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THE HARDY-LITTLEWOOD PROPERTY OF FLAG

VARIETIES

TAKAO WATANABE

Abstract. We study the asymptotic distribution of rational points on a gen-
eralized flag variety which are of bounded height and satisfy some congruence
conditions in the formulation analogous to a strongly Hardy-Littlewood variety.

Let X be an affine variety in an affine space V over Q and BT the set

of x ∈ X(R) with ‖x‖ ≤ T for a Euclidean norm ‖ · ‖ on V (R). The Hardy-

Littlewood method allows us to expect that the cardinality of BT ∩X(Z)

is asymptotically equal to the volume of BT with respect to some measure

on X(R). On the basis of such expectation, Borovoi and Rudnick [BR]

introduced the notion of a Hardy-Littlewood variety in the adelic manner.

Namely, an affine variety X is called a strongly Hardy-Littlewood variety if

the asymptotic behavior

|(BT ×Bf ) ∩X(Q)| ∼ ωX(AQ)(BT ×Bf ) as T → ∞

holds for any open compact subset Bf of the finite adele X(AQ,f ), where

ωX(AQ) denotes the measure on X(AQ) attached to a gauge form on X.

It is known that many affine symmetric spaces have the strongly Hardy-

Littlewood property.

In this paper, we study the asymptotic distribution of rational points of

bounded height on a generalized flag variety in the formulation analogous

to a strongly Hardy-Littlewood variety. Let k be an algebraic number field,

G a connected reductive algebraic group defined over k, Q a maximal k-

parabolic subgroup of G and X = Q\G a generalized flag variety over k.

The adele group G(A) of G has the unimodular subgroup G(A)1 consisting

of all elements g ∈ G(A) that satisfy |χ(g)|A = 1 for any k-rational character

χ of G. Similarly, the unimodular subgroup Q(A)1 of Q(A) is defined,

see Notation below for its precise definition. The homogeneous space Y =

Q(A)1\G(A)1 is appropriate to our purpose by the reason that the set X(k)
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of k-rational points of X is naturally regarded as a subset of Y and there is

a unique right G(A)1-invariant measure ωY on Y matching with Tamagawa

measures ωG(A)1 and ωQ(A)1 of G(A)1 andQ(A)1, respectively. It is observed

that Y is decomposed into the direct product of the infinite part Y∞ and the

finite part Yf , and Yf is naturally identified with the homogeneous space

Q(Af )\G(Af ). By a strongly k-rational representation π of G, the variety

X is embedded into a projective space, and the height Hπ is defined on

X(k). Since Hπ is extended to a positive real valued function on Y , we can

define the “ball” BT of radius T as the set of y ∈ Y∞ with Hπ(y) ≤ T . Then

the main theorem of this paper is stated that the asymptotic behavior

(0.1) |(BT ×Bf ) ∩X(k)| ∼ τ(Q)

τ(G)
ωY (BT ×Bf ) as T → ∞

holds for any open subset Bf of Yf . Here τ(G) and τ(Q) stand for the

Tamagawa numbers of G and Q, respectively. In view of the equality

(BT × Yf ) ∩X(k) = {x ∈ X(k) : Hπ(x) ≤ T}, (0.1) yields the asymptotic

distribution of rational points x ∈ X(k) which satisfy Hπ(x) ≤ T together

with congruence conditions provided by Bf . The volume ωY (BT × Bf ) is

explicitly computed in the following sense. If Kf is a good maximal com-

pact subgroup of the finite adele group G(Af ) and Bf is the image of an

open subgroup Df ⊂ Kf to Yf = Q(Af )\G(Af ), then

ωY (BT ×Bf ) =
[Df (Kf ∩Q(Af )) : Df ]CGdQ

[Kf : Df ]CQdGeQ
T eQ[k:Q]/eπ ,

where dG, dQ and eQ are positive integers depending on G and Q, eπ is

a positive rational numbers depending on π and these constants are easily

computed. Both CG and CQ are also positive real constants depending

on G and Q, however the determination of their explicit values is more

complicated than other constants. In some particular cases, e.g., the case

that G splits over k or G is a special orthogonal group, we can describe

CG/CQ by using the special values of the Dedekind zeta function of k (cf.

Section 7).

Our result gives an affirmative partial answer to a question mentioned

in the last paragraph of [MW2, Section 4.3]. The asymptotic formula of

rational points of bounded height on any generalized flag variety was first

obtained by Franke, Manin and Tschinkel [FMT]. In the case of Bf = Yf ,

Corollary to Theorem 5 in [FMT] deduces the asymptotic behavior of the
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form |(BT ×Yf )∩X(k)| ∼ cT eQ[k:Q]/eπ , where c is a constant. However, it is

not clear in [FMT] that the leading term cT eQ[k:Q]/eπ is described in terms of

the volume of BT ×Yf . In order to explain it more precisely, we mention the

difference between the method of [FMT] and that of this paper. A crucial

observation in [FMT] is that the height zeta function can be identified with

one of the Langlands-Eisenstein series. Then, by using the analytic prop-

erties of Langlands-Eisenstein series and a standard Tauberian argument,

Franke, Manin and Tschinkel established their asymptotic formula. Thus

the volume ωY (BT × Yf ) does not occur in [FMT]. In this paper, we inves-

tigate directly the function FT (g) = |(BT × Bf ) ∩ X(k)g|ωY (BT × Bf )−1

on G(k)\G(A)1. By using the theory of constant terms of Eisenstein series,

we will prove that the inner product 〈θ, FT 〉 of any pseudo-Eisenstein series

θ on G(k)\G(A)1 and FT satisfies

〈θ, FT 〉 −→
τ(Q)

τ(G)
〈θ, 1〉 as T → ∞.

This and the argument similar to [DRS] and [MW1] lead us to

FT (g) −→ τ(Q)

τ(G)
as T → ∞

for every g ∈ G(k)\G(A)1 , and hence we immediately obtain (0.1). In

view of this, the expression of the main term of |(BT × Bf ) ∩ X(k)| by

ωY (BT ×Bf ) is a significant point of our result.

Notation. As usual, Z, Q, R and C denote the ring of integers, the field

of rational, real and complex numbers, respectively. The group of positive

real numbers is denoted by R×
+.

Let k be an algebraic number field of finite degree over Q, O the ring

of integers in k and V the set of all places of k. We write V∞ and Vf

for the sets of all infinite places and all finite places of k, respectively. For

v ∈ V, kv denotes the completion of k at v. If v is finite, Ov denotes the

ring of integers in kv. We fix, once and for all, a Haar measure µv on kv

normalized so that µv(Ov) = 1 if v ∈ Vf , µv([0, 1]) = 1 if v is a real place

and µv({a ∈ kv : aa ≤ 1}) = 2π if v is an imaginary place. Then the

absolute value | · |v on kv is defined as |a|v = µv(aC)/µv(C), where C is an

arbitrary compact subset of kv with nonzero measure. We denote by A the

adele ring of k, by Af the finite adele ring of k and by | · |A =
∏

v∈V
| · |v

the idele norm on the idele group A×.
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Let G be a connected affine algebraic group defined over k. For any k-

algebra R, G(R) stands for the set of R-rational points of G. Let X∗(G) and

X∗
k(G) be the free Z-modules consisting of all rational characters and all k-

rational characters of G, respectively. The absolute Galois group Gal(k/k)

acts on X∗(G). The representation of Gal(k/k) in the space X∗(G) ⊗Z

Q is denoted by σG and the corresponding Artin L-function is denoted

by L(s, σG) =
∏

v∈Vf
Lv(s, σG). We set σk(G) = lims→1(s − 1)nL(s, σG),

where n = rankX∗
k(G). Let ωG be a nonzero right invariant gauge form

on G defined over k. From ωG and the fixed Haar measure µv on kv, one

can construct a right invariant Haar measure ωG
v on G(kv). Then, the

Tamagawa measure on G(A) is well defined by ωG
A = |Dk|− dimG/2ωG

∞ω
G
f ,

where ωG
∞ =

∏
v∈V∞

ωG
v , ωG

f = σk(G)−1
∏

v∈Vf
Lv(1, σG)ωG

v and |Dk| is the

absolute value of the discriminant of k. For χ ∈ X∗
k(G), let |χ|A be the

continuous homomorphism G(A) → R×
+ defined by |χ|A(g) = |χ(g)|A. We

write G(A)1 for the intersection of kernels of all such |χ|A’s. If χ1, . . . , χn

is a Z-basis of X∗
k(G), then the mapping

g 7−→ (|χ1(g)|A, . . . , |χn(g)|A)

yields an isomorphism from the quotient group G(A)1\G(A) to (R×
+)n. We

put the Lebesgue measure dt on R and the invariant measure dt/t on R×
+.

Then there exists uniquely a Haar measure ωG(A)1 of G(A)1 such that the

Haar measure on G(A)1\G(A) matching with ωG
A and ωG(A)1 is equal to the

pull-back of the measure
∏n

i=1 dti/ti on (R×
+)n by the above isomorphism.

The measure ωG(A)1 is independent of the choice of a Z-basis of X∗
k(G).

Since G(k) is a discrete subgroup of G(A)1, we put the counting measure

ωG(k) on G(k). Then the Tamagawa number τ(G) is defined to be the

volume of the quotient space G(k)\G(A)1 with respect to the measure ωG =

ωG(k)\ωG(A)1 . Here, in general, if µA and µB denote Haar measures on a

locally compact unimodular group A and its closed unimodular subgroup B,

respectively, then µB\µA (resp. µA/µB) denotes a unique right (resp. left)

A-invariant measure on the homogeneous space B\A (resp. A/B) matching

with µA and µB.

If X is an algebraic variety defined over k, then X(k) denotes the set

of k-rational points of X. In addition, if X is affine, then X(A) and X(Af )

stands for the adele and the finite adele of X, respectively. We say that a

subset D of X(A) is decomposable if D is of the form D∞×Df , where D∞
and Df are subsets of

∏
v∈V∞

X(kv) and X(Af ), respectively.
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If X is a locally compact topological space, C0(X) denotes the space of

all compactly supported continuous functions on X. If X is a finite set, |X|
denotes the cardinal number of X. For two non-decreasing functions F1(T ),

F2(T ) of real variable T , F1(T ) ∼ F2(T ) means limT→∞ F1(T )/F2(T ) = 1

if F2(T ) 6= 0 for T large enough, otherwise, F1(T ) ≡ 0.

§1. Preliminaries

In the following, let G be a connected reductive group defined over

k. We fix a maximally k-split torus S of G, a maximal k-torus S1 of G

containing S, a minimal k-parabolic subgroup P of G containing S and a

Borel subgroup B of P containing S1. Then, we denote by Φk the relative

root system of G with respect to S and by ∆k the set of simple roots of Φk

corresponding to P .

Let M be the centralizer of S in G. Then P has a Levi decomposition

P = MU , where U is the unipotent radical of P . For every standard k-

parabolic subgroup R of G, R has a unique Levi subgroup MR containing

M . We denote by UR the unipotent radical of R. Throughout this paper,

we fix a maximal compact subgroup K of G(A) satisfying the following

property; For every standard k-parabolic subgroup R of G, K ∩MR(A) is

a maximal compact subgroup of MR(A) and MR(A) possesses an Iwasawa

decomposition (MR(A) ∩ U(A))M(A)(K ∩MR(A)). It is known that such

maximal compact subgroup of G(A) exists. We set KR = K∩R(A), KMR =

K ∩MR(A), PR = MR ∩ P and UR = MR ∩ U .

Let R be a standard k-parabolic subgroup of G. We include the case

R = G. Let ZR be the greatest central k-split torus in MR. The restriction

map X∗
k(MR) → X∗(ZR) is injective. Since X∗

k(MR) has the same rank as

X∗(ZR), the index

(1.1) dR = [X∗(ZR) : X∗
k(MR)]

is finite. If χ1, . . . , χr is a Z-basis of X∗(ZR), then the mapping z 7→
(χ1(z), . . . , χr(z)) yields an isomorphism from ZR(A) to (A×)r. We regard

R×
+ as a subgroup of A× by identifying t ∈ R×

+ with the idele tA = (tv) such

that tv = t if v ∈ V∞ and tv = 1 if v ∈ Vf . Let AR denote the inverse image

of (R×
+)r by the isomorphism ZR(A) → (A×)r. Then MR(A) has the direct

product decomposition: MR(A) = ARMR(A)1. The Haar measure µAR
on

AR is defined to be the pull-back of the invariant measure
∏r

i=1 dti/ti on

(R×
+)r with respect to the isomorphism z 7→ (|χ1(z)|A, . . . , |χr(z)|A) from
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AR onto (R×
+)r. It follows from the definition of ωMR(A)1 that the Tamagawa

measure ωMR
A is decomposed into dRµAR

· ωMR(A)1 . Both AR and µAR
are

independent of the choice of a basis of X∗(ZR). We set AG
R = AR/AG.

We define another Haar measure νMR(A) of MR(A) as follows. Let ωM
A

and ωUR

A be the Tamagawa measures of M(A) and UR(A), respectively.

There is the function δP R on M(A) such that the integration formula
∫

UR(A)
f(mum−1) dωUR

A (u) = δP R(m)−1

∫

UR(A)
f(u) dωUR

A (u)

holds for f ∈ C0(U
R(A)). In other words, δ−1

P R is the modular character of

PR(A). Let νKMR be the Haar measure on KMR normalized so that the

total volume equals one. Then the mapping

f 7−→
∫

UR(A)×M(A)×KMR

f(umh)δP R(m)−1 dωUR

A (u)dωM
A (m)dνKMR (h) ,

(f ∈ C0(MR(A)))

defines an invariant measure on MR(A) and is denoted by νMR(A). There

exists a positive constant CR such that

(1.2) ωMR
A = CRνMR(A) .

We have the following compatibility formula:

∫

G(A)
f(g) dωG

A (g)

(1.3)

=
CG

CR

∫

UR(A)×MR(A)×K
f(umh)δR(m)−1 dωUR

A (u)dωMR
A (m)dνK(h)

for f ∈ C0(G(A)), where δ−1
R is the modular character of R(A).

On the homogeneous space YR = R(A)1\G(A)1, we define the right

G(A)1-invariant measure ωYR
by ωR(A)1\ωG(A)1 . We note that both G(A)1

and R(A)1 are unimodular. We identify YR with AGR(A)1\G(A). Then

the mapping

ιR : K/KR ×AG
R −→ YR : (h, z) 7−→ AGR(A)1z−1h−1

is a bijection, where h = hKR and z = zAG for h ∈ K and z ∈ AR. Set

νAG
R

= µAR
/µAG

.
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Lemma 1. Let D be an open subgroup of K and {h1, . . . , hs} be a com-

plete set of coset representatives of K/D. Then, for any right D-invariant

function f ∈ C0(YR), one has

∫

YR

f(y) dωYR
(y) =

CGdR

[K : D]CRdG

s∑

i=1

∫

AG
R

f(ιR(h
−1
i , z))δR(z) dνAG

R
(z) .

Proof. If we set

ϕ(y) =

∫

K
f(yh) dνK(h) =

1

[K : D]

s∑

i=1

f(yhi) ,

then ϕ is a rightK-invariant function on YR. By [W, Corollary to Lemma 1],

∫

YR

ϕ(y) dωYR
(y) =

CGdR

CRdG

∫

AG
R

ϕ(ιR(e, z))δR(z) dνAG
R
(z) .

Since ωYR
is right G(A)1-invariant, the left hand side equals the integral of

f(y) over YR.

§2. Heights on flag varieties

Let Vπ be a finite dimensional k-vector space endowed with a k-

structure Vπ(k) and π : G→ GL(Vπ) be an absolutely irreducible k-rational

representation. The highest weight space in Vπ with respect to B is denoted

by xπ. Let Qπ be the stabilizer of xπ in G and λπ the k-rational character

of Qπ by which Qπ acts on xπ. The representation π is said to be strongly

k-rational if xπ is defined over k. Then Qπ is a standard k-parabolic sub-

group of G and λπ is a k-rational character of Qπ. It is known that λπ|S is a

non-negative integral linear combination of the fundamental k-weights ([W,

Section 1]). We say π is maximal if Qπ is a standard maximal k-parabolic

subgroup. This is equivalent to the condition that λπ|S is a positive integer

multiple of a single fundamental k-weight.

Let π be a strongly k-rational representation. For convenience, we use

a right action of G on Vπ defined by a · g = π(g−1)a for g ∈ G and a ∈ Vπ.

Then the mapping g 7→ xπ · g gives rise to a k-rational embedding of Qπ\G
into the projective space PVπ.

We write XQπ for Qπ\G. Since Qπ is a k-parabolic subgroup, XQπ(k) is

naturally identified with Qπ(k)\G(k) ([B, Proposition 20.5]). Let us define
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a height on XQπ(k). We fix a k-basis e1, . . . , en of the k-vector space Vπ(k)

and define a local height Hv on Vπ(kv) for each v ∈ V as follows:

Hv(a1e1 + · · ·+ anen) =





(|a1|2v + · · · + |an|2v)1/(2[k:Q]) (if v is real)

(|a1|v + · · · + |an|v)1/[k:Q] (if v is imaginary)

sup(|a1|v, . . . , |an|v)1/[k:Q] (if v ∈ Vf )

The global height Hπ on Vπ(k) is defined to be the product of all Hv, that

is, Hπ(a) =
∏

v∈V
Hv(a). By the product formula, Hπ is invariant by scalar

multiplications. Thus, Hπ defines a height on PVπ(k), and on XQπ(k) by

restriction. The height Hπ is extended to GL(Vπ,A)PVπ(k) by

Hπ(ξa) =
∏

v∈V

Hv(ξva)

for ξ = (ξv) ∈ GL(Vπ,A) and a = ka ∈ PVπ(k), a ∈ Vπ(k) − {0}. We set

Φπ,ξ(g) = Hπ(ξ(xπ · g))/Hπ(ξxπ)

for g ∈ G(A). Obviously, Φπ,ξ is a continuous function on G(A) and satisfies

Φπ,ξ(qg) = |λπ(q)−1|1/[k:Q]
A Φπ,ξ(g)

for any q ∈ Qπ(A) and g ∈ G(A). Thus Φπ,ξ defines a function on

YQπ = Qπ(A)1\G(A)1. It is always possible that one choose an element

ξ ∈ GL(Vπ,A) so that Φπ,ξ is right K-invariant. In many examples, one

can take the identity as such ξ.

§3. The Hardy-Littlewood property of flag varieties

In the following, we assume π is maximal and strongly k-rational. We

fix, once and for all, an element ξ ∈ GL(Vπ,A) such that Φπ,ξ is right K-

invariant. We simply write Q for Qπ and Φπ for Φπ,ξ. Let ∆Q be the set

of nonzero roots β|ZQ
, β ∈ ∆k. Since Q is maximal, ∆Q consists of a single

element α|ZQ
. Let nQ be the positive integer such that n−1

Q α|ZQ
is a Z-base

of X∗(ZG\ZQ). We set αQ = n−1
Q α|ZQ

. Then the Haar measure νAQ
equals

the pull-back of the measure dt/t by the isomorphism |αQ|A : AG
Q → R×

+. If

we set eQ = nQ dimUQ, we have

(3.1) δQ(z) = |αQ(z)|eQ

A , (z ∈ ZQ(A)).
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The quotient morphism ZQ → ZG\ZQ induces an isomorphism X∗(ZG\ZQ)

⊗Z Q → X∗(ZQ ∩ Gss) ⊗Z Q, where Gss denotes the derived group of G.

Under the identification X∗(ZQ ∩ Gss) ⊗Z Q ∼= X∗(ZG\ZQ) ⊗Z Q, there

exists the positive rational number eπ such that

(3.2) λπ|ZQ∩Gss = eπαQ .

Then Φπ(ιQ(h, z)) = |αQ(z)|eπ/[k:Q]
A holds for any (h, z) ∈ K/KQ ×AG

Q.

For an open subset D of K and 0 < T , we set

Eπ(D,T ) =
{
ιQ(h, z) : h ∈ DKQ/KQ, z ∈ AG

Q, |αQ(z)|A ≤ T [k:Q]/eπ
}
.

Obviously, Eπ(D,T ) is contained in {y ∈ YQ : Φπ(y) ≤ T}, and in particu-

lar, the set Eπ(K,T )∩XQ(k) coincides with the set {x ∈ XQ(k) : Hπ(ξx) ≤
Hπ(ξxπ)T}. The next is the main theorem of this paper.

Theorem 1. Let π and Q be as above and D = D∞ × Df a decom-

posable open subset of K such that D∞ equals the infinite part K∞ of K.

Then one has

(3.3) |Eπ(D,T ) ∩XQ(k)g| ∼ τ(Q)

τ(G)
ωYQ

(Eπ(D,T )) as T → ∞

for any g ∈ G(A)1.

We fix a decomposable open subset D of K with D∞ = K∞. Since

the finite part of K is totally disconnected, there is a decomposable open

normal subgroup D1 of K and b0 ∈ D such that D1b
−1
0 D = b−1

0 D and

D1,∞ = K∞. If b1, . . . , bs ∈ D is a complete set of coset representatives

of D1K
Q\b−1

0 DKQ, then Eπ(b−1
0 D,T ) = Eπ(D,T )b0 decomposes into a

disjoint union of Eπ(D1, T )bi, i = 1, 2, . . . , s. It is easy to see that the truth

of (3.3) for D1 implies the truth of (3.3) for D. Hence, we may assume

without loss of generality that D is an open normal subgroup of K to begin

with. Then, by Lemma 1, ωYQ
(Eπ(D,T )) equals

[DKQ : D]CGdQ

[K : D]CQdG

∫ T [k:Q]/eπ

0
teQ

dt

t
=

[DKQ : D]CGdQ

[K : D]CQdGeQ
T eQ[k:Q]/eπ .

Let χT be the characteristic function of Eπ(D,T ). Define the function

FT on G(k)\G(A)1 as

FT (g) =
1

ωYQ
(Eπ(D,T ))

∑

x∈XQ(k)

χT (xg) =
|Eπ(D,T ) ∩XQ(k)g|
ωYQ

(Eπ(D,T ))
.
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(3.3) is equivalent to the assertion that

lim
T→∞

FT (g) =
τ(Q)

τ(G)

holds for every g ∈ G(A)1. For a pair of functions ψ1, ψ2 on G(k)\G(A)1,

we set

〈ψ1, ψ2〉 =

∫

G(k)\G(A)1
ψ1(g)ψ2(g) dωG(g)

if the integral has the meaning.

Proposition 1. If

lim
T→∞

〈ψ, FT 〉 =
τ(Q)

τ(G)
〈ψ, 1〉

holds for any ψ ∈ C0(G(k)\G(A)1), then

lim
T→∞

FT (g) =
τ(Q)

τ(G)

for every g ∈ G(A)1.

Proof. Let {Um}m=1,2,3,... be a descending family of neighborhoods of
the identity e in G(A)1 such that Um is decomposable, i.e., Um = (Um)∞ ×
(Um)f , U−1

m = Um, (Um)f = Df , (Um)∞ is compact and
⋂∞

m=1(Um)∞ =
{e}. Since Φπ is continuous andKUm is compact, there exists the maximum

βm = max
g∈KUm

Φπ(g) = max
g∞∈K∞(Um)∞

Φπ(g∞) .

From the right K-invariance of Φπ and Φπ(e) = 1, it follows that βm ↓ 1 as
m→ ∞. By D∞ = K∞ and the definition of Eπ(D,T ), it is evident that

Eπ(D,T )Um ⊂ Eπ(D,βmT )

for every m. Therefore,

Eπ(D,β−1
m T )g−1g−1

0 ⊂ Eπ(D,T )g−1
0 ⊂ Eπ(D,βmT )g−1g−1

0

holds for every g ∈ Um = U−1
m and a fixed g0 ∈ G(A)1. This implies the

inequality

ωYQ
(Eπ(D,β−1

m T ))Fβ−1
m T (g0g) ≤ ωYQ

(Eπ(D,T ))FT (g0)

≤ ωYQ
(Eπ(D,βmT ))FβmT (g0g)
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for g ∈ Um. Let U ′
m be the image of g0Um to the quotient G(k)\G(A)1.

We choose a real-valued and non-negative function ψm ∈ C0(G(k)\G(A)1)
such that the support of ψm is contained in U ′

m and 〈ψm, 1〉 = 1. Then the
above inequality yields

ωYQ
(Eπ(D,β−1

m T ))

ωYQ
(Eπ(D,T ))

〈ψm, Fβ−1
m T 〉 ≤ FT (g0)

≤
ωYQ

(Eπ(D,βmT ))

ωYQ
(Eπ(D,T ))

〈ψm, FβmT 〉 .

By ωYQ
(Eπ(D,βmT ))/ωYQ

(Eπ(D,T )) = β
eQ[k:Q]/eπ
m and the assumption on

FT , one has

β
−eQ[k:Q]/eπ
m

τ(Q)

τ(G)
≤ lim inf

T→∞
FT (g0) ≤ lim sup

T→∞
FT (g0) ≤ β

eQ[k:Q]/eπ
m

τ(Q)

τ(G)
.

Hence, letting m→ ∞, we get the assertion.

For every function ψ on G(k)\G(A)1, we set

Π1
Q(ψ)(g) =

∫

UQ(k)\UQ(A)
ψ(ug) dωUQ

(u) ,

ΠQ(ψ)(g) =

∫

Q(k)\Q(A)1
ψ(qg) dωQ(q)

=

∫

MQ(k)\MQ(A)1
Π1

Q(ψ)(mg) dωMQ
(m)

when the integrals have the meaning. By the unfolding argument and

Lemma 1, we have

〈ψ, FT 〉 =

∫

G(k)\G(A)1
ψ(g)FT (g) dωG(g)(3.4)

=
1

ωYQ
(Eπ(D,T ))

∫

YQ

ΠQ(ψ)(y)χT (y) dωYQ
(y)

=
eQ

T eQ[k:Q]/eπ

∫ T [k:Q]/eπ

0
teQΠQ(ψ)(ιQ(e, |αQ|−1

A (t)))
dt

t

for every right D-invariant ψ ∈ C0(G(k)\G(A)1), where |αQ|−1
A stands for

the inverse map of |αQ|A : AG
Q → R×

+.
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§4. Preliminaries on Eisenstein series

We recall the theory of Eisenstein series following [H], [MW]. Let R be

a standard k-parabolic subgroup of G. We set

Re aR = X∗(ZG\ZR) ⊗Z R , aR = Re aR ⊗R C = Re aR +
√
−1Re aR .

Every Λ ∈ aR of the form χ1 ⊗ s1 + · · · + χr ⊗ sr, χi ∈ X∗(ZG\ZR), si ∈ C

gives rise to a quasi-character of AG
R by

z 7−→ zΛ = |χ1(z)|s1
A · · · |χr(z)|sr

A

for z ∈ AG
R. By this way, aR is identified with the group of quasi-characters

of AG
R. There is a unique ρR ∈ Re aR such that z2ρR = δR(z). If R′ is a stan-

dard k-parabolic subgroup of G such that R′ ⊂ R, then ZG\ZR (resp. AG
R)

is a subgroup of ZG\ZR′ (resp. AG
R′) and hence there is a natural surjection

from aR′ onto aR. The kernel of this surjection is denoted by aR
R′ . Since

the quasi-characters of MR(A)1\MR(A) is restricted to MR′(A)1\MR′(A)

([MW, I.1.4.(2)]), there is a splitting aR → aR′ , and hence a direct product

decomposition: aR′ = aR ⊕ aR
R′ . The subspace aR

R′ is identified with the

group of quasi-characters of AR
R′ = AR′/AR by the similar way as above. If

(δR
R′)−1 denotes the modular character of (MR ∩ R′)(A), there is a unique

ρR
R′ ∈ Re aR

R′ such that z2ρR
R′ = δR

R′(z) for z ∈ AR
R′ . One has ρR′ = ρR + ρR

R′ .

We always consider aR as a subspace of aP and fix an admissible inner

product ( · , · ) on Re aP . Then Re aR′ = Re aR ⊕ Re aR
R′ is an orthogonal

decomposition. For each root β ∈ Φk, β
∨ denotes the coroot 2(β, β)−1β.

Let ∆R denote the set consisting of nonzero roots β|ZR
, β ∈ ∆k. It is ob-

vious that ∆R is contained in Re aR and spans aR as a C-vector space. We

set

cR = {Λ ∈ aR : (Re Λ − ρR, β
∨|ZR

) > 0 for all β|ZR
∈ ∆R}

and

cRR′ =
{
Λ ∈ aR

R′ : (Re Λ − ρR
R′ , β∨|ZR′

) > 0 for all β|ZR′
∈ ∆R′

with β|ZR
= 0

}
.

A map zR : G(A) → AG
R = AGMR(A)1\MR(A) is defined by zR(g) =

AGMR(A)1m if g = umh, u ∈ UR(A), m ∈MR(A) and h ∈ K.

For a smooth function η ∈ C∞
0 (AG

R), its Mellin transform is defined to

be

η̂(Λ) =

∫

AG
R

η(z)z−(Λ+ρR) dνAG
R
(z) .



HARDY-LITTLEWOOD PROPERTY OF FLAG VARIETIES 197

We choose the measure dΛ on aR so that the following inversion formula

holds for any η ∈ C∞
0 (AG

R):

η(z) =

∫

Λ∈Λ0+
√
−1 Re aR

η̂(Λ)zΛ+ρR dΛ ,

where Λ0 ∈ Re aR is a base point.

Let A0,R = A0(A
G
RUR(A)MR(k)\G(A)1) be the space of cuspidal auto-

morphic forms on AG
RUR(A)MR(k)\G(A)1. For an open subgroup D ⊂ K,

AD
0,R denotes the set of right D-invariant cusp forms in A0,R. For ϕ ∈ A0,R,

η ∈ C∞
0 (AG

R) and Λ ∈ cR, the pseudo-Eisenstein series θϕ,η and the Eisen-

stein series E(ϕ,Λ) on G(k)\G(A)1 are defined as follows:

θϕ,η(g) =
∑

γ∈R(k)\G(k)

ϕ(γg)η(zR(γg)) ,

E(ϕ,Λ)(g) =
∑

γ∈R(k)\G(k)

zR(γg)Λ+ρRϕ(γg) .

It is known that both series are absolutely convergent, θϕ,η is a rapidly

decreasing function on G(k)\G(A)1 and E(ϕ,Λ) is meromorphically con-

tinued on the whole aR. If Λ0 ∈ Re aR ∩ cR is fixed, then θϕ,η is expressed

as

θϕ,η(g) =

∫

Λ∈Λ0+
√
−1 Re aR

η̂(Λ)E(ϕ,Λ)(g) dΛ .

We need intertwining operators to describe constant terms of pseudo-

Eisenstein series. Let WG be the relative Weyl groups of (G,S). We take

a pair of a standard k-parabolic subgroup R′ and an element w ∈WG such

that wMRw
−1 = MR′ . Then, for Λ ∈ cR and ϕ ∈ A0,R, we consider

(M(w,Λ)ϕ)(g) = zR′(g)−(wΛ+ρR′ )

×
∫

(UR′ (A)∩wUR(A)w−1)\UR′ (A)
ϕ(w−1ug)zR(w−1ug)Λ+ρR dω

UR′

A (u) .

The integral of the right-hand side converges absolutely and M(w,Λ)ϕ is

contained in A0,R′ . Moreover, the operator M(w,Λ) is meromorphically

continued to the whole aR. The adjoint operator M(w,Λ)∗ of M(w,Λ)

with respect to the L2-inner product on A0,R equals M(w−1,−wΛ).
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§5. Proof of Theorem 1

Let π, Q, D and FT be the same as in Section 3. On account of

Proposition 1, we must prove

lim
T→∞

〈ψ, FT 〉 =
τ(Q)

τ(G)
〈ψ, 1〉

for every ψ ∈ C0(G(k)\G(A)). By [DRS, Lemma 2.4], it is enough to prove

lim
T→∞

〈θϕ,η, FT 〉 =
τ(Q)

τ(G)
〈θϕ,η, 1〉

for all pseudo-Eisenstein series θϕ,η.

Proposition 2. Let R be a standard k-parabolic subgroup of G, ϕ ∈
A0,R and η ∈ C∞

0 (AG
R). If R 6= P , i.e., R is not a minimal k-parabolic

subgroup, then

〈θϕ,η, FT 〉 = 〈θϕ,η, 1〉 = 0 .

Proof. First, by (1.3) and ωG(A)1 = (dGµAG
)\ωG

A , one has

〈θϕ,η, 1〉 =

∫

R(k)\G(A)1
ϕ(g)η(zR(g)) d(ωR(k)\ωG(A)1)(g)

(5.1)

=
CG

CRdG

∫

UR(k)\UR(A)×AGMR(k)\MR(A)×K
ϕ(mh)η(zR(m))

× δR(m)−1 dωUR
(u)d(µAG

ωG(k)\ωMR
A )(m)dνK(h)

=
CGdR

CRdG

∫

MR(k)\MR(A)1×K
ϕ(mh)

{∫

AG
R

η(z)z−2ρR dνAG
R
(z)

}

× dωMR
(m)dνK(h)

=
CGdR

CRdG
η̂(ρR)〈ϕ, 1〉R ,

where we set

〈ϕ, 1〉R =

∫

MR(k)\MR(A)1×K
ϕ(mh) dωMR

(m)dνK(h) .

From the cuspidality of ϕ, it follows 〈ϕ, 1〉R = 0, and hence 〈θϕ,η, 1〉 = 0.
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Next we compute ΠQ(θϕ,η). Since Q is maximal, there is an only one
simple root α ∈ ∆k such that α|ZQ

6= 0. We define a subset W (MR,MQ)
of the Weyl group WG by

W (MR,MQ) = {w ∈WG : w−1(β) > 0 for all β ∈ ∆k − {α}
and wRw−1 ⊂ Q} .

Then the constant term of the Eisenstein series E(ϕ,Λ) along UQ is given
by the formula

Π1
Q(E(ϕ,Λ))(g)

=
∑

w∈W (MR,MQ)

∑

γ∈MQ(k)∩Rw(k)\MQ(k)

(M(w,Λ)ϕ)(γg)zRw (γg)wΛ+ρRw ,

where Rw denotes wRw−1 ([MW, Proposition II.1.7]). If W (MR,MQ) is
empty, this constant term is zero. Thus Π1

Q(θϕ,η)(g) equals

∑

w∈W (MR,MQ)

∫

Λ∈Λ0+
√
−1 Re aR

η̂(Λ)

(5.2)

×
∑

γ∈MQ(k)∩Rw(k)\MQ(k)

(M(w,Λ)ϕ)(γg)zRw (γg)wΛ+ρRw dΛ

=
∑

w∈W (MR,MQ)

∫

Λ∈wΛ0+
√
−1 Re aRw

η̂(w−1Λ)

×
∑

γ∈MQ(k)∩Rw(k)\MQ(k)

(M(w,w−1Λ)ϕ)(γg)zRw (γg)Λ+ρRw dΛ .

We take m ∈ AG\MQ(A) and m1 ∈MQ(A)1 so that m = m1zQ(m). Then
one has zRw (γm) = zQ(m)zRw (γm1) and zRw (γm)Λ = zQ(m)Λ1zRw (γm1)

Λ2

for Λ = Λ1 + Λ2, Λ1 ∈ aQ and Λ2 ∈ a
Q
Rw because of γm1 ∈ MQ(A)1. We

choose a base point Λ1,0 ∈ Re aQ and Λw,0 ∈ Re a
Q
Rw as follows:

(−Λ1,0, α
∨|ZQ

) is sufficiently large, and (Λw,0 − ρQ
Rw , β∨|ZRw ) > 0 for all

β|ZRw ∈ ∆Rw with β|ZQ
= 0. Then we can shift the integral domain of (5.2)

from wΛ0+
√
−1Re aRw to Λ1,0+Λw,0+

√
−1 Re aRw ([MW, Lemma II.2.2]).
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Summing up, (5.2) at g = m is equal to

∑

w∈W (MR,MQ)

∫

Λ1∈Λ1,0+
√
−1 Re aQ

zQ(m)Λ1+ρQ

×
∑

γ∈MQ(k)∩Rw(k)\MQ(k)

Ψw(Λ1, γm1) dΛ1 ,

where

Ψw(Λ1,m1) =

∫

Λ2∈Λw,0+
√
−1 Re a

Q
Rw

η̂(w−1(Λ1 + Λ2))

× (M(w,w−1(Λ1 + Λ2))ϕ)(m1)zRw (m1)
Λ2+ρQ

RwdΛ2 .

Therefore, for z ∈ AG
Q,

ΠQ(θϕ,η)(z)

=

∫

MQ(k)\MQ(A)1
Π1

Q(θϕ,η)(m1z) dωMQ
(m1)

=
∑

w∈W (MR,MQ)

∫

Λ1∈Λ1,0+
√
−1 Re aQ

zΛ1+ρQ

×
{∫

MQ(k)\MQ(A)1

∑

γ∈MQ(k)∩Rw(k)\MQ(k)

Ψw(Λ1, γm1)dωMQ
(m1)

}
dΛ1 .

By the calculation similar to (5.1), the inner integral equals

CQdRw

CRwdQ

∫

AQ
Rw

{∫

MRw (k)\MRw (A)1×K
MQ

Ψw(Λ1, z2m2h)

× dωMRw (m2)dνKMQ (h)

}
(δQ

Rw )−1(z2) d(µAQ
\µARw )(z2)

=
CQdRw

CRwdQ

∫

AQ
Rw

∫

Λ2∈Λw,0+
√
−1 Re a

Q
Rw

η̂(w−1(Λ1 + Λ2))

×
{∫

MRw (k)\MRw (A)1×K
MQ

(M(w,w−1(Λ1 + Λ2))ϕ)(m2h)

× dωMRw (m2)dνK
MQ (h)

}
z
Λ2−ρQ

Rw

2 dΛ2d(µAQ
\µARw )(z2)
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The cuspidality of M(w,w−1Λ)ϕ implies
∫

MRw (k)\MRw (A)1×KMQ

(M(w,w−1Λ)ϕ)(m2h) dωMRw (m2)dνKMQ (h) = 0 .

Hence ΠQ(θϕ,η)|MQ(A) ≡ 0. This implies 〈θϕ,η, FT 〉 = 0 by (3.4).

Next, we consider the case R = P . Since P is a minimal k-parabolic

subgroup, the constant function ϕ0 ≡ 1 is contained in A0,P . We define the

inner product on AK
0,P = A0(M(k)\M(A)1)K

M
by

〈ψ1, ψ2〉M =

∫

M(k)\M(A)1
ψ1(m)ψ2(m) dωM (m) (ψ1, ψ2 ∈ AK

0,P ).

Let WMQ
be the relative Weyl group of (MQ, S). As a subgroup of WG,

WMQ
is identified with the point wise stabilizer of aQ in WG. For w ∈WG

and a generic Λ ∈ aP , the operator M(w,Λ) maps ADKQ

0,P into itself. If w ∈
WMQ

, then the equality M(w,Λ1+Λ2) = M(w,Λ2) holds for Λ1 ∈ aQ, Λ2 ∈
a

Q
P , and M(w,Λ2) is regarded as an operator on A0(A

Q
PU(A)M(k)\Q(A)1).

We denote by w0 (resp. w1) the longest element of WG (resp. WMQ
). It is

known from the theory of local intertwining operators and the Langlands

classification theorem that the residue

M(w0) = lim
Λ∈cP
Λ→ρP

( ∏

β∈∆k

(Λ − ρP , β
∨)

)
M(w0,Λ)

exists and yields a projection from A0,P onto the trivial representation Cϕ0

of G(A)1 ([FMT, Section 10 (b)]). By the argument of [L] or [Lai], one has

M(w0)ϕ0 =
CGdP τ(P )

dGτ(G)
ϕ0 .

In a similar fashion, the residue

M(w1) = lim
Λ2∈c

Q
P

Λ2→ρQ
P

( ∏

β∈∆k−{α}
(Λ2 − ρQ

P , β
∨)

)
M(w1,Λ2)

yields a projection from A0(A
Q
PU(A)M(k)\Q(A)1) onto Cϕ0 and one has

M(w1)ϕ0 =
CQdP τ(P )

dQτ(Q)
ϕ0 .
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Lemma 2. For any ϕ ∈ A0,P ,

M(w0)ϕ =
CGdP

dGτ(G)
〈ϕ, 1〉Pϕ0 .

Proof. If M(w0)ϕ = cϕ0, then

c =
1

τ(P )
〈M(w0)ϕ,ϕ0〉P =

1

τ(P )
〈ϕ,M(w0)

∗ϕ0〉P =
CGdP

dGτ(G)
〈ϕ,ϕ0〉P .

Here note that the constant CGdP /(dGτ(G)) is a positive real value.

Lemma 3. Let τ ∈ W (M,MQ), σ = τ−1w1 ∈ WG and ϕ ∈ ADKQ

0,P . If

we fix a Λ1 ∈ aQ with (−Re Λ1, α
∨|ZQ

) � 0, then the function

Λ2 7−→ 〈(M(τ, τ−1(Λ1 + Λ2))ϕ)|M(A)1 , ϕ0〉M

is holomorphic at Λ2 = ρQ
P . Moreover, one has

〈(M(τ, τ−1(Λ1 + ρQ
P ))ϕ)|M(A)1 , ϕ0〉M

=
dQτ(Q)

CQdP τ(P )
〈(M1(σ

−1, σ(Λ1 − ρQ
P ))ϕ)|M(A)1 , ϕ0〉M ,

where M1(σ
−1, σ(Λ1 − ρQ

P )) is defined by

lim
Λ2∈c

Q
P

Λ2→ρQ
P

( ∏

β∈∆k−{α}
(Λ2 − ρQ

P , β
∨)

)
M(σ−1, σ(Λ1 − Λ2)) .

Proof. By [MW, Lemma II.2.2], the function M(τ, τ−1(Λ1 + Λ2))ϕ in
Λ2 is holomorphic on the tube domain of the form {Λ2 ∈ a

Q
P : (Re Λ2,Re Λ2)

< c20}, where c0 is a positive real constant with c20 > (ρP , ρP ). By the
functional equations of M(w,Λ),

〈(M(τ, τ−1Λ)ϕ)|M(A)1 , ϕ0〉M
= 〈(M(w1, w

−1
1 Λ)M(σ−1, σw−1

1 Λ)ϕ)|M(A)1 , ϕ0〉M
= 〈(M(σ−1, σw−1

1 Λ)ϕ)|M(A)1 ,M(w1, w
−1
1 Λ)∗ϕ0〉M

= 〈(M(σ−1, σw−1
1 Λ)ϕ)|M(A)1 ,M(w−1

1 ,−Λ)ϕ0〉M .
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Here we identify AK
0,P with A0(A

Q
PU(A)M(k)\Q(A)1)K

MQ
and regard

M(w1, w
−1
1 Λ) as an operator on it. Therefore,

〈(M(τ, τ−1(Λ1 + ρQ
P ))ϕ)|M(A)1 , ϕ0〉M

equals

〈
(M1(σ

−1, σ(Λ1 − ρQ
P ))ϕ)|M(A)1 ,

lim
Λ2∈c

Q
P

Λ2→ρQ
P

( ∏

β∈∆k−{α}
(Λ2 − ρQ

P , β
∨)

)−1

M(w−1
1 ,−Λ2)ϕ0

〉

M

.

If we regard M(w−1
1 ,−Λ2) acting on Cϕ0 as a scalar valued function, then

lim
Λ2∈c

Q
P

Λ2→ρQ
P

( ∏

β∈∆k−{α}
(Λ2 − ρQ

P , β
∨)

)−1

M(w−1
1 ,−Λ2)

= lim
Λ2∈c

Q
P

Λ2→ρQ
P

( ∏

β∈∆k−{α}
(Λ2 − ρQ

P , β
∨)

)−1

M(w1,−w−1
1 Λ2)

−1

= M(w1)
−1
.

This implies the assertion.

Lemma 4. Being the notation as above, one has

lim
Λ1∈−cQ

Λ1→−ρQ

(Λ1 + ρQ, α
∨)M1(σ

−1, σ(Λ1 − ρQ
P ))ϕ =

{
M(w0)ϕ (σ = w0)

0 (σ 6= w0)

If 0 < ε is sufficiently small, then the function

Λ1 7−→ 〈(M1(σ
−1, σ(Λ1 − ρQ

P ))ϕ)|M(A)1 , ϕ0〉M

is holomorphic on {Λ1 ∈ aQ : 1 − ε < (ReΛ1, ρQ)/(ρQ, ρQ) < 1} with

polynomial growth as |=Λ1| → ∞.
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Proof. For any ψ ∈ ADKQ

0,P ,

〈
lim

Λ1∈−cQ

Λ1→−ρQ

(Λ1 + ρQ, α
∨)M1(σ

−1, σ(Λ1 − ρQ
P ))ϕ,ψ

〉

P

=

〈
ϕ, lim

Λ1∈−cQ

Λ1→−ρQ

(Λ1 + ρQ, α∨)M1(σ
−1, σ(Λ1 − ρQ

P ))∗ψ

〉

P

=

〈
ϕ, lim

Λ1∈−cQ

Λ1→−ρQ

(Λ1 + ρQ, α∨)M1(σ,−Λ1 + ρQ
P ))ψ

〉

P

=

〈
ϕ, lim

Λ∈cP
Λ→ρP

( ∏

β∈∆k

(Λ − ρP , β∨)
)
M(σ,Λ)ψ

〉

P

.

It is known that

lim
Λ∈cP
Λ→ρP

( ∏

β∈∆k

(Λ − ρP , β
∨)

)
M(σ,Λ) =

{
M(w0) (σ = w0)

0 (σ 6= w0)

(cf. [FMT, Lemma 7]). By this and Lemma 2, the equalities

〈M(w0)ϕ,ψ〉P = 〈ϕ,M(w0)ψ〉P

=

〈
lim

Λ1∈−cQ

Λ1→−ρQ

(Λ1 + ρQ, α
∨)M1(σ

−1, σ(Λ1 − ρQ
P ))ϕ,ψ

〉

P

hold for all ψ ∈ ADKQ

0,P . The remains of the assertion follows from [H,
Lemma 118].

Proposition 3. Let ϕ ∈ A0,P and η ∈ C∞
0 (AG

P ). Then one has

lim
T→∞

〈θϕ,η, FT 〉 =
τ(Q)

τ(P )
〈θϕ,η, 1〉 .

Proof. It is sufficient to prove the assertion for right DKQ-invariant
ϕ ∈ A0,P . The calculations of 〈θϕ,η, 1〉 and ΠQ(θϕ,η) are the same as in the
proof of Proposition 2. We have

〈θϕ,η, 1〉 =
CGdP

CPdG
η̂(ρP )〈ϕ, 1〉P .
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We need a further calculation of ΠQ(θϕ,η). Since ϕ is right DKQ-invariant,
ΠQ(θϕ,η)(z) equals

(5.3)
CQdP

CPdQ

∑

τ∈W (M,MQ)

∫

Λ1∈Λ1,0+
√
−1 Re aQ

zΛ1+ρQ f̂τ (Λ1) dΛ1 ,

where

f̂τ (Λ1) =

∫

AQ
P

∫

Λ2∈Λτ,0+
√
−1 Re a

Q
P

η̂(τ−1(Λ1 + Λ2))

× 〈(M(τ, τ−1(Λ1 + Λ2))ϕ)|M(A)1 , ϕ0〉MzΛ2−ρQ
P

2

× dΛ2d(µAQ
\µAP

)(z2) .

If Λ1 ∈ Λ1,0 +
√
−1Re aQ is fixed, the function

Λ2 7−→ η̂(τ−1(Λ1 + Λ2))〈(M(τ, τ−1(Λ1 + Λ2))ϕ)|M(A)1 , ϕ0〉M

is holomorphic on the tube domain {Λ2 ∈ a
Q
P : (Re Λ2,Re Λ2) < c20} as

mentioned in the proof of Lemma 3. We can take Λτ,0 in this domain.
Then, from the inversion formula, it follows

f̂τ (Λ1) = η̂(τ−1(Λ1 + ρQ
P ))〈(M(τ, τ−1(Λ1 + ρQ

P ))ϕ)M(A)1 , ϕ0〉M .

We shift the integral domain in (5.3) from Λ1,0 +
√
−1Re aQ to (ε− 1)ρQ +√

−1Re aQ, where ε is a sufficiently small positive number so that all f̂τ are
holomorphic on the domainBε = {Λ1 ∈ aQ : 1−2ε < (−Re Λ1, ρQ)/(ρQ, ρQ)
< 1}. Taking account the residue at −ρQ, we obtain

∫

Λ1∈Λ1,0+
√
−1 Re aQ

zΛ1+ρQ f̂τ (Λ1) dΛ1

=

∫

Λ1∈(ε−1)ρQ+
√
−1 Re aQ

zΛ1+ρQ f̂τ (Λ1) dΛ1 + ResΛ1=−ρQ
f̂τ (Λ1) .

We write fτ (z) for the first term. By Lemmas 2, 3 and 4, ΠQ(θϕ,η)(z) equals

CQdP

CPdQ

∑

τ∈W (M,MQ)

fτ (z) +
CQdP

CPdQ
· dQτ(Q)

CQdP τ(P )
η̂(ρP )〈M(w0)ϕ|M(A)1 , φ0〉M

=
CQdP

CPdQ

∑

τ∈W (M,MQ)

fτ (z) +
CGdP τ(Q)

CPdGτ(G)
η̂(ρP )〈ϕ, 1〉P .
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Here note that 〈ϕ0, ϕ0〉M = τ(M) = τ(P ). Since η̂ is a function of Paley –
Wiener type and f̂τ (Λ1)/η̂(τ

−1(Λ1 + ρQ
P )) is of polynomial growth on Bε as

|=Λ1| → ∞ by Lemma 4, we have an estimate of the formula

(5.4) |fτ (z)| ≤ zερQ

∫
√
−1 Re aQ

|zΛ||f̂τ ((ε− 1)ρQ + Λ)| dΛ ≤ c1z
ερQ ,

where c1 is a constant depending on f̂τ . This implies

lim sup
T→∞

eQ

T eQ[k:Q]/eπ

∫ T [k:Q]/eπ

0
teQ |fτ (ιQ(e, |αQ|−1

A (t)))| dt
t

≤ lim sup
T→∞

eQ

T eQ[k:Q]/eπ

∫ T [k:Q]/eπ

0
c1t

(1−ε/2)eQ
dt

t
= 0 .

As a consequence, we have

lim
T→∞

〈θϕ,η, FT 〉 =
CGdP τ(Q)

CPdGτ(G)
η̂(ρP )〈ϕ, 1〉P =

τ(Q)

τ(G)
〈θϕ,η, 1〉 .

This completes the proof of Proposition 3, and therefore we are led to
Theorem 1.

§6. Error terms

We give some estimates of error terms of (3.3).

Lemma 5. Let a > 0 be a constant. If

lim
T→∞

〈
ψ,

FT − τ(Q)/τ(G)

T a

〉
= 0

holds for any ψ ∈ C0(G(k)\G(A)1), then one has

(6.1) lim
T→∞

FT (g) − τ(Q)/τ(G)

T a
= 0

for every g ∈ G(A)1.

Proof. Using the same notations as in the proof of Proposition 1, we
have

β
−a−eQ[k:Q]/eπ
m

〈ψm, Fβ−1
m T − τ(Q)/τ(G)〉
(β−1

m T )a
+

(β
−eQ[k:Q]/eπ
m − 1)τ(Q)/τ(G)

T a

≤ FT (g0) − τ(Q)/τ(G)

T a

≤ β
a+eQ[k:Q]/eπ
m

〈ψm, FβmT − τ(Q)/τ(G)〉
(βmT )a

+
(β

eQ[k:Q]/eπ
m − 1)τ(Q)/τ(G)

T a
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The assertion follows immediately from this.

By [DRS, Lemma 2.4] and Proposition 2, if

lim
T→∞

〈
θϕ,η,

FT − τ(Q)/τ(G)

T a

〉
= 0

holds for all θϕ,η, ϕ ∈ ADKQ

0,P , η ∈ C∞
0 (AG

P ), then we get (6.1). Let ε0 be the

superior of ε ∈ (0, 1/2) such that all M(τ, τ−1(Λ1+δQ
P )), τ ∈W (M,MQ) are

holomorphic on Bε, where Bε is the same as in the proof of Proposition 3.

Then, for any 0 < a < ε0, we can shift the integral domain of (5.3) from

Λ1,0 +
√
−1Re aQ to (2a − 1)ρQ +

√
−1Re aQ and the estimate similar to

(5.4) leads to

lim
T→∞

〈FT , fτ 〉
T (1−a)eQ[k:Q]/eπ

= 0 .

Thus we proved the following.

Proposition 4. For any 0 < a < ε0, one has

|Eπ(D,T ) ∩XQ(k)g| =
τ(Q)

τ(G)
ωYQ

(Eπ(D,T )) + o(T (1−a)eQ [k:Q]/eπ) .

We note that, in some cases, the holomorphic domain of M(τ, τ−1(Λ1+

ρQ
O)) is extendable to the right side of the imaginary axis

√
−1Re aQ, how-

ever we do not know in general the asymptotic behavior of fτ as |=Λ1| → ∞
in this region.

§7. Examples

Example 1. Let V be an n-dimensional vector space defined over k,
G a group of linear automorphisms of V and π : G → G the natural
representation. We fix a free O-lattice L in V (k) and its O-basis e1, . . . , en.
Then V (k) and G are identified with the column vector space kn and the
general linear group GLn, respectively. Let P be the subgroup of upper
triangular matrices and Q the stabilizer in G of the line spanned by e1.
Then the map g 7→ e1 · g = g−1e1 yields an isomorphism from XQ = Q\G
to the projective space PV = Pn−1. Let Hπ be a height on XQ(k) defined
as in Section 2. We take a maximal compact subgroup K =

∏
v∈V

Kv as
follows:

Kv =





GLn(Ov) (v ∈ Vf )

O(n) (v is a real place)

U(n) (v is an imaginary place)
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For each v ∈ Vf , pv and fv stand for the maximal ideal of Ov and the
residual field Ov/pv , respectively. If we set

Dv =

{
g ∈ Kv : g ≡




∗ ∗
0
... ∗
0


 mod pv

}
,

then Dv\Kv is isomorphic to Pn−1(fv) by the reduction homomorphism.
For every x ∈ Pn−1(kv), there is an hx ∈ Kv such that x = kv(e1 · hx). We
denote by [x]v the reduction of x modulo pv , i.e., [x]v = fv(e1 ·hx mod pv).
Let S be a finite subset of Vf . We fix a point (av)v∈S in

∏
v∈S

Pn−1(kv)
and set

N(Pn−1(k), T, (av)v∈S)

= |{x ∈ Pn−1(k) : Hπ(x) ≤ T and [x]v = [av]v for all v ∈ S}| .
It is obvious that

N(Pn−1(k), T, (av)v∈S) = |Eπ(D,T ) · h ∩X(k)| ,
where D = K∞×

∏
v∈S

Dv ×
∏

v∈Vf−S
Kv and h = (hav )v∈S × (e)v∈V−S ∈

K. By Theorem 1 and the calculation of [W, Example 2], we have

N(Pn−1(k), T, (av)v∈S) ∼
∏

v∈S

|fv| − 1

|fv|n − 1
· Ress=1 ζk(s)

|Dk|(n−1)/2nZk(n)
· T n[k:Q]

as T → ∞ .

Here ζk(s) is the Dedekind zeta function of k,

Zk(s) = (π−s/2Γ(s/2))r1((2π)1−sΓ(s))r2ζk(s)

and r1 (resp. r2) denotes a number of real (resp. imaginary) places of k. If
k = Q, this formula was proved in [S].

Example 2. Let V , L and e1, . . . , en be the same as in Example 1.
Let Φ be a non-degenerate isotropic quadratic form on V (k), G = SOΦ the
special orthogonal group of Φ and π : G → GL(V ) the natural representa-
tion. The height Hπ is the same as Example 1. We assume n ≥ 4 and Φ
has the following matrix form with respect to the basis e1, . . . , en:

Φ =




1
Φ0

1


 ,
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where Φ0 is a non-degenerate (n − 2) × (n − 2) symmetric matrix. Thus
e1 is an isotropic vector of Φ. Let Q be the stabilizer in G of the isotropic
line spanned by e1. The map g 7→ e1 · g = g−1e1 gives rise to a k-rational
embedding from XΦ = Q\G into Pn−1. The image of XΦ(k) is the set of
all Φ-isotropic lines x ∈ Pn−1(k). We put

N(XΦ(k), T ) = |{x ∈ XΦ(k) : Hπ(x) ≤ T}| .

Since the Levi-subgroup MQ is isomorphic to GL1×SOΦ0 , we have τ(G) =
τ(Q) = 2 and dG = dQ = 1, and furthermore, eQ = dimUQ = n − 2 and
eπ = 1. Therefore, Theorem 1 implies

N(XΦ(k), T ) ∼ CG

(n− 2)CQ
T (n−2)[k:Q] as T → ∞ .

Here we supposed that Hπ is invariant by a good maximal compact sub-
group K of G(A). The formula due to Ikeda [I, Theorems 9.6 and 9.7]
deduces an explicit value of CG/CQ for some choice of K. In the following,
we state this formula. Let V′

∞ be the set of all real places of k. For every
v ∈ V, H(kv) denotes the hyperbolic plane k2

v endowed with the quadratic
form

(
0 1
1 0

)
. Then V (kv) is decomposed into the following form on kv :

V (kv) = H(kv)
mv ⊕ V 0

v ,

where V 0
v is a Φ-anisotropic subspace. We put `v = dimV 0

v . In other words,
(n−`v)/2 is the Witt index of Φ on V (kv). If v ∈ Vf , then `v is at most 4. If
v ∈ Vf and `v = 3, then V 0

v is identified with the space of pure quaternions
of the division quaternion algebra Dv over kv.

First, let n be odd. We may assume without loss of generality that
det Φ0 ≡ 2(−1)(n−3)/2 module (k×)2 ([I, p. 207]). For every v ∈ Vf with
`v = 3, we take a maximal compact subgroup Kv as the stabilizer in G(kv)
of the lattice H(Ov)

(n−3)/2 ⊕ (ODv ∩ V 0
v ). Here ODv denotes the maximal

order of Dv. In other places v, we take Kv as in [I, pp. 209–210]. Then

CG

CQ
=

Ress=1 ζk(s)

|Dk|(n−2)/2Zk(n− 1)

∏

v∈Vf

`v=3

1 − |fv|−n+3

|fv|(1 − |fv|−n+1)

×
∏

v∈V′

∞

[(`v−1)/4]∏

i=1

n− `v + 4i− 2

n+ `v − 4i− 2
.
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Next, let n be even. We take a maximal compact subgroup Kv as in [I,
pp. 209–210] for every v ∈ V. Let k′ = k(

√
(−1)n/2 detΦ) be an extension

of degree at most 2 over k and let V′
f (resp. V′′

f ) be the set of v ∈ Vf such
that `v = 2 (resp. `v = 4), v is unramified (resp. split) over k ′/k and Φ|V 0

v
is

equivalent to the form 2$v · Normk′

v/kv
, where $v is a prime element of kv

and Normk′

v/kv
the norm form of the unramified quadratic extension k ′v/kv.

Then

CG

CQ
=

1

|fχΦ
|1/2|Dk|(n−2)/2

Ress=1 ζk(s)

Zk(n− 2)

L(−1 + n/2, χΦ)

L(n/2, χΦ)

×
∏

v∈V′

f

|fv|1−n/2
∏

v∈V′′

f

1 − |fv|2−n/2

|fv|(1 − |fv|−n/2)

×
∏

v∈V′

∞

`v≡0 (4)

`v/4∏

i=1

n− 4i

n+ 4i− 4

∏

v∈V′

∞

`v≡2 (4)

(`v−2)/4∏

i=1

n− 4i− 2

n+ 4i− 2
.

Here χΦ is the quadratic character of A× associated with Φ, i.e.,

χΦ(a) = 〈(−1)n/2 detΦ, a〉

for a ∈ A×, where 〈 · , · 〉 is the Hilbert symbol, and fχΦ
denotes the con-

ductor of χΦ and L(s, χΦ) the Hecke L-function of χΦ.
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