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Abstract. For a domain A containing a field k with tr.degkA <∞, we define
a new transcendence degree of A with respect to k, which is denoted by tdkA.
By using this, we generalize the theorem that for every affine domain A over
a field k it holds that dim A = tr.degkA. For example, we show that if A is a
quasi-local domain containing a field k with dim A = tdkA <∞, then for every
Noetherian local k-subalgebra R of A it holds that dim R = tdkR. Moreover
we also generalize the theorem due to Gilmer, Nashier and Nichols.

§1. Introduction

The following theorem is well-known.

Theorem A. Let k[a] = k[a1, . . . , an] be an affine domain over a field
k. Then it holds that dimk[a] = tr.degkk[a].

A good many people have tried to generalize this theorem. We take up

two of their theorems.

In 1982, Onoda and Yoshida obtained the following theorem.

Theorem B. ([7]) Let A be an affine domain over a field k. Then for
any k-subalgebra R of A, we have dimR = tr.degkR.

In 1989, Gilmer, Nashier and Nichols obtained the following theorem.

They extend the affine domain A in Theorem B to a local domain Am.
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Theorem C. ([3]) Let A be an affine domain over a field k and m a
maximal ideal of A. Then for any k-subalgebra R of Am, we have dimR =
tr.degkR.

In fact, this theorem is proved by using the following Theorem A′, a weaker

form of Theorem A.

Theorem A′. Let A be an affine domain containing a field k. Then
for any maximal ideal m of A, it holds that dimAm = tr.degkAm.

We want to make the same attempt as they did. For example, in

Theorem A′ we want to change the ideal to any prime ideal p. But if

we were to consider the transcendence degree of Ap over k, we would

fail. Hence first of all we have to extend the definition of the transcen-

dence degree over a field. So in Section 2, for a domain A containing a

field k with tr.degkA < ∞ we define a new transcendence degree tdkA by

min{ tr.deg`A | ` is a subfield of A with ` ⊇ k }. The new transcendence

degree is a natural generalization of the usual one, as stated in Section 2.

In this paper, by using tdkA, we shall generalize Theorem A′ and Theorem

C. In particular, to generalize Theorem C, we set the following problem:

(?)
Let A be a quasi-local domain containing a field k with tr.degkA < ∞
such that dimA = tdkA. Then, for every k-subalgebra R of A, does it
hold that dimR = tdkR?

We consider the problem (?) above in the following two cases:

Case A R is Noetherian;

Case B A is Noetherian.

In Section 3, we study a Noetherian catenary domain, and get the following

result, which is a generalization of Theorem A′.

Theorem 3.1. Let A be a Noetherian domain and k a subfield of A
with tr.degkA < ∞. Assume that dimAm = tdkAm for any m ∈ MaxA.
Then the following conditions are equivalent:
(1) A is catenary;
(2) for any m ∈ Max A and any p ∈ SpecA with m ⊇ p,

(a) dimAp = tdkAp, and
(b) dimAm/pAm = tdkAm/pAm;

(3) for any p, q ∈ SpecA with p ⊇ q, dimAp/qAp = tdkAp/qAp.
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In Section 4, we study the problem (?). In Case A, the following theorem

is proved.

Theorem 4.1. Let (R,m) be a Noetherian local domain, (A, n) a quasi-
local domain dominating R and k a subfield of R with tr.degkA < ∞. Then
tdkR − dimR ≤ tdkA − dimA.

From this theorem, we get Corollary 4.1 at once, which is an affirmative

answer to the problem (?) in the case that R is local. But if R is not local,

the answer is negative. For the fact, see Example 6.6. In Case B, from

Example 4.1 we see that the answer is negative in general. But if the field k

is a ”tm-subfield” of A, which is defined in Section 2, and if A is catenary,

the answer is affirmative. Concerning the fact, see Theorem 4.3, which is a

natural generalization of Theorem C. In Section 5, for a semigroup ring k[M ]

over a field k, where M is a semigroup generated by monomials in finite

variables, we show that our equality holds by constructing a chain of prime

ideals of length tr.degkk[M ]. For this fact, see Theorem 5.1. Note that M

may be generated by infinite elements and that the powers of variables in

each monomial may be rational. In Section 6, we give some examples. For

instance, Example 6.3 shows that tdkA does not have a local property in

general, that is, there is a regular domain A containing a field k such that

tdkA > max{ tdkAm | m is a maximal ideal of A. }.
In this paper, all rings are assumed to be commutative and unitary,

and for a domain A we denote the set of the maximal ideals of A by Max A

and the total quotient field of A by Q(A). Moreover the set of the integers

and the set of the rational numbers are denoted by Z and Q, respectively.

For the other notation and terminology, we follow those of [5] and [6].

The author expresses his hearty thanks to Professor H. Uda for his many

useful suggestions and encouragements. And the author also expresses his

hearty thanks to the referee, whose advice made the proofs of Example

6.1, 6.2 and 6.3 very concise. In particular, the polynomials fa(X,Y ) in

Example 6.3, by which the proof became very easy, are due to the referee.

§2. A new transcendence degree of a domain containing a field

For example, let A be an affine domain over a field k and p any prime

ideal of A. When we consider whether dimAp is equal to the transcendence

degree of Ap over a subfield, over what subfield should we consider the

transcendence degree? If p is not a maximal ideal, the subfield need to be

something but k. For the problem, we note the following lemma.
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Lemma 2.1. ([3, Proposition 1.1]) Let R be a domain containing a field
k. Then dimR ≤ tr.degkR.

From this, it is enough to consider the maximal subfield of Ap over

which the transcendence degree of Ap is the minimum in the set { tr.deg`Ap |
` is a subfield of Ap. }. We notice that we have only to consider the min-

imum and that we need not be interested in the subfield which gives the

minimum. Hence, in general, for a domain A containing a field, we call

min{ tr.deg`A | ` is a subfield of A. } the transcendence degree of A and

denote it by tdA. Now we hope that for each maximal subfield ` of A,

tr.deg`A is equal to the minimum. But, as we see in Example 6.1, even if

A is a DVR, tr.deg`A may be a different value for each maximal subfield `.

This makes the situation difficult. Hence we modify the definition of tdA

a little.

Let k be a subfield of a domain A with tr.degkA < ∞. Then we call

min{ tr.deg`A | ` is a subfield of A with ` ⊇ k. } the transcendence degree of

A with respect to k, and denote it by tdkA. The new transcendence degree

tdkA has good properties and is easy to deal with. For example, if A is

quasi-semilocal, then for any maximal subfield with K ⊇ k we have tdkA =

tr.degKA, as we see in Lemma 2.3. Therefore in this paper we deal with

tdkA. Note that for any domain A containing a field k with tr.degkA < ∞,

we have dimA ≤ tdA ≤ tdkA. Moreover, note that the transcendence

degrees in the theorems in Section 1 are equal to the new transcendence

degree. Now, as we see in Example 6.3, there exists a Noetherian domain

A such that dimAm = tdkAm for any m ∈ Max A but dimA 6= tdkA.

Therefore we find that tdkA tends to have good properties when it is used

locally.

Now for a domain A containing a field k, where A is not necessarily

quasi-semilocal, and for a maximal subfield K of A with K ⊇ k, suppose

that tdkA = tr.degKA. Then for any subfield L of K such that K is

algebraic over L, we have tdkA = tr.degLA. Such a subfield L is so useful

that we name it. When a subfield L of a domain A satisfies the condition

that for any subfield K of A with K ⊇ L, K is algebraic over L, we call L a

transcendentally maximal subfield (a tm-subfield, for short) of A. Of course,

all maximal subfields are tm-subfields.

For a quasi-local domain A, a necessary and sufficient condition for a

subfield of A to be a tm-subfield is given as follows, which can be proved

easily.
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Lemma 2.2. Let (A,m) be a quasi-local domain containing a field K.
Then K is a tm-subfield of A if and only if the residue field A/m is algebraic
over K.

For a quasi-semilocal domain, we have a characterization of a tm-

subfield as follows.

Lemma 2.3. Let A be a quasi-semilocal domain containing a field K.
Then K is a tm-subfield of A if and only if K is a tm-subfield of Am for
some m ∈ Max A.

Proof. It is enough to show the “only if” part. Put u = min{ tr.degK

A/m | m ∈ MaxA }, and assume that u > 0. Since A is quasi-semilocal,
there exists x ∈ A such that x modm is algebraically independent over K
for any m ∈ Max A. Then x is also algebraically independent over K. Since
K[x] ∩ m = (0) for any m ∈ Max A, we have K(x) ⊆ A. This contradicts
the fact that K is a tm-subfield of A. Hence there exists m ∈ Max A such
that tr.degKA/m = 0, so that K is a tm-subfield of Am by Lemma 2.2.

We may ask whether, for every tm-subfield K with K ⊇ k, tdkA =

tr.degKA holds, or whether tdkA has a local property. If A is quasi-

semilocal, the answers for these questions are affirmative as follows.

Theorem 2.1. Let A be a quasi-semilocal domain containing a field k
with tr.degkA < ∞. Then
(1) for any tm-subfield K of A with tr.degK∩kk < ∞, we have tdkA =

tr.degKA;

(2) tdkA = max{ tdkAm | m ∈ Max A }.

Proof. (1) Let L be a tm-subfield of A with L ⊇ k. Then it is
enough to show that tr.degKA = tr.degLA for any tm-subfield K with
tr.degK∩kk < ∞. By Lemma 2.2 and 2.3, there exists a maximal ideal m of
A such that A/m is algebraic over K, so that tr.degK∩kK ≥ tr.degK∩kL.
In the same way, we have tr.degK∩kL ≥ tr.degK∩kK. Therefore it follows
that tr.degK∩kK = tr.degK∩kL, so that tr.degKA = tr.degLA.
(2) Let K be a tm-subfield of A with K ⊇ k. Then by Lemma 2.3,
K is a tm-subfield of Am for some m ∈ Max A. Hence by (1), tdkAm =
tr.degKAm = tdkA.

Remark 2.1. Theorem 2.1 (2) does not hold in general. In Example
6.3 we get such a negative example. But the author does not know whether
Theorem 2.1 (1) holds in general.
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§3. Catenary domains

In this section, for each Noetherian domain A containing a field k such

that dimAm = tdkAm for any m ∈ Max A, we study the question when the

domain is catenary or universally catenary. Our results got here will be

used in Section 4. First of all, we consider a condition for the domain above

to be catenary.

Theorem 3.1. Let A be a Noetherian domain and k a subfield of A
with tr.degkA < ∞. Assume that dimAm = tdkAm for any m ∈ MaxA.
Then the following conditions are equivalent:
(1) A is catenary;
(2) for any m ∈ Max A and any p ∈ SpecA with m ⊇ p,

(a) dimAp = tdkAp, and
(b) dimAm/pAm = tdkAm/pAm;

(3) for any p, q ∈ SpecA with p ⊇ q, dimAp/qAp = tdkAp/qAp.

Proof. It is enough to show (1) ⇔ (2). By [5, Theorem 31.4], A is
catenary if and only if dimAm = dimAp+dimAm/pAm for every m ∈ Max A
and every p ∈ SpecA with p ⊆ m. Hence the result follows from Lemma
2.1 and 3.1 and from the assumption that dimAm = tdkAm holds for any
m ∈ Max A.

Lemma 3.1. Let k be a subfield of a quasi-local domain A with tr.degk

A < ∞. Then we have tdkA = tdkAp + tdkA/p for any p ∈ SpecA.

Proof. Let K be a tm-subfield of A with K ⊇ k. Then K is also
a tm-subfield of A/p by Lemma 2.2. Put t = tr.degKA/p. Then there
exist x1, . . . , xt ∈ A such that x1 mod p, . . . , xt mod p are algebraically in-
dependent over K. Then so are x1, . . . , xt, and K[x1, . . . , xt] ∩ p = (0).
Hence K(x1, . . . , xt) ⊆ Ap. Then K(x1, . . . , xt) is a tm-subfield of Ap by
Lemma 2.2. Hence by Theorem 2.1, we have tdkAp = tr.degK(x1,...,xt)Ap =
tr.degKAp − tr.degKA/p = tdkA − tdkA/p.

Remark 3.1. For the conditions (a) and (b) of Theorem 3.1, we find
that there exists a Noetherian local domain which satisfies (a) but does not
satisfy (b), as we see in Example 6.4. But the author does not succeed in
finding out the example which satisfies (b) but does not satisfy (a).

For a quasi-local domain (A,m) and any prime ideal p of A, we set

γ(p) = dimA − dimAp − dimA/p, δ(p) = tdkAp − dimAp and ε(p) =
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tdkA/p−dimA/p. Note that these values are non-negative integers. Then,

by Lemma 3.1, we have the following result.

Corollary 3.1. Let (A,m) be a quasi-local domain containing a field
k with tr.degkA < ∞, and let p be any prime ideal of A. Set a = δ(m).
Then we have δ(p) + ε(p) = γ(p) + a.

On the other hand, by Theorem 3.1 we can generalize Theorem A′ as

follows.

Corollary 3.2. For any affine domain A over a field k and for any
p ∈ SpecA, we have dimAp = tdkAp.

In Corollary 3.2, by changing the domain A, we can regard the local

ring Ap as the localization of an affine domain by a maximal ideal as follows.

Proposition 3.1. Let k[a] = k[a1, . . . , an] be an affine domain over a
field k, p any prime ideal of k[a] and K any tm-subfield of k[a]p with K ⊇ k.
Then there exists P ∈ Max K[a] such that k[a]p = K[a]P.

Proof. Set P = pk[a]p ∩ K[a]. Then since k[a] ⊆ K[a] ⊆ k[a]p, we
have P ∈ SpecK[a] and k[a]p = K[a]P. By Corollary 3.2, dimK[a]P =
tdKK[a]P = tr.degKK[a]P, so that P is a maximal ideal of K[a] by Theo-
rem A′.

Next, we consider a necessary and sufficient condition for the domain

of Theorem 3.1 to be universally catenary.

Theorem 3.2. Let k be a subfield of a Noetherian domain A with
tr.degkA < ∞. Assume that dimAm = tdkAm for any m ∈ MaxA. Then A
is universally catenary if and only if dimB = tdkB for every local domain
B essentially of finite type over A.

Proof. By Theorem 3.1, it is enough to prove the following proposition.

Proposition 3.2. Let k be a subfield of a Noetherian domain A with
tr.degkA < ∞ and X = {X1, . . . , Xn} a set of variables over A. Let P be
a prime ideal of A[X], and put p = P ∩ A. Then if dimAp = tdkAp, we
have dimA[X ]P = tdkA[X ]P.
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Proof. By induction on n, we may assume that n = 1. Put X = X1.
Moreover we may assume that A is a local domain whose maximal ideal is
p. Then it is enough to show that dimA[X]P ≥ tdkA[X]P.

If P = pA[X], we have K[X]∩P = (0) for any subfield K of A, so that
K(X) ⊆ A[X]P and tr.degK(X)A[X]P = tr.degKA. Hence dimA[X]P =
dimA = tdkA ≥ tdkA[X]P.

Next we assume that P ⊃ pA[X]. Then for any tm-subfield K of A
with K ⊇ k, we have dimA[X]P = dimA+1 = tdkA+1 = tr.degKA+1 =
tr.degKA[X]P ≥ tdkA[X]P.

Remark 3.2. Even if we assume that dimAm = tdkAm for every m ∈
Max A, being catenary is different from being universally catenary. For
such an example, see Example 6.4.

§4. The problem (?)

Case A In this case, if R is local, the answer is affirmative as follows.

Theorem 4.1. Let (R,m) be a Noetherian local domain, (A, n) a quasi-
local domain dominating R and k a subfield of R with tr.degkA < ∞. Then
tdkR − dimR ≤ tdkA − dimA.

Proof. Let K be a tm-subfield of R with K ⊇ k and L a tm-subfield
of A with L ⊇ k, and set κ(m) = R/m and κ(n) = A/n. Then by Lemma
2.2, tr.degkκ(m) = tr.degkK and tr.degkκ(n) = tr.degkL. Hence

tr.degRA − tr.degκ(m)κ(n)

= (tr.degkA − tr.degkR) − (tr.degkκ(n) − tr.degkκ(m))

= (tr.degkA − tr.degkL) − (tr.degkR − tr.degkK)

= tr.degLA − tr.degKR

= tdkA − tdkR.

Therefore our claim follows from [2, Theorem A.19].

Corollary 4.1. Let R be a Noetherian local domain, A a quasi-local
domain dominating R and k a subfield of R with tr.degkA < ∞. Then if
dimA = tdkA, we have dimR = tdkR.

In particular, let T be a localization of an affine domain over a field
k by a prime ideal, T the integral closure of T in the algebraic closure of
Q(T ) and m a maximal ideal of T with htm = dimT . Set A = T m. Then
for any Noetherian local domain R which contains k and is dominated by
A, we have dimR = tdkR.



THE TRANSCENDENCE DEGREE OF AN INTEGRAL DOMAIN 153

Proof. For the latter part, we have dimT = tdkT by Corollary 3.2.
Therefore dimA = tdkA. Hence our assertion follows from Theorem 4.1.

Remark 4.1. If R is not local, Corollary 4.1 does not necessarily hold.
We give such an example in Example 6.6.

Next we state an application of Corollary 4.1.

Theorem 4.2. Let k be a field, and let A and R be Noetherian domains
such that k ⊆ R ⊆ A and tr.degkA < ∞. We assume that dimAM =
tdkAM for any M ∈ Max A, and that for any p ∈ SpecR and any m ∈
Max R with p ⊆ m, there exist P , Q ∈ SpecA such that P ⊆ Q , P∩R = p

and Q ∩ R = m. Then if A is catenary, so is R, and we have dimRm =
tdkRm for any m ∈ Max R.

Proof. It is enough to show that R satisfies Theorem 3.1 (2). By
assumption, for any p ∈ SpecR and any m ∈ Max R with p ⊆ m, there
exist P , Q ∈ SpecA such that P ⊆ Q , P ∩ R = p and Q ∩ R = m.
Then k ⊆ Rp ⊆ AP and k ⊆ Rm/pRm ⊆ AQ/PAQ. Since A is catenary,
it follows from Theorem 3.1 that dimAP = tdkAP and dimAQ/PAQ =
tdkAQ/PAQ. Hence we have dimRp = tdkRp and dimRm/pRm = tdkRm/
pRm by Corollary 4.1.

Remark 4.2. In Theorem 4.2, let ` be a subfield of A such that tr.deg`A
< ∞. Then can we get from ` a subfield of R like k of Theorem 4.2? But,
even if A is a finite R-module, it seems difficult to get it. For such an
example, see Example 6.2.

Let R and A be domains such that R ⊆ A. If the lying-over theorem

holds between R and A, and if the going-down theorem or the going-up

theorem holds between them, then the latter part of the assumption of

Theorem 4.2 is satisfied. Hence we have the following corollary.

Corollary 4.2. Let k be a field, and let R and A be Noetherian
domains such that k ⊆ R ⊆ A and tr.degkA < ∞. We assume that
dimAM = tdkAM for any M ∈ Max A, and that A is integral or faithfully
flat over R. Then if A is catenary, so is R, and we have dimRm = tdkRm

for any m ∈ Max R. Moreover if A is universally catenary, so is R.
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Proof. It is enough to show the latter part. Let X = {X1, . . . , Xn } be
a set of variables over A for any natural number n. Since A[X ] is catenary
and is integral or faithfully flat over R[X], and since dimA[X ]P = tdkA[X ]P
for any P ∈ Max A[X ] by Proposition 3.2, we have the conclusion by the
former part.

Case B The answer in Case B is negative as follows.

Example 4.1. There are a Noetherian local domain A and a quasi-
local domain R containing a field k such that they satisfy the following
conditions: A dominates R; k is a tm-subfield of R; dimA = tdkA and
dimR < tdkR.

Let k be any field and X,Y variables over k, and set S = {αX | α ∈
k(Y ) }. Then we have k ⊂ k[S] ⊂ k(Y )[X] and Xk(Y )[X] ∩ k[S] = Sk[S].

Setting R = k[S](S) , m = (S)R , A = k(Y )[X](X) and n = XA, we have

k ⊂ R ⊂ A and n ∩ R = m. Then (R,m) and (A, n) are the required

domains.

Proof. It follows easily that dimA = tdkA and k is a tm-subfield of
R. Now for any α ∈ k(Y ), we have (αX)2 = X(α2X) ∈ XR, so that√

XR = m. Therefore for any p ∈ SpecR with p ⊂ m, we have X 6∈ p.
Hence pR[1/X] is a proper ideal of R[1/X]. For any f ∈ Sk[S] with f 6= 0,
we write f =

∑

i≥k aiX
i = akX

k(1 +
∑

i>k(ai/ak)X
i−k), where each ai is

an element of k(Y ) and ak 6= 0. Since 1+
∑

(ai/ak)X
i−k is a unit in R, and

since akX
k is a unit in R[1/X], f is also a unit in R[1/X], so that p = (0).

Therefore dimR = 1 < tdkR.

On the other hand, if A is catenary and k is a tm-subfield of A, we have

an affirmative answer in Case B as follows, where R need not be local.

Theorem 4.3. Let R be a domain containing a field k and (A, n) a
Noetherian catenary local domain containing R, and assume that k is a
tm-subfield of A and dimA = tr.degkA. Then n∩R ∈ Max R and dimR =
ht n ∩ R = tr.degkR.

Proof. Since A is catenary, we have dimA/p = tr.degkA/p for any
p ∈ SpecA by Theorem 3.1. Therefore we can prove this theorem in the
same way as the proof of Theorem C, where Alamelu’s theorem (cf. [1,
Proposition 3.4]) is used.
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Remark 4.3. In Theorem 4.3, it is necessary to assume that k is a
tm-subfield of A. Concerning this, see Example 6.6.

Theorem 4.3 is a natural generalization of Theorem C. We give an

example that satisfies the conditions of Theorem 4.3 as follows.

Corollary 4.3. Let k be a field, k[a] = k[a1, . . . , an] a normal affine
domain over k and m any maximal ideal of k[a], and denote the Henseliza-
tion of k[a]m by A. Then for any domain R with k ⊆ R ⊆ A, we have
mA ∩ R ∈ Max R and dimR = tr.degkR.

Proof. Since the completion of A is equidimensional, it follows from
[5, Theorem 31.5] that A is catenary. Since A satisfies dimA = tr.degkA,
the assertion follows from Theorem 4.3.

In Theorem 4.3, we have dimR ≤ dimA. But if the subfield k is not a

tm-subfield of A, it may happen that dimR > dimA as follows.

Example 4.2. Let k be any field. For two variables X,Y over k,
(X,Y )k[X,Y ] and Xk[X,Y/X] are prime ideals of k[X,Y ] and k[X,Y/X],
respectively. Set R = k[X,Y ](X,Y ) and A = k[X,Y/X](X). From the fact
that Xk[X,Y/X] ∩ k[X,Y ] = (X,Y )k[X,Y ], it follows that k ⊂ R ⊂ A
and A dominates R. For these local domains, we have dimA = tdkA and
dimR > dimA.

§5. Semigroup rings over fields

Let k be any field, X1, . . . , Xn variables over k, and M a semigroup

generated by monomials in X1, . . . , Xn. In this section, we study the semi-

group ring k[M ] generated by M over k. We note that the number of the

monomials generating M may be infinite, and that a power exponent of

each variable Xi may be negative or rational. First of all, we show that

such powers are well-defined.

Let T = {Xi,q | i = 1, . . . , n , q ∈ Q } be a set of variables over k, G the

free Abelian group 〈T 〉 and H the subgroup 〈Xu
i,qX

−v
i,r | u, v ∈ Z , uq = vr〉

of G. Set In = G/H. Then for any w ∈ Z and any q, r ∈ Q we have

Xw
i,q = Xi,qw and Xi,qXi,r = Xi,q+r in In. Hence for an element Y ∈ In,

Y w = Xi,1 for some i and some w ∈ Q − { 0 } if and only if Y = Xi,1/w.

Therefore in In we denote Xi,1 by Xi, and Xi,q by Xq
i for any q ∈ Q. Then

In = 〈Xq
i | q ∈ Q , i = 1, . . . , n〉, so that the power exponents of variables

may be rational numbers. Then we have the following theorem.
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Theorem 5.1. Let k be any field and M a subsemigroup of In. Then
we have dimk[M ] = tr.degkk[M ], and we can construct a chain of prime
ideals of length dimk[M ]. Moreover if M ⊆ 〈X q

i | q ∈ Q , q > 0 , i =
1, . . . , n〉, we can construct such a chain descending from Mk[M ].

Proof. Set t = tr.degkk[M ]. Then we show that dimk[M ] = t by
induction on t. The proof shows us how to construct a chain of prime
ideals of length t. First of all, according to [4], we define a map logX :
M −→ Qn by logX Xa1

1 · · ·Xan
n = (a1, . . . , an). Since t = dimQ Q(logX M),

there exist m1, . . . ,mt−1 ∈ M such that logX m1, . . . , logX mt−1 are linearly
independent over Q. Set (ai1, . . . , ain) = logX mi for each i. Then we may
assume that

D =

∣

∣

∣

∣

∣

∣

a11 · · · a1t−1

· · · · · · · · ·
at−11 · · · at−1t−1

∣

∣

∣

∣

∣

∣

6= 0.

For any natural numbers st, . . . , sn, let us consider the following determi-
nant:

Ds =

∣

∣

∣

∣

∣

∣

a11 · · · a1t−1 +
∑

sja1j

· · · · · · · · ·
at−11 · · · at−1t−1 +

∑

sjat−1j

∣

∣

∣

∣

∣

∣

= D +
∑

sjDj,

where each Dj is a rational number. Since D 6= 0, there exist natural
numbers st, . . . , sn such that Ds 6= 0. Set U = Q in the former case of the
theorem or U = { q ∈ Q | q > 0 } in the latter case. Then setting Sv =
{Xq

i | q ∈ U , i = 1, . . . , v } for 1 ≤ v ≤ n, we get the k-homomorphism
f : k[Sn] −→ k[St−1] such that f(Xq

i ) = Xq
i , f(Xq

j ) = X
qsj

t−1 for any q ∈ U
and any i, j with i < t ≤ j, where X0 = 1 in the former case of the theorem
and X0 = 0 in the latter case. Set g = f |k[M ] and M ′ = g(M). Then the k-

homomorphism g : k[M ] −→ k[M ′] is surjective, and Ker g = ({Xq
j −X

qsj

t−1 |
q ∈ U , t ≤ j ≤ n })k[Sn]∩k[M ]. In the latter case we have Ker g ⊆ Mk[M ].
Since tr.degkk[M ′] = dimQ Q(logX M ′) = t − 1, it holds that Ker g ⊃ (0).
Since dim k[M ] ≤ t, and since dim k[M ′] = t − 1 by induction, we have
htKer g = 1, so that dim k[M ] = t.

Example 5.1. Let k be any field and M the semigroup generated by
{XY q | q ∈ Q , q ≥ 0 }, where X,Y are variables over k. Then dim k[M ] =
tr.degkk[M ] = 2.

We construct a chain of prime ideals descending from (M) such that

the length is dim k[M ]. Since dimQ Q(logX M) = 2, we have t = 2 in the
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proof of Theorem 5.1, so that we can substitute m1 and s2 by (1, 0) and 1,

respectively. Therefore

Ker g = ({Y q − Xq | q ∈ U })k[S2] ∩ k[M ]

= ({XY j+1 − X2Y j | j ∈ Q , j ≥ 0 })k[M ].

Hence (0) ⊂ Ker g ⊂ (M) is a chain of prime ideals of length 2.

§6. Examples

Example 6.1. There is a Noetherian local domain A such that for any
natural number u, there is a maximal subfield L of A with tr.degLA = u.

Let k be a field, X1, . . . , Xm, . . . , Z variables over k and v any natural

number. Set K = k(X1, . . . , Xm, . . .) , A = K[Z](Z) , ξi = Xi + Xi+vZ (i =

1, 2, . . .) and L = k(ξ1, . . . , ξm, . . .). Then K and L are maximal subfields

of A, and tr.degKA = 1 and tr.degLA = v + 1. Hence A, K and L are the

required set of domain and subfields.

Proof. We have only to consider the field L. For each i, we have
ξi ≡ Xi modZA, so that ξ1 modZA, . . . , ξm modZA, . . . are algebraically
independent over k. Hence k[ξ1, . . . , ξm, . . .] ∩ ZA = (0), so that L ⊂ A.
Since L + ZA/ZA ∼= K, L is a maximal subfield of A.

Now since ξ1, . . . , ξv ∈ L(X1, . . . , Xv , Z), we have X1+v, . . . , X2v ∈
L(X1, . . . , Xv, Z). In the same way, we have X1+2v , . . . ∈ L(X1, . . . , Xv, Z),
so that L(X1, . . . , Xv, Z) = Q(A). Hence it is enough to show that X1, . . . ,
Xv, Z are algebraically independent over L. For the purpose, putting
Lt = k(ξ1, . . . , ξt) for each natural number t, we have only to prove that
tr.degLt

Lt(X1, . . . , Xv , Z) = v + 1. Since Lt(X1, . . . , Xv , Z) = k(X1, . . . ,
Xt+v , Z), we have tr.degkLt(X1, . . . , Xv , Z) = t + v +1, so that we come to
the conclusion.

Using Example 6.1, we can get the example stated in Remark 4.2 as

follows.

Example 6.2. There are Noetherian local domains A and R satisfy-
ing the following conditions: A is a finite R-module; tr.degLA < ∞ and
tr.degL∩RR = ∞ for a maximal subfield L of A.

Under the notation of Example 6.1, we assume further that the charac-

teristic of k is 0. For any natural number n with n ≥ 2, set R = K[Zn](Zn).

Then A,L in Example 6.1 and R are the required set of domains and field.
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Proof. It is enough to show that L∩K(Zn) = k. Let α be any element
of L ∩ K(Zn) with α 6= 0. Then there exists a natural number t such that
Lt ∩ K(Zn) 3 α, where Lt is the field defined in the proof of Example 6.1.
Set α = f/g = u/v, where f = f(ξ1, . . . , ξt), g = g(ξ1, . . . , ξt) ∈ k[ξ1, . . . , ξt]
and u = u(Zn), v = v(Zn) ∈ K[Zn]. We may assume that f, g and u, v
are relatively prime in k[ξ1, . . . , ξt] and in K[Zn], respectively. Then vf =
ug. (∗) We consider f, g, u and v as elements of K[Z], and compare the
terms of degree 0 and 1 in Z on both sides of (∗). Then we have the
following equations:

v(0)f(X1, . . . , Xt) = u(0)g(X1, . . . , Xt),(1)

v(0)(X1+vf1 + · · · + Xt+vft) = u(0)(X1+vg1 + · · · + Xt+vgt),(2)

where fi = ∂f
∂ξi

(X1, . . . , Xt), gi = ∂g
∂ξi

(X1, . . . , Xt) (i = 1, . . . , t). Since u
and v are relatively prime in K[Zn], it follows that u(0) 6= 0 or v(0) 6= 0,
so that by (1) and (2) we have

g(X1, . . . , Xt)(X1+vf1 + · · · + Xt+vft)(3)

= f(X1, . . . , Xt)(X1+vg1 + · · · + Xt+vgt).

Comparing the coefficients of Xt+v on both sides of (3), we have g(X1, . . . ,
Xt)ft = f(X1, . . . , Xt)gt. Since f and g are relatively prime in k[ξ1, . . . , ξt],
we have f(X1, . . . , Xt) | ft, g(X1, . . . , Xt) | gt. Therefore ft = gt = 0, so that
f, g ∈ k[ξ1, . . . , ξt−1], that is, α ∈ Lt−1 ∩ K(Zn). Hence by induction on t,
we have α ∈ k.

Example 6.3. There is a Noetherian domain A containing a field k
such that tdkA > max{ tdkAm | m ∈ Max A }.

Let k be any algebraically closed field, and for each a ∈ k set fa(X,Y ) =

X + aY + a2, where X and Y are variables over k. Let S be the multi-

plicatively closed subset generated by { fa(X,Y ) | a ∈ k }, and set A =

S−1k[X,Y ]. Then A and k are the required pair of domain and field.

Proof. First, we note that fa(X,Y ) is irreducible over k for any a ∈ k.
Moreover we find that for any m ∈ Max k[X,Y ] there exists a ∈ k such that
fa(X,Y ) ∈ m. In fact, since k is algebraically closed, there exist u, v ∈ k
such that m = (X − u, Y − v), and for the elements u and v there exists
a ∈ k such that fa(u, v) = 0. Hence fa(X,Y ) ∈ m. From this it follows
that dimA ≤ 1.
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It is enough to show that k is a maximal subfield of A. We assume the
contrary. Then there exists an element T ∈ A − k such that k(T ) ⊆ A.
We can write T = aQ/P , where a ∈ k, P,Q ∈ S and P,Q are relatively
prime. Let n and m be the numbers of the prime factors of P and Q,
respectively. Replacing a−1T by T , we may assume that a = 1. Moreover
replacing T−1 by T if necessary, we may assume that m ≤ n. Now we have
T − 1 = bQ′/P ′, where b ∈ k, P ′, Q′ ∈ S and P ′, Q′ are relatively prime.
Since T − 1 = (Q − P )/P , we have

Q − P = cQ′ for some c ∈ k.(4)

Let ` be the number of the prime factors of Q′. If m = n, we have ` < n,
so that replacing T − 1 by T , we may assume that m < n. Then by (4), we
have ` = n, c = −1. Put

P = fa1
· · · fan , Q′ = fb1 · · · fbn

,

and for any t ∈ k substitute X by tY on the both sides of (4). Then
comparing the terms of degree n in Y , we have

(t + a1) · · · (t + an) = (t + b1) · · · (t + bn).

Since this holds for any t ∈ k, there exists a permutation σ of 1, . . . , n such
that ai = bσ(i) for all i, so that P = Q′. This is a contradiction.

Remark 6.1. From the example above, we find that there exists a
Noetherian domain A containing a field k such that dimAm = tdkAm for
any m ∈ Max A, but dimA < tdkA.

Example 6.4. For the conditions (a) and (b) of Theorem 3.1, there is
a Noetherian local domain which satisfies (a) but does not satisfy (b).

Fortunately, using [6, p.203, Example 2], we can construct such an

example. First of all, we state Nagata’s construction. For this example

we have only to use the case m = 0 of Nagata’s construction. But in

the following examples, we need the case m ≥ 1. Hence we state the

construction in all the cases.

Let k be a field, X a variable over k and z1, . . . , zs elements of k[[X]]

such that z1, . . . , zs are algebraically independent over k(X). For each zi =
∑

aijX
j (aij ∈ k), put zij = (zi −

∑

h<j aihXh)/Xj−1 (j = 1, 2, · · ·).
Let A be the ring generated over k by X and by all the zij ’s, and put
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B = A[Y1, . . . , Ym], where Y1, . . . , Ym are variables over A. Moreover let

m and n be the maximal ideals of B generated by X,Y1, . . . , Ym and by

X − 1, z1, . . . , zs, Y1, . . . , Ym, respectively. Put C = S−1B, where S = B −
m ∪ n, and put I = mC ∩ nC and R = k + I. Then R is a Noetherian

local domain with dimR = s + m + 1, and C is a finite R-module. Since

R/I ∼= k, k is a maximal subfield of R. Moreover since Q(R) = Q(B) =

k(X, z1, . . . , zs, Y1, . . . , Ym), we have dimR = tr.degkR. It is known that if

m = 0, R is catenary but is not universally catenary, and if m > 0, R is

not catenary.

Now set m = 0. Then, for a variable U over R and for some M ∈
Max R[U ], R[U ]M is the required local domain.

Proof. Since R is a catenary local domain with dimR = tdkR, we have
dimRp = tdkRp for any p ∈ SpecR by Theorem 3.1. Hence it follows from
Proposition 3.2 that dimR[U ]P = tdkR[U ]P for any P ∈ SpecR[U ]. On
the other hand, since R is not universally catenary, R[U ] is not catenary by
[5, Theorem 31.7]. Hence by Theorem 3.1, there exist M ∈ Max R[U ] and
P ∈ SpecR[U ] with P ⊆ M such that dimR[U ]M/PR[U ]M < tdkR[U ]M/
PR[U ]M. Therefore R[U ]M is the required example.

Remark 6.2. In Nagata’s construction above, we have dimBm = m+1,
and since k is a maximal subfield of Bm, we have tdkBm = s+m+1. Hence
we find that for any natural number s there exists a Noetherian local domain
R containing a field k such that tdkR − dimR = s.

Example 6.5. There exist a Noetherian local domain (R,m) and a
subfield k of R which satisfy the following conditions: tr.degkR < ∞;
dimR = tdkR; for some p ∈ SpecR, dimRp < tdkRp and dimR/p =
tdkR/p.

In Nagata’s construction above, let us consider the case m ≥ 1. Then

for any p ∈ SpecR it holds that

(1) if some P ∈ SpecC with P 63 X lies over p, we have dimRp = tdkRp,

and in the other case we have dimRp + s = tdkRp;

(2) if some P ∈ SpecC with P 3 X or P ⊆ nC lies over p, we have

dimR/p = tdkR/p, and in the other case we have dimR/p + s =

tdkR/p.



THE TRANSCENDENCE DEGREE OF AN INTEGRAL DOMAIN 161

In particular, we find that R is the required local domain.

Proof. (1) If some P ∈ SpecC with P 63 X lies over p, CP is a localiza-
tion of C[X−1] ∼= S−1k[X,X−1, z1, . . . , zs, Y1, . . . , Ym] and Rp is dominated
by CP. Therefore it follows from Corollary 3.2 and 4.1 that dimRp = tdkRp.
If P 3 X for every P ∈ SpecC lying over p, we have dimR/p = m+1−ht p

by the proof of [6, p.203, Example 2]. Since dimR/p = tdkR/p by (2) below,
it follows from Lemma 3.1 that

tdkRp = tdkR − tdkR/p = dimR − dimR/p = s + dimRp.

(2) If some P ∈ SpecC with P 3 X lies over p, C/P is a homomor-
phic image of C/XC ∼= Bm/XBm

∼= k[Y1, . . . , Ym](Y1,...,Ym). Since C/P
dominates R/p, we have dimR/p = tdkR/p by Corollary 4.1. If some
P ∈ SpecC with P ⊆ nC lies over p, CnC/PCnC is a homomorphic im-
age of CnC

∼= Bn
∼= k[X, z1, . . . , zs, Y1, . . . , Ym](X−1,z1,...,zs,Y1,...,Ym). Since

CnC/PCnC dominates R/p, we have dimR/p = tdkR/p by Corollary 4.1.
Let us assume that P 63 X and P 6⊆ nC for any P ∈ SpecC lying over p.
Then we have dimR/p = m + 1 − ht p by the proof of [6, p.203, Example
2]. Since P 63 X, it follows from Lemma 3.1 and (1) above that

tdkR/p = tdkR − tdkRp = dimR − dimRp = s + dimR/p.

Remark 6.3. (1) In Example 6.5, there exists a prime ideal p of R
such that dimR/p + s = tdkR/p. Hence the example above is not one
which satisfies the condition (b) of Theorem 3.1 but does not satisfy the
condition (a).
(2) In Example 6.5, for any natural number m with m ≥ 2 there is a
maximal saturated chain of prime ideals p0 ⊂ p1 ⊂ · · · ⊂ pm+1 in R such
that for an integer p with 1 ≤ p < m we have δ(pi) = 0, ε(pi) = s for any i
with 1 ≤ i ≤ p, and δ(pj) = s, ε(pj) = 0 for any j with p < j ≤ m, where
δ(p) and ε(p) are the symbols used in Corollary 3.1.

Example 6.6. There are a Noetherian semi-local domain R, a tm-
subfield k of R and a Noetherian catenary local domain (A, n) containing
R such that dimA = tdkA, n ∩ R ∈ Max R but dimR < tdkR.

We also use Nagata’s example cited in Example 6.4. We assume that

m ≥ 1. For a prime ideal p = (X − 1, z1, . . . , zs) of B set D = T−1B, where

T = B − m ∪ p. Then we have k ⊂ D ⊂ Bp, and these are the required set

of domains and field.
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Proof. Since Bp is a localization of k[X,X−1, z1, . . . , zs, Y1, . . . , Ym],
we have dimBp = tdkBp = s + 1. On the other hand, since k is a maximal
subfield of Bm, k is also one of D, so that we have tdkD = s+m+1. Since
dimBm = m + 1, we have dimD = max{ s,m } + 1 < tdkD.
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