}^R \in \operatorname{Re} \mathfrak{a}_{R'}^R$ such that $z^{2\rho_{R'}^R} = \delta_{R'}^R(z)$ for $z \in A_{R'}^R$. One has $\rho_{R'} = \rho_R + \rho_{R'}^R$. We always consider \mathfrak{a}_R as a subspace of \mathfrak{a}_P and fix an admissible inner product (\cdot, \cdot) on $\operatorname{Re} \mathfrak{a}_P$. Then $\operatorname{Re} \mathfrak{a}_{R'} = \operatorname{Re} \mathfrak{a}_R \oplus \operatorname{Re} \mathfrak{a}_{R'}^R$ is an orthogonal decomposition. For each root $\beta \in \Phi_k$, β^{\vee} denotes the coroot $2(\beta,\beta)^{-1}\beta$. Let Δ_R denote the set consisting of nonzero roots $\beta|_{Z_R}$, $\beta \in \Delta_k$. It is obvious that Δ_R is contained in Re \mathfrak{a}_R and spans \mathfrak{a}_R as a \mathbb{C} -vector space. We set

$$\mathfrak{c}_R = \{ \Lambda \in \mathfrak{a}_R : (\operatorname{Re} \Lambda - \rho_R, \beta^{\vee}|_{Z_R}) > 0 \text{ for all } \beta|_{Z_R} \in \Delta_R \}$$

and

$$\mathbf{c}_{R'}^R = \left\{ \Lambda \in \mathbf{\mathfrak{a}}_{R'}^R : (\operatorname{Re} \Lambda - \rho_{R'}^R, \beta^{\vee}|_{Z_{R'}}) > 0 \text{ for all } \beta|_{Z_{R'}} \in \Delta_{R'} \right.$$
 with $\beta|_{Z_R} = 0$.

A map $z_R: G(\mathbb{A}) \to A_R^G = A_G M_R(\mathbb{A})^1 \backslash M_R(\mathbb{A})$ is defined by $z_R(g) = A_G M_R(\mathbb{A})^1 m$ if g = umh, $u \in U_R(\mathbb{A})$, $m \in M_R(\mathbb{A})$ and $h \in K$.

For a smooth function $\eta \in C_0^{\infty}(A_R^G)$, its Mellin transform is defined to be

$$\widehat{\eta}(\Lambda) = \int_{A_R^G} \eta(z) z^{-(\Lambda + \rho_R)} d\nu_{A_R^G}(z).$$

We choose the measure $d\Lambda$ on \mathfrak{a}_R so that the following inversion formula holds for any $\eta \in C_0^{\infty}(A_R^G)$:

$$\eta(z) = \int_{\Lambda \in \Lambda_0 + \sqrt{-1} \operatorname{Re} \mathfrak{a}_R} \widehat{\eta}(\Lambda) z^{\Lambda + \rho_R} \, d\Lambda \,,$$

where $\Lambda_0 \in \operatorname{Re} \mathfrak{a}_R$ is a base point.

Let $\mathcal{A}_{0,R} = \mathcal{A}_0(A_R^G U_R(\mathbb{A}) M_R(k) \backslash G(\mathbb{A})^1)$ be the space of cuspidal automorphic forms on $A_R^G U_R(\mathbb{A}) M_R(k) \backslash G(\mathbb{A})^1$. For an open subgroup $D \subset K$, $\mathcal{A}_{0,R}^D$ denotes the set of right D-invariant cusp forms in $\mathcal{A}_{0,R}$. For $\varphi \in \mathcal{A}_{0,R}$, $\eta \in C_0^\infty(A_R^G)$ and $\Lambda \in \mathfrak{c}_R$, the pseudo-Eisenstein series $\theta_{\varphi,\eta}$ and the Eisenstein series $E(\varphi,\Lambda)$ on $G(k)\backslash G(\mathbb{A})^1$ are defined as follows:

$$\begin{split} \theta_{\varphi,\eta}(g) &= \sum_{\gamma \in R(k) \backslash G(k)} \varphi(\gamma g) \eta(z_R(\gamma g)) \,, \\ E(\varphi,\Lambda)(g) &= \sum_{\gamma \in R(k) \backslash G(k)} z_R(\gamma g)^{\Lambda + \rho_R} \varphi(\gamma g) \,. \end{split}$$

It is known that both series are absolutely convergent, $\theta_{\varphi,\eta}$ is a rapidly decreasing function on $G(k)\backslash G(\mathbb{A})^1$ and $E(\varphi,\Lambda)$ is meromorphically continued on the whole \mathfrak{a}_R . If $\Lambda_0 \in \operatorname{Re} \mathfrak{a}_R \cap \mathfrak{c}_R$ is fixed, then $\theta_{\varphi,\eta}$ is expressed as

$$\theta_{\varphi,\eta}(g) = \int_{\Lambda \in \Lambda_0 + \sqrt{-1} \operatorname{Re} \mathfrak{a}_R} \widehat{\eta}(\Lambda) E(\varphi,\Lambda)(g) \, d\Lambda \, .$$

We need intertwining operators to describe constant terms of pseudo-Eisenstein series. Let W_G be the relative Weyl groups of (G, S). We take a pair of a standard k-parabolic subgroup R' and an element $w \in W_G$ such that $wM_Rw^{-1} = M_{R'}$. Then, for $\Lambda \in \mathfrak{c}_R$ and $\varphi \in \mathcal{A}_{0,R}$, we consider

$$(M(w,\Lambda)\varphi)(g) = z_{R'}(g)^{-(w\Lambda + \rho_{R'})}$$

$$\times \int_{(U_{R'}(\mathbb{A}) \cap wU_R(\mathbb{A})w^{-1}) \setminus U_{R'}(\mathbb{A})} \varphi(w^{-1}ug) z_R(w^{-1}ug)^{\Lambda + \rho_R} d\omega_{\mathbb{A}}^{U_{R'}}(u) .$$

The integral of the right-hand side converges absolutely and $M(w, \Lambda)\varphi$ is contained in $\mathcal{A}_{0,R'}$. Moreover, the operator $M(w, \Lambda)$ is meromorphically continued to the whole \mathfrak{a}_R . The adjoint operator $M(w, \Lambda)^*$ of $M(w, \Lambda)$ with respect to the L^2 -inner product on $\mathcal{A}_{0,R}$ equals $M(w^{-1}, -w\overline{\Lambda})$.

§5. Proof of Theorem 1

Let π , Q, D and F_T be the same as in Section 3. On account of Proposition 1, we must prove

$$\lim_{T \to \infty} \langle \psi, F_T \rangle = \frac{\tau(Q)}{\tau(G)} \langle \psi, 1 \rangle$$

for every $\psi \in C_0(G(k)\backslash G(\mathbb{A}))$. By [DRS, Lemma 2.4], it is enough to prove

$$\lim_{T \to \infty} \langle \theta_{\varphi,\eta}, F_T \rangle = \frac{\tau(Q)}{\tau(G)} \langle \theta_{\varphi,\eta}, 1 \rangle$$

for all pseudo-Eisenstein series $\theta_{\varphi,\eta}$.

PROPOSITION 2. Let R be a standard k-parabolic subgroup of G, $\varphi \in \mathcal{A}_{0,R}$ and $\eta \in C_0^{\infty}(A_R^G)$. If $R \neq P$, i.e., R is not a minimal k-parabolic subgroup, then

$$\langle \theta_{\varphi,\eta}, F_T \rangle = \langle \theta_{\varphi,\eta}, 1 \rangle = 0$$

Proof. First, by (1.3) and $\omega_{G(\mathbb{A})^1} = (d_G \mu_{A_G}) \backslash \omega_{\mathbb{A}}^G$, one has

$$\begin{split} \langle \theta_{\varphi,\eta}, 1 \rangle &= \int_{R(k) \backslash G(\mathbb{A})^1} \varphi(g) \eta(z_R(g)) \, d(\omega_{R(k)} \backslash \omega_{G(\mathbb{A})^1})(g) \\ &= \frac{C_G}{C_R d_G} \int_{U_R(k) \backslash U_R(\mathbb{A}) \times A_G M_R(k) \backslash M_R(\mathbb{A}) \times K} \varphi(mh) \eta(z_R(m)) \\ &\qquad \times \delta_R(m)^{-1} \, d\omega_{U_R}(u) d(\mu_{A_G} \omega_{G(k)} \backslash \omega_{\mathbb{A}}^{M_R})(m) d\nu_K(h) \\ &= \frac{C_G d_R}{C_R d_G} \int_{M_R(k) \backslash M_R(\mathbb{A})^1 \times K} \varphi(mh) \left\{ \int_{A_R^G} \eta(z) z^{-2\rho_R} \, d\nu_{A_R^G}(z) \right\} \\ &\qquad \times d\omega_{M_R}(m) d\nu_K(h) \\ &= \frac{C_G d_R}{C_R d_G} \widehat{\eta}(\rho_R) \langle \varphi, 1 \rangle_R \,, \end{split}$$

where we set

$$\langle \varphi, 1 \rangle_R = \int_{M_R(k) \backslash M_R(\mathbb{A})^1 \times K} \varphi(mh) \, d\omega_{M_R}(m) d\nu_K(h) \, .$$

From the cuspidality of φ , it follows $\langle \varphi, 1 \rangle_R = 0$, and hence $\langle \theta_{\varphi,\eta}, 1 \rangle = 0$.

Next we compute $\Pi_Q(\theta_{\varphi,\eta})$. Since Q is maximal, there is an only one simple root $\alpha \in \Delta_k$ such that $\alpha|_{Z_Q} \neq 0$. We define a subset $W(M_R, M_Q)$ of the Weyl group W_G by

$$W(M_R, M_Q) = \{ w \in W_G : w^{-1}(\beta) > 0 \text{ for all } \beta \in \Delta_k - \{\alpha\}$$

and $wRw^{-1} \subset Q \}$.

Then the constant term of the Eisenstein series $E(\varphi, \Lambda)$ along U_Q is given by the formula

$$\Pi_{Q}^{1}(E(\varphi,\Lambda))(g) = \sum_{w \in W(M_{R},M_{Q})} \sum_{\gamma \in M_{Q}(k) \cap R^{w}(k) \backslash M_{Q}(k)} (M(w,\Lambda)\varphi)(\gamma g) z_{R^{w}} (\gamma g)^{w\Lambda + \rho_{R^{w}}},$$

where R^w denotes wRw^{-1} ([MW, Proposition II.1.7]). If $W(M_R, M_Q)$ is empty, this constant term is zero. Thus $\Pi^1_Q(\theta_{\varphi,\eta})(g)$ equals

$$(5.2) \sum_{w \in W(M_R, M_Q)} \int_{\Lambda \in \Lambda_0 + \sqrt{-1} \operatorname{Re} \mathfrak{a}_R} \widehat{\eta}(\Lambda)$$

$$\times \sum_{\gamma \in M_Q(k) \cap R^w(k) \setminus M_Q(k)} (M(w, \Lambda)\varphi)(\gamma g) z_{R^w} (\gamma g)^{w\Lambda + \rho_{R^w}} d\Lambda$$

$$= \sum_{w \in W(M_R, M_Q)} \int_{\Lambda \in w \Lambda_0 + \sqrt{-1} \operatorname{Re} \mathfrak{a}_{R^w}} \widehat{\eta}(w^{-1}\Lambda)$$

$$\times \sum_{\gamma \in M_Q(k) \cap R^w(k) \setminus M_Q(k)} (M(w, w^{-1}\Lambda)\varphi)(\gamma g) z_{R^w} (\gamma g)^{\Lambda + \rho_{R^w}} d\Lambda .$$

We take $m \in A_G \backslash M_Q(\mathbb{A})$ and $m_1 \in M_Q(\mathbb{A})^1$ so that $m = m_1 z_Q(m)$. Then one has $z_{R^w}(\gamma m) = z_Q(m) z_{R^w}(\gamma m_1)$ and $z_{R^w}(\gamma m)^{\Lambda} = z_Q(m)^{\Lambda_1} z_{R^w}(\gamma m_1)^{\Lambda_2}$ for $\Lambda = \Lambda_1 + \Lambda_2$, $\Lambda_1 \in \mathfrak{a}_Q$ and $\Lambda_2 \in \mathfrak{a}_{R^w}^Q$ because of $\gamma m_1 \in M_Q(\mathbb{A})^1$. We choose a base point $\Lambda_{1,0} \in \operatorname{Re} \mathfrak{a}_Q$ and $\Lambda_{w,0} \in \operatorname{Re} \mathfrak{a}_{R^w}^Q$ as follows: $(-\Lambda_{1,0}, \alpha^{\vee}|_{Z_Q})$ is sufficiently large, and $(\Lambda_{w,0} - \rho_{R^w}^Q, \beta^{\vee}|_{Z_{R^w}}) > 0$ for all $\beta|_{Z_{R^w}} \in \Delta_{R^w}$ with $\beta|_{Z_Q} = 0$. Then we can shift the integral domain of (5.2) from $w\Lambda_0 + \sqrt{-1}\operatorname{Re} \mathfrak{a}_{R^w}$ to $\Lambda_{1,0} + \Lambda_{w,0} + \sqrt{-1}\operatorname{Re} \mathfrak{a}_{R^w}$ ([MW, Lemma II.2.2]).

Summing up, (5.2) at g = m is equal to

$$\begin{split} \sum_{w \in W(M_R, M_Q)} \int_{\Lambda_1 \in \Lambda_{1,0} + \sqrt{-1} \operatorname{Re} \mathfrak{a}_Q} z_Q(m)^{\Lambda_1 + \rho_Q} \\ & \times \sum_{\gamma \in M_Q(k) \cap R^w(k) \backslash M_Q(k)} \Psi_w(\Lambda_1, \gamma m_1) \, d\Lambda_1 \, , \end{split}$$

where

$$\Psi_w(\Lambda_1, m_1) = \int_{\Lambda_2 \in \Lambda_{w,0} + \sqrt{-1} \operatorname{Re} \mathfrak{a}_{R^w}^Q} \widehat{\eta}(w^{-1}(\Lambda_1 + \Lambda_2)) \times (M(w, w^{-1}(\Lambda_1 + \Lambda_2))\varphi)(m_1) z_{R^w}(m_1)^{\Lambda_2 + \rho_{R^w}^Q} d\Lambda_2.$$

Therefore, for $z \in A_Q^G$,

$$\begin{split} &\Pi_Q(\theta_{\varphi,\eta})(z) \\ &= \int_{M_Q(k)\backslash M_Q(\mathbb{A})^1} \Pi_Q^1(\theta_{\varphi,\eta})(m_1 z) \, d\omega_{M_Q}(m_1) \\ &= \sum_{w \in W(M_R,M_Q)} \int_{\Lambda_1 \in \Lambda_{1,0} + \sqrt{-1} \operatorname{Re} \, \mathfrak{a}_Q} z^{\Lambda_1 + \rho_Q} \\ &\quad \times \left\{ \int_{M_Q(k)\backslash M_Q(\mathbb{A})^1} \sum_{\gamma \in M_Q(k) \cap R^w(k)\backslash M_Q(k)} \Psi_w(\Lambda_1,\gamma m_1) d\omega_{M_Q}(m_1) \right\} d\Lambda_1 \, . \end{split}$$

By the calculation similar to (5.1), the inner integral equals

$$\begin{split} \frac{C_Q d_{R^w}}{C_{R^w} d_Q} \int_{A_{R^w}^Q} \left\{ \int_{M_{R^w}(k) \backslash M_{R^w}(\mathbb{A})^1 \times K^{M_Q}} \Psi_w(\Lambda_1, z_2 m_2 h) \right. \\ & \times d\omega_{M_{R^w}}(m_2) d\nu_{K^{M_Q}}(h) \right\} (\delta_{R^w}^Q)^{-1}(z_2) \, d(\mu_{A_Q} \backslash \mu_{A_{R^w}})(z_2) \\ &= \frac{C_Q d_{R^w}}{C_{R^w} d_Q} \int_{A_{R^w}^Q} \int_{\Lambda_2 \in \Lambda_{w,0} + \sqrt{-1} \operatorname{Re} \mathfrak{a}_{R^w}^Q} \widehat{\eta}(w^{-1}(\Lambda_1 + \Lambda_2)) \\ & \times \left\{ \int_{M_{R^w}(k) \backslash M_{R^w}(\mathbb{A})^1 \times K^{M_Q}} (M(w, w^{-1}(\Lambda_1 + \Lambda_2))\varphi)(m_2 h) \right. \\ & \times d\omega_{M_{R^w}}(m_2) d\nu_{K^{M_Q}}(h) \right\} z_2^{\Lambda_2 - \rho_{R^w}^Q} \, d\Lambda_2 d(\mu_{A_Q} \backslash \mu_{A_{R^w}})(z_2) \end{split}$$

The cuspidality of $M(w, w^{-1}\Lambda)\varphi$ implies

$$\int_{M_{R^w}(k)\backslash M_{R^w}(\mathbb{A})^1\times K^{M_Q}}(M(w,w^{-1}\Lambda)\varphi)(m_2h)\,d\omega_{M_{R^w}}(m_2)d\nu_{K^{M_Q}}(h)=0\,.$$

Hence
$$\Pi_Q(\theta_{\varphi,\eta})|_{M_Q(\mathbb{A})} \equiv 0$$
. This implies $\langle \theta_{\varphi,\eta}, F_T \rangle = 0$ by (3.4).

Next, we consider the case R = P. Since P is a minimal k-parabolic subgroup, the constant function $\varphi_0 \equiv 1$ is contained in $\mathcal{A}_{0,P}$. We define the inner product on $\mathcal{A}_{0,P}^K = \mathcal{A}_0(M(k)\backslash M(\mathbb{A})^1)^{K^M}$ by

$$\langle \psi_1, \psi_2 \rangle_M = \int_{M(k) \backslash M(\mathbb{A})^1} \psi_1(m) \overline{\psi_2(m)} \, d\omega_M(m) \quad (\psi_1, \psi_2 \in \mathcal{A}_{0,P}^K).$$

Let W_{M_Q} be the relative Weyl group of (M_Q, S) . As a subgroup of W_G , W_{M_Q} is identified with the point wise stabilizer of \mathfrak{a}_Q in W_G . For $w \in W_G$ and a generic $\Lambda \in \mathfrak{a}_P$, the operator $M(w,\Lambda)$ maps $\mathcal{A}_{0,P}^{DK^Q}$ into itself. If $w \in W_{M_Q}$, then the equality $M(w,\Lambda_1+\Lambda_2)=M(w,\Lambda_2)$ holds for $\Lambda_1 \in \mathfrak{a}_Q$, $\Lambda_2 \in \mathfrak{a}_P^Q$, and $M(w,\Lambda_2)$ is regarded as an operator on $\mathcal{A}_0(A_P^QU(\mathbb{A})M(k)\backslash Q(\mathbb{A})^1)$. We denote by w_0 (resp. w_1) the longest element of W_G (resp. W_{M_Q}). It is known from the theory of local intertwining operators and the Langlands classification theorem that the residue

$$M(w_0) = \lim_{\substack{\Lambda \in \mathfrak{c}_P \\ \Lambda \to \rho_P}} \left(\prod_{\beta \in \Delta_k} (\Lambda - \rho_P, \beta^{\vee}) \right) M(w_0, \Lambda)$$

exists and yields a projection from $\mathcal{A}_{0,P}$ onto the trivial representation $\mathbb{C}\varphi_0$ of $G(\mathbb{A})^1$ ([FMT, Section 10 (b)]). By the argument of [L] or [Lai], one has

$$M(w_0)\varphi_0 = \frac{C_G d_P \tau(P)}{d_G \tau(G)} \varphi_0.$$

In a similar fashion, the residue

$$M(w_1) = \lim_{\substack{\Lambda_2 \in \mathfrak{c}_P^Q \\ \Lambda_2 \to \rho_P^Q}} \left(\prod_{\beta \in \Delta_k - \{\alpha\}} (\Lambda_2 - \rho_P^Q, \beta^{\vee}) \right) M(w_1, \Lambda_2)$$

yields a projection from $\mathcal{A}_0(A_P^QU(\mathbb{A})M(k)\backslash Q(\mathbb{A})^1)$ onto $\mathbb{C}\varphi_0$ and one has

$$M(w_1)\varphi_0 = \frac{C_Q d_P \tau(P)}{d_Q \tau(Q)} \varphi_0.$$

LEMMA 2. For any $\varphi \in \mathcal{A}_{0,P}$,

$$M(w_0)\varphi = \frac{C_G d_P}{d_G \tau(G)} \langle \varphi, 1 \rangle_P \varphi_0.$$

Proof. If $M(w_0)\varphi = c\varphi_0$, then

$$c = \frac{1}{\tau(P)} \langle M(w_0)\varphi, \varphi_0 \rangle_P = \frac{1}{\tau(P)} \langle \varphi, M(w_0)^* \varphi_0 \rangle_P = \frac{C_G d_P}{d_G \tau(G)} \langle \varphi, \varphi_0 \rangle_P.$$

Here note that the constant $C_G d_P/(d_G \tau(G))$ is a positive real value.

LEMMA 3. Let $\tau \in W(M, M_Q)$, $\sigma = \tau^{-1}w_1 \in W_G$ and $\varphi \in \mathcal{A}_{0,P}^{DK^Q}$. If we fix a $\Lambda_1 \in \mathfrak{a}_Q$ with $(-\operatorname{Re}\Lambda_1, \alpha^{\vee}|_{Z_Q}) \gg 0$, then the function

$$\Lambda_2 \longmapsto \langle (M(\tau, \tau^{-1}(\Lambda_1 + \Lambda_2))\varphi)|_{M(\mathbb{A})^1}, \varphi_0 \rangle_M$$

is holomorphic at $\Lambda_2 = \rho_P^Q$. Moreover, one has

$$\langle (M(\tau, \tau^{-1}(\Lambda_1 + \rho_P^Q))\varphi)|_{M(\mathbb{A})^1}, \varphi_0 \rangle_M$$

$$= \frac{d_Q \tau(Q)}{C_Q d_P \tau(P)} \langle (M_1(\sigma^{-1}, \sigma(\Lambda_1 - \rho_P^Q))\varphi)|_{M(\mathbb{A})^1}, \varphi_0 \rangle_M,$$

where $M_1(\sigma^{-1}, \sigma(\Lambda_1 - \rho_P^Q))$ is defined by

$$\lim_{\substack{\Lambda_2 \in \mathfrak{c}_P^Q \\ \Lambda_2 \to \rho_P^Q}} \left(\prod_{\beta \in \Delta_k - \{\alpha\}} (\Lambda_2 - \rho_P^Q, \beta^{\vee}) \right) M(\sigma^{-1}, \sigma(\Lambda_1 - \Lambda_2)).$$

Proof. By [MW, Lemma II.2.2], the function $M(\tau, \tau^{-1}(\Lambda_1 + \Lambda_2))\varphi$ in Λ_2 is holomorphic on the tube domain of the form $\{\Lambda_2 \in \mathfrak{a}_P^Q : (\operatorname{Re}\Lambda_2, \operatorname{Re}\Lambda_2) < c_0^2\}$, where c_0 is a positive real constant with $c_0^2 > (\rho_P, \rho_P)$. By the functional equations of $M(w, \Lambda)$,

$$\begin{split} &\langle (M(\tau,\tau^{-1}\Lambda)\varphi)|_{M(\mathbb{A})^1}, \varphi_0 \rangle_M \\ &= \langle (M(w_1,w_1^{-1}\Lambda)M(\sigma^{-1},\sigma w_1^{-1}\Lambda)\varphi)|_{M(\mathbb{A})^1}, \varphi_0 \rangle_M \\ &= \langle (M(\sigma^{-1},\sigma w_1^{-1}\Lambda)\varphi)|_{M(\mathbb{A})^1}, M(w_1,w_1^{-1}\Lambda)^*\varphi_0 \rangle_M \\ &= \langle (M(\sigma^{-1},\sigma w_1^{-1}\Lambda)\varphi)|_{M(\mathbb{A})^1}, M(w_1^{-1},-\overline{\Lambda})\varphi_0 \rangle_M \,. \end{split}$$

Here we identify $\mathcal{A}_{0,P}^K$ with $\mathcal{A}_0(A_P^QU(\mathbb{A})M(k)\backslash Q(\mathbb{A})^1)^{K^{M_Q}}$ and regard $M(w_1, w_1^{-1}\Lambda)$ as an operator on it. Therefore,

$$\langle (M(\tau, \tau^{-1}(\Lambda_1 + \rho_P^Q))\varphi)|_{M(\mathbb{A})^1}, \varphi_0 \rangle_M$$

equals

$$\left\langle (M_1(\sigma^{-1}, \sigma(\Lambda_1 - \rho_P^Q))\varphi)|_{M(\mathbb{A})^1}, \\ \lim_{\substack{\Lambda_2 \in \mathfrak{c}_P^Q \\ \Lambda_2 \to \rho_P^Q}} \overline{\left(\prod_{\beta \in \Delta_k - \{\alpha\}} (\Lambda_2 - \rho_P^Q, \beta^\vee)\right)^{-1}} M(w_1^{-1}, -\overline{\Lambda}_2)\varphi_0 \right\rangle_M.$$

If we regard $\overline{M(w_1^{-1}, -\overline{\Lambda}_2)}$ acting on $\mathbb{C}\varphi_0$ as a scalar valued function, then

$$\begin{split} &\lim_{\substack{\Lambda_2 \in \mathfrak{c}_P^Q \\ \Lambda_2 \to \rho_P^Q}} \left(\prod_{\beta \in \Delta_k - \{\alpha\}} (\Lambda_2 - \rho_P^Q, \beta^\vee) \right)^{-1} \overline{M(w_1^{-1}, -\overline{\Lambda}_2)} \\ &= \lim_{\substack{\Lambda_2 \in \mathfrak{c}_P^Q \\ \Lambda_2 \to \rho_P^Q}} \left(\prod_{\beta \in \Delta_k - \{\alpha\}} (\Lambda_2 - \rho_P^Q, \beta^\vee) \right)^{-1} \overline{M(w_1, -w_1^{-1}\overline{\Lambda}_2)}^{-1} \\ &= \overline{M(w_1)}^{-1} \; . \end{split}$$

This implies the assertion.

Lemma 4. Being the notation as above, one has

$$\lim_{\substack{\Lambda_1 \in -\mathfrak{c}_Q \\ \Lambda_1 \to -\rho_O}} (\Lambda_1 + \rho_Q, \alpha^{\vee}) M_1(\sigma^{-1}, \sigma(\Lambda_1 - \rho_P^Q)) \varphi = \begin{cases} M(w_0) \varphi & (\sigma = w_0) \\ 0 & (\sigma \neq w_0) \end{cases}$$

If $0 < \varepsilon$ is sufficiently small, then the function

$$\Lambda_1 \longmapsto \langle (M_1(\sigma^{-1}, \sigma(\Lambda_1 - \rho_P^Q))\varphi)|_{M(\mathbb{A})^1}, \varphi_0 \rangle_M$$

is holomorphic on $\{\Lambda_1 \in \mathfrak{a}_Q : 1 - \epsilon < (\operatorname{Re}\Lambda_1, \rho_Q)/(\rho_Q, \rho_Q) < 1\}$ with polynomial growth as $|\Im \Lambda_1| \to \infty$.

Proof. For any $\psi \in \mathcal{A}_{0,P}^{DK^Q}$,

$$\begin{split} & \left\langle \lim_{\substack{\Lambda_1 \in -\mathfrak{c}_Q \\ \Lambda_1 \to -\rho_Q}} (\Lambda_1 + \rho_Q, \alpha^\vee) M_1(\sigma^{-1}, \sigma(\Lambda_1 - \rho_P^Q)) \varphi, \psi \right\rangle_P \\ & = \left\langle \varphi, \lim_{\substack{\Lambda_1 \in -\mathfrak{c}_Q \\ \Lambda_1 \to -\rho_Q}} \overline{(\Lambda_1 + \rho_Q, \alpha^\vee)} M_1(\sigma^{-1}, \sigma(\Lambda_1 - \rho_P^Q))^* \psi \right\rangle_P \\ & = \left\langle \varphi, \lim_{\substack{\Lambda_1 \in -\mathfrak{c}_Q \\ \Lambda_1 \to -\rho_Q}} \overline{(\Lambda_1 + \rho_Q, \alpha^\vee)} M_1(\sigma, -\overline{\Lambda}_1 + \rho_P^Q) \psi \right\rangle_P \\ & = \left\langle \varphi, \lim_{\substack{\Lambda_1 \in -\mathfrak{c}_Q \\ \Lambda_1 \to -\rho_Q}} \overline{(\Lambda_1 + \rho_Q, \alpha^\vee)} M(\sigma, \overline{\Lambda}) \psi \right\rangle_P. \end{split}$$

It is known that

$$\lim_{\substack{\Lambda \in \mathfrak{c}_P \\ \Lambda \to a_P}} \left(\prod_{\beta \in \Delta_k} (\Lambda - \rho_P, \beta^{\vee}) \right) M(\sigma, \Lambda) = \begin{cases} M(w_0) & (\sigma = w_0) \\ 0 & (\sigma \neq w_0) \end{cases}$$

(cf. [FMT, Lemma 7]). By this and Lemma 2, the equalities

$$\langle M(w_0)\varphi,\psi\rangle_P = \langle \varphi, M(w_0)\psi\rangle_P$$

$$= \left\langle \lim_{\substack{\Lambda_1 \in -\mathfrak{c}_Q \\ \Lambda_1 \to -\varrho_Q}} (\Lambda_1 + \varrho_Q, \alpha^{\vee}) M_1(\sigma^{-1}, \sigma(\Lambda_1 - \varrho_P^Q))\varphi, \psi \right\rangle_P$$

hold for all $\psi \in \mathcal{A}_{0,P}^{DK^Q}$. The remains of the assertion follows from [H, Lemma 118].

PROPOSITION 3. Let $\varphi \in \mathcal{A}_{0,P}$ and $\eta \in C_0^{\infty}(A_P^G)$. Then one has

$$\lim_{T \to \infty} \langle \theta_{\varphi,\eta}, F_T \rangle = \frac{\tau(Q)}{\tau(P)} \langle \theta_{\varphi,\eta}, 1 \rangle.$$

Proof. It is sufficient to prove the assertion for right DK^Q -invariant $\varphi \in \mathcal{A}_{0,P}$. The calculations of $\langle \theta_{\varphi,\eta}, 1 \rangle$ and $\Pi_Q(\theta_{\varphi,\eta})$ are the same as in the proof of Proposition 2. We have

$$\langle \theta_{\varphi,\eta}, 1 \rangle = \frac{C_G d_P}{C_P d_G} \widehat{\eta}(\rho_P) \langle \varphi, 1 \rangle_P.$$

We need a further calculation of $\Pi_Q(\theta_{\varphi,\eta})$. Since φ is right DK^Q -invariant, $\Pi_Q(\theta_{\varphi,\eta})(z)$ equals

(5.3)
$$\frac{C_Q d_P}{C_P d_Q} \sum_{\tau \in W(M, M_Q)} \int_{\Lambda_1 \in \Lambda_{1,0} + \sqrt{-1} \operatorname{Re} \mathfrak{a}_Q} z^{\Lambda_1 + \rho_Q} \widehat{f_\tau}(\Lambda_1) d\Lambda_1,$$

where

$$\begin{split} \widehat{f}_{\tau}(\Lambda_1) &= \int_{A_P^Q} \int_{\Lambda_2 \in \Lambda_{\tau,0} + \sqrt{-1} \operatorname{Re} \mathfrak{a}_P^Q} \widehat{\eta}(\tau^{-1}(\Lambda_1 + \Lambda_2)) \\ & \times \langle (M(\tau, \tau^{-1}(\Lambda_1 + \Lambda_2))\varphi)|_{M(\mathbb{A})^1}, \varphi_0 \rangle_M z_2^{\Lambda_2 - \rho_P^Q} \\ & \times d\Lambda_2 d(\mu_{A_O} \backslash \mu_{A_P})(z_2) \,. \end{split}$$

If $\Lambda_1 \in \Lambda_{1,0} + \sqrt{-1} \operatorname{Re} \mathfrak{a}_Q$ is fixed, the function

$$\Lambda_2 \longmapsto \widehat{\eta}(\tau^{-1}(\Lambda_1 + \Lambda_2))\langle (M(\tau, \tau^{-1}(\Lambda_1 + \Lambda_2))\varphi)|_{M(\mathbb{A})^1}, \varphi_0 \rangle_M$$

is holomorphic on the tube domain $\{\Lambda_2 \in \mathfrak{a}_P^Q : (\operatorname{Re}\Lambda_2, \operatorname{Re}\Lambda_2) < c_0^2\}$ as mentioned in the proof of Lemma 3. We can take $\Lambda_{\tau,0}$ in this domain. Then, from the inversion formula, it follows

$$\widehat{f}_{\tau}(\Lambda_1) = \widehat{\eta}(\tau^{-1}(\Lambda_1 + \rho_P^Q)) \langle (M(\tau, \tau^{-1}(\Lambda_1 + \rho_P^Q))\varphi)_{M(\mathbb{A})^1}, \varphi_0 \rangle_M.$$

We shift the integral domain in (5.3) from $\Lambda_{1,0} + \sqrt{-1} \operatorname{Re} \mathfrak{a}_Q$ to $(\epsilon - 1)\rho_Q + \sqrt{-1} \operatorname{Re} \mathfrak{a}_Q$, where ϵ is a sufficiently small positive number so that all \widehat{f}_{τ} are holomorphic on the domain $B_{\epsilon} = \{\Lambda_1 \in \mathfrak{a}_Q : 1 - 2\epsilon < (-\operatorname{Re} \Lambda_1, \rho_Q)/(\rho_Q, \rho_Q) < 1\}$. Taking account the residue at $-\rho_Q$, we obtain

$$\begin{split} \int_{\Lambda_1 \in \Lambda_{1,0} + \sqrt{-1} \operatorname{Re} \mathfrak{a}_Q} z^{\Lambda_1 + \rho_Q} \widehat{f}_\tau(\Lambda_1) \, d\Lambda_1 \\ &= \int_{\Lambda_1 \in (\epsilon - 1)\rho_Q + \sqrt{-1} \operatorname{Re} \mathfrak{a}_Q} z^{\Lambda_1 + \rho_Q} \widehat{f}_\tau(\Lambda_1) \, d\Lambda_1 + \operatorname{Res}_{\Lambda_1 = -\rho_Q} \widehat{f}_\tau(\Lambda_1) \, . \end{split}$$

We write $f_{\tau}(z)$ for the first term. By Lemmas 2, 3 and 4, $\Pi_Q(\theta_{\varphi,\eta})(z)$ equals

$$\frac{C_Q d_P}{C_P d_Q} \sum_{\tau \in W(M, M_Q)} f_{\tau}(z) + \frac{C_Q d_P}{C_P d_Q} \cdot \frac{d_Q \tau(Q)}{C_Q d_P \tau(P)} \widehat{\eta}(\rho_P) \langle M(w_0) \varphi |_{M(\mathbb{A})^1}, \phi_0 \rangle_M$$

$$= \frac{C_Q d_P}{C_P d_Q} \sum_{\tau \in W(M, M_Q)} f_{\tau}(z) + \frac{C_G d_P \tau(Q)}{C_P d_G \tau(G)} \widehat{\eta}(\rho_P) \langle \varphi, 1 \rangle_P.$$

Here note that $\langle \varphi_0, \varphi_0 \rangle_M = \tau(M) = \tau(P)$. Since $\hat{\eta}$ is a function of Paley – Wiener type and $\hat{f}_{\tau}(\Lambda_1)/\hat{\eta}(\tau^{-1}(\Lambda_1 + \rho_P^Q))$ is of polynomial growth on B_{ϵ} as $|\Im \Lambda_1| \to \infty$ by Lemma 4, we have an estimate of the formula

$$(5.4) |f_{\tau}(z)| \le z^{\epsilon \rho_Q} \int_{\sqrt{-1} \operatorname{Re} \mathfrak{a}_Q} |z^{\Lambda}| |\widehat{f}_{\tau}((\epsilon - 1)\rho_Q + \Lambda)| d\Lambda \le c_1 z^{\epsilon \rho_Q},$$

where c_1 is a constant depending on \widehat{f}_{τ} . This implies

$$\limsup_{T \to \infty} \frac{e_Q}{T^{e_Q[k:\mathbb{Q}]/e_{\pi}}} \int_0^{T^{[k:\mathbb{Q}]/e_{\pi}}} t^{e_Q} |f_{\tau}(\iota_Q(\overline{e}, |\alpha_Q|_{\mathbb{A}}^{-1}(t)))| \frac{dt}{t}$$

$$\leq \limsup_{T \to \infty} \frac{e_Q}{T^{e_Q[k:\mathbb{Q}]/e_{\pi}}} \int_0^{T^{[k:\mathbb{Q}]/e_{\pi}}} c_1 t^{(1-\epsilon/2)e_Q} \frac{dt}{t} = 0.$$

As a consequence, we have

$$\lim_{T\to\infty}\langle\theta_{\varphi,\eta},F_T\rangle = \frac{C_G d_P \tau(Q)}{C_P d_G \tau(G)} \widehat{\eta}(\rho_P) \langle \varphi,1\rangle_P = \frac{\tau(Q)}{\tau(G)} \langle \theta_{\varphi,\eta},1\rangle \,.$$

This completes the proof of Proposition 3, and therefore we are led to Theorem 1. \square

§6. Error terms

We give some estimates of error terms of (3.3).

Lemma 5. Let a > 0 be a constant. If

$$\lim_{T \to \infty} \left\langle \psi, \frac{F_T - \tau(Q)/\tau(G)}{T^a} \right\rangle = 0$$

holds for any $\psi \in C_0(G(k)\backslash G(\mathbb{A})^1)$, then one has

(6.1)
$$\lim_{T \to \infty} \frac{F_T(g) - \tau(Q)/\tau(G)}{T^a} = 0$$

for every $g \in G(\mathbb{A})^1$.

Proof. Using the same notations as in the proof of Proposition 1, we have

$$\beta_{m}^{-a-e_{Q}[k:\mathbb{Q}]/e_{\pi}} \frac{\langle \psi_{m}, F_{\beta_{m}^{-1}T} - \tau(Q)/\tau(G) \rangle}{(\beta_{m}^{-1}T)^{a}} + \frac{(\beta_{m}^{-e_{Q}[k:\mathbb{Q}]/e_{\pi}} - 1)\tau(Q)/\tau(G)}{T^{a}}$$

$$\leq \frac{F_{T}(g_{0}) - \tau(Q)/\tau(G)}{T^{a}}$$

$$\leq \beta_{m}^{a+e_{Q}[k:\mathbb{Q}]/e_{\pi}} \frac{\langle \psi_{m}, F_{\beta_{m}T} - \tau(Q)/\tau(G) \rangle}{(\beta_{m}T)^{a}} + \frac{(\beta_{m}^{e_{Q}[k:\mathbb{Q}]/e_{\pi}} - 1)\tau(Q)/\tau(G)}{T^{a}}$$

The assertion follows immediately from this.

By [DRS, Lemma 2.4] and Proposition 2, if

$$\lim_{T \to \infty} \left\langle \theta_{\varphi,\eta}, \frac{F_T - \tau(Q)/\tau(G)}{T^a} \right\rangle = 0$$

holds for all $\theta_{\varphi,\eta}$, $\varphi \in \mathcal{A}_{0,P}^{DK^Q}$, $\eta \in C_0^{\infty}(A_P^G)$, then we get (6.1). Let ϵ_0 be the superior of $\epsilon \in (0,1/2)$ such that all $M(\tau,\tau^{-1}(\Lambda_1+\delta_P^Q))$, $\tau \in W(M,M_Q)$ are holomorphic on B_{ϵ} , where B_{ϵ} is the same as in the proof of Proposition 3. Then, for any $0 < a < \epsilon_0$, we can shift the integral domain of (5.3) from $\Lambda_{1,0} + \sqrt{-1}\operatorname{Re}\mathfrak{a}_Q$ to $(2a-1)\rho_Q + \sqrt{-1}\operatorname{Re}\mathfrak{a}_Q$ and the estimate similar to (5.4) leads to

$$\lim_{T \to \infty} \frac{\langle F_T, f_\tau \rangle}{T^{(1-a)e_Q[k:\mathbb{Q}]/e_\pi}} = 0.$$

Thus we proved the following.

Proposition 4. For any $0 < a < \epsilon_0$, one has

$$|E_{\pi}(D,T) \cap X_{Q}(k)g| = \frac{\tau(Q)}{\tau(G)} \omega_{Y_{Q}}(E_{\pi}(D,T)) + o(T^{(1-a)e_{Q}[k:\mathbb{Q}]/e_{\pi}}).$$

We note that, in some cases, the holomorphic domain of $M(\tau, \tau^{-1}(\Lambda_1 + \rho_O^Q))$ is extendable to the right side of the imaginary axis $\sqrt{-1} \operatorname{Re} \mathfrak{a}_Q$, however we do not know in general the asymptotic behavior of f_{τ} as $|\Im \Lambda_1| \to \infty$ in this region.

§7. Examples

EXAMPLE 1. Let V be an n-dimensional vector space defined over k, G a group of linear automorphisms of V and $\pi: G \to G$ the natural representation. We fix a free \mathfrak{D} -lattice L in V(k) and its \mathfrak{D} -basis $\mathbf{e}_1, \ldots, \mathbf{e}_n$. Then V(k) and G are identified with the column vector space k^n and the general linear group GL_n , respectively. Let P be the subgroup of upper triangular matrices and Q the stabilizer in G of the line spanned by \mathbf{e}_1 . Then the map $g \mapsto \mathbf{e}_1 \cdot g = g^{-1}\mathbf{e}_1$ yields an isomorphism from $X_Q = Q \setminus G$ to the projective space $\mathbb{P}V = \mathbb{P}^{n-1}$. Let H_{π} be a height on $X_Q(k)$ defined as in Section 2. We take a maximal compact subgroup $K = \prod_{v \in \mathfrak{V}} K_v$ as follows:

$$K_v = \begin{cases} GL_n(\mathfrak{O}_v) & (v \in \mathfrak{V}_f) \\ O(n) & (v \text{ is a real place}) \\ U(n) & (v \text{ is an imaginary place}) \end{cases}$$

For each $v \in \mathfrak{V}_f$, \mathfrak{p}_v and \mathfrak{f}_v stand for the maximal ideal of \mathfrak{O}_v and the residual field $\mathfrak{O}_v/\mathfrak{p}_v$, respectively. If we set

$$D_v = \left\{ g \in K_v : g \equiv \begin{pmatrix} * & * & * \\ 0 & & \\ \vdots & & * \\ 0 & & \end{pmatrix} \mod \mathfrak{p}_v \right\},$$

then $D_v \setminus K_v$ is isomorphic to $\mathbb{P}^{n-1}(\mathfrak{f}_v)$ by the reduction homomorphism. For every $x \in \mathbb{P}^{n-1}(k_v)$, there is an $h_x \in K_v$ such that $x = k_v(\mathbf{e}_1 \cdot h_x)$. We denote by $[x]_v$ the reduction of x modulo \mathfrak{p}_v , i.e., $[x]_v = \mathfrak{f}_v(\mathbf{e}_1 \cdot h_x \mod \mathfrak{p}_v)$. Let \mathfrak{S} be a finite subset of \mathfrak{V}_f . We fix a point $(a_v)_{v \in \mathfrak{S}}$ in $\prod_{v \in \mathfrak{S}} \mathbb{P}^{n-1}(k_v)$ and set

$$N(\mathbb{P}^{n-1}(k), T, (a_v)_{v \in \mathfrak{S}})$$

= $|\{x \in \mathbb{P}^{n-1}(k) : H_{\pi}(x) \le T \text{ and } [x]_v = [a_v]_v \text{ for all } v \in \mathfrak{S}\}|.$

It is obvious that

$$N(\mathbb{P}^{n-1}(k), T, (a_v)_{v \in \mathfrak{S}}) = |E_{\pi}(D, T) \cdot h \cap X(k)|,$$

where $D = K_{\infty} \times \prod_{v \in \mathfrak{G}} D_v \times \prod_{v \in \mathfrak{V}_f - \mathfrak{G}} K_v$ and $h = (h_{a_v})_{v \in \mathfrak{G}} \times (e)_{v \in \mathfrak{V} - \mathfrak{G}} \in K$. By Theorem 1 and the calculation of [W, Example 2], we have

$$N(\mathbb{P}^{n-1}(k), T, (a_v)_{v \in \mathfrak{S}}) \sim \prod_{v \in \mathfrak{S}} \frac{|\mathfrak{f}_v| - 1}{|\mathfrak{f}_v|^n - 1} \cdot \frac{\operatorname{Res}_{s=1} \zeta_k(s)}{|D_k|^{(n-1)/2} n Z_k(n)} \cdot T^{n[k:\mathbb{Q}]}$$
as $T \to \infty$.

Here $\zeta_k(s)$ is the Dedekind zeta function of k,

$$Z_k(s) = (\pi^{-s/2}\Gamma(s/2))^{r_1}((2\pi)^{1-s}\Gamma(s))^{r_2}\zeta_k(s)$$

and r_1 (resp. r_2) denotes a number of real (resp. imaginary) places of k. If $k = \mathbb{Q}$, this formula was proved in [S].

EXAMPLE 2. Let V, L and $\mathbf{e}_1, \ldots, \mathbf{e}_n$ be the same as in Example 1. Let Φ be a non-degenerate isotropic quadratic form on V(k), $G = SO_{\Phi}$ the special orthogonal group of Φ and $\pi: G \to GL(V)$ the natural representation. The height H_{π} is the same as Example 1. We assume $n \geq 4$ and Φ has the following matrix form with respect to the basis $\mathbf{e}_1, \ldots, \mathbf{e}_n$:

$$\Phi = \begin{pmatrix} & & 1 \\ & \Phi_0 & \\ 1 & & \end{pmatrix} \,,$$

where Φ_0 is a non-degenerate $(n-2) \times (n-2)$ symmetric matrix. Thus \mathbf{e}_1 is an isotropic vector of Φ . Let Q be the stabilizer in G of the isotropic line spanned by \mathbf{e}_1 . The map $g \mapsto \mathbf{e}_1 \cdot g = g^{-1}\mathbf{e}_1$ gives rise to a k-rational embedding from $X_{\Phi} = Q \setminus G$ into \mathbb{P}^{n-1} . The image of $X_{\Phi}(k)$ is the set of all Φ -isotropic lines $x \in \mathbb{P}^{n-1}(k)$. We put

$$N(X_{\Phi}(k), T) = |\{x \in X_{\Phi}(k) : H_{\pi}(x) \le T\}|.$$

Since the Levi-subgroup M_Q is isomorphic to $GL_1 \times SO_{\Phi_0}$, we have $\tau(G) = \tau(Q) = 2$ and $d_G = d_Q = 1$, and furthermore, $e_Q = \dim U_Q = n - 2$ and $e_{\pi} = 1$. Therefore, Theorem 1 implies

$$N(X_{\Phi}(k),T) \sim \frac{C_G}{(n-2)C_O} T^{(n-2)[k:\mathbb{Q}]}$$
 as $T \to \infty$.

Here we supposed that H_{π} is invariant by a good maximal compact subgroup K of $G(\mathbb{A})$. The formula due to Ikeda [I, Theorems 9.6 and 9.7] deduces an explicit value of C_G/C_Q for some choice of K. In the following, we state this formula. Let \mathfrak{V}'_{∞} be the set of all real places of k. For every $v \in \mathfrak{V}$, $\mathbb{H}(k_v)$ denotes the hyperbolic plane k_v^2 endowed with the quadratic form $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. Then $V(k_v)$ is decomposed into the following form on k_v :

$$V(k_v) = \mathbb{H}(k_v)^{m_v} \oplus V_v^0,$$

where V_v^0 is a Φ -anisotropic subspace. We put $\ell_v = \dim V_v^0$. In other words, $(n-\ell_v)/2$ is the Witt index of Φ on $V(k_v)$. If $v \in \mathfrak{V}_f$, then ℓ_v is at most 4. If $v \in \mathfrak{V}_f$ and $\ell_v = 3$, then V_v^0 is identified with the space of pure quaternions of the division quaternion algebra \mathbb{D}_v over k_v .

First, let n be odd. We may assume without loss of generality that $\det \Phi_0 \equiv 2(-1)^{(n-3)/2}$ module $(k^{\times})^2$ ([I, p. 207]). For every $v \in \mathfrak{V}_f$ with $\ell_v = 3$, we take a maximal compact subgroup K_v as the stabilizer in $G(k_v)$ of the lattice $\mathbb{H}(\mathfrak{O}_v)^{(n-3)/2} \oplus (\mathfrak{O}_{\mathbb{D}_v} \cap V_v^0)$. Here $\mathfrak{O}_{\mathbb{D}_v}$ denotes the maximal order of \mathbb{D}_v . In other places v, we take K_v as in [I, pp. 209–210]. Then

$$\frac{C_G}{C_Q} = \frac{\operatorname{Res}_{s=1} \zeta_k(s)}{|D_k|^{(n-2)/2} Z_k(n-1)} \prod_{\substack{v \in \mathfrak{V}_f \\ \ell_v = 3}} \frac{1 - |\mathfrak{f}_v|^{-n+3}}{|\mathfrak{f}_v|(1 - |\mathfrak{f}_v|^{-n+1})} \times \prod_{v \in \mathfrak{V}_{\infty}'} \prod_{i=1}^{[(\ell_v - 1)/4]} \frac{n - \ell_v + 4i - 2}{n + \ell_v - 4i - 2}.$$

Next, let n be even. We take a maximal compact subgroup K_v as in [I, pp. 209–210] for every $v \in \mathfrak{V}$. Let $k' = k(\sqrt{(-1)^{n/2} \det \Phi})$ be an extension of degree at most 2 over k and let \mathfrak{V}'_f (resp. \mathfrak{V}''_f) be the set of $v \in \mathfrak{V}_f$ such that $\ell_v = 2$ (resp. $\ell_v = 4$), v is unramified (resp. split) over k'/k and $\Phi|_{V_v^0}$ is equivalent to the form $2\varpi_v \cdot \operatorname{Norm}_{k'_v/k_v}$, where ϖ_v is a prime element of k_v and $\operatorname{Norm}_{k'_v/k_v}$ the norm form of the unramified quadratic extension k'_v/k_v . Then

$$\frac{C_G}{C_Q} = \frac{1}{|\mathfrak{f}_{\chi_{\Phi}}|^{1/2} |D_k|^{(n-2)/2}} \frac{\operatorname{Res}_{s=1} \zeta_k(s)}{Z_k(n-2)} \frac{L(-1+n/2, \chi_{\Phi})}{L(n/2, \chi_{\Phi})}
\times \prod_{v \in \mathfrak{V}_f'} |\mathfrak{f}_v|^{1-n/2} \prod_{v \in \mathfrak{V}_f''} \frac{1 - |\mathfrak{f}_v|^{2-n/2}}{|\mathfrak{f}_v|(1-|\mathfrak{f}_v|^{-n/2})}
\times \prod_{\substack{v \in \mathfrak{V}_{\infty}' \\ \ell_v \equiv 0 \text{ (4)}}} \prod_{i=1}^{\ell_v/4} \frac{n-4i}{n+4i-4} \prod_{\substack{v \in \mathfrak{V}_{\infty}' \\ \ell_v \equiv 2 \text{ (4)}}} \prod_{i=1}^{(\ell_v-2)/4} \frac{n-4i-2}{n+4i-2}.$$

Here χ_{Φ} is the quadratic character of \mathbb{A}^{\times} associated with Φ , i.e.,

$$\chi_{\Phi}(a) = \langle (-1)^{n/2} \det \Phi, a \rangle$$

for $a \in \mathbb{A}^{\times}$, where $\langle \cdot, \cdot \rangle$ is the Hilbert symbol, and $\mathfrak{f}_{\chi_{\Phi}}$ denotes the conductor of χ_{Φ} and $L(s, \chi_{\Phi})$ the Hecke *L*-function of χ_{Φ} .

References

- [B] A. Borel, Linear Algebraic Groups, Springer Verlag, 1991.
- [BW] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Princeton Univ. Press, 1980.
- [BR] M. Borovoi and Z. Rudnick, Hardy-Littlewood varieties and semisimple groups, Invent. Math., 119 (1995), 37–66.
- [DRS] W. Duke, Z. Rudnick and P. Sarnak, Density of integer points on affine homogeneous varieties, Duke Math. J., 71 (1993), 143–179.
- [FMT] J. Franke, Y. I. Manin and Y. Tschinkel, Rational points of bounded height on Fano varieties, Invent. Math., 95 (1989), 421–435.
- [G] R. Godement, Domaines fondamentaux des groupes arithmétiques, Exp. 257,
 Sém. Bourbaki, 15 (1962/1963).
- [H] Harish-Chandra, Automorphic Forms on Semisimple Lie Groups, Lec. Notes in Math. 62, Springer Verlag, 1986.
- T. Ikeda, On the residue of the Eisenstein series and the Siegel-Weil formula, Comp. Mathematics., 103 (1996), 183–218.

- [Lai] K. F. Lai, Tamagawa number of reductive algebraic groups, Comp. Math., 47 (1980), 153–188.
- [L] R. P. Langlands, The volume of the fundamental domain for some arithmetical subgroups of Chevalley groups, Proc. Symp. Pure Math. 9, Amer. Math. Soc. (1966), 143–148.
- [MW] C. Moeglin and J.-L. Waldspurger, Spectral Decomposition and Eisenstein Series, Cambridge Univ. Press, 1995.
- [MW1] M. Morishita and T. Watanabe, On S-Hardy-Littlewood homogeneous spaces, Int. J. Math., 9 (1998), 723–757.
- [MW2] ______, Adele geometry of numbers, Class Field Theory Its Centenary and Prospect, Adv. Studies in Pure Math. 30, Japan Math. Soc. (2001), pp. 509–536.
- [S] A. Sato, Counting rational points on projective space with certain congruent conditions, preprint.
- [W] T. Watanabe, On an analog of Hermite's constant, J. Lie Theory, 10 (2000), 33–52.

Department of Mathematics
Graduate School of Science
Osaka University
Toyonaka
Osaka, 560-0043
Japan
watanabe@math.wani.osaka-u.ac.jp