MULTIPLIER HERMITIAN STRUCTURES ON KÄHLER MANIFOLDS

TOSHIKI MABUCHI

Abstract

The main purpose of this paper is to make a systematic study of a special type of conformally Kähler manifolds, called multiplier Hermitian manifolds, which we often encounter in the study of Hamiltonian holomorphic group actions on Kähler manifolds. In particular, we obtain a multiplier Hermitian analogue of Myers' Theorem on diameter bounds with an application (see [M5]) to the uniquness up to biholomorphisms of the "Kähler-Einstein metrics" in the sense of [M1] on a given Fano manifold with nonvanishing Futaki character.

§1. Introduction

For a connected complete Kähler manifold (M, ω_{0}) of complex dimension n, let \mathcal{K} denote the set of all Kähler forms on M expressible as

$$
\begin{equation*}
\omega_{\varphi}:=\omega_{0}+\sqrt{-1} \partial \bar{\partial} \varphi \tag{1.1}
\end{equation*}
$$

for some real-valued smooth function $\varphi \in C^{\infty}(M)_{\mathbb{R}}$ on M. In this paper, we fix once for all a holomorphic vector field $X \neq 0$ on M, and M is assumed to be compact except in Section 4 and in Theorem B below. Put

$$
\mathcal{K}_{X}:=\left\{\omega \in \mathcal{K} ; L_{X_{\mathbb{R}}} \omega=0\right\},
$$

where $X_{\mathbb{R}}:=X+\bar{X}$ denotes the real vector field on M associated to the holomorphic vector field X. Let \mathcal{H}_{X} denote the set of all $X_{\mathbb{R}^{-}}$-invariant functions φ in $C^{\infty}(M)_{\mathbb{R}}$ such that ω_{φ} is in \mathcal{K}_{X}. Let $\mathcal{K}_{X} \neq \emptyset$, so that we may assume without loss of generality that

$$
\omega_{0} \in \mathcal{K}_{X} .
$$

In terms of a system $\left(z^{1}, z^{2}, \ldots, z^{n}\right)$ of holomorphic local coordinates on M above, we write each Kähler form ω in \mathcal{K}_{X} as

$$
\omega=\sqrt{-1} \sum_{\alpha, \beta} g_{\alpha \bar{\beta}} d z^{\alpha} \wedge d z^{\bar{\beta}}
$$

Received July 3, 2000.
2000 Mathematics Subject Classification: Primary 53C55; Secondary 14J45, 14J50, 32 J 25.

Throughout this paper, we assume that X is Hamiltonian, i.e., to each $\omega \in$ \mathcal{K}_{X}, we can associate a function $u_{\omega} \in C^{\infty}(M)_{\mathbb{R}}$ such that X is expressible as

$$
\operatorname{grad}_{\omega}^{\mathbb{C}} u_{\omega}:=\frac{1}{\sqrt{-1}} \sum_{\alpha, \beta} g^{\bar{\beta} \alpha} \frac{\partial u_{\omega}}{\partial z^{\bar{\beta}}} \frac{\partial}{\partial z^{\alpha}}
$$

Then u_{ω} is an $X_{\mathbb{R}}$-invariant function, and the image I_{X} of the function u_{ω} on M is an interval in \mathbb{R}. For an arbitrary nonconstant real-valued smooth function

$$
\sigma: I_{X} \longrightarrow \mathbb{R}, \quad s \longmapsto \sigma(s)
$$

we define functions $\dot{\sigma}=\dot{\sigma}(s)$ and $\ddot{\sigma}=\ddot{\sigma}(s)$ on I_{X} as the derivatives $\dot{\sigma}:=$ $(\partial / \partial s) \sigma$ and $\ddot{\sigma}:=\left(\partial^{2} / \partial s^{2}\right) \sigma$, respectively. We further define a function $\psi_{\omega} \in C^{\infty}(M)_{\mathbb{R}}$ by

$$
\begin{equation*}
\psi_{\omega}=\sigma\left(u_{\omega}\right) \tag{1.2}
\end{equation*}
$$

which is obviously $X_{\mathbb{R}}$-invariant. The function σ is said to be strictly convex or weakly convex, according as $\ddot{\sigma}>0$ on I_{X} or $\ddot{\sigma} \geq 0$ on I_{X}. By abuse of terminology, σ is said to be convex if either σ is strictly convex or σ satisfies $\dot{\sigma} \leq 0 \leq \ddot{\sigma}$ on I_{X}.

Let $G:=\operatorname{Aut}^{0}(M)$ be the identity component of the group of all holomorphic automorphisms of M. Let
$Q:$ closure in G of the real one-parameter group $\left\{\exp \left(t X_{\mathbb{R}}\right) ; t \in \mathbb{R}\right\}$.
Under the assumption of the compactness of M, we require the function u_{ω} to satisfy the equality $\int_{M} u_{\omega} \omega^{n}=0$, and applying the theory of moment maps to the action on M of the compact torus Q, we obtain

$$
I_{X}=\left[\alpha_{X}, \beta_{X}\right]
$$

where both $\alpha_{X}:=\min _{M} u_{\omega}$ and $\beta_{X}:=\max _{M} u_{\omega}$ are independent of the choice of ω in \mathcal{K}_{X}. To each $\omega \in \mathcal{K}_{X}$, we associate the corresponding Laplacian \square_{ω} of the Kähler manifold (M, ω), and define an operator $\tilde{\square}_{\omega}$ on $C^{\infty}(M)_{\mathbb{R}}$ by

$$
\begin{equation*}
\tilde{\square}_{\omega}:=\sum_{\alpha, \beta} g^{\bar{\beta} \alpha} \frac{\partial^{2}}{\partial z^{\alpha} \partial z^{\bar{\beta}}}-\sum_{\alpha, \beta} g^{\bar{\beta} \alpha} \frac{\partial \psi_{\omega}}{\partial z^{\alpha}} \frac{\partial}{\partial z^{\bar{\beta}}}=\square_{\omega}+\sqrt{-1} \dot{\sigma}\left(u_{\omega}\right) \bar{X} \tag{1.3}
\end{equation*}
$$

The natural connection, induced by ω, on the holomorphic tangent bundle $T M$ of M is denoted by ∇. To each ω in \mathcal{K}_{X}, we associate a conformally Kähler metric $\tilde{\omega}$ by

$$
\begin{equation*}
\tilde{\omega}:=\omega \exp \left(-\psi_{\omega} / n\right) \tag{1.4}
\end{equation*}
$$

which is called a multiplier Hermitian metric (of type σ). Here, a Hermitian form and the corresponding Hermitian metric are used interchangeably. The Hermitian metric $\tilde{\omega}$ naturally induces a Hermitian connection $\tilde{\nabla}: \mathcal{A}^{0}(T M) \rightarrow \mathcal{A}^{1}(T M)$ such that

$$
\tilde{\nabla}=\nabla-\frac{\partial \psi_{\omega}}{n} \mathrm{id}_{T M}
$$

where $\mathcal{A}^{q}(T M)$ denotes the sheaf of germs of $T M$-valued $C^{\infty} q$-forms on M. By abuse of terminology, the Ricci form of $(\tilde{\omega}, \tilde{\nabla})$ is denoted by $\operatorname{Ric}^{\sigma}(\omega)$. Then (see [L2], [K1], [Mat])

$$
\begin{equation*}
\operatorname{Ric}^{\sigma}(\omega)=\sqrt{-1} \bar{\partial} \partial \log \left(\tilde{\omega}^{n}\right)=\operatorname{Ric}(\omega)+\sqrt{-1} \partial \bar{\partial} \psi_{\omega} \tag{1.5}
\end{equation*}
$$

where we set $\operatorname{Ric}(\omega):=\sqrt{-1} \bar{\partial} \partial \log \left(\omega^{n}\right)$. For each nonnegative real number ν, let $\mathcal{K}_{X}^{(\nu)}$ denote the set of all $\omega \in \mathcal{K}_{X}$ such that

$$
\operatorname{Ric}^{\sigma}(\omega) \geq \nu \omega
$$

i.e., $\operatorname{Ric}^{\sigma}(\omega)-\nu \omega$ is a positive semi-definite $(1,1)$-form on M. Now for $\varphi \in \mathcal{H}_{X}$, we set $\operatorname{Osc}(\varphi):=\max _{M} \varphi-\min _{M} \varphi$. Consider the set \mathcal{S}^{σ} of all ω in \mathcal{K}_{X} such that

$$
\operatorname{Ric}^{\sigma}(\omega)=t \omega+(1-t) \omega_{0} \quad \text { for some } t \in[0,1]
$$

Let $\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}$ be the analogue of Aubin's functional as in Appendix 1. The main purpose of this paper is to prove the following theorems (see Sections $3,4$ and 5$)$:

Theorem A. (a) If $\dot{\sigma} \leq 0 \leq \ddot{\sigma}$ on I_{X}, then for each $\nu>0$, we have positive real constants $C_{0}, C_{1}, C_{1}^{\prime}, C_{1}^{\prime \prime}, C_{2}$ independent of the choice of the pair $\left(\omega_{\varphi}, \nu\right)$ such that

$$
\begin{equation*}
\operatorname{Osc}(\varphi) \leq C_{0}\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega_{0}, \omega_{\varphi}\right)+\frac{C(\nu)}{\nu} \tag{1.6}
\end{equation*}
$$

for all ω_{φ} in $\mathcal{K}_{X}^{(\nu)} \cap \mathcal{S}^{\sigma}$, where $C(\nu):=C_{1}+C_{1}^{\prime} \nu+C_{1}^{\prime \prime} e^{C_{2} / \nu}$.
(b) If σ is strictly convex, then for each $\nu>0$, there exist positive real constants $C_{0}, C_{1}, C_{1}^{\prime}$ independent of the choice of the pair $\left(\omega_{\varphi}, \nu\right)$ such that, by setting $C(\nu):=C_{1}+C_{1}^{\prime} \nu$, we have the inequality (1.6) for all ω_{φ} in $\mathcal{K}_{X}^{(\nu)}$.

Theorem B. Let $\nu>0$ and $\omega \in \mathcal{K}_{X}^{(\nu)}$. Furthermore, let (X, σ) be of Hamiltonian type (cf. Definition 4.1), where σ is weakly convex. Let p be an arbitrary point in zero (X) or in M, according as (4.1.1) or (4.1.2) holds (cf. Section 4). Put $c:=\sup _{s \in I_{X}}|\sigma(s)|$. Then

$$
\operatorname{dist}_{\omega}(p, q) \leq \pi\{(2 n-1+4 c) / \nu\}^{1 / 2} \quad \text { for all } q \in M
$$

where $\operatorname{dist}_{\omega}(p, q)$ denotes the distance between p and q on the complete Kähler manifold (M, ω). Hence, the diameter $\operatorname{Diam}(M, \omega)$ of the complete Kähler manifold (M, ω) satisfies

$$
\begin{equation*}
\operatorname{Diam}(M, \omega) \leq 2^{\delta} \pi\{(2 n-1+4 c) / \nu\}^{1 / 2} \tag{1.7}
\end{equation*}
$$

where δ denotes 1 or 0 , according as (4.1.1) or (4.1.2) holds. In particular, if $\left|\psi_{\omega}\right|$ is bounded from above on M, then M is compact and $\pi_{1}(M)$ is finite.

Let \mathcal{E}_{X}^{σ} be the set of all $\omega \in \mathcal{K}_{X}$ such that $\operatorname{Ric}^{\sigma}(\omega)=\omega$. We also consider the subgroup $Z(X)$ of G consisting of all $g \in G$ such that $\operatorname{Ad}(g) X=X$, and let $Z^{0}(X)$ denote the identity component of $Z(X)$. Then in Section 5, we apply Theorems A and B (Theorem B will be implicitly used) to showing that \mathcal{E}_{X}^{σ} consists of a single $Z^{0}(X)$-orbit ${ }^{\dagger}$ under the assumption of convexity of σ.

Theorem C. Assume that σ is convex. Then \mathcal{E}_{X}^{σ} consists of a single $Z^{0}(X)$-orbit, whenever \mathcal{E}_{X}^{σ} is nonempty.

This work is mainly motivated by the study of "Kähler-Einstein metrics" (cf. [M1]) which are closely related to the case where $\sigma(s)=-\log (s+$ $C)$ (cf. [M5]). Parts of this work were done during my stay in International Centre for Mathematical Sciences (ICMS), Edinburgh in 1997. I thank especially Professor Michael Singer who invited me to give lectures at ICMS on various subjects of Kähler-Einstein metrics.

[^0]
§2. Notation, convention and preliminaries

To each $\omega \in \mathcal{K}_{X}$ as in the introduction, we associate a multiplier Hermitian metric $\tilde{\omega}$ in (1.4) and an operator $\tilde{\square}_{\omega}$ in (1.3). For complex-valued functions $u, v \in C^{\infty}(M)_{\mathbb{C}}$ on M, we put (cf. [L2], [K1], [Mat], [F1])

$$
\langle\langle u, v\rangle\rangle_{\tilde{\omega}}:=\int_{M} u \bar{v} e^{-\psi_{\omega}} \omega^{n}=\int_{M} u \bar{v} \tilde{\omega}^{n}
$$

In the arguments in [F1, p. 41], we replace the function F by ψ. Then $\tilde{\square}_{\omega}$ is easily shown to be self-adjoint with respect to the above Hermitian inner product as follows:

Lemma 2.1.

$$
\left\langle\left\langle u, \tilde{\square}_{\omega} v\right\rangle\right\rangle_{\tilde{\omega}}=-\int_{M}(\bar{\partial} u, \bar{\partial} v)_{\omega} \tilde{\omega}^{n}=\left\langle\left\langle\tilde{\square}_{\omega} u, v\right\rangle\right\rangle_{\tilde{\omega}}, \quad u, v \in C^{\infty}(M)_{\mathbb{C}}
$$

Proof. $\left\langle\left\langle u, \tilde{\square}_{\omega} v\right\rangle\right\rangle_{\tilde{\omega}}$ is written as

$$
\begin{array}{rl}
\int_{M} u & u\left\{\overline{\square_{\omega} v}-\left(\bar{\partial} \psi_{\omega}, \bar{\partial} v\right)_{\omega}\right\} \tilde{\omega}^{n} \\
& =\int_{M}\left\{-\left(\bar{\partial}\left(u e^{-\psi_{\omega}}\right), \bar{\partial} v\right)_{\omega}-u\left(\bar{\partial} \psi_{\omega}, \bar{\partial} v\right)_{\omega} e^{-\psi_{\omega}}\right\} \omega^{n} \\
& =-\int_{M}(\bar{\partial} u, \bar{\partial} v)_{\omega} \tilde{\omega}^{n}
\end{array}
$$

while $\left\langle\left\langle\tilde{\square}_{\omega} u, v\right\rangle\right\rangle_{\tilde{\omega}}$ is just

$$
\begin{aligned}
\int_{M}\{ & \left.\square_{\omega} u-\left(\bar{\partial} u, \bar{\partial} \psi_{\omega}\right)_{\omega}\right\} v \tilde{\omega}^{n} \\
& =\int_{M}\left\{-\left(\bar{\partial} u, \bar{\partial}\left(e^{-\psi_{\omega}} v\right)\right)_{\omega}-v\left(\bar{\partial} u, \bar{\partial} \psi_{\omega}\right)_{\omega} e^{-\psi_{\omega}}\right\} \omega^{n} \\
& =-\int_{M}(\bar{\partial} u, \bar{\partial} v)_{\omega} \tilde{\omega}^{n}
\end{aligned}
$$

Hence Lemma 2.1 is immediate.
To an arbitrary smooth path $\phi=\left\{\varphi_{t} ; a \leq t \leq b\right\}$ in \mathcal{H}_{X}, we associate a one-parameter family of Kähler forms $\omega(t), a \leq t \leq b$, in \mathcal{K}_{X} by

$$
\begin{equation*}
\omega(t):=\omega_{\varphi_{t}}=\omega_{0}+\sqrt{-1} \partial \bar{\partial} \varphi_{t}, \quad a \leq t \leq b \tag{2.2}
\end{equation*}
$$

Let $\dot{\varphi}_{t}$ denote the partial derivative $\partial \varphi_{t} / \partial t$ of φ_{t} with respect to t. Next, by the notation (1.4) in the introduction, we consider the Hermitian form $\tilde{\omega}(t)$ on M defined by

$$
\begin{equation*}
\tilde{\omega}(t):=\omega(t) \exp \left\{-\psi_{\omega(t)} / n\right\} \tag{2.3}
\end{equation*}
$$

Lemma 2.4. (a) $(\partial / \partial t) \tilde{\omega}(t)^{n}=\left(\tilde{\square}_{\omega(t)} \dot{\varphi}_{t}\right) \tilde{\omega}(t)^{n}$.
(b) $\int_{M} \tilde{\omega}^{n}=V_{0}$ for all $\omega \in \mathcal{K}_{X}$, where $V_{0}:=\int_{M} \tilde{\omega}_{0}^{n}>0$.

Proof. (a) Recall that $u_{\omega(t)}$ is expressible as $u_{\omega_{0}}+\sqrt{-1} X \varphi_{t}$ (cf. [FM]). On the other hand, by $\varphi_{t} \in \mathcal{H}_{X}$, we see that $X_{\mathbb{R}} \varphi_{t}=0$. Hence,

$$
\begin{equation*}
u_{\omega(t)}=u_{\omega_{0}}-\sqrt{-1} \bar{X} \varphi_{t} \tag{2.5}
\end{equation*}
$$

Then we obtain the required equality as follows:

$$
\begin{aligned}
\frac{\partial}{\partial t} \tilde{\omega}(t)^{n} & =\frac{\partial}{\partial t}\left\{e^{-\psi_{\omega(t)}} \omega(t)^{n}\right\} \\
& =\left\{\square_{\omega(t)} \dot{\varphi}_{t}-\dot{\sigma}\left(u_{\omega(t)}\right) \frac{\partial}{\partial t} u_{\omega(t)}\right\} e^{-\psi_{\omega(t)}} \omega(t)^{n} \\
& =\left\{\square_{\omega(t)} \dot{\varphi}_{t}+\sqrt{-1} \dot{\sigma}\left(u_{\omega(t)}\right) \bar{X} \dot{\varphi}_{t}\right\} e^{-\psi_{\omega(t)}} \omega(t)^{n} \\
& =\left(\tilde{\square}_{\omega(t)} \dot{\varphi}_{t}\right) \tilde{\omega}(t)^{n} .
\end{aligned}
$$

(b) In (a) above, we have $(\partial / \partial t) \int_{M} \tilde{\omega}(t)^{n}=\int_{M}\left(\tilde{\square}_{\omega(t)} \dot{\varphi}_{t}\right) \tilde{\omega}(t)^{n}=$ $\left\langle\left\langle\tilde{\square}_{\omega} \dot{\varphi}_{t}, 1\right\rangle\right\rangle_{\tilde{\omega}}=0$ and hence the function $V: \mathcal{K}_{X} \rightarrow \mathbb{R}$ defined by

$$
V(\omega):=\int_{M} \tilde{\omega}^{n}, \quad \omega \in \mathcal{K}_{X}
$$

is constant along any smooth path in \mathcal{K}_{X}. Since every $\omega \in \mathcal{K}_{X}$ and ω_{0} are joined by the smooth path $t \omega_{0}+(1-t) \omega, 0 \leq t \leq 1$, in \mathcal{K}_{X}, we now conclude that V is constant on \mathcal{K}_{X}, as required.

By $\left\langle\left\langle u, \tilde{\square}_{\omega} u\right\rangle\right\rangle_{\tilde{\omega}}=-\int_{M}(\bar{\partial} u, \bar{\partial} u)_{\omega} \tilde{\omega}^{n} \leq 0$, all eigenvalues of $-\tilde{\square}_{\omega}$ are nonnegative real numbers. Let $\lambda_{1}=\lambda_{1}(\tilde{\omega})>0$ be the first positive eigenvalue of $-\tilde{\square}_{\omega}$, and assume

$$
\mathcal{K}_{X}^{(\nu)} \neq \emptyset
$$

for some $\nu>0$. Then we have $c_{1}(M)>0$, and by the Kodaira vanishing theorem, we see that $0=h^{0,1}(M)=h^{1,0}(M)$. In particular, $G:=\operatorname{Aut}^{0}(M)$
is a linear algebraic group. The corresponding Lie algebra \mathfrak{g} is just the space $H^{0}(M, \mathcal{O}(T M))$ of holomorphic vector fields on M. We now have a \mathbb{C}-linear isomorphism of vector spaces

$$
\begin{equation*}
\mathfrak{g}^{\omega} \cong \mathfrak{g}, \quad u \leftrightarrow \operatorname{grad}_{\omega}^{\mathbb{C}} u, \tag{2.6}
\end{equation*}
$$

where \mathfrak{g}^{ω} denotes the space of all $u \in C^{\infty}(M)_{\mathbb{C}}$, normalized by $\int_{M} u \tilde{\omega}^{n}=0$, such that the condition $\operatorname{grad}_{\omega}^{\mathbb{C}} \varphi \in \mathfrak{g}$ is satisfied. Recall that

FACT 2.7. (see for instance [M3]) For a real number $\nu>0$, let $\omega \in$ $\mathcal{K}_{X}^{(\nu)}$. Then
(a) $\lambda_{1}(\tilde{\omega}) \geq \nu$.
(b) If $\lambda_{1}(\tilde{\omega})=\nu$, then $\left\{u \in C^{\infty}(M)_{\mathbb{C}} ; \tilde{\square}_{\omega} u=-\lambda_{1}(\tilde{\omega}) u\right\}$ is a subspace of \mathfrak{g}^{ω}.

Next, we consider the special case where the Kähler class of \mathcal{K}_{X} is $2 \pi c_{1}(M)_{\mathbb{R}}$. In this case, to each $\omega \in \mathcal{K}_{X}$, we can associate a unique function f_{ω} in $C^{\infty}(M)_{\mathbb{R}}$ satisfying $\int_{M}\left(e^{f_{\omega}}-1\right) \omega^{n}=0$ and $\operatorname{Ric}(\omega)-\omega=\sqrt{-1} \partial \bar{\partial} f_{\omega}$. Put $c_{\omega}:=\int_{M} \tilde{\omega}^{n} / \int_{M} \omega^{n}=\int_{M} \tilde{\omega}_{0}^{n} / \int_{M} \omega_{0}^{n}$, which is independent of the choice of ω in \mathcal{K}_{X}. We now put

$$
\begin{equation*}
\tilde{f}_{\omega}:=f_{\omega}+\psi_{\omega}+\log c_{\omega}=f_{\omega}+\sigma\left(u_{\omega}\right)+\log c_{\omega} . \tag{2.8}
\end{equation*}
$$

Lemma 2.9. (a) $\operatorname{Ric}^{\sigma}(\omega)-\omega=\sqrt{-1} \partial \bar{\partial} \tilde{f}_{\omega}$.
(b) $\int_{M}\left(e^{\tilde{f_{\omega}}}-1\right) \tilde{\omega}^{n}=0$ for all $\omega \in \mathcal{K}_{X}$.

Proof. (a) follows immediately from (1.5), (2.8) and $\operatorname{Ric}(\omega)-\omega=\partial \bar{\partial} f_{\omega}$. As to (b), in view of (b) of Lemma 2.4, we obtain

$$
\int_{M} e^{\tilde{f}_{\omega}} \tilde{\omega}^{n}=\left(\int_{M} e^{f_{\omega}} e^{\psi_{\omega}} \tilde{\omega}^{n}\right) \frac{\int_{M} \tilde{\omega}_{0}^{n}}{\int_{M} \omega_{0}^{n}}=\left(\int_{M} e^{f_{\omega}} \omega^{n}\right) \frac{\int_{M} \tilde{\omega}^{n}}{\int_{M} \omega^{n}}=\int_{M} \tilde{\omega}^{n},
$$

as required.

§3. Proof of Theorem A

Let $\omega \in \mathcal{K}_{X}$. In the definition of $\tilde{\omega}$ in (1.4), replacing σ by 2σ, we consider volume forms $\operatorname{vol}_{\tilde{\omega}}$ and $\operatorname{vol}_{\tilde{\omega}_{0}}$ on M by setting

$$
\operatorname{vol}_{\tilde{\omega}}:=\omega^{n} \exp \left\{-2 \sigma\left(u_{\omega}\right)\right\} \quad \text { and } \quad \operatorname{vol}_{\tilde{\omega}_{0}}:=\omega_{0}^{n} \exp \left\{-2 \sigma\left(u_{\omega_{0}}\right)\right\} .
$$

Put $V:=\int_{M} \operatorname{vol}_{\tilde{\omega}}=\int_{M} \operatorname{vol}_{\tilde{\omega}_{0}}$. Replacing σ again by 2σ in the definition of $\tilde{\square}_{\omega}$ in (1.3), we consider the operators D_{ω} and $D_{\omega_{0}}$ acting on $C^{\infty}(M)_{\mathbb{R}}$ by

$$
\begin{equation*}
D_{\omega}:=\square_{\omega}+2 \sqrt{-1} \dot{\sigma}\left(u_{\omega}\right) \bar{X} \quad \text { and } \quad D_{\omega_{0}}:=\square_{\omega_{0}}+2 \sqrt{-1} \dot{\sigma}\left(u_{\omega_{0}}\right) \bar{X} \tag{3.1}
\end{equation*}
$$

Note that a smooth function on M is $X_{\mathbb{R}}$-invariant if and only if it is Q invariant. Hence, we can write $\omega=\omega_{0}+\sqrt{-1} \partial \bar{\partial} \varphi$ for some Q-invariant function φ in \mathcal{H}_{X}. Then we obtain

$$
\begin{equation*}
-\square_{\omega_{0}} \varphi<n \quad \text { and } \quad-\square_{\omega} \varphi>-n \tag{3.2}
\end{equation*}
$$

Now by (2.5), we have $\sqrt{-1} \bar{X} \varphi=u_{\omega_{0}}-u_{\omega}$. On the other hand, $\min _{M} u_{\omega_{0}}=$ $\min _{M} u_{\omega}=\alpha_{X}$ and $\max _{M} u_{\omega_{0}}=\max _{M} u_{\omega}=\beta_{X}$. In particular,

$$
\begin{equation*}
\max _{M}|\bar{X} \varphi|=\max _{M}|X \varphi| \leq \max _{M}|u|+\max _{M}\left|u_{0}\right| \leq 2 C_{3}, \tag{3.3}
\end{equation*}
$$

where $C_{3}:=\max \left\{\left|\alpha_{X}\right|,\left|\beta_{X}\right|\right\}$ is a positive constant independent of the choice of ω_{0} and ω in \mathcal{K}_{X}. Put $C_{4}:=\max _{s \in I_{X}}|\dot{\sigma}(s)|>0$. Then (3.1) and (3.2) above imply

$$
\begin{align*}
& -D_{\omega} \varphi=-\square_{\omega} \varphi-2 \sqrt{-1} \dot{\sigma}\left(u_{\omega}\right) \bar{X} \varphi \geq-k^{\prime}:=-n-4 C_{3} C_{4} \tag{3.4}\\
& -D_{\omega_{0}} \varphi=-\square_{\omega_{0}} \varphi-2 \sqrt{-1} \dot{\sigma}\left(u_{\omega_{0}}\right) \bar{X} \varphi \leq k^{\prime \prime}:=n+4 C_{3} C_{4} \tag{3.5}
\end{align*}
$$

Let $\operatorname{Re} D_{\omega}:=\left(D_{\omega}+\bar{D}_{\omega}\right) / 2$ and $\operatorname{Re} D_{\omega_{0}}:=\left(D_{\omega_{0}}+\bar{D}_{\omega_{0}}\right) / 2$ denote respectively the real part of D_{ω} and $D_{\omega_{0}}$. Moreover, let $G_{\omega}(x, y)$ and $G_{\omega_{0}}(x, y)$ be the Green functions for the operators $\operatorname{Re} D_{\omega}$ and $\operatorname{Re} D_{\omega_{0}}$, respectively. More precisely,

$$
\left\{\begin{array}{l}
h(x)=V^{-1} \int_{M} h(y) \operatorname{vol}_{\tilde{\omega}}(y)+\int_{M} G_{\omega}(x, y)\left\{-\left(\operatorname{Re} D_{\omega}\right)(h)\right\}(y) \operatorname{vol}_{\tilde{\omega}}(y) \\
\int_{M} G_{\omega}(x, y) \operatorname{vol}_{\tilde{\omega}}(y)=0
\end{array}\right.
$$

hold for all $x \in M$ and $h \in C^{\infty}(M)_{\mathbb{R}}$, where equalities similar to the above hold also for the Green function $G_{\omega_{0}}(x, y)$ in terms of $\operatorname{vol} \tilde{\omega}_{0}$ and $\operatorname{Re} D_{\omega_{0}}$.

Proof of Theorem A. Assuming $\omega \in \mathcal{K}_{X}^{(\nu)}$, let $\ddot{\sigma} \geq 0$ on I_{X}. We further assume that one of the following holds:
(a) $\dot{\sigma} \leq 0$ on I_{X} and $\omega \in \mathcal{S}^{\sigma}$;
(b) or σ is strictly convex.

For the Q-action on M, take the averages $\tilde{G}_{\omega}(x, y), \tilde{G}_{\omega_{0}}(x, y)$ of the functions $G_{\omega}(x, y), G_{\omega_{0}}(x, y)$ respectively, i.e.,

$$
\left\{\begin{array}{l}
\tilde{G}_{\omega}(x, y):=\int_{Q} G_{\omega}(q \cdot x, y) d \mu(q)=\int_{Q} G_{\omega}(x, q \cdot y) d \mu(q) \\
\tilde{G}_{\omega_{0}}(x, y):=\int_{Q} G_{\omega_{0}}(q \cdot x, y) d \mu(q)=\int_{Q} G_{\omega_{0}}(x, q \cdot y) d \mu(q)
\end{array}\right.
$$

where $d \mu=d \mu(q)$ denotes the Haar measure for the compact group Q of total volume 1. Let $K_{\omega}, K_{\omega_{0}}$ be the positive real numbers defined by

$$
-K_{\omega}=\inf _{x \neq y} \tilde{G}_{\omega}(x, y) \quad \text { and } \quad-K_{\omega_{0}}=\inf _{x \neq y} \tilde{G}_{0}(x, y)
$$

where the infimums are taken over all $(x, y) \in M \times M$ such that $x \neq y$. By writing $\omega=\omega_{0}+\sqrt{-1} \partial \bar{\partial} \varphi$ for some Q-invarant function $\varphi \in C^{\infty}(M)_{\mathbb{R}}$ as above, we first of all see the equality $\left(\operatorname{Re} D_{\omega_{0}}\right)(\varphi)=D_{\omega_{0}} \varphi$. Then by (3.5), we obtain

$$
\begin{align*}
\varphi(x) & =V^{-1} \int_{M} \varphi \operatorname{vol}_{\tilde{\omega}_{0}}+\int_{M}\left\{\tilde{G}_{\omega_{0}}(x, y)+K_{\omega_{0}}\right\}\left\{-\left(\operatorname{Re} D_{\omega_{0}}\right)(\varphi)\right\}(y) \operatorname{vol}_{\tilde{\omega}_{0}}(y) \tag{3.6}\\
& \leq V^{-1} \int_{M} \varphi \operatorname{vol}_{\tilde{\omega}_{0}}+k^{\prime \prime} V K_{\omega_{0}}
\end{align*}
$$

On the other hand, by $\left(\operatorname{Re} D_{\omega}\right)(\varphi)=D_{\omega} \varphi$ and (3.4), we also obtain

$$
\begin{align*}
\varphi(x) & =V^{-1} \int_{M} \varphi \operatorname{vol}_{\tilde{\omega}}+\int_{M}\left\{\tilde{G}_{\omega}(x, y)+K_{\omega}\right\}\left\{-\left(\operatorname{Re} D_{\omega}\right)(\varphi)\right\}(y) \operatorname{vol}_{\tilde{\omega}}(y) \tag{3.7}\\
& \geq V^{-1} \int_{M} \varphi \operatorname{vol}_{\tilde{\omega}}-k^{\prime} V K_{\omega}
\end{align*}
$$

Now by (3.6) and (3.7), we see that (cf. (A.1.1) in Appendix 1)

$$
\begin{align*}
\operatorname{Osc}(\varphi) & \leq V^{-1} \int_{M} \varphi\left(\operatorname{vol}_{\tilde{\omega}_{0}}-\operatorname{vol}_{\tilde{\omega}}\right)+\left(k^{\prime \prime} K_{\omega_{0}}+k^{\prime} K_{\omega}\right) V \tag{3.8}\\
& \leq V^{-1} \mathcal{I}^{2 \sigma}\left(\omega_{0}, \omega\right)+\left(k^{\prime \prime} K_{\omega_{0}}+k^{\prime} K_{\omega}\right) V
\end{align*}
$$

where by [M3], there exist positive real constants $C^{\prime}, C^{\prime \prime}$ and C_{2} independent of the choice of $\nu>0$ and ω, such that

$$
\begin{equation*}
K_{\omega} \leq \nu^{-1}\left(C^{\prime}+C^{\prime \prime} e^{C_{2} / \nu}\right) \tag{3.9}
\end{equation*}
$$

under the assumption (a) above, while under the assumption (b) above, we also have (3.9) with $C^{\prime \prime}=0$. Now by Lemma A.1.5 and Proposition A. 1 in Appendix 1, we have

$$
\mathcal{I}^{2 \sigma}\left(\omega_{0}, \omega\right) \leq(m+2)\left(\mathcal{I}^{2 \sigma}-\mathcal{J}^{2 \sigma}\right)\left(\omega_{0}, \omega\right) \leq(m+2) e^{c}\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega_{0}, \omega\right)
$$

where $m:=n-1+b_{2 \sigma}$ by the notation in Lemma A.1.6 in Appendix 1, and we put $c:=\max _{s \in I_{X}}|\sigma(s)|=\max \left\{\left|\alpha_{X}\right|,\left|\beta_{X}\right|\right\}$ as in the introduction. Hence in view of (3.8) and (3.9), by setting $C(\nu):=C_{1}+C_{1}^{\prime} \nu+C_{1}^{\prime \prime} e^{C_{2} / \nu}$, we obtain

$$
\operatorname{Osc}(\varphi) \leq C_{0}\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega_{0}, \omega\right)+\frac{C(\nu)}{\nu}
$$

where $C_{1}:=k^{\prime} C^{\prime} V, C_{1}^{\prime}:=k^{\prime \prime} K_{\omega_{0}} V, C_{1}^{\prime \prime}:=k^{\prime} C^{\prime \prime} V$ and $C_{0}:=V^{-1}(m+2) e^{c}$ are positive real constants depending neither on the choice of ω nor on $\nu>0$, as required.

§4. Proof of Theorem B

In this section, M is not necessarily compact, and we fix a nonconstant real-valued function $\sigma: I_{X} \rightarrow \mathbb{R}$ which is weakly convex, i.e., $\ddot{\sigma} \geq 0$ on I_{X}. Let zero (X) be the set of all points on M at which the nonzero holomorphic vector field $X=\operatorname{grad}_{\omega}^{\mathbb{C}} u_{\omega}$ vanishes.

Definition 4.1. Under the above assumption of weak convexity of σ, we say that (X, σ) is of Hamiltonian type, if one of the following two conditions is satisfied:

$$
\begin{align*}
& \operatorname{zero}(X) \neq \emptyset \tag{4.1.1}\\
& \ddot{\sigma}(s)=0 \quad \text { for all } s \in I_{X} . \tag{4.1.2}
\end{align*}
$$

Remark 4.2. If M is compact, then the assumption $\mathcal{K}_{X}^{(\nu)} \neq \emptyset$ in Theorem A implies that $c_{1}(M)>0$, and in particular G is a linear algebraic group. Hence, in this case (4.1.1) automatically holds.

Proof of Theorem B. The proof is divided into the following three steps:
Step 1. In this step, we apply the arguments in [Mil] to the Kähler manifold (M, ω). Let $\zeta:[0, \ell] \rightarrow M$ be an arclength-parametrized geodesic with $\zeta(0)=p$. Put $\zeta(\ell)=q$, and consider the set $\Omega(M ; p, q)$ of all smooth
paths $\gamma:[0, \ell] \rightarrow M$ such that $\gamma(0)=p$ and $\gamma(\ell)=q$. Recall that the energy functional $E: \Omega(M ; p, q) \rightarrow \mathbb{R}$ is defined by

$$
E(\gamma):=\int_{0}^{\ell}\left\|\gamma_{*}(\partial / \partial t)\right\|_{\omega}^{2} d t, \quad \gamma \in \Omega(M ; p, q)
$$

Then ζ is a critical point of the functional E. Let $P_{k}=P_{k}(t), k=$ $1,2, \ldots, 2 n$, be parallel vector fields along ζ which are orthonormal everywhere along ζ. Consider the complex structure $J: T M_{\mathbb{R}} \rightarrow T M_{\mathbb{R}}$ of the complex manifold M, where $T M_{\mathbb{R}}$ denotes the real tangent bundle of M. Then by $\nabla J=0$, we may assume that $P_{1}=\zeta_{*}(\partial / \partial t)$ and $P_{2}=J P_{1}$. Put $\hat{P}_{k}(t)=\sin (\pi t / \ell) P_{k}(t)$. Let $\operatorname{Hess}_{\zeta} E$ denote the Hessian of E at ζ. Then by setting $\hat{n}:=2 n-1$, we obtain

$$
\begin{equation*}
\frac{1}{2} \sum_{k=2}^{2 n}\left(\operatorname{Hess}_{\zeta} E\right)\left(\hat{P}_{k}, \hat{P}_{k}\right)=\int_{0}^{\ell} \sin ^{2}(\pi t / \ell)\left\{\frac{\hat{n} \pi^{2}}{\ell^{2}}-S_{\omega}\left(P_{1}, P_{1}\right)\right\} d t \tag{4.3.1}
\end{equation*}
$$

where S_{ω} denotes the Ricci tensor of the Kähler metric ω, and is related to the Ricci form $\operatorname{Ric}(\omega)$ by $S_{\omega}\left(P_{1}, P_{1}\right)=\operatorname{Ric}(\omega)\left(P_{1}, J P_{1}\right)$.

Step 2. Fix an arbitrary $\tau \in[0, \ell]$. In a small open neighbourhood of $\zeta(\tau)$ in M, we choose a system $z=\left(z^{1}, z^{2}, \ldots, z^{n}\right)$ of holomorphic local coordinates centered at $\zeta(\tau)$ such that

$$
P_{1}(\tau)=\partial / \partial x^{1} \quad \text { and } \quad J P_{1}(\tau)=\partial / \partial y^{1}
$$

where we write each z^{α} as a sum $x^{\alpha}+\sqrt{-1} y^{\alpha}$ of the real part and the imaginary part, and the vector fields $\partial / \partial x^{\alpha}, \partial / \partial y^{\alpha}$ are taken in terms of the coordinates system $\left(x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{n}\right)$. Since
$\partial / \partial z^{\alpha}=\left(\partial / \partial x^{\alpha}-\sqrt{-1} \partial / \partial y^{\alpha}\right) / 2$ and $\partial / \partial z^{\bar{\beta}}=\left(\partial / \partial x^{\beta}+\sqrt{-1} \partial / \partial y^{\beta}\right) / 2$,
we observe that the coordinates system $z=\left(z^{1}, z^{2}, \ldots, z^{n}\right)$ can be chosen in such a way that $g_{\alpha \bar{\beta}}$ in the local expression of ω (cf. Section 1) satisfies

$$
\begin{equation*}
g_{\alpha \bar{\beta}}(\zeta(\tau))=\frac{1}{2} \delta_{\alpha \beta} \quad \text { and } \quad d g_{\alpha \bar{\beta}}(\zeta(\tau))=0 \tag{4.3.2}
\end{equation*}
$$

Let $\exp _{\zeta(\tau)}:\left(T M_{\mathbb{R}}\right)_{\zeta(\tau)} \rightarrow M$ denotes the exponential map at the point $\zeta(\tau)$ of the Kähler manifold (M, ω), and put $\xi(s):=\exp _{\zeta(\tau)}\left(s J P_{1}\right),-\varepsilon \leq s \leq \varepsilon$,
with a sufficiently small positive real number ε. Then in a neighbourhood of $\zeta(\tau)$,

$$
\left\{\begin{array}{l}
P_{1}(t)=\zeta_{*}(\partial / \partial t)=\partial / \partial x^{1}+O\left(|t-\tau|^{2}\right) \tag{4.3.3}\\
\xi_{*}(\partial / \partial s)=\partial / \partial y^{1}+O\left(|s|^{2}\right)
\end{array}\right.
$$

where $O(w)$ denotes a function which is bounded by some constant times w. Now by our assumption, $X=\operatorname{grad}_{\omega}^{\mathbb{C}} u_{\omega}$ is a holomorphic vector field on M. Hence by the equality $\bar{\partial} X=0$ and (4.3.2), we obtain $\left(\partial / \partial z^{\overline{1}}\right)^{2}\left(u_{\omega}\right)_{\mid \zeta(\tau)}=0$ at the point $\zeta(\tau)$, and hence

$$
\left\{\begin{array}{l}
\left(\partial / \partial x^{1}\right)^{2}\left(u_{\omega}\right)_{\mid \zeta(\tau)}=\left(\partial / \partial y^{1}\right)^{2}\left(u_{\omega}\right)_{\mid \zeta(\tau)} \tag{4.3.4}\\
\left(\partial^{2} / \partial x^{1} \partial y^{1}\right)\left(u_{\omega}\right)_{\mid \zeta(\tau)}=0
\end{array}\right.
$$

We now define a $C^{\infty} \operatorname{map} F:[-\varepsilon, \varepsilon] \times[0, \ell] \rightarrow M$ by sending each $(s, t) \in$ $[-\varepsilon, \varepsilon] \times[0, \ell]$ to $F(s, t):=\exp _{\zeta(t)}\left(s J P_{1}\right) \in M$. Put $\tilde{u}:=F^{*} u_{\omega}$ and $\tilde{\psi}:=$ $F^{*} \psi_{\omega}$ which are functions on $[-\varepsilon, \varepsilon] \times[0, \ell]$. Then by (1.2), we have $\tilde{\psi}=$ $\sigma(\tilde{u})$. Next by (4.3.3),

$$
\left\{\begin{array}{l}
(\partial / \partial t)(\tilde{u})_{\mid s=0}=\zeta^{*}\left\{\left(\partial / \partial x^{1}\right)\left(u_{\omega}\right)\right\}+O\left(|t-\tau|^{2}\right) \tag{4.3.5}\\
(\partial / \partial s)(\tilde{u})_{\mid t=\tau}=\xi^{*}\left\{\left(\partial / \partial y^{1}\right)\left(u_{\omega}\right)\right\}+O\left(|s|^{2}\right)
\end{array}\right.
$$

in a neighbourhood of $(s, t)=(0, \tau)$. In view of (4.3.3), we differentiate the first line of (4.3.5) with respect to t at $t=\tau$, while we differentiate the second line of (4.3.5) with respect to s at $s=0$. Then, since $\tau \in[0, \ell]$ is arbitrary, the first line of (4.3.4) yields

$$
\begin{equation*}
(\partial / \partial t)^{2}(\tilde{u})=(\partial / \partial s)^{2}(\tilde{u}) \tag{4.3.6}
\end{equation*}
$$

when restricted to $\{0\} \times[0, \ell]$. Recall that ∇ is the natural Hermitian connection associated to the Kähler metric ω (see Section 1). Since $P_{2}=$ $J P_{1}$ is parallel along the geodesic ζ, and since ξ is a geodesic, we obtain

$$
\left(\nabla_{\partial / \partial t} \partial / \partial s\right)_{\mid(s, t)=(0, \tau)}=\left(\nabla_{\partial / \partial s} \partial / \partial s\right)_{\mid(s, t)=(0, \tau)}=0,
$$

where the pullback $F^{*} \nabla$ is denoted also by ∇ for simplicity. By combining this with (4.3.2) and $F_{*} \partial / \partial s_{\mid(s, t)=(0, \tau)}=\partial / \partial y^{1}$, we obtain

$$
F_{*}(\partial / \partial s)=\partial / \partial y^{1}+O\left(|s|^{2}+|t-\tau|^{2}\right) \quad \text { for }|s|^{2}+|t-\tau|^{2} \ll 1
$$

in a small neighbourhood of $\zeta(\tau)=F(0, \tau)$ in the image of F. Hence, together with the first line of (4.3.3), the second line of (4.3.4) implies

$$
\begin{equation*}
\left(\partial^{2} / \partial t \partial s\right)(\tilde{u})=0 \tag{4.3.7}
\end{equation*}
$$

when restricted to $\{0\} \times[0, \ell]$. For the time being, until the end of Step 2, we assume that (4.1.1) above holds. Then by $p=\zeta(0) \in \operatorname{Zero}(X)$, the function u_{ω} on M has a critical value at p. In particular, $(\partial \tilde{u} / \partial s)(0,0)=0$. On the other hand, (4.3.7) shows that $\partial \tilde{u} / \partial s$ is constant along $\{0\} \times[0, \ell]$. Therefore,

$$
\begin{equation*}
(\partial \tilde{u} / \partial s)(0, t)=0 \quad \text { for all } t \in[0, \ell] \text {, if (4.1.1) holds. } \tag{4.3.8}
\end{equation*}
$$

Step 3. Let σ be as in Definition 4.1, so that either (4.1.1) or (4.1.2) holds. Consider the function $\psi_{\omega}=\sigma\left(u_{\omega}\right)$. In view of (4.3.3), we see for all $\tau \in[0, \ell]$ the following:

$$
\begin{align*}
2 \sqrt{-1} & \left(\partial \bar{\partial} \psi_{\omega}\right)\left(P_{1}, J P_{1}\right)_{\mid \zeta(\tau)} \tag{4.3.9}\\
& =2 \sqrt{-1}\left(\partial \bar{\partial} \psi_{\omega}\right)\left(\zeta_{*}(\partial / \partial t), \xi_{*}(\partial / \partial s)\right)_{\mid \zeta(\tau)} \\
& =\left\{\left(\partial / \partial x^{1}\right)^{2}\left(\psi_{\omega}\right)+\left(\partial / \partial y^{1}\right)^{2}\left(\psi_{\omega}\right)\right\}_{\mid \zeta(\tau)} \\
& =\frac{\partial^{2} \tilde{\psi}}{\partial t^{2}}(0, \tau)+\frac{\partial^{2} \tilde{\psi}}{\partial s^{2}}(0, \tau)
\end{align*}
$$

Consider the vector fields $Z_{1}:=\left(P_{1}-\sqrt{-1} J P_{1}\right) / 2$ and $\bar{Z}_{1}:=\left(P_{1}+\sqrt{-1}\right.$ $\left.J P_{1}\right) / 2$ along the geodesic ζ. Since $(2 / \sqrt{-1}) \theta\left(Z_{1}, \bar{Z}_{1}\right)$ equals $\theta\left(P_{1}, J P_{1}\right)$ along the geodesic for every 2-form θ on M, and since $\operatorname{Ric}(\omega)+\sqrt{-1} \partial \bar{\partial} \psi_{\omega}=$ $\operatorname{Ric}^{\sigma}(\omega) \geq \nu \omega$, it now follows that

$$
\begin{aligned}
& \operatorname{Ric}(\omega)\left(P_{1}, J P_{1}\right)+\sqrt{-1}\left(\partial \bar{\partial} \psi_{\omega}\right)\left(P_{1}, J P_{1}\right)=\operatorname{Ric}^{\sigma}(\omega)\left(P_{1}, J P_{1}\right) \\
& \quad \geq \nu \omega\left(P_{1}, J P_{1}\right)=(2 \nu / \sqrt{-1}) \omega\left(Z_{1}, \bar{Z}_{1}\right)=\nu
\end{aligned}
$$

By plugging the expression (4.3.9) of $2 \sqrt{-1}\left(\partial \bar{\partial} \psi_{\omega}\right)\left(P_{1}, J P_{1}\right)_{\mid \zeta(\tau)}$ into the inequality just above, we see that the following inequality holds for all $\tau \in[0, \ell]:$

$$
\operatorname{Ric}(\omega)\left(P_{1}, J P_{1}\right)_{\mid \zeta(\tau)} \geq \nu-\frac{1}{2} \frac{\partial^{2} \tilde{\psi}}{\partial t^{2}}(0, \tau)-\frac{1}{2} \frac{\partial^{2} \tilde{\psi}}{\partial s^{2}}(0, \tau)
$$

By this together with (4.3.1), we obtain

$$
\begin{aligned}
& \frac{1}{2} \sum_{k=2}^{2 n}\left(\operatorname{Hess}_{\zeta} E\right)\left(\hat{P}_{k}, \hat{P}_{k}\right) \\
& \quad \leq \int_{0}^{\ell} \sin ^{2}(\pi t / \ell)\left\{\frac{\hat{n} \pi^{2}}{\ell^{2}}-\nu+\frac{1}{2} \frac{\partial^{2} \tilde{\psi}}{\partial t^{2}}(0, t)+\frac{1}{2} \frac{\partial^{2} \tilde{\psi}}{\partial s^{2}}(0, t)\right\} d t
\end{aligned}
$$

If (4.1.1) holds, then by (4.3.6) and (4.3.8), we see from $\tilde{\psi}=\sigma(\tilde{u})$ that

$$
\begin{aligned}
\frac{\partial^{2} \tilde{\psi}}{\partial s^{2}}(0, t) & =\left\{\dot{\sigma}(\tilde{u}) \frac{\partial^{2} \tilde{u}}{\partial s^{2}}+\ddot{\sigma}(\tilde{u})\left(\frac{\partial \tilde{u}}{\partial s}\right)^{2}\right\}_{\mid(0, t)}=\left\{\dot{\sigma}(\tilde{u}) \frac{\partial^{2} \tilde{u}}{\partial t^{2}}\right\}_{\mid(0, t)} \\
& \leq\left\{\dot{\sigma}(\tilde{u}) \frac{\partial^{2} \tilde{u}}{\partial t^{2}}+\ddot{\sigma}(\tilde{u})\left(\frac{\partial \tilde{u}}{\partial t}\right)^{2}\right\}_{\mid(0, t)}=\frac{\partial^{2} \tilde{\psi}}{\partial t^{2}}(0, t)
\end{aligned}
$$

where the inequality just above follows from the weak convexity of σ. On the other hand, if (4.1.2) holds, then again by (4.3.6)

$$
\frac{\partial^{2} \tilde{\psi}}{\partial s^{2}}(0, t)=\dot{\sigma}(\tilde{u}) \frac{\partial^{2} \tilde{u}}{\partial s^{2}}(0, t)=\dot{\sigma}(\tilde{u}) \frac{\partial^{2} \tilde{u}}{\partial t^{2}}(0, t)=\frac{\partial^{2} \tilde{\psi}}{\partial t^{2}}(0, t)
$$

In both cases, we obtain

$$
\frac{1}{2} \sum_{k=2}^{2 n}\left(\operatorname{Hess}_{\zeta} E\right)\left(\hat{P}_{k}, \hat{P}_{k}\right) \leq \int_{0}^{\ell} \sin ^{2}(\pi t / \ell)\left\{\frac{\hat{n} \pi^{2}}{\ell^{2}}-\nu+\frac{\partial^{2} \tilde{\psi}}{\partial t^{2}}(0, t)\right\} d t
$$

Let R.H.S. denote the right-hand side of this inequality. Then by taking integral by parts over and over again, we see that

$$
\begin{aligned}
\text { R.H.S. } & =\int_{0}^{\ell}\left\{\left(\frac{\hat{n} \pi^{2}}{\ell^{2}}-\nu\right) \sin ^{2}(\pi t / \ell)-\frac{\pi}{\ell} \frac{\partial \tilde{\psi}}{\partial t}(0, t) \sin (2 \pi t / \ell)\right\} d t \\
& =\int_{0}^{\ell}\left\{\left(\frac{\hat{n} \pi^{2}}{\ell^{2}}-\nu\right) \sin ^{2}(\pi t / \ell)+\frac{2 \pi^{2}}{\ell^{2}} \tilde{\psi}(0, t) \cos (2 \pi t / \ell)\right\} d t \\
& \leq \frac{2 \pi^{2} c}{\ell}+\int_{0}^{\ell}\left(\frac{\hat{n} \pi^{2}}{\ell^{2}}-\nu\right) \sin ^{2}(\pi t / \ell) d t=\frac{(\hat{n}+4 c) \pi^{2}}{2 \ell}-\frac{\ell \nu}{2} .
\end{aligned}
$$

Therefore, if $\ell>\pi\{(\hat{n}+4 c) / \nu\}^{1 / 2}$, then R.H.S. <0, and hence

$$
\sum_{k=2}^{2 n}\left(\operatorname{Hess}_{\zeta} E\right)\left(\hat{P}_{k}, \hat{P}_{k}\right)<0
$$

which shows that $\zeta:[0, \ell] \rightarrow M$ is not an arclength-minimizing geodesic. Thus, we obtain $\operatorname{dist}_{\omega}(p, q) \leq \pi\{(\hat{n}+4 c) / \nu\}^{1 / 2}$ for every $q \in M$, as required.

§5. Proof of Theorem C

Fix $0<\alpha<1$. Let $\mathcal{H}_{X, 0}^{2, \alpha}$ denote the set of all $X_{\mathbb{R}^{-}}$invariant function $\varphi \in C^{2, \alpha}(M)_{\mathbb{R}}$ such that $\int_{M} \varphi \tilde{\omega}_{0}^{n}=0$ and that ω_{φ} is positive definite on M. Put

$$
\begin{equation*}
A(\varphi):=\tilde{\omega}_{\varphi}^{n} / \tilde{\omega}_{0}^{n}, \quad \varphi \in \mathcal{H}_{X, 0}^{2, \alpha} . \tag{5.1.1}
\end{equation*}
$$

For each $0 \leq k \in \mathbb{Z}$, we consider the space $C_{X, 0}^{k, \alpha}(M)_{\mathbb{R}}$ of all $X_{\mathbb{R}}$ invariant functions φ in $C^{k, \alpha}(M)_{\mathbb{R}}$ such that $\int_{M} \varphi \tilde{\omega}_{0}^{n}=0$. Define $\Gamma: \mathcal{H}_{X, 0}^{2, \alpha} \times \mathbb{R} \rightarrow$ $C_{X, 0}^{0, \alpha}(M)_{\mathbb{R}}$ by setting (cf. [BM], [S1])

$$
\begin{equation*}
\Gamma(\varphi, t):=A(\varphi)-\left\{\frac{1}{V_{0}} \int_{M} \exp \left(-t \varphi+\tilde{f}_{\omega_{0}}\right) \tilde{\omega}_{0}^{n}\right\}^{-1} \exp \left(-t \varphi+\tilde{f}_{\omega_{0}}\right) \tag{5.1.2}
\end{equation*}
$$

for all $(\varphi, t) \in \mathcal{H}_{X, 0}^{2, \alpha} \times \mathbb{R}$, where V_{0} is as in (b) of Lemma 2.4. Let T be the set of all $t \in[0,1)$ for which the generalized Aubin's equation

$$
\begin{equation*}
\Gamma(\varphi, t)=0 \tag{5.1.3}
\end{equation*}
$$

admits a solution $\varphi=\varphi_{t}$ in $\mathcal{H}_{X, 0}^{2, \alpha}$. Note that φ automatically belongs to \mathcal{H}_{X}. For such a solution φ_{t}, we set $\omega(t):=\omega_{\varphi_{t}}=\omega_{0}+\sqrt{-1} \partial \bar{\partial} \varphi_{t}$ as in (A.2.2) in Appendix 2. Then

$$
\begin{equation*}
\operatorname{Ric}^{\sigma}(\omega(t))=\omega_{0}+t \sqrt{-1} \partial \bar{\partial} \varphi_{t}=t \omega(t)+(1-t) \omega_{0} \tag{5.1.4}
\end{equation*}
$$

where $\tilde{\omega}(t)$ is as in (2.3). In particular, $\omega(t)$ sits in $\mathcal{K}_{X}^{\left(t^{\prime}\right)}$ for some t^{\prime} which exceeds t. Suppose that $\Gamma(\hat{\varphi}, \hat{t})=0$ for some $(\hat{\varphi}, \hat{t}) \in \mathcal{H}_{X, 0}^{2, \alpha} \times[0,1)$. Then the Fréchet derivative $D_{\varphi} \Gamma: C_{X, 0}^{2, \alpha}(M)_{\mathbb{R}} \rightarrow C_{X, 0}^{0, \alpha}(M)_{\mathbb{R}}$ of Γ at $(\hat{\varphi}, \hat{t})$ with respect to the factor φ is given by

$$
\begin{equation*}
\left\{D_{\varphi} \Gamma_{\mid(\varphi, t)=(\hat{\varphi}, \hat{t})}\right\}(\eta):=A(\hat{\varphi})\left(\tilde{\square}_{\hat{\varphi}}+\hat{t}\right)\left(\eta-C_{\eta, \hat{\varphi}}\right), \quad \eta \in C_{X, 0}^{2, \alpha}(M)_{\mathbb{R}} \tag{5.1.5}
\end{equation*}
$$

where $C_{\eta, \hat{\varphi}}:=V_{0}^{-1} \int_{M} \eta \tilde{\omega}_{\hat{\varphi}}^{n}$ and $\tilde{\square}_{\hat{\varphi}}:=\tilde{\square}_{\tilde{\omega}_{\hat{\varphi}}}$. By (5.1.4) and Fact 2.7, \hat{t} is less than the first positive eigenvalue of $-\tilde{\square}_{\hat{\varphi}}$. Hence, $D_{\varphi} \Gamma_{\mid(\varphi, t)}$ is invertible. Then by the implicit function theorem, we obtain

Theorem 5.1. If $(\hat{\varphi}, \hat{t}) \in \mathcal{H}_{X, 0}^{2, \alpha} \times[0,1)$ satisfies $\Gamma(\hat{\varphi}, \hat{t})=0$, then there exist $0<\varepsilon \ll 1$ and a smooth one-parameter family of functions $\left\{\varphi_{t} ; \hat{t}-\varepsilon<t<\hat{t}+\varepsilon\right\}$ in $\mathcal{H}_{X, 0}^{2, \alpha}$ satisfying $\varphi_{\hat{t}}=\hat{\varphi}$ such that $\varphi=\varphi_{t}$ is the unique solution of (5.1.3) for each t under the condition $\|\varphi-\hat{\varphi}\|_{C^{2, \alpha}} \leq \varepsilon$. In particular, T is an open subset of $[0,1)$.

Let $0 \leq a<b \leq 1$, and let $\varphi_{t}, a<t \leq b$, be a smooth one-parameter family of functions in $\mathcal{H}_{X, 0}^{2, \alpha}$ such that, for all $a<t \leq b$, we have

$$
\begin{equation*}
\Gamma\left(\varphi_{t}, t\right)=0 \tag{5.2.1}
\end{equation*}
$$

Then each φ_{t} automatically belongs to \mathcal{H}_{X}. By setting $\omega(t):=\omega_{\varphi_{t}}$ as in the above, we obtain (5.1.4). We further put $\psi_{t}:=\psi_{\omega(t)}$ and $\tilde{f}_{t}:=\tilde{f}_{\omega(t)}$, where on the right-hand sides, we use the notation in the introduction and (2.8). Since $\operatorname{Ric}^{\sigma}(\omega(t))=\omega(t)+\sqrt{-1} \partial \bar{\partial} \tilde{f}_{t}$, and since $\omega(t)=\omega_{0}+\sqrt{-1} \partial \bar{\partial} \varphi_{t}$, the identity (5.1.4) implies

$$
\begin{equation*}
\tilde{f}_{t}=-(1-t) \varphi_{t}+C_{t} \tag{5.2.2}
\end{equation*}
$$

where C_{t} is a real constant depending on t. By (5.1.1) and (a) of Lemma 2.4, we have $\partial A\left(\varphi_{t}\right) / \partial t=\left\{\tilde{\square}_{\omega(t)} \dot{\varphi}_{t}\right\} A\left(\varphi_{t}\right)$. By differentiating (5.2.1) with respect to t, we obtain

$$
\begin{equation*}
\tilde{\square}_{\omega(t)} \dot{\varphi}_{t}+t \dot{\varphi}_{t}+\varphi_{t}=\hat{C}_{t} \tag{5.2.3}
\end{equation*}
$$

for some real constant \hat{C}_{t} depending on t. By (A.1.1) in Appendix 1 and by (b) of Proposition A. 2 in Appendix 2, we see from (5.2.2) and (5.2.3) the following:

$$
\begin{aligned}
& \frac{d}{d t} \mu^{\sigma}(\omega(t))=\int_{M}\left(\bar{\partial} \tilde{f}_{t}, \bar{\partial} \dot{\varphi}_{t}\right)_{\omega(t)} \tilde{\omega}(t)^{n}=-(1-t) \int_{M}\left(\bar{\partial} \varphi_{t}, \bar{\partial} \dot{\varphi}_{t}\right)_{\omega(t)} \tilde{\omega}(t)^{n} \\
& \quad=-(1-t) \frac{d}{d t}\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega_{0}, \omega(t)\right)=(1-t) \int_{M} \varphi_{t}\left\{\tilde{\square}_{\omega(t)} \dot{\varphi}_{t}\right\} \tilde{\omega}(t)^{n} \\
& \quad=-(1-t) \int_{M}\left\{\tilde{\square}_{\omega(t)} \dot{\varphi}_{t}+t \dot{\varphi}_{t}\right\}\left\{\tilde{\square}_{\omega(t)} \dot{\varphi}_{t}\right\} \tilde{\omega}(t)^{n} \leq 0
\end{aligned}
$$

where in the last inequality, we apply (a) of Fact 2.7 to $\omega(t) \in \mathcal{K}_{X}^{(t)}$. Thus, for any $0 \leq a<b \leq 1$, we obtain

TheOrem 5.2. Along any smooth one-parameter family $\varphi_{t}, a<t \leq$ b, of solutions in \mathcal{H}_{X} of (5.2.1), the corresponding $\omega(t):=\omega_{\varphi_{t}}=\omega_{0}+$ $\sqrt{-1} \partial \bar{\partial} \varphi_{t}$ satisfies

$$
\frac{d}{d t} \mu^{\sigma}(\omega(t))=-(1-t) \frac{d}{d t}\left(\mathcal{I}^{\sigma}-\mathcal{J}_{\sigma}\right)\left(\omega_{0}, \omega(t)\right) \leq 0, \quad a<t \leq b
$$

Given an element $\theta \in \mathcal{E}_{X}^{\sigma}$, we consider the set T_{θ} of all $\tau \in[0,1]$ such that there exists a smooth one-parameter family of solutions

$$
\begin{equation*}
\varphi_{t} \in \mathcal{H}_{X, 0}^{2, \alpha}, \quad \tau \leq t \leq 1 \tag{5.3.1}
\end{equation*}
$$

of (5.2.1) satisfying $\omega_{\varphi_{1}}=\theta$. Put $\tau_{\infty}:=\inf T_{\theta}$. Later in Theorem 5.6, we see that a slight perturbation of ω_{0} allows us to assume $\tau_{\infty}<1$. Under this assumption, we obtain

Lemma 5.3.2. Suppose that σ is convex. Then we have the following:
(a) $\tau_{\infty}=0$.
(b) If σ is furthermore strictly convex, then 0 belongs to T_{θ}.

Proof. Take a sequence $\mathcal{S}:=\left\{\tau_{j}\right\}_{j=1}^{\infty}$ of points in the open interval $\left(\tau_{\infty}, 1\right]$ such that τ_{j} converges to τ_{∞} as $j \rightarrow \infty$. Let

$$
\varphi_{\tau_{j}} \in \mathcal{H}_{X, 0}^{2, \alpha}, \quad j=1,2, \ldots
$$

be the corresponding solutions of (5.2.1) at $t=\tau_{j}$. For simplicity, $\varphi_{\tau_{j}}$ is denoted by φ_{j}, and we put $\omega^{(j)}:=\omega_{0}+\sqrt{-1} \partial \bar{\partial} \varphi_{j}$. In view of Theorem 5.1, the proof is reduced to showing that some subsequence of \mathcal{S} is convergent in $C^{2, \alpha}(M)_{\mathbb{R}}$ assuming that either τ_{∞} is positive or σ is strictly convex. By Theorem 5.2,

$$
\begin{equation*}
\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega_{0}, \omega^{(j)}\right) \leq C_{3}, \quad \text { for all } j=1,2, \ldots \tag{5.3.3}
\end{equation*}
$$

where $C_{3}:=\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega_{0}, \theta\right)$. Since $\omega^{(j)}$ belongs to $\mathcal{K}_{X}^{\left(\tau_{j}\right)}$, and since $\tau_{j} \leq 1$ for all j, the combination of (1.6) and (5.3.3) implies

$$
\begin{aligned}
\left|\tau_{j} \operatorname{Osc} \varphi_{j}\right| & \leq \tau_{j} C_{0}\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega_{0}, \omega^{(j)}\right)+C\left(\tau_{j}\right) \\
& \leq C_{0} C_{3} \tau_{j}+C\left(\tau_{j}\right)=C_{0} C_{3} \tau_{j}+C_{1}+C_{1}^{\prime} \tau_{j}+C_{1}^{\prime \prime} e^{C_{2} / \tau_{j}} \\
& \leq C_{0} C_{3}+C_{1}+C_{1}^{\prime}+C_{1}^{\prime \prime} e^{C_{2} / \tau_{j}}
\end{aligned}
$$

where if σ is strictly convex, we can set $C_{1}^{\prime \prime}=0$ by Theorem A. Note that the constant $C_{0}, C_{1}, C_{1}^{\prime}, C_{1}^{\prime \prime}, C_{2}, C_{3}$ are independent of the choice of j, and that $\left|\tau_{j} \operatorname{Osc} \varphi_{j}\right|, j=1,2, \ldots$, are bounded from above by $C_{0} C_{3}+$ $C_{1}+C_{1}^{\prime}+C_{1}^{\prime \prime} e^{C_{2} / \tau_{\infty}}$ or $C_{0} C_{3}+C_{1}+C_{1}^{\prime}$ according as τ_{∞} is positive or σ is strictly convex. Hence, in both of these cases, we have a positive constant C_{4} independent of j such that

$$
\left\|\tau_{j} \varphi_{j}\right\|_{C^{0}(M)} \leq C_{4}
$$

since we have $\varphi_{j}\left(p_{j}\right)=0$ at some point $p_{j} \in M$ in view of the identity $\int_{M} \varphi_{j} \tilde{\omega}_{0}^{n}=0$. Moreover, for all j,

$$
\begin{aligned}
& \omega_{\varphi_{j}}^{n}=A\left(\varphi_{j}\right) \exp \left\{\psi_{\omega^{(j)}}-\psi_{\omega_{0}}\right\} \omega_{0}^{n} \\
& =\left(\frac{1}{V_{0}} \int_{M} \exp \left(-\tau_{j} \varphi_{j}+\tilde{f}_{\omega_{0}}\right) \tilde{\omega}_{0}^{n}\right)^{-1} \exp \left\{-\tau_{j} \varphi_{j}+\tilde{f}_{\omega_{0}}+\psi_{\omega^{(j)}}-\psi_{\omega_{0}}\right\} \omega_{0}^{n},
\end{aligned}
$$

where $\left|\psi_{\omega^{(j)}}\right|, j=1,2, \ldots$, on M are bounded from above by

$$
c:=\max _{s \in\left[\ell_{0}, \ell_{1}\right]}|\sigma(s)| .
$$

Therefore, we have a positive constant C_{5} independent of j such that

$$
\left\|\varphi_{j}\right\|_{C^{0}(M)} \leq C_{5}, \quad \text { for all } j
$$

Then by standard arguments for complex Monge-Ampère equations (see for instance $[\mathrm{M} 4]), \mathcal{S}$ is uniformly bounded in $C^{k, \alpha}(M)_{\mathbb{R}}$ for all $0 \leq k \in \mathbb{Z}$, and consequently some subsequence of \mathcal{S} is convergent in $C^{2, \alpha}(M)_{\mathbb{R}}$, as required.

Remark 5.3.4. In (b) of Lemma 5.3.2, even if σ is not strictly convex, we obtain $0 \in T_{\theta}$ just by the convexity of σ. This can be seen as follows: For each $r \in \mathbb{R}$, we put

$$
\sigma_{r}(s):=\sigma(s)-r \log \left(s-\alpha_{X}+1\right), \quad s \in I_{X}
$$

where α_{X} and I_{X} are as in the introduction. If r is positive, then $\ddot{\sigma}_{r}(s)>0$ for all $s \in I_{X}$, and σ_{r} is strictly convex. In the arguments above, replacing σ by σ_{r}, we put $\psi_{\omega}^{[r]}:=\sigma_{r}\left(u_{\omega}\right)$ and $\tilde{\omega}^{[r]}:=\omega \exp \left(-\psi_{\omega}^{[r]} / n\right)$ for all $\omega \in \mathcal{K}_{X}$. For each $\varphi \in \mathcal{H}_{X, 0}^{2, \alpha}$, we put

$$
\left\{\begin{array}{l}
A^{[r]}(\varphi)=\frac{\left(\tilde{\omega}_{\varphi}^{[r]}\right)^{n}}{\left(\tilde{\omega}_{0}^{[r]}\right)^{n}}=\frac{\omega_{\varphi}^{n} \exp \left(-\psi_{\omega_{\varphi}}^{[r]}\right)}{\omega_{0}^{n} \exp \left(-\psi_{\omega_{0}}^{[r]}\right)} \\
\varphi^{[r]}=\varphi-\frac{1}{V_{r}} \int_{M} \varphi\left(\tilde{\omega}_{0}^{[r]}\right)^{n}
\end{array}\right.
$$

where $V_{r}:=\int_{M}\left(\tilde{\omega}_{0}^{[r]}\right)^{n}$. Put $\tilde{f}_{\omega}^{[r]}:=f_{\omega}+\psi_{\omega}^{[r]}+\log \left\{\int_{M}\left(\tilde{\omega}_{0}^{[r]}\right)^{n} / \int_{M} \omega_{0}^{n}\right\}$ for all $\omega \in \mathcal{K}_{X}$. Let us define a mapping $\tilde{\Gamma}: \mathcal{H}_{X, 0}^{2, \alpha} \times \mathbb{R}^{2} \rightarrow C_{0}^{0, \alpha}(M)_{\mathbb{R}}$ by

$$
\begin{aligned}
\tilde{\Gamma}(\varphi, t, r):= & \frac{\left(\tilde{\omega}_{0}^{[r]}\right)^{n}}{\tilde{\omega}_{0}^{n}}\left\{A^{[r]}(\varphi)\right. \\
& \left.-\left(\frac{1}{V_{r}} \int_{M} \exp \left(-t \varphi^{[r]}+\tilde{f}_{\omega_{0}}^{[r]}\right)\left(\tilde{\omega}_{0}^{[r]}\right)^{n}\right)^{-1} \exp \left(-t \varphi^{[r]}+\tilde{f}_{\omega_{0}}^{[r]}\right)\right\}
\end{aligned}
$$

where $(\varphi, t, r) \in \mathcal{H}_{X, 0}^{2, \alpha} \times \mathbb{R}^{2}$. Suppose that $\tilde{\Gamma}(\hat{\varphi}, \hat{t}, 0)=0$ for some $(\hat{\varphi}, \hat{t}) \in$ $\mathcal{H}_{X, 0}^{2, \alpha} \times[0,1)$. Then $\Gamma(\hat{\varphi}, \hat{t})=0$, and the Fréchet derivative $D_{\varphi} \tilde{\Gamma}: C_{X, 0}^{2, \alpha}(M)_{\mathbb{R}}$ $\rightarrow C_{X, 0}^{0, \alpha}(M)_{\mathbb{R}}$ of $\tilde{\Gamma}$ with respect to φ is written as

$$
\begin{equation*}
D_{\varphi} \tilde{\Gamma}_{\mid(\varphi, t, r)=(\hat{\varphi}, \hat{t}, 0)}=D_{\varphi} \Gamma_{\mid(\varphi, t)=(\hat{\varphi}, \hat{t})}, \tag{5.3.5}
\end{equation*}
$$

which is invertible. Hence, in a neighbourhood U of $(\hat{t}, 0)$ in \mathbb{R}^{2}, the solution $\hat{\varphi}$ of $\tilde{\Gamma}(\varphi, t, r)=0$ at $(t, r)=(\hat{t}, 0)$ extends uniquely to

$$
\hat{\varphi}_{t, r} \in C_{X, 0}^{2, \alpha}(M)_{\mathbb{R}}, \quad(t, r) \in U
$$

depending on (t, r) continuously and satisfying $\tilde{\Gamma}\left(\hat{\varphi}_{t, r}, t, r\right)=0$ for all $(t, r) \in$ U with $\hat{\varphi}_{\hat{t}, 0}=\hat{\varphi}$. As in Theorem 5.6 proved later, a slight perturbation of ω_{0} (see (5.5.3)) allows us to assume that, for a sufficiently small $\delta>0$, a smooth two-parameter family of functions

$$
\begin{equation*}
\varphi_{t, r} \in C_{X, 0}^{2, \alpha}(M)_{\mathbb{R}}, \quad(t, r) \in[1-\delta, 1] \times[0, \delta] \tag{5.3.6}
\end{equation*}
$$

exists satisfying $\theta=\omega_{0}+\sqrt{-1} \partial \bar{\partial} \varphi_{1,0}$ and $\tilde{\Gamma}\left(\varphi_{t, r}, t, r\right)=0$ for all $(t, r) \in$ $[1-\delta, 1] \times[0, \delta]$. Then by Lemma 5.3.2 and Theorem 5.1, we see that (5.3.6) uniquely extends to a continuous family, denoted by the same notation, of functions

$$
\begin{equation*}
\varphi_{t, r} \in C_{X, 0}^{2, \alpha}(M)_{\mathbb{R}}, \quad(0,0) \neq(t, r) \in[0,1] \times[0, \delta] \tag{5.3.7}
\end{equation*}
$$

satisfying $\tilde{\Gamma}\left(\varphi_{t, r}, t, r\right)=0$ for all $(0,0) \neq(t, r) \in[0,1] \times[0, \delta]$. On the other hand, by Appendix 4, there exists a unique element γ_{r} of $\mathcal{H}_{X, 0}^{2, \alpha}$ such that

$$
\operatorname{Ric}^{\sigma_{r}}\left(\omega_{\gamma_{r}}\right)=\omega_{0}
$$

Then for each $r \in[0, \delta]$, the equation $\tilde{\Gamma}(\varphi, 0, r)=0$ in $\varphi \in \mathcal{H}_{X, 0}^{2, \alpha}$ has a unique solution $\varphi=\gamma_{r}$. In view of (5.3.7) above, this implies

$$
\varphi_{0, r}=\gamma_{r}, \quad 0<r \leq \delta
$$

By (5.3.5) applied to $(\hat{\varphi}, \hat{t})=\left(\gamma_{0}, 0\right)$, letting δ be smaller if necessary, we see from the inverse function theorem that the solution $\varphi=\gamma_{r}$ of the equation $\tilde{\Gamma}(\varphi, 0, r)=0$ in $\varphi \in \mathcal{H}_{X, 0}^{2, \alpha}$ for $0 \leq r \leq \delta$ uniquely extends to a continuous family of functions

$$
\begin{equation*}
\varphi_{t, r}^{\prime} \in C_{X, 0}^{2, \alpha}(M)_{\mathbb{R}}, \quad(t, r) \in[0, \delta] \times[0, \delta] \tag{5.3.8}
\end{equation*}
$$

satisfying $\varphi_{0, r}^{\prime}=\gamma_{r}$ for $0 \leq r \leq \delta$ and $\tilde{\Gamma}\left(\varphi_{t, r}^{\prime}, t, r\right)=0$ for all $(t, r) \in$ $[0, \delta] \times[0, \delta]$. Comparing (5.3.7) and (5.3.8), we obtain $\varphi_{t, r}=\varphi_{t, r}^{\prime}$ for all $(0,0) \neq(t, r) \in[0, \delta] \times[0, \delta]$. In particular, $\varphi_{t, 0}\left(=\varphi_{t, 0}^{\prime}\right)$ converges to γ_{0} $\left(=\varphi_{0,0}^{\prime}\right)$ in $C^{2, \alpha}$ as t tends to 0 . Thus, $0 \in T_{\theta}$.

By combining Lemma 5.3.2 and Remark 5.3.4, we obtain

Theorem 5.3. If σ is convex, then by a slight perturbation of ω_{0} as in (5.5.3), we have the situation that 0 belongs to T_{θ}.

Take an arbitrary $Z^{0}(X)$-orbit \mathbf{O} in \mathcal{E}_{X}^{σ}, which is a connected component of \mathcal{E}_{X}^{σ} by Proposition A. 5 in Appendix 5. Define a nonnegative C^{∞} function $\iota: \mathbf{O} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\iota(\theta):=\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega_{0}, \theta\right), \quad \theta \in \mathbf{O} \tag{5.4.1}
\end{equation*}
$$

For $\tilde{\mathcal{E}}_{X}^{\sigma}:=\left\{\lambda \in \mathcal{H}_{X} ; A(\lambda)=\exp \left(-\lambda+\tilde{f}_{0}\right)\right\}$, we have a natural identification $\tilde{\mathcal{E}}_{X}^{\sigma} \simeq \mathcal{E}_{X}^{\sigma}$ by sending each $\lambda \in \tilde{\mathcal{E}}_{X}^{\sigma}$ to $\omega_{\lambda} \in \mathcal{E}_{X}^{\sigma}$. Then the preimage, denoted by $\tilde{\mathbf{O}}$, of \mathbf{O} under the identification $\tilde{\mathcal{E}}_{X}^{\sigma} \simeq \mathcal{E}_{X}^{\sigma}$ is written as

$$
\begin{equation*}
\tilde{\mathbf{O}}=\left\{\lambda \in C^{2, \alpha}(M)_{\mathbb{R}} ; A(\lambda)=\exp \left(-\lambda+\tilde{f}_{0}\right) \text { and } \omega_{\lambda} \in \mathbf{O}\right\} \tag{5.4.2}
\end{equation*}
$$

Moreover, we put $\mathbf{O}^{\Gamma}:=\left\{\lambda \in \mathcal{H}_{X, 0}^{2, \alpha} ; \Gamma(\lambda, 1)=0\right.$ and $\left.\omega_{\lambda} \in \mathbf{O}\right\}$. Then \mathbf{O}^{Γ}, \mathbf{O} and $\tilde{\mathbf{O}}$ are identified by

$$
\begin{equation*}
\mathbf{O}^{\Gamma} \simeq \mathbf{O} \simeq \tilde{\mathbf{O}}, \quad \lambda \leftrightarrow \omega_{\lambda} \leftrightarrow \lambda+\log \left\{\frac{1}{V_{0}} \int_{M} \exp \left(-\lambda+\tilde{f}_{\omega_{0}}\right) \tilde{\omega}_{0}^{n}\right\} \tag{5.4.3}
\end{equation*}
$$

Theorem 5.4. (a) Assume that σ is convex. Then the function ι : $\mathbf{O} \rightarrow \mathbb{R}$ is a proper map, and hence its absolute minimum is always attained at some point of the orbit \mathbf{O}.
(b) Let \mathfrak{k}^{θ} be as in (A.5.3) of Appendix 5. By (5.4.3), to each $\theta \in \mathbf{O}$, we associate a unique $\lambda_{\theta} \in \tilde{\mathbf{O}}$ such that $\theta=\omega_{\lambda_{\theta}}$. Then the following are equivalent:
(i) θ is a critical point for ι;
(ii) $\int_{M} \lambda_{\theta} v \tilde{\theta}^{n}=0$ for all $v \in \mathfrak{k}^{\theta}$.

Proof of (a). For each positive real number r, we put $\mathbf{O}_{r}^{\Gamma}:=\{\lambda \in$ $\left.\mathbf{O}^{\Gamma} ; \iota\left(\omega_{\lambda}\right) \leq r\right\}$. By the same argument as in the proof of Lemma 5.3.2
(see the arguments after (5.3.3)), there exists a constant $C_{5}=C_{5}(r)>0$ independent of the choice of λ in \mathbf{O}_{r}^{Γ} such that

$$
\|\varphi\|_{C^{2, \alpha}(M)} \leq C_{5}
$$

holds for all $\varphi \in \mathbf{O}_{r}^{\Gamma}$, where in this proof we use the inequality $\iota\left(\omega_{\varphi}\right) \leq r$ in place of (5.3.3). Now, (a) is straightforward.

Proof of (b). Let $\lambda=\lambda(t),-\varepsilon<t<\varepsilon$, be a smooth one-parameter family in $\tilde{\mathbf{O}}$ such that $\lambda(0)=\lambda_{\theta}$. Then $\omega_{\lambda(0)}=\theta$. In view of (A.1.1) in Appendix 1,

$$
\begin{align*}
& \left\{\frac{d}{d t} \iota(\omega(t))\right\}_{\mid t=0}=\int_{M}(\bar{\partial} \lambda(0), \bar{\partial} \dot{\lambda}(0))_{\theta} \tilde{\theta}^{n} \tag{5.4.4}\\
& \quad=-\int_{M} \lambda(0)\left(\tilde{\square}_{\theta} \dot{\lambda}(0)\right) \tilde{\theta}^{n}=\int_{M} \lambda(0) \dot{\lambda}(0) \tilde{\theta}^{n}
\end{align*}
$$

where we have $\dot{\lambda}(0) \in \mathfrak{k}^{\theta}\left(=T_{\theta}\left(\tilde{\mathcal{E}}_{X}^{\sigma}\right)=T_{\theta}(\tilde{\mathbf{O}})\right)$ by (A.5.6) and (b) of Proposition A. 5 of Appendix 5. The equivalence of (i) and (ii) is now immediate.

We now consider the Hessian of $\iota: \mathbf{O} \rightarrow \mathbb{R}$ at a critical point $\theta=$ $\omega_{\lambda_{\theta}} \in \mathbf{O}$ of ι, where $\lambda_{\theta} \in \tilde{\mathbf{O}}$ is as in (b) of Theorem 5.4. Let $\varphi_{s, t},(s, t) \in$ $[-\varepsilon, \varepsilon] \times[-\varepsilon, \varepsilon]$, be a smooth two-parameter family of functions in $\tilde{\mathbf{O}}$ such that $\lambda_{\theta}=\varphi_{0,0}$. Put $\omega_{s, t}:=\omega_{\varphi_{s, t}}$. Then

$$
\varphi^{\prime}:={\left.\frac{\partial \varphi_{s, t}}{\partial s} \quad \right\rvert\,(s, t)=(0,0)} \quad \text { and } \quad \varphi^{\prime \prime}:={\frac{\partial \varphi_{s, t}}{\partial t}}_{\mid(s, t)=(0,0)}
$$

are regarded as elements in $T_{\theta}(\mathbf{O})\left(=T_{\theta}\left(\mathcal{E}_{X}^{\sigma}\right)\right)$ by the isomorphism $T_{\theta}\left(\mathcal{E}_{X}^{\sigma}\right) \cong$ \mathfrak{k}^{θ} in (A.5.6) of Appendix 5. By differentiating $A\left(\varphi_{s, t}\right)=\exp \left(-\varphi_{s, t}+\tilde{f}_{\omega_{0}}\right)$ with respect to t, we obtain

$$
\begin{equation*}
\tilde{\square}_{s, t}\left(\frac{\partial \varphi_{s, t}}{\partial t}\right)=-\frac{\partial \varphi_{s, t}}{\partial t} \tag{5.5.1}
\end{equation*}
$$

where we put $\psi_{s, t}:=\psi_{\omega_{s, t}}, u_{s, t}:=u_{\omega_{s, t}}, \square_{s, t}:=\square_{\omega_{s, t}}, \tilde{\square}_{s, t}:=\tilde{\square}_{\omega_{s, t}}$ for simplicity. Differentiating (5.5.1) with respect to s at the origin $(s, t)=$ $(0,0)$, we obtain

$$
\begin{equation*}
\left(\partial \bar{\partial} \varphi^{\prime}, \partial \bar{\partial} \varphi^{\prime \prime}\right)_{\theta}-\ddot{\sigma}\left(u_{\theta}\right)\left(\bar{X} \varphi^{\prime}\right)\left(\bar{X} \varphi^{\prime \prime}\right)=\left(\tilde{\square}_{\theta}+1\right) \partial_{s} \partial_{t} \varphi(0) \tag{5.5.2}
\end{equation*}
$$

Here, we used the identities $\tilde{\square}_{s, t}=\square_{s, t}+\sqrt{-1} \dot{\sigma}\left(u_{s, t}\right) \bar{X}, u_{s, t}=u_{\omega_{0}}-$ $\sqrt{-1} \bar{X} \varphi_{s, t}$ (see (1.3) and (2.5)) and we put

$$
\partial_{s} \partial_{t} \varphi(0):=\left(\frac{\partial^{2} \varphi_{s, t}}{\partial s \partial t}\right)_{\mid(s, t)=(0,0)}
$$

Since $\tilde{\square}_{\theta} \varphi^{\prime}=-\varphi^{\prime}$, by comparing the identity (5.5.2) with (A.3.1) in Appendix 3 applied to $(\omega, \zeta, v)=\left(\theta, \varphi^{\prime}, \varphi^{\prime \prime}\right)$, we obtain

$$
\begin{equation*}
\left(\tilde{\square}_{\theta}+1\right)\left(\partial \varphi^{\prime}, \partial \varphi^{\prime \prime}\right)_{\theta}=\left(\tilde{\square}_{\theta}+1\right) \partial_{s} \partial_{t} \varphi(0) \tag{5.5.3}
\end{equation*}
$$

Next, we put $\iota_{s, t}:=\iota\left(\omega_{s, t}\right)$ for simplicity. Then by the same computation as in (5.4.4), we obtain the identity

$$
\frac{\partial \iota_{s, t}}{\partial t}=\int_{M} \varphi_{s, t} \frac{\partial \varphi_{s, t}}{\partial t} \tilde{\omega}_{s, t}^{n}
$$

In view of $\lambda_{\theta}=\varphi_{0,0}$ and (a) of Lemma 2.4, we further differentiate this with respect to s at the origin $(s, t)=(0,0)$. Then the Hessian $(H e s s ~ \iota)_{\theta}$ of ι at θ is given by

$$
\begin{align*}
& \left.(\text { Hess } \iota)_{\theta}\left(\varphi^{\prime}, \varphi^{\prime \prime}\right)=\frac{\partial^{2} \iota_{s, t}}{\partial s \partial t} \right\rvert\,(s, t)=(0,0) \tag{5.5.4}\\
& \quad=\int_{M}\left\{\varphi^{\prime} \varphi^{\prime \prime}+\lambda_{\theta} \partial_{s} \partial_{t} \varphi(0)+\lambda_{\theta} \varphi^{\prime \prime}\left(\tilde{\square}_{\theta} \varphi^{\prime}\right)\right\} \tilde{\theta}^{n} \\
& \quad=\int_{M}\left\{\varphi^{\prime} \varphi^{\prime \prime}\left(1-\lambda_{\theta}\right)+\lambda_{\theta} \partial_{s} \partial_{t} \varphi(0)\right\} \tilde{\theta}^{n}
\end{align*}
$$

By (b) of Theorem 5.4 together with (A.5.3) of Appendix 5, we have an $X_{\mathbb{R}}$-invariant function $\xi \in C^{\infty}(M)_{\mathbb{R}}$ such that $\lambda_{\theta}=\left(\tilde{\square}_{\theta}+1\right) \xi$. As in $[\mathrm{BM}$, (6.7)], (5.5.4) is rewritten as

$$
\begin{align*}
& (\operatorname{Hess} \iota)_{\theta}\left(\varphi^{\prime}, \varphi^{\prime \prime}\right)=\int_{M}\left\{\varphi^{\prime} \varphi^{\prime \prime}\left(1-\lambda_{\theta}\right)+\xi\left(\tilde{\square}_{\theta}+1\right) \partial_{s} \partial_{t} \varphi(0)\right\} \tilde{\theta}^{n} \tag{5.5.5}\\
& =\int_{M}\left\{\varphi^{\prime} \varphi^{\prime \prime}\left(1-\lambda_{\theta}\right)+\xi\left(\tilde{\square}_{\theta}+1\right)\left(\partial \varphi^{\prime}, \partial \varphi^{\prime \prime}\right)_{\theta}\right\} \tilde{\theta}^{n} \quad(\mathrm{cf.}(5.5 .3 \tag{5.5.3}\\
& =\int_{M} \varphi^{\prime} \varphi^{\prime \prime} \tilde{\theta}^{n}+\frac{1}{2} \int_{M} \lambda_{\theta}\left\{\left(\tilde{\square}_{\theta} \varphi^{\prime}\right) \varphi^{\prime \prime}+\varphi^{\prime}\left(\tilde{\square}_{\theta} \varphi^{\prime \prime}\right)\right\} \tilde{\theta}^{n} \\
& \quad+\int_{M} \lambda_{\theta}\left(\partial \varphi^{\prime}, \partial \varphi^{\prime \prime}\right)_{\theta} \tilde{\theta}^{n}
\end{align*}
$$

$$
\begin{aligned}
& =\int_{M} \varphi^{\prime} \varphi^{\prime \prime} \tilde{\theta}^{n}+\frac{1}{2} \int_{M} \lambda_{\theta} \tilde{\square}_{\theta}\left(\varphi^{\prime} \varphi^{\prime \prime}\right) \tilde{\theta}^{n} \\
& =\int_{M} \varphi^{\prime} \varphi^{\prime \prime}\left(1+\frac{1}{2} \tilde{\square}_{\theta} \lambda_{\theta}\right) \tilde{\theta}^{n} .
\end{aligned}
$$

We now follows the arguments in [BM, Section 7]. Let $0<t \leq 1$ and $0<\alpha<1$. For each nonnegative integer k, let $C_{X}^{k, \alpha}(M)_{\mathbb{R}}$ be the space of all $X_{\mathbb{R}^{-}}$-invariant functions in $C^{k, \alpha}(M)_{\mathbb{R}}$, and consider the set $\mathcal{H}_{X}^{2, \alpha}$ of all $\varphi \in C_{X}^{2, \alpha}(M)_{\mathbb{R}}$ such that $\omega_{\varphi}:=\omega_{0}+\sqrt{-1} \partial \bar{\partial} \varphi$ is a positive definite $C^{0, \alpha}$ form on M. Put

$$
\left(\mathfrak{k}_{k}^{\theta}\right)^{\perp}:=\left\{w \in C_{X}^{k, \alpha}(M)_{\mathbb{R}} ; \int_{M} w v \tilde{\theta}^{n}=0 \text { for all } v \in \mathfrak{k}^{\theta}\right\} .
$$

We here observe that $\mathfrak{z}^{\theta}(X)=\mathfrak{k}_{\mathbb{C}}^{\theta}$ by Proposition A. 5 in Appendix 5. In order to solve the equation $\Gamma(\varphi, t)=0$ in $\varphi \in \mathcal{H}_{X, 0}^{2, \alpha}$, it suffices to solve the following equation in $\gamma \in \mathcal{H}_{X}^{2, \alpha}$:

$$
\begin{equation*}
A(\gamma)=\exp \left(-t \gamma+\tilde{f}_{\omega_{0}}\right) \tag{5.5.6}
\end{equation*}
$$

Because any solution $\gamma \in \mathcal{H}_{X}^{k, \alpha}$ of (5.5.6) allows us to obtain a solution $\varphi \in \mathcal{H}_{X, 0}^{k, \alpha}$ of the equation $\Gamma(\varphi, t)=0$ by setting $\varphi:=\gamma-\left(1 / V_{0}\right) \int_{M} \gamma \tilde{\omega}_{0}^{n}$. Next, we see that (5.5.6) is further reduced to the equation

$$
\begin{equation*}
\Phi(t, \gamma)=0 \tag{5.5.7}
\end{equation*}
$$

where $\Phi(t, \gamma):=t \gamma-\tilde{f}_{\omega_{0}}+\log A(\gamma)$. Note that $\left(\mathfrak{k}_{2}^{\theta}\right)^{\perp} \subset\left(\mathfrak{k}_{0}^{\theta}\right)^{\perp}$. Let P : $C_{X}^{0, \alpha}(M)_{\mathbb{R}}\left(\cong \mathfrak{k}^{\theta} \oplus\left(\mathfrak{k}_{0}^{\theta}\right)^{\perp}\right) \rightarrow \mathfrak{k}^{\theta}$ be the projection to the first factor. For each $\gamma \in \mathcal{H}_{X}^{2, \alpha}$, write

$$
\gamma=\lambda_{\theta}+x+y
$$

with $x:=P\left(\gamma-\lambda_{\theta}\right) \in \mathfrak{k}^{\theta}$ and $y:=(1-P)\left(\gamma-\lambda_{\theta}\right) \in\left(\mathfrak{k}_{2}^{\theta}\right)^{\perp}$. Now, the equation (5.5.7) is written in the form

$$
P \Phi\left(t, \lambda_{\theta}+x+y\right)=0 \quad \text { and } \quad \Psi(t, x, y)=0
$$

where $\Psi: \mathbb{R} \times \mathfrak{k}^{\theta} \times\left(\mathfrak{k}_{2}^{\theta}\right)^{\perp} \rightarrow\left(\mathfrak{k}_{0}^{\theta}\right)^{\perp}$ is the mapping defined by

$$
\Psi(t, x, y):=(1-P) \Phi\left(t, \lambda_{\theta}+x+y\right), \quad(t, x, y) \in \mathbb{R} \times \mathfrak{k}^{\theta} \times\left(\mathfrak{k}_{2}^{\theta}\right)^{\perp}
$$

Then $\Psi(1,0,0)=0$ and the Fréchet derivative $D_{y} \Psi_{\mid(1,0,0)}$ of Ψ with respect to y at $(t, x, y)=(1,0,0)$ is

$$
\left(\mathfrak{k}_{2}^{\theta}\right)^{\perp} \ni y^{\prime} \longmapsto D_{y} \Psi_{\mid(1,0,0)}\left(y^{\prime}\right)=\left(\tilde{\square}_{\theta}+1\right) y^{\prime} \in\left(\mathfrak{k}_{0}^{\theta}\right)^{\perp},
$$

which is invertible. Hence, the implicit function theorem enables us to obtain a smooth mapping $V \ni(t, x) \mapsto y_{t, x} \in\left(\mathfrak{k}_{2}^{\theta}\right)^{\perp}$ of a small neighbourhood V of $(1,0)$ in $\mathbb{R} \times \mathfrak{k}^{\theta}$ to the Banach space $\left(\mathfrak{k}_{2}^{\theta}\right)^{\perp}$ such that
i) $y_{1,0}=0$,
ii) $\left\|y_{t, x}\right\|_{C^{2, \alpha}} \leq \delta$ on V for some $\delta>0$, and
iii) $\Psi(t, x, y)=0\left(\right.$ where $\left.\|y\|_{C^{2, \alpha}} \leq \delta\right)$ is, as an equation in $y \in\left(\mathfrak{k}_{2}^{\theta}\right)^{\perp}$, uniquely solvable in the form $y=y_{t, x}$ on U.

The derivative $(\partial / \partial t) y_{t, x}$ is denoted by $\dot{y}_{t, x}$ for simplicity. Then by differentiating the identity $\Psi\left(t, x, y_{t, x}\right)=0$ at $(t, x)=(1,0)$, we obtain

$$
\left\{\begin{array}{l}
\left(\tilde{\square}_{\theta}+1\right)\left(\dot{y}_{t, x \mid(1,0)}\right)=-\lambda_{\theta}, \tag{5.5.8}\\
\left(D_{x} y_{t, x}\right)_{\mid(1,0)}\left(\varphi^{\prime}\right)=0
\end{array} \text { for all } \varphi^{\prime} \in \mathfrak{k}^{\theta}\right.
$$

where $\left(D_{x} y_{t, x}\right)_{\mid(1,0)}: \mathfrak{k}^{\theta} \rightarrow\left(\mathfrak{k}_{2}^{\theta}\right)^{\perp}$ denotes the Fréchet derivative of the smooth mapping $V \ni(t, x) \mapsto y_{t, x} \in\left(\mathfrak{k}_{2}^{\theta}\right)^{\perp}$ with respect to x at $(t, x)=$ $(1,0)$. Then the equation (5.5.7), on a small neighbourhood of $(t, \gamma)=$ $\left(1, \lambda_{\theta}\right)$, reduces to

$$
\Phi_{0}(t, x)=0 \quad\left(\text { with } \gamma=\lambda_{\theta}+x+y_{t, x}\right)
$$

where we put $\Phi_{0}(t, x):=P \Phi\left(t, \lambda_{\theta}+x+y_{t, x}\right)$ for $(t, x) \in V$. Since $\Phi(1, x)=0$ for all $x \in \tilde{\mathbf{O}}$, we have $\Phi_{0}=0$ on $\{t=1\}$, and hence the mapping

$$
V_{\mid\{t \neq 1\}} \ni(t, x) \longmapsto \Phi_{1}(t, x):=\Phi_{0}(t, x) /(t-1) \in \mathfrak{k}^{\theta}
$$

naturally extends to a smooth map, denoted by the same Φ_{1}, of V to \mathfrak{k}^{θ}. In view of the first identity of (5.5.8), we obtain

$$
\Phi_{1}(1,0)=\left(\partial \Phi_{0} / \partial t\right)(1,0)=0
$$

Then the Fréchet derivative $D_{x} \Phi_{1 \mid(1,0)}: \mathfrak{k}^{\theta} \rightarrow \mathfrak{k}^{\theta}$ of Φ_{1} with respect to x at $(t, x)=(1,0)$ is given by the following:

Theorem 5.5. By using the notation in Section 2 on the left-hand side, we have

$$
\left\langle\left\langle D_{x} \Phi_{1 \mid(1,0)}\left(\varphi^{\prime}\right), \varphi^{\prime \prime}\right\rangle\right\rangle_{\tilde{\theta}}=(\operatorname{Hess} \iota)_{\theta}\left(\varphi^{\prime}, \varphi^{\prime \prime}\right), \quad \varphi^{\prime}, \varphi^{\prime \prime} \in \mathfrak{k}^{\theta}
$$

Proof. Since $P\left(\tilde{\square}_{\theta}+1\right)=0$ on $\left(\mathfrak{k}_{2}^{\theta}\right)^{\perp}$, the latter identity of (5.5.8) above together with (1.3) and (2.5) implies

$$
\begin{aligned}
D_{x} \Phi_{1 \mid(1,0)}\left(\varphi^{\prime}\right) & =\left\{D_{x}\left(\partial \Phi_{0} / \partial t\right)\right\}_{\mid(1,0)}\left(\varphi^{\prime}\right) \\
& =\varphi^{\prime}-P\left(\partial \bar{\partial} \dot{y}_{t, x \mid(1,0)}, \partial \bar{\partial} \varphi^{\prime}\right)_{\theta}+P\left\{\ddot{\sigma}\left(u_{\theta}\right)\left(\bar{X} \varphi^{\prime}\right) \bar{X} \dot{y}_{t, x \mid(1,0)}\right\}
\end{aligned}
$$

Moreover, we observe the first identity of (5.5.8). Then by (A.3.2) in Appendix 3 applied to $\left(\omega, v_{1}, v_{2}, \zeta\right)=\left(\theta, \varphi^{\prime \prime}, \varphi^{\prime}, \dot{y}_{t, x \mid(1,0)}\right)$, we obtain

$$
\begin{aligned}
& \left\langle\left\langle D_{x} \Phi_{1 \mid(1,0)}\left(\varphi^{\prime}\right), \varphi^{\prime \prime}\right\rangle\right\rangle_{\tilde{\theta}} \\
& \quad=\int_{M}\left(\varphi^{\prime}-P\left(\partial \bar{\partial} \dot{y}_{t, x \mid(1,0)}, \partial \bar{\partial} \varphi^{\prime}\right)_{\theta}+P\left\{\ddot{\sigma}\left(u_{\theta}\right)\left(\bar{X} \varphi^{\prime}\right) \bar{X} \dot{y}_{t, x \mid(1,0)}\right\}\right) \varphi^{\prime \prime} \tilde{\theta}^{n} \\
& \quad=\int_{M}\left(\varphi^{\prime} \varphi^{\prime \prime}-\varphi^{\prime \prime}\left(\partial \bar{\partial} \dot{y}_{t, x \mid(1,0)}, \partial \bar{\partial} \varphi^{\prime}\right)_{\theta}+\varphi^{\prime \prime}\left\{\ddot{\sigma}\left(u_{\theta}\right)\left(\bar{X} \varphi^{\prime}\right) \bar{X} \dot{y}_{t, x \mid(1,0)}\right\}\right) \tilde{\theta}^{n} \\
& \quad=\int_{M}\left\{\varphi^{\prime} \varphi^{\prime \prime}-\varphi^{\prime \prime} \varphi^{\prime} \lambda_{\theta}+\left(\partial \varphi^{\prime \prime}, \partial \varphi^{\prime}\right)_{\theta} \lambda_{\theta}\right\} \tilde{\theta}^{n} \\
& \quad=\int_{M}\left\{\varphi^{\prime} \varphi^{\prime \prime}\left(1-\lambda_{\theta}\right)+\left(\partial \varphi^{\prime}, \partial \varphi^{\prime \prime}\right)_{\theta} \lambda_{\theta}\right\} \tilde{\theta}^{n}
\end{aligned}
$$

This together with the second equality of (5.5.5) implies the required identity.

Regarding ω_{0} as a function in ε, we write

$$
\begin{equation*}
\omega_{0}=\omega_{0}(\varepsilon), \quad \varepsilon \in[0,1] \tag{5.5.1}
\end{equation*}
$$

Hence, the corresponding $\omega_{\varphi}:=\omega_{0}+\sqrt{-1} \partial \bar{\partial} \varphi, \tilde{f}_{\omega_{0}}, \iota, A(\varphi), \Gamma(t, \gamma), \mu^{\sigma}$ and $\mathcal{H}_{X, 0}^{2, \alpha}$ will be written respectively as $\omega_{\varphi}(\varepsilon), \tilde{f}_{\omega_{0}(\varepsilon)}, \iota_{\varepsilon}, A_{\varepsilon}(\varphi), \Gamma_{\varepsilon}(t, \gamma)$, $\mu_{\varepsilon}^{\sigma}$ and $\mathcal{H}_{X, 0}^{2, \alpha}(\varepsilon)$. For ι_{ε} at $\varepsilon=0$, we see by (a) of Theorem 5.4 that the functional $\iota_{0}: \mathbf{O} \rightarrow \mathbb{R}$ takes its absolute minimum at some point $\theta \in \mathbf{O}$. Then we have a unique function $\lambda_{\theta ; 0} \in C^{\infty}(M)_{\mathbb{R}}$ such that $\theta=\omega_{\lambda_{\theta ; 0}}(0)$ and that $A_{0}\left(\lambda_{\theta ; 0}\right)=\exp \left(-\lambda_{\theta ; 0}+\tilde{f}_{\omega_{0}(0)}\right)$. Then by (b) of Theorem 5.4,

$$
\begin{equation*}
\int_{M} \lambda_{\theta ; 0} v \tilde{\theta}^{n}=0 \quad \text { for all } v \in \mathfrak{k}^{\theta} \tag{5.5.2}
\end{equation*}
$$

and the bilinear form $\left(\operatorname{Hess} \iota_{0}\right)_{\theta}: \mathfrak{k}^{\theta} \times \mathfrak{k}^{\theta} \rightarrow \mathbb{R}$ is positive semidefinite. Let us now perturb $\omega_{0}(0)$ by setting

$$
\begin{equation*}
\omega_{0}(\varepsilon):=(1-\varepsilon) \omega_{0}(0)+\varepsilon \theta=\omega_{0}(0)+\sqrt{-1} \partial \bar{\partial}\left(\varepsilon \lambda_{\theta ; 0}\right), \quad 0 \leq \varepsilon \leq 1 \tag{5.5.3}
\end{equation*}
$$

Let $\lambda_{\theta ; \varepsilon} \in C^{\infty}(M)_{\mathbb{R}}$ be the unique function satisfying $\theta=\omega_{\lambda_{\theta ; \varepsilon}}(\varepsilon)$ and $A_{\varepsilon}\left(\lambda_{\theta ; \varepsilon}\right)=-\lambda_{\theta ; \varepsilon}+\tilde{f}_{\omega_{0}(\varepsilon)} . \quad$ By $\omega_{\lambda_{\theta ; 0}}(0)=\theta=\omega_{\lambda_{\theta ; \varepsilon}}(\varepsilon)=\omega_{0}(0)+$ $\sqrt{-1} \partial \bar{\partial}\left(\varepsilon \lambda_{\theta ; 0}\right)+\sqrt{-1} \partial \bar{\partial} \lambda_{\theta ; \varepsilon}$, we have

$$
\begin{equation*}
\lambda_{\theta ; \varepsilon}=(1-\varepsilon) \lambda_{\theta ; 0}+C_{\varepsilon} \quad \text { for some } C_{\varepsilon} \in \mathbb{R} \tag{5.5.4}
\end{equation*}
$$

Since $\int_{M} v \tilde{\theta}^{n}=0$ for all $v \in \mathfrak{k}^{\theta}$, (5.5.2) and (5.5.4) aboved imply $\int_{M} \lambda_{\theta ; \varepsilon} v \tilde{\theta}^{n}=0$ for all $v \in \mathfrak{k}^{\theta}$. Hence by (b) of Theorem 5.4, it follows that

$$
\begin{equation*}
\theta \text { is a critical point for } \iota_{\varepsilon}: \mathbf{O} \rightarrow \mathbb{R} \tag{5.5.5}
\end{equation*}
$$

Let $0<\varepsilon \ll 1$. For all $0 \neq v \in \mathfrak{k}^{\theta}$,

$$
\begin{align*}
& \left(\operatorname{Hess} \iota_{\varepsilon}\right)_{\theta}(v, v)=\int_{M} v^{2}\left(1+\frac{1}{2} \tilde{\square}_{\theta} \lambda_{\theta ; \varepsilon}\right) \tilde{\theta}^{n} \tag{5.5.5}\\
& \quad=(1-\varepsilon) \int_{M} v^{2}\left(1+\frac{1}{2} \tilde{\square}_{\theta} \lambda_{\theta ; 0}\right) \tilde{\theta}^{n}+\varepsilon \int_{M} v^{2} \tilde{\theta}^{n} \tag{5.5.4}\\
& \quad=(1-\varepsilon)\left(\operatorname{Hess} \iota_{0}\right)_{\theta}(v, v)+\varepsilon \int_{M} v^{2} \tilde{\theta}^{n}>0
\end{align*}
$$

Then for such a $\omega_{0}=\omega_{0}(\varepsilon)$ with ε fixed, Theorem 5.5 shows that $D_{x} \Phi_{1 \mid(1,0)}$: $\mathfrak{k}^{\theta} \rightarrow \mathfrak{k}^{\theta}$ is invertible. Now by the implicit function theorem, the equation $\Phi_{1}(t, x)=0$ in $x \in \mathfrak{k}^{\theta}$ is uniquely solvable in a small neighbourhood of $(t, x)=(1,0)$ to produce a smooth curve $x(t), 1-\delta \leq t \leq 1$, in \mathfrak{k}^{θ} for some $0<\delta \ll 1$ such that

$$
x(1)=0 \quad \text { and } \quad \Phi_{1}(t, x(t))=0 \quad(1-\delta \leq t \leq 1)
$$

Replacing $\delta>0$ by a smaller number if necessary, we obtain $\Phi\left(t, \lambda_{\theta ; \varepsilon}+\right.$ $\left.x(t)+y_{t, x(t)}\right)=0$ for $1-\delta \leq t \leq 1$. In view of the reduction to (5.5.6) and (5.5.7), we obtain

Theorem 5.6. For each $Z^{0}(X)$-orbit \mathbf{O} in \mathcal{E}_{X}^{σ}, let θ be a point on \mathbf{O} at which ι in (5.4.1) takes its absolute minimum. Then replacing ω_{0} by $(1-\varepsilon) \omega_{0}+\varepsilon \theta$ for some $0<\varepsilon \ll 1$, we have a $0<\delta \ll 1$ such that there exists a smooth one-parameter family of functions $\left\{\varphi_{t} ; 1-\delta \leq t \leq 1\right\}$ in $\mathcal{H}_{X, 0}^{2, \alpha}$ satisfying $\omega_{\varphi_{1}}=\theta$ and $\Gamma\left(t, \varphi_{t}\right)=0$ for all $t \in[1-\delta, 1]$.

Proof of Theorem C. Let \mathbf{O}^{\prime} and $\mathbf{O}^{\prime \prime}$ be $Z^{0}(X)$-orbits in \mathcal{E}_{X}^{σ}. We consider the nonnegative function $\iota: \mathcal{K}_{X} \rightarrow \mathbb{R}$ defined by

$$
\iota(\omega):=\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega_{0}, \omega\right), \quad \omega \in \mathcal{K}_{X}
$$

The restrictions of ι to \mathbf{O}^{\prime} and $\mathbf{O}^{\prime \prime}$ are denoted by $\iota^{\prime}: \mathbf{O}^{\prime} \rightarrow \mathbb{R}$ and $\iota^{\prime \prime}$: $\mathbf{O}^{\prime \prime} \rightarrow \mathbb{R}$, respectively. We follow the arguments in [BM, (8.2)]. The proof is divided into three steps.

Step 1. In view of Theorem 5.6, by perturbing ω_{0} if necessary, we may assume that the function ι^{\prime} is critical at some $\theta^{\prime} \in \mathbf{O}^{\prime}$ with positive definite Hessian. Next by (a) of Theorem 5.4, the function $\iota^{\prime \prime}$ takes its absolute minimum at some point $\theta^{\prime \prime} \in \mathbf{O}^{\prime \prime}$. For $0<\varepsilon \ll 1$, we define a nonnegative function ι_{ε} on \mathcal{K}_{X} by

$$
\iota_{\varepsilon}(\omega):=\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega_{0}(\varepsilon), \omega\right), \quad \omega \in \mathcal{K}_{X}
$$

Let $\iota_{\varepsilon}^{\prime}: \mathbf{O}^{\prime} \rightarrow \mathbb{R}$ and $\iota_{\varepsilon}^{\prime \prime}: \mathbf{O}^{\prime \prime} \rightarrow \mathbb{R}$ be the restrictions of the function ι_{ε} to \mathbf{O}^{\prime} and $\mathbf{O}^{\prime \prime}$, respectively. Put $\omega_{0}(\varepsilon):=(1-\varepsilon) \omega_{0}+\varepsilon \theta^{\prime \prime}$. Then by (5.5.5), the function $\iota_{\varepsilon}^{\prime \prime}$ is critical at $\theta^{\prime \prime}$ with positive definite Hessian. Moreover, by $\varepsilon \ll 1$, the restriction $\iota_{\varepsilon}^{\prime}$ takes its local minimum with positive definite Hessian at some point $\theta_{\varepsilon}^{\prime}$ of \mathbf{O}^{\prime} near θ^{\prime}. Hence, replacing ω_{0} by $\omega_{0}(\varepsilon)$, we may assume from the begining that both $\iota^{\prime}: \mathbf{O}^{\prime} \rightarrow \mathbb{R}$ and $\iota^{\prime \prime}: \mathbf{O}^{\prime \prime} \rightarrow \mathbb{R}$ have critical points with positive definite Hessian. Therefore by Theorem 5.6, for some $0<\delta \ll 1$, we have smooth one-parameter families of functions $\left\{\varphi_{t}^{\prime} ; 1-\delta \leq t \leq 1\right\}$ and $\left\{\varphi_{t}^{\prime \prime} ; 1-\delta \leq t \leq 1\right\}$ in $\mathcal{H}_{X, 0}^{2, \alpha}$ satisfying the following conditions:

$$
\begin{gather*}
\Gamma\left(t, \varphi_{t}^{\prime}\right)=\Gamma\left(t, \varphi_{t}^{\prime \prime}\right)=0 \quad \text { for all } t \in[1-\delta, 1] \tag{5.7.1}\\
\lim _{t \rightarrow 1} \omega_{\varphi_{t}^{\prime}}=\omega_{\varphi_{1}^{\prime}} \in \mathbf{O}^{\prime} \quad \text { and } \quad \lim _{t \rightarrow 1} \omega_{\varphi_{t}^{\prime \prime}}=\omega_{\varphi_{1}^{\prime \prime}} \in \mathbf{O}^{\prime \prime} \tag{5.7.2}
\end{gather*}
$$

Then by Theorem 5.3, these extend to smooth one-parameter families of functions $\left\{\varphi_{t}^{\prime} ; 0 \leq t \leq 1\right\}$ and $\left\{\varphi_{t}^{\prime \prime} ; 0 \leq t \leq 1\right\}$ in $\mathcal{H}_{X, 0}^{2, \alpha}$ satisfying the equalities in (5.7.1) for all $t \in[0,1]$.

Step 2. Appendix 4 shows that $\varphi_{0} \in \mathcal{H}_{X, 0}^{2, \alpha}$ satisfying the equation $\Gamma\left(\varphi_{0}, 0\right)=0$ is unique. Hence, by Theorem 5.3 together with Step 1, the local uniqueness in Theorem 5.1 implies the uniqueness of a smooth oneparameter family of functions

$$
\left\{\varphi_{t} ; 0 \leq t<1\right\}
$$

in $\mathcal{H}_{X, 0}^{2, \alpha}$ satisfying $\Gamma\left(\varphi_{t}, t\right)=0$ for all $0 \leq t<1$. In particular, we obtain $\varphi_{t}^{\prime}=\varphi_{t}^{\prime \prime}$ for all $0 \leq t<1$. This together with (5.7.2) implies $\mathbf{O}^{\prime}=\mathbf{O}^{\prime \prime}$, as required.

$\S 6$. Corollaries of Theorem C

Throughout this section, we assume that σ is convex. Let $\mu^{\sigma}: \mathcal{K}_{X} \rightarrow \mathbb{R}$ be the function defined in Appendix 2. Then by the arguments in $[\mathrm{BM}]$ and [Ba], we obtain the following corollaries of Theorem C:

Corollary D. If $\mathcal{E}_{X}^{\sigma} \neq \emptyset$, then the function $\mu^{\sigma}: \mathcal{K}_{X} \rightarrow \mathbb{R}$ takes its absolute minimum exactly on \mathcal{E}_{X}^{σ}.

Corollary E. If $\mathcal{E}_{X}^{\sigma} \neq \emptyset$, then for any, possibly non-connected, compact subgroup H of $Z(X)$, there exists an H-invariant metric ω in \mathcal{E}_{X}^{σ}.

Proof of Corollary D. For an arbitrary element η of \mathcal{K}_{X}, we have a unique element η^{\prime} of \mathcal{K}_{X} such that $\eta=\operatorname{Ric}^{\sigma}\left(\eta^{\prime}\right)$ (see for instance [M4] and Appendix 4). Put

$$
\omega_{0}(0)=\eta
$$

by the notation in (5.5.1). Choosing a $Z^{0}(X)$-orbit \mathbf{O} in \mathcal{E}_{X}^{σ}, let θ be a point at which $\iota: \mathbf{O} \rightarrow \mathbb{R}$ in (5.4.1) takes its absolute minimum. For $0<\varepsilon \ll 1$, we perturb $\eta=\omega_{0}(0)$ by

$$
\omega_{0}(\varepsilon):=(1-\varepsilon) \eta+\varepsilon \theta
$$

as in (5.5.3). Then by Theorem 5.3 together with Theorem 5.6, we have a smooth one-parameter family of functions $\left\{\varphi_{t ; \varepsilon} ; 0 \leq t \leq 1\right\}$ in $\mathcal{H}_{X, 0}^{2, \alpha}(\varepsilon)$ satisfying

$$
\omega(1 ; \varepsilon)=\theta \quad \text { and } \quad \Gamma_{\varepsilon}\left(t, \varphi_{t ; \varepsilon}\right)=0, \quad 0 \leq t \leq 1
$$

where Γ_{ε} and $\mathcal{H}_{X, 0}^{2, \alpha}(\varepsilon)$ are as in the arguments immediately after (5.5.1), and for simplicity we put $\omega(t ; \varepsilon):=\omega_{\varphi_{t, \varepsilon}}$ for all $0 \leq t \leq 1$. Now by Theorem 5.2,

$$
\begin{equation*}
M^{\sigma}(\omega(0 ; \varepsilon), \theta) \leq 0 \tag{6.1}
\end{equation*}
$$

where M^{σ} is as in Appendix 2. We next observe that $\operatorname{Ric}^{\sigma}\left(\eta^{\prime}\right)=\eta=\omega_{0}(0)$, and that $\operatorname{Ric}^{\sigma}(\omega(0 ; \varepsilon))=\omega_{0}(\varepsilon)$. Let $\varepsilon \rightarrow 0$. Since $\omega_{0}(\varepsilon) \rightarrow \omega_{0}(0)$ in $C^{0, \alpha}$, it follows that $\omega(0 ; \varepsilon) \rightarrow \eta^{\prime}$ in $C^{2, \alpha}$. Hence, (6.1) implies

$$
\begin{equation*}
M^{\sigma}\left(\eta^{\prime}, \theta\right) \leq 0, \text { i.e., } B_{\sigma} \leq \mu^{\sigma}\left(\eta^{\prime}\right) \text { for all } \eta \in \mathcal{K}_{X} \tag{6.2}
\end{equation*}
$$

where we put $B_{\sigma}:=\mu^{\sigma}(\theta)$. On the other hand, by Theorem C and (a) of Proposition A. 2 in Appendix 2, the function μ^{σ} takes a constant value B_{σ} on \mathcal{E}_{X}^{σ}. Then by Lemma 6.3 below, we have the inequality $B_{\sigma} \leq \mu^{\sigma}\left(\eta^{\prime}\right) \leq$ $\mu^{\sigma}(\eta)$, and the equality $B_{\sigma}=\mu^{\sigma}(\eta)$ holds if and only if $\eta \in \mathcal{E}_{X}^{\sigma}$, as required.

Lemma 6.3. (cf. [Ba] for Kähler-Einstein cases) For each $\omega \in \mathcal{K}_{X}$, let ω^{\prime} be the element of \mathcal{K}_{X} such that $\operatorname{Ric}^{\sigma}\left(\omega^{\prime}\right)=\omega$. Then the inequality $\mu^{\sigma}\left(\omega^{\prime}\right) \leq \mu^{\sigma}(\omega)$ holds, and the equality $\mu^{\sigma}\left(\omega^{\prime}\right)=\mu^{\sigma}(\omega)$ holds if and only if $\omega^{\prime}=\omega$, i.e., $\omega \in \mathcal{E}_{X}^{\sigma}$.

Proof. Put $\omega_{0}:=\omega$. For $c_{t}:=\log V_{0}-\log \left\{\int_{M} \exp \left(t \tilde{f}_{\omega_{0}}\right) \tilde{\omega}_{0}^{n}\right\}$, let $\varphi_{t} \in \mathcal{H}_{X, 0}^{2, \alpha}$ denote the solution (see for instance [M4]) of the equation:

$$
\begin{equation*}
A\left(\varphi_{t}\right)=\exp \left(t \tilde{f}_{\omega_{0}}+c_{t}\right), \quad 0 \leq t \leq 1 \tag{6.4}
\end{equation*}
$$

For simplicity, we put $\omega(t):=\omega_{\varphi_{t}}$ and $\tilde{\square}_{t}:=\tilde{\square}_{\omega(t)}$. Then $\omega(0)=\omega_{0}=$ ω. Differentiating (6.4) with respect to t, we obtain $\tilde{\square}_{t} \dot{\varphi}_{t}=\tilde{f}_{\omega_{0}}+\dot{c}_{t}$. Next by taking $\underset{\tilde{\partial}}{\bar{\partial}} \partial$ of both sides of (6.4), we see that $\operatorname{Ric}^{\sigma}(\omega(t))-\omega(t)=$ $\sqrt{-1} \partial \bar{\partial}\left\{(1-t) \tilde{f}_{\omega_{0}}-\varphi_{t}\right\}$. Therefore,

$$
\begin{aligned}
\frac{d}{d t} \mu^{\sigma}(\omega(t)) & =-\int_{M} \dot{\varphi}_{t} \tilde{\square}_{t}\left\{(1-t) \tilde{f}_{\omega_{0}}-\varphi_{t}\right\} \tilde{\omega}(t)^{n} \\
& =-(1-t) \int_{M}\left(\tilde{\square}_{t} \dot{\varphi}_{t}\right)^{2} \tilde{\omega}(t)^{n}+\int_{M} \dot{\varphi}_{t}\left(\tilde{\square}_{t} \varphi_{t}\right) \tilde{\omega}(t)^{n} \\
& \leq-\frac{d}{d t}\left\{\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)(\omega(0), \omega(t))\right\}
\end{aligned}
$$

where $\tilde{\omega}(t)$ is as in (2.3). Thus, by $\omega(0)=\omega$ and $\omega(1)=\omega^{\prime}$ (cf. Appendix 4), we obtain $\mu^{\sigma}\left(\omega^{\prime}\right)-\mu^{\sigma}(\omega) \leq-\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega, \omega^{\prime}\right) \leq 0$, and $\mu^{\sigma}\left(\omega^{\prime}\right)=\mu^{\sigma}(\omega)$ if and only if $\omega^{\prime}=\omega$.

We consider an arbitrary smooth path $\Lambda=\left\{\omega_{\lambda_{t}} ; a \leq t \leq b\right\}$ sitting in \mathcal{E}_{X}^{σ}, where $\left\{\lambda_{t} ; a \leq t \leq b\right\}$ is the corresponding smooth path in $C^{\infty}(M)_{\mathbb{R}}$ such that $\int_{M} \dot{\lambda}_{t} \tilde{\omega}_{\lambda_{t}}^{n}=0$ for all t. Then the length $\mathcal{L}(\Lambda)$ of the path Λ in \mathcal{E}_{X}^{σ} is defined by

$$
\mathcal{L}(\Lambda):=\int_{a}^{b}\left(\int_{M} \dot{\lambda}_{t}^{2} \tilde{\omega}_{\lambda_{t}}^{n}\right)^{1 / 2} d t
$$

This naturally defines a Riemannian metric on \mathcal{E}_{X}^{σ}. Let $\theta \in \mathcal{E}_{X}^{\sigma}$. Then by the notation in Appendix 5, the identity component $Z^{0}(X)$ of $Z(X)$ (see
also Section 1) is nothing but the complexification $K_{\mathbb{C}}$ of K in G (cf. (a) of Proposition A.5). Then we have:

Proposition 6.5. If $\mathcal{E}_{X}^{\sigma} \neq \emptyset$, then $Z(X)$ acts isometrically on \mathcal{E}_{X}^{σ}, and in particular, \mathcal{E}_{X}^{σ} is isometric to the Riemannian symmetric space $K_{\mathbb{C}} / K$ endowed with a suitable metric.

Proof. Note that $\mathcal{E}_{X}^{\sigma} \cong Z^{0}(X) / K=K^{\mathbb{C}} / K$ by Theorem C. Then it suffices to show that $Z(M)$ acts isometrically on \mathcal{E}_{X}^{σ}. Let $g \in Z(M)$, and we can write $g^{*} \omega_{0}=\omega_{\varphi_{g}}$ for some $\varphi_{g} \in C^{\infty}(M)_{\mathbb{R}}$. For a smooth path Λ in \mathcal{E}_{X}^{σ} as above, we have $g^{*} \omega_{\lambda_{t}}=\omega_{\xi_{t}}$ for all t, where $\xi_{t}:=\varphi_{g}+g^{*} \lambda_{t}$. In view of $g^{*} \tilde{\omega}_{\lambda_{t}}=\tilde{\omega}_{\xi_{t}}$, we obtain

$$
\mathcal{L}\left(g^{*} \Lambda\right)=\int_{a}^{b}\left(\int_{M} \dot{\xi}_{t}^{2} \tilde{\omega}_{\xi_{t}}^{n}\right)^{1 / 2} d t=\int_{a}^{b}\left(\int_{M} g^{*} \dot{\lambda}_{t}^{2} g^{*} \tilde{\omega}_{\lambda_{t}}^{n}\right)^{1 / 2} d t=\mathcal{L}(\Lambda)
$$

as required.
Proof of Corollary E. We follow the arguments in [BM]. By Proposition $6.5, \mathcal{E}_{X}^{\sigma}$ is isometric to the Riemannian symmetric space $K^{\mathbb{C}} / K$ without compact factors. Hence, \mathcal{E}_{X}^{σ} is a simply connected Riemannian manifold with nonpositive sectional curvature. Since the compact group H acts isometrically on \mathcal{E}_{X}^{σ}, the action has a fixed point in \mathcal{E}_{X}^{σ}, as required.

Appendix 1. Inequalities between Aubin's functionals

For $\sigma \in C^{\infty}\left(I_{X}\right)_{\mathbb{R}}$ as in the introduction, the purpose of this appendix is to establish inequalities between multiplier Hermitian analogues \mathcal{I}^{σ} : $\mathcal{K}_{X} \times \mathcal{K}_{X} \rightarrow \mathbb{R}$ and $\mathcal{J}^{\sigma}: \mathcal{K}_{X} \times \mathcal{K}_{X} \rightarrow \mathbb{R}$ of Aubin's functionals (cf. [A1], $[\mathrm{BM}],[\mathrm{T} 1])$. Let $\omega^{\prime}, \omega^{\prime \prime} \in \mathcal{K}_{X}$. In view of (1.1), we can write $\omega^{\prime}:=\omega_{\varphi^{\prime}}$ and $\omega^{\prime \prime}:=\omega_{\varphi^{\prime \prime}}$ for some $\varphi^{\prime}, \varphi^{\prime \prime} \in \mathcal{H}_{X}$. Then by using the notation in (1.4), we define \mathcal{I}^{σ} and the difference $\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}$ by

$$
\left\{\begin{array}{l}
\mathcal{I}^{\sigma}\left(\omega^{\prime}, \omega^{\prime \prime}\right):=\int_{M}\left(\varphi^{\prime \prime}-\varphi^{\prime}\right)\left\{\left(\tilde{\omega}^{\prime}\right)^{n}-\left(\tilde{\omega}^{\prime \prime}\right)^{n}\right\} \tag{A.1.1}\\
\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega^{\prime}, \omega^{\prime \prime}\right):=\int_{a}^{b}\left\{\int_{M}\left(\bar{\partial} \varphi_{t}, \bar{\partial} \dot{\varphi}_{t}\right)_{\omega(t)} \tilde{\omega}(t)^{n}\right\} d t
\end{array}\right.
$$

where $\phi:=\left\{\varphi_{t} ; a \leq t \leq b\right\}$ is an arbitrary smooth path in \mathcal{H}_{X} satisfying the equalities $\varphi_{a}=0, \varphi_{b}=\varphi^{\prime \prime}-\varphi^{\prime}$ and $\omega(t)=\omega^{\prime}+\sqrt{-1} \partial \bar{\partial} \varphi_{t}$ for all t with $a \leq t \leq b$.

Claim. $\quad\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega^{\prime}, \omega^{\prime \prime}\right)$ defined in the second line of (A.1.1) depends only on $\left(\omega^{\prime}, \omega^{\prime \prime}\right)$, and is independent of the choice of the path ϕ.

Proof. In view of (a) of Lemma 2.4 and the first line of (A.1.1), by using the notation in (2.3), we obtain

$$
\begin{equation*}
\frac{d}{d t} \mathcal{I}^{\sigma}\left(\omega^{\prime}, \omega(t)\right)=\int_{M} \dot{\varphi}_{t}\left\{\left(\tilde{\omega}^{\prime}\right)^{n}-\tilde{\omega}(t)^{n}\right\}+\int_{M}\left(\bar{\partial} \varphi_{t}, \bar{\partial} \dot{\varphi}_{t}\right)_{\omega(t)} \tilde{\omega}(t)^{n} \tag{A.1.2}
\end{equation*}
$$

Hence, it suffices to show that the integral $\int_{a}^{b}\left(\int_{M} \dot{\varphi}_{t}\left\{\left(\tilde{\omega}^{\prime}\right)^{n}-\tilde{\omega}(t)^{n}\right\}\right) d t$ is independent of the choice of the path ϕ above. Let

$$
[0,1] \times[a, b] \ni(s, t) \longmapsto \varphi_{s, t} \in C^{\infty}(M)_{\mathbb{R}}
$$

be a smooth 2-parameter family of functions in $C^{\infty}(M)_{\mathbb{R}}$ such that $\omega_{\varphi_{s, t}} \in$ \mathcal{K}_{X} for all (s, t). For such a family $\varphi=\varphi_{s, t}$ of functions, we consider the 1-form

$$
\Theta:=\left(\int_{M} \frac{\partial \varphi}{\partial s}\left\{\left(\tilde{\omega}^{\prime}\right)^{n}-\tilde{\omega}_{\varphi}^{n}\right\}\right) d s+\left(\int_{M} \frac{\partial \varphi}{\partial t}\left\{\left(\tilde{\omega}^{\prime}\right)^{n}-\tilde{\omega}_{\varphi}^{n}\right\}\right) d t
$$

on $[0,1] \times[a, b]$. In view of (2.2) and (2.5),

$$
\begin{aligned}
d \Theta & =d s \wedge d t \int_{M}\left\{\frac{\partial \varphi}{\partial s} \frac{\partial}{\partial t}\left(\tilde{\omega}_{\varphi}^{n}\right)-\frac{\partial \varphi}{\partial t} \frac{\partial}{\partial s}\left(\tilde{\omega}_{\varphi}^{n}\right)\right\} \\
& =d s \wedge d t \int_{M}\left\{\frac{\partial \varphi}{\partial s}\left(\tilde{\square}_{\omega_{\varphi}} \frac{\partial \varphi}{\partial t}\right)-\frac{\partial \varphi}{\partial t}\left(\tilde{\square}_{\omega_{\varphi}} \frac{\partial \varphi}{\partial s}\right)\right\} \tilde{\omega}_{\varphi}^{n}=0
\end{aligned}
$$

and this implies the required independence.
Next, take the infinitesimal form of the second line of (A.1.1) with respect to t, and subtract it from (A.1.2). Then by integration,

$$
\begin{equation*}
\mathcal{J}^{\sigma}\left(\omega^{\prime}, \omega^{\prime \prime}\right)=\int_{a}^{b}\left(\int_{M} \dot{\varphi}_{t}\left\{\left(\tilde{\omega}^{\prime}\right)^{n}-\tilde{\omega}(t)^{n}\right\}\right) d t \tag{A.1.3}
\end{equation*}
$$

for $\omega(t)$ and ϕ as above. In (A.1.1) and (A.1.3), we choose ϕ such that $\varphi_{t}:=t \hat{\varphi}, 0 \leq t \leq 1$, where $a=0, b=1$ and $\hat{\varphi}:=\varphi^{\prime \prime}-\varphi^{\prime}$. Then

$$
\begin{cases}\mathcal{I}^{\sigma}\left(\omega^{\prime}, \omega^{\prime \prime}\right)=f(1), \quad \mathcal{J}^{\sigma}\left(\omega^{\prime}, \omega^{\prime \prime}\right)=\int_{0}^{1} f(t) d t \tag{A.1.4}\\ \left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega^{\prime}, \omega^{\prime \prime}\right)= & \int_{0}^{1}\{f(1)-f(t)\} d t \\ \left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega^{\prime}, \omega^{\prime \prime}\right)= & \int_{0}^{1}\left\{\int_{M} t(\bar{\partial} \hat{\varphi}, \bar{\partial} \hat{\varphi})_{\omega(t)} \tilde{\omega}(t)^{n}\right\} d t \geq 0\end{cases}
$$

where $f=f(t)$ is defined by

$$
\begin{aligned}
f(t) & :=\int_{M} \hat{\varphi}\left\{\left(\tilde{\omega}^{\prime}\right)^{n}-\tilde{\omega}(t)^{n}\right\}=t^{-1} \mathcal{I}^{\sigma}\left(\omega^{\prime}, \omega(t)\right) \\
& =t^{-1} \mathcal{I}^{\sigma}\left(\omega^{\prime}, \omega^{\prime}+t\left(\omega^{\prime \prime}-\omega^{\prime}\right)\right)
\end{aligned}
$$

In the last inequality of (A.1.4), we easily see that $\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega^{\prime}, \omega^{\prime \prime}\right)=0$ if and only if ω^{\prime} coincides with $\omega^{\prime \prime}$. Let k be a nonnegative real number. Replacing $\sigma \in C^{\infty}\left(I_{X}\right)_{\mathbb{R}}$ by $k \sigma \in C^{\infty}\left(I_{X}\right)_{\mathbb{R}}$, we have functionals $\mathcal{J}^{k \sigma}$: $\mathcal{K}_{X} \times \mathcal{K}_{X} \rightarrow \mathbb{R}$ and $\mathcal{I}^{k \sigma}: \mathcal{K}_{X} \times \mathcal{K}_{X} \rightarrow \mathbb{R}$. For instance, if $k=0$, then $\mathcal{I}^{k \sigma}$ and $\mathcal{J}^{k \sigma}$ are nothing but the restriction to $\mathcal{K}_{X} \times \mathcal{K}_{X}$ of the ordinary Aubin's functional \mathcal{I} and \mathcal{J}. Put $c:=\max _{s \in I_{X}}|\sigma(s)|$ as in the introduction. Then by the last line of (A.1.4), we can easily compare $\mathcal{I}^{k \sigma}-\mathcal{J}^{k \sigma}$ and $\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}$ as follows:

Lemma A.1.5. For all $\omega^{\prime}, \omega^{\prime \prime} \in \mathcal{K}_{X}$, using the notation in (1.2), we have the inequalities $e^{-|k-1| c}\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega^{\prime}, \omega^{\prime \prime}\right) \leq\left(\mathcal{I}^{k \sigma}-\mathcal{J}^{k \sigma}\right)\left(\omega^{\prime}, \omega^{\prime \prime}\right) \leq$ $e^{|k-1| c}\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega^{\prime}, \omega^{\prime \prime}\right)$.

Put $b_{\sigma}:=\left(\beta_{X}-\alpha_{X}\right) \max _{s \in I_{X}}|\dot{\sigma}(s)|>0$. To each positive real number $m>0$, we associate a function $q_{m}=q_{m}(t)$ on the closed interval $[0,1]$ by setting

$$
q_{m}(t):=1-(1-t)^{m+1}, \quad 0 \leq t \leq 1
$$

Lemma A.1.6. If $m:=n-1+b_{\sigma}$, then $f(t) \leq f(1) q_{m}(t)$ for all $0 \leq$ $t \leq 1$,

Proof. We may assume that $\hat{\varphi}$ is nonconstant. For $\omega(t)=\omega^{\prime}+$ $t \sqrt{-1} \partial \bar{\partial} \hat{\varphi}$, we write the function $\psi_{\omega(t)}$ just as $\psi(t)$ for simplicity. By differentiation, the definition of $f(t)$ yields

$$
\begin{aligned}
\dot{f}(t) & =-\int_{M} \hat{\varphi}\left(\tilde{\square}_{\omega(t)} \hat{\varphi}\right) \tilde{\omega}(t)^{n}=\int_{M}(\bar{\partial} \hat{\varphi}, \bar{\partial} \hat{\varphi})_{\omega(t)} \tilde{\omega}(t)^{n} \\
& =n \sqrt{-1} \int_{M}(\partial \hat{\varphi} \wedge \bar{\partial} \hat{\varphi}) e^{-\psi(t)} \omega(t)^{n-1}>0
\end{aligned}
$$

and by $f(0)=0$, we have $f(t)>0$ for all $0<t \leq 1$. Differentiate the equality just above with respect to t. Then by $u_{\omega(t)}=u_{\omega^{\prime}}+t \sqrt{-1} X \hat{\varphi}$ and $\dot{\psi}(t)=\sqrt{-1} \dot{\sigma}\left(u_{\omega}\right) X \hat{\varphi}$,

$$
\ddot{f}(t)=n \sqrt{-1} \int_{M} \partial \hat{\varphi} \wedge \bar{\partial} \hat{\varphi}\{-\omega(t) \dot{\psi}(t)+(n-1) \sqrt{-1} \partial \bar{\partial} \hat{\varphi}\} e^{-\psi(t)} \omega(t)^{n-2}
$$

$$
\begin{aligned}
=n & \sqrt{-1} \int_{M} \partial \hat{\varphi} \wedge \bar{\partial} \hat{\varphi} \\
& \wedge\left\{-\sqrt{-1} \omega(t) \dot{\sigma}\left(u_{\omega(t)}\right) X \hat{\varphi}+(n-1) \sqrt{-1} \partial \bar{\partial} \hat{\varphi}\right\} e^{-\psi(t)} \omega(t)^{n-2}
\end{aligned}
$$

Now by $\max _{M}|X \hat{\varphi}| \leq \max _{M}\left|u_{\omega(1)}-u_{\omega(0)}\right| \leq \beta_{X}-\alpha_{X}$, we have

$$
\max _{M}\left|\dot{\sigma}\left(u_{\omega(t)}\right) X \hat{\varphi}\right| \leq b_{\sigma}
$$

for all $0 \leq t \leq 1$. By $(1-t) \sqrt{-1} \partial \bar{\partial} \hat{\varphi}+\omega(t)=\omega^{\prime \prime}>0$, we further obtain

$$
(1-t)\left\{-\sqrt{-1} \omega(t) \dot{\sigma}\left(u_{\omega(t)}\right) X \hat{\varphi}+(n-1) \sqrt{-1} \partial \bar{\partial} \hat{\varphi}\right\}+m \omega(t)>0
$$

for all $0 \leq t \leq 1$. Hence,

$$
(1-t) \ddot{f}(t)+m \dot{f}(t)>0, \quad 0 \leq t \leq 1
$$

This implies $(d / d t)(\log \dot{f}(t))>-m /(1-t)=(d / d t)(\log \dot{q}(t))$ for $0 \leq t<1$, where we put $q(t):=f(1) q_{m}(t)$ for simplicity. Hence, $\dot{f}(t) / \dot{q}(t)$ is monotone increasing for $0 \leq t<1$, while we have both $\dot{f}(1)>0=\dot{q}(1)$ and $f(1)=$ $q(1)$. Therefore, if there were $t_{0} \in(0,1)$ such that $f\left(t_{0}\right)=q\left(t_{0}\right)$, then in view of the behaviour of the curve $\{(f(t), q(t)) ; 0 \leq t \leq 1\}$, it would follow that $\dot{f}\left(t_{0}\right)<\dot{q}\left(t_{0}\right)$ in contradiction to $f(0)=0=q(0)$. We now conclude that $f(t) \leq q(t)$ for all $0 \leq t \leq 1$, as required.

Remark A.1.7. If $\sigma(s)=-\log (s+C), s \in I_{X}$, for some real constant $C>-\alpha_{X}$, then we obtain $f(t) \leq f(1) q_{n}(t)$ for all $0 \leq t \leq 1$ as follows: For such a function σ, we have

$$
e^{-\psi_{\omega(t)}}=u_{\omega^{\prime}}+t \sqrt{-1} X \hat{\varphi}+C \quad \text { and } \quad-\dot{\sigma}\left(u_{\omega(t)}\right) e^{-\psi_{\omega(t)}}=1
$$

and $-(1-t) \sqrt{-1} \dot{\sigma}\left(u_{\omega(t)}\right) e^{-\psi_{\omega(t)}} X \hat{\varphi}+e^{-\psi_{\omega(t)}}=u_{\omega^{\prime}}+\sqrt{-1} X \hat{\varphi}+C=$ $e^{-\psi_{\omega^{\prime \prime}}}>0$ follows. Hence, in view of $(1-t) \sqrt{-1} \partial \bar{\partial} \hat{\varphi}+\omega(t)=\omega^{\prime \prime}>0$, we obtain

$$
(1-t)\left\{-\sqrt{-1} \omega(t) \dot{\sigma}\left(u_{\omega(t)}\right) X \hat{\varphi}+(n-1) \sqrt{-1} \partial \bar{\partial} \hat{\varphi}\right\}+n \omega(t)>0
$$

Then $(1-t) \ddot{f}(t)+n \dot{f}(t)>0$ for all $0 \leq t \leq 1$. Finally, the same argument as in the above proof of Lemma A.1.6 yields the required inequality.

In the definition of $f(t)$, since $\omega(1)=\omega^{\prime \prime}$, we obtain

$$
f(1)-f(t)=\int_{M}(-\hat{\varphi})\left\{\left(\tilde{\omega}^{\prime \prime}\right)^{n}-\tilde{\omega}(t)^{n}\right\}
$$

where $\omega(t)=\omega^{\prime \prime}+(1-t) \partial \bar{\partial}(-\hat{\varphi})$. Replace $1-t$ by t. Then by (A.1.3), the right-hand side of the middle line of (A.1.4) is regarded as $\mathcal{J}^{\sigma}\left(\omega^{\prime \prime}, \omega^{\prime}\right)$. Hence,

$$
\begin{equation*}
\mathcal{J}^{\sigma}\left(\omega^{\prime}, \omega^{\prime \prime}\right)+\mathcal{J}^{\sigma}\left(\omega^{\prime \prime}, \omega^{\prime}\right)=\mathcal{I}^{\sigma}\left(\omega^{\prime}, \omega^{\prime \prime}\right)=\mathcal{I}^{\sigma}\left(\omega^{\prime \prime}, \omega^{\prime}\right), \quad \omega^{\prime}, \omega^{\prime \prime} \in \mathcal{K}_{X} \tag{A.1.8}
\end{equation*}
$$

By Lemma A.1.6, we have $f(1)-f(t) \geq f(1)\left(1-q_{m}(t)\right)$ for all $0 \leq t \leq 1$. Integrating this inequality over $[0,1]$, we see that

$$
\begin{aligned}
\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega^{\prime}, \omega^{\prime \prime}\right) & \geq f(1) \int_{0}^{1}\left(1-q_{m}(t)\right) d t \\
& =(m+2)^{-1} f(1)=(m+2)^{-1} \mathcal{I}^{\sigma}\left(\omega^{\prime}, \omega^{\prime \prime}\right)
\end{aligned}
$$

Hence, by (A.1.8), we obtain the following fundamental inequalities between the multiplier Hermitian analogues of Aubin's functionals:

Proposition A.1. $0 \leq \mathcal{I}^{\sigma}\left(\omega^{\prime}, \omega^{\prime \prime}\right) \leq(m+2)\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega^{\prime}, \omega^{\prime \prime}\right) \leq$ $(m+1) \mathcal{I}^{\sigma}\left(\omega^{\prime}, \omega^{\prime \prime}\right)$ for all $\omega^{\prime}, \omega^{\prime \prime} \in \mathcal{K}_{X}$, where $m:=n-1+b_{\sigma}$.

Remark A.1.9. Suppose that $\sigma(s)=-\log (s+C), s \in I_{X}$, for some real constant $C>-\alpha_{X}$. Then by Remark A.1.7, we can improve the estimate as follows:

$$
0 \leq \mathcal{I}^{\sigma}\left(\omega^{\prime}, \omega^{\prime \prime}\right) \leq(n+2)\left(\mathcal{I}^{\sigma}-\mathcal{J}^{\sigma}\right)\left(\omega^{\prime}, \omega^{\prime \prime}\right) \leq(n+1) \mathcal{I}^{\sigma}\left(\omega^{\prime}, \omega^{\prime \prime}\right)
$$

Appendix 2. K-energy maps for multiplier Hermitian metrics

In this appendix, we shall define a multiplier Hermitian analogue μ^{σ} : $\mathcal{K}_{X} \rightarrow \mathbb{R}$ of the K-energy map, where the Kähler class of \mathcal{K} is assumed to be $2 \pi c_{1}(M)_{\mathbb{R}}$. As in (2.8) in Section 2, we have functions $\tilde{f}_{\omega} \in \mathcal{K}_{X}, \omega \in \mathcal{K}_{X}$, such that

$$
\left\{\begin{array}{l}
\operatorname{Ric}^{\sigma}(\omega)-\omega=\sqrt{-1} \partial \bar{\partial} \tilde{f}_{\omega} \tag{A.2.1}\\
\tilde{f}_{\omega}:=f_{\omega}+\psi_{\omega}+\log \left(\frac{\int_{M} \tilde{\omega}_{0}^{n}}{\int_{M} \omega_{0}^{n}}\right)=f_{\omega}+\sigma\left(u_{\omega}\right)+\log \left(\frac{\int_{M} \tilde{\omega}_{0}^{n}}{\int_{M} \omega_{0}^{n}}\right)
\end{array}\right.
$$

where f_{ω} is as in (2.8). For ω^{\prime} and $\omega^{\prime \prime}$ in \mathcal{K}_{X}, let $\left\{\varphi_{t} ; a \leq t \leq b\right\}$ be an arbitrary smooth path in \mathcal{H}_{X} such that $\omega(a)=\omega^{\prime}$ and $\omega(b)=\omega^{\prime \prime}$, where we put

$$
\begin{equation*}
\omega(t):=\omega_{\varphi_{t}}=\omega_{0}+\sqrt{-1} \partial \bar{\partial} \varphi_{t}, \quad a \leq t \leq b \tag{A.2.2}
\end{equation*}
$$

Lemma A.2.3. In the below, we use the notation (1.4), and in particular, $\tilde{\omega}(t)$ is as in (2.3). Then the integral $M^{\sigma}\left(\omega^{\prime}, \omega^{\prime \prime}\right)$ defined below depends only on the pair $\left(\omega^{\prime}, \omega^{\prime \prime}\right)$, and is independent of the choice of the path $\left\{\varphi_{t} ; a \leq t \leq b\right\}$ in \mathcal{H}_{X} :

$$
\begin{aligned}
M^{\sigma}\left(\omega^{\prime}, \omega^{\prime \prime}\right) & :=\int_{a}^{b}\left\{\int_{M}\left(\bar{\partial} \tilde{f}_{\omega(t)}, \bar{\partial} \dot{\varphi}_{t}\right)_{\omega(t)} \tilde{\omega}(t)^{n}\right\} \\
& =-\int_{a}^{b}\left\{\int_{M} \tilde{f}_{\eta_{t}}\left(\tilde{\square}_{\omega(t)} \dot{\varphi}_{t}\right) \tilde{\omega}(t)^{n}\right\}
\end{aligned}
$$

Proof. Let $[0,1] \times[a, b] \ni(s, t) \mapsto \varphi_{s, t} \in \mathcal{H}_{X}$ be a smooth 2-parameter family of functions in \mathcal{H}_{X}. Then $\eta_{s, t}:=\omega_{\varphi_{s, t}}$ sits in \mathcal{K}_{X} for all (s, t). For simplicity, $f_{\eta_{s, t}}, \tilde{f}_{\eta_{s, t}}, \psi_{\eta_{s, t}}, u_{\eta_{s, t}}, \square_{\eta_{s, t}}, \tilde{\square}_{\eta_{s, t}}$ are denoted by $f_{s, t}, \tilde{f}_{s, t}, \psi_{s, t}$, $u_{s, t}, \square_{s, t}, \tilde{\square}_{s, t}$, respectively. We define

$$
\Theta:=\left\{\int_{M} \tilde{f}_{s, t}\left(\tilde{\square}_{s, t} \partial_{s} \varphi\right) \tilde{\omega}_{s, t}^{n}\right\} d s+\left\{\int_{M} \tilde{f}_{s, t}\left(\tilde{\square}_{s, t} \partial_{t} \varphi\right) \tilde{\omega}_{s, t}^{n}\right\} d t
$$

where $\partial_{s} \varphi:=\partial \varphi_{s, t} / \partial s$ and $\partial_{t} \varphi:=\partial \varphi_{s, t} / \partial t$. Then the proof is reduced to showing $d \Theta=0$ on $[0,1] \times[a, b]$. By $\tilde{\square}_{s, t}=\square_{s, t}+\sqrt{-1} \dot{\sigma}\left(u_{s, t}\right) \bar{X}$ and [M5, (2.6.1)],

$$
\begin{aligned}
\frac{\partial}{\partial t} & \left(\tilde{\square}_{s, t} \partial_{s} \varphi\right)-\frac{\partial}{\partial s}\left(\tilde{\square}_{s, t} \partial_{t} \varphi\right) \\
& =\sqrt{-1} \frac{\partial}{\partial t}\left\{\dot{\sigma}\left(u_{s, t}\right) \bar{X}\left(\partial_{s} \varphi\right)\right\}-\sqrt{-1} \frac{\partial}{\partial s}\left\{\dot{\sigma}\left(u_{s, t}\right) \bar{X}\left(\partial_{t} \varphi\right)\right\} \\
& =\sqrt{-1} \ddot{\sigma}\left(u_{s, t}\right) \frac{\partial u_{s, t}}{\partial t} \bar{X}\left(\partial_{s} \varphi\right)-\sqrt{-1} \ddot{\sigma}\left(u_{s, t}\right) \frac{\partial u_{s, t}}{\partial s} \bar{X}\left(\partial_{t} \varphi\right) \\
& =\ddot{\sigma}\left(u_{s, t}\right) \bar{X}\left(\partial_{t} \varphi\right) \bar{X}\left(\partial_{s} \varphi\right)-\ddot{\sigma}\left(u_{s, t}\right) \bar{X}\left(\partial_{s} \varphi\right) \bar{X}\left(\partial_{t} \varphi\right)=0
\end{aligned}
$$

where we used the equality $u_{s, t}=u_{\omega_{0}}-\sqrt{-1} \bar{X} \varphi_{s, t}$ (see Section 2). Hence, by $(\partial / \partial t)\left(\tilde{\omega}_{s, t}^{n}\right)=\left(\tilde{\square}_{s, t} \partial_{t} \varphi\right) \tilde{\omega}_{s, t}^{n}$ and $(\partial / \partial s)\left(\tilde{\omega}_{s, t}^{n}\right)=\left(\tilde{\square}_{s, t} \partial_{s} \varphi\right) \tilde{\omega}_{s, t}^{n}$, we obtain

$$
\begin{equation*}
d \Theta=d s \wedge d t \int_{M}\left\{-\frac{\partial \tilde{f}_{s, t}}{\partial t}\left(\tilde{\square}_{s, t} \partial_{s} \varphi\right)+\frac{\partial \tilde{f}_{s, t}}{\partial s}\left(\tilde{\square}_{s, t} \partial_{t} \varphi\right)\right\} \tilde{\omega}_{s, t}^{n} . \tag{A.2.4}
\end{equation*}
$$

On the other hand,

$$
\frac{\partial f_{s, t}}{\partial t}=-\left(\square_{s, t}+1\right) \partial_{t} \varphi+C_{s, t}^{\prime} \quad \text { and } \quad \frac{\partial f_{s, t}}{\partial s}=-\left(\square_{s, t}+1\right) \partial_{s} \varphi+C_{s, t}^{\prime \prime}
$$

for some real constants $C_{s, t}^{\prime}$ and $C_{s, t}^{\prime \prime}$ depending only on s and t. Hence, by $\psi_{s, t}=\sigma\left(u_{s, t}\right)=\sigma\left(u_{\omega_{0}}-\sqrt{-1} \bar{X} \varphi_{s, t}\right)$, we see that

$$
\left\{\begin{array}{l}
\frac{\partial \tilde{f}_{s, t}}{\partial t}=-\left(\square_{s, t}+1\right) \partial_{t} \varphi+\frac{\partial \psi_{s, t}}{\partial t}+C_{s, t}^{\prime}=-\left(\tilde{\square}_{s, t}+1\right) \partial_{t} \varphi+C_{s, t}^{\prime} \tag{A.2.5}\\
\frac{\partial \tilde{f}_{s, t}}{\partial s}=-\left(\square_{s, t}+1\right) \partial_{s} \varphi+\frac{\partial \psi_{s, t}}{\partial s}+C_{s, t}^{\prime \prime}=-\left(\tilde{\square}_{s, t}+1\right) \partial_{s} \varphi+C_{s, t}^{\prime \prime}
\end{array}\right.
$$

By (A.2.4) and (A.2.5), we finally obtain the following required identity:

$$
d \Theta=d s \wedge d t \int_{M}\left\{\partial_{t} \varphi\left(\tilde{\square}_{s, t} \partial_{s} \varphi\right)-\partial_{s} \varphi\left(\tilde{\square}_{s, t} \partial_{t} \varphi\right)\right\} \tilde{\omega}_{s, t}^{n}=0 .
$$

By Lemma A.2.3 above, for all $\omega, \omega^{\prime}, \omega^{\prime \prime} \in \mathcal{K}_{X}$, it is easily seen that M^{σ} satisfies the 1-cocycle conditions

$$
\left\{\begin{array}{l}
M^{\sigma}\left(\omega, \omega^{\prime}\right)+M^{\sigma}\left(\omega^{\prime}, \omega\right)=0 \\
M^{\sigma}\left(\omega, \omega^{\prime}\right)+M^{\sigma}\left(\omega^{\prime}, \omega^{\prime \prime}\right)+M^{\sigma}\left(\omega^{\prime \prime}, \omega\right)=0
\end{array}\right.
$$

As a multiplier Hermitian analogue of a K-energy map, we can now define $\mu^{\sigma}: \mathcal{K}_{X} \rightarrow \mathbb{R}$ by setting $\mu^{\sigma}(\omega):=M^{\sigma}\left(\omega_{0}, \omega\right)$ for all $\omega \in \mathcal{K}_{X}$. As in the introduction, let \mathcal{E}_{X}^{σ} denote the set of all ω in \mathcal{K}_{X} such that $\operatorname{Ric}^{\sigma}(\omega)=\omega$. Then by (A.2.1) and Lemma A.2.3 together with (b) of Lemma 2.9, we obtain

Proposition A.2. (a) An element ω in \mathcal{K}_{X} is a critical point of μ_{σ} : $\mathcal{K}_{X} \rightarrow \mathbb{R}$ if and only if $\omega \in \mathcal{E}_{X}^{\sigma}$, i.e., the function \tilde{f}_{ω} defined in (A.2.1) is zero everywhere on M.
(b) For an arbitrary smooth path $\left\{\varphi_{t} ; a \leq t \leq b\right\}$ in \mathcal{H}_{X}, the oneparameter family of Kähler forms $\omega(t), a \leq t \leq b$, in \mathcal{K}_{X} defined by (A.2.2) satisfies

$$
\frac{d}{d t} \mu^{\sigma}(\omega(t))=\int_{M}\left(\bar{\partial} \tilde{f}_{\omega(t)}, \bar{\partial} \dot{\varphi}_{t}\right)_{\omega(t)} \tilde{\omega}(t)^{n}, \quad a \leq t \leq b
$$

Appendix 3. Technical equalities related to the operator $\tilde{\square}_{\omega}$

In this appendix, related to the operator $\tilde{\square}_{\omega}$, some technical equalities analogous to those in [BM, Lemma 2.3] will be given. Note that, by the notation in (2.6) and Appendix 5, we have the inclusion $\operatorname{Ker}_{\mathbb{R}}\left(\tilde{\square}_{\omega}+1\right) \subset \mathfrak{g}^{\omega}$ for all $\omega \in \mathcal{E}_{X}^{\sigma}$. Now, we have:

Proposition A.3. Let $\omega \in \mathcal{E}_{X}^{\sigma}$ and $\zeta \in C^{\infty}(M)_{\mathbb{R}}$. Then for all $v, v_{1}, v_{2} \in \operatorname{Ker}_{\mathbb{R}}\left(\tilde{\square}_{\omega}+1\right)$,

$$
\begin{equation*}
\tilde{\square}_{\omega}(\partial \zeta, \partial v)_{\omega}=(\partial \bar{\partial} \zeta, \partial \bar{\partial} v)_{\omega}+\left(\partial\left(\tilde{\square}_{\omega} \zeta\right), \partial v\right)_{\omega}-\ddot{\sigma}\left(u_{\omega}\right)(\bar{X} \zeta)(\bar{X} v) . \tag{A.3.1}
\end{equation*}
$$

In particular, $\left(\tilde{\square}_{\omega}+1\right)\left(\partial v_{1}, \partial v_{2}\right)_{\omega}=\left(\partial \bar{\partial} v_{1}, \partial \bar{\partial} v_{2}\right)_{\omega}-\ddot{\sigma}\left(u_{\omega}\right)\left(\bar{X} v_{1}\right)\left(\bar{X} v_{2}\right)=$ $\left(\tilde{\square}_{\omega}+1\right)\left(\partial v_{2}, \partial v_{1}\right)_{\omega}$, and

$$
\begin{align*}
& \int_{M}\left\{v_{1} v_{2}-\left(\partial v_{1}, \partial v_{2}\right)_{\omega}\right\}\left\{\left(\tilde{\square}_{\omega}+1\right) \zeta\right\} \tilde{\omega}^{n} \tag{A.3.2}\\
& \quad=-\int_{M} v_{1}\left(\partial \bar{\partial} \zeta, \partial \bar{\partial} v_{2}\right)_{\omega} \tilde{\omega}^{n}+\int_{M} \ddot{\sigma}\left(u_{\omega}\right) v_{1}(\bar{X} \zeta)\left(\bar{X} v_{2}\right) \tilde{\omega}^{n}
\end{align*}
$$

Proof. (A.3.1) follows from (1.3) and [BM, (2.3.1)] in view of the following identities:

$$
\begin{aligned}
& \left(\partial\left\{\sqrt{-1} \dot{\sigma}\left(u_{\omega}\right) \bar{X} \zeta\right\}, \partial v\right)_{\omega}-\sqrt{-1} \dot{\sigma}\left(u_{\omega}\right) \bar{X}(\partial \zeta, \partial v)_{\omega} \\
& \quad=(\bar{X} \zeta) \ddot{\sigma}\left(u_{\omega}\right) \sqrt{-1}\left(\partial u_{\omega}, \partial v\right)_{\omega}=\ddot{\sigma}\left(u_{\omega}\right)(\bar{X} \zeta)(\bar{X} v)
\end{aligned}
$$

For (A.3.2), put $\xi:=\left(\tilde{\square}_{\omega}+1\right) \zeta$. Then following [BM, p. 21], by (1.3) and (1.4), we obtain

$$
\begin{aligned}
& \int_{M}\left\{v_{1} v_{2}-\left(\partial v_{1}, \partial v_{2}\right)_{\omega}\right\} \xi \tilde{\omega}^{n}=-\int_{M}\left\{v_{1}\left(\tilde{\square}_{\omega} v_{2}\right)+\left(\partial v_{1}, \partial v_{2}\right)_{\omega}\right\} \xi \tilde{\omega}^{n} \\
&=-\sqrt{-1} \int_{M}\left(v_{1} \partial \bar{\partial} v_{2}\right.\left.+\partial v_{1} \wedge \bar{\partial} v_{2}\right) \xi \wedge n e^{-\psi_{\omega} \omega^{n-1}} \\
&+\int_{M} v_{1}\left(\partial \psi_{\omega}, \partial v_{2}\right)_{\omega} \xi e^{-\psi_{\omega}} \omega^{n} \\
&=-\sqrt{-1} \int_{M} \partial\left(v_{1} \bar{\partial} v_{2}\right) \xi \wedge n e^{-\psi_{\omega} \omega^{n-1}} \\
&+\sqrt{-1} \int_{M} v_{1}\left(\partial \psi_{\omega} \wedge \bar{\partial} v_{2}\right) \xi \wedge n e^{-\psi_{\omega} \omega^{n-1}} \\
&=\sqrt{-1} \int_{M} v_{1} \partial \xi \wedge \bar{\partial} v_{2} \wedge n e^{-\psi_{\omega}} \omega^{n-1}=\int_{M} v_{1}\left(\partial \xi, \partial v_{2}\right)_{\omega} \tilde{\omega}^{n}
\end{aligned}
$$

$$
=\int_{M} v_{1}\left(\partial\left(\tilde{\square}_{\omega} \zeta\right), \partial v_{2}\right)_{\omega} \tilde{\omega}^{n}+\int_{M} v_{1}\left(\partial \zeta, \partial v_{2}\right)_{\omega} \tilde{\omega}^{n}
$$

This together with (A.3.1) above implies the required identity (A.3.2) as follows:

$$
\begin{aligned}
\int_{M} & \left\{v_{1} v_{2}-\left(\partial v_{1}, \partial v_{2}\right)_{\omega}\right\} \xi \tilde{\omega}^{n}+\int_{M}\left(\partial \bar{\partial} \zeta, \partial \bar{\partial} v_{2}\right)_{\omega} v_{1} \tilde{\omega}^{n} \\
& =\int_{M}\left\{\tilde{\square}_{\omega}\left(\partial \zeta, \partial v_{2}\right)_{\omega}+\ddot{\sigma}\left(u_{\omega}\right)(\bar{X} \zeta)\left(\bar{X} v_{2}\right)\right\} v_{1} \tilde{\omega}^{n}+\int_{M} v_{1}\left(\partial \zeta, \partial v_{2}\right)_{\omega} \tilde{\omega}^{n} \\
& =\int_{M}\left(\partial \zeta, \partial v_{2}\right)_{\omega} \overline{\left\{\left(\tilde{\square}_{\omega}+1\right) v_{1}\right\}} \tilde{\omega}^{n}+\int_{M} \ddot{\sigma}\left(u_{\omega}\right) v_{1}(\bar{X} \zeta)\left(\bar{X} v_{2}\right) \tilde{\omega}^{n} \\
& =\int_{M} \ddot{\sigma}\left(u_{\omega}\right) v_{1}(\bar{X} \zeta)\left(\bar{X} v_{2}\right) \tilde{\omega}^{n}
\end{aligned}
$$

Appendix 4. Uniqueness of solutions for equations of CalabiYau's type

Fix $\omega_{0} \in \mathcal{K}_{X}$ and $\sigma \in C^{\infty}\left(I_{X}\right)_{\mathbb{R}}$ as in the introduction, and let V_{0} be as in Lemma 2.4. In this appendix, we discuss the following equation of Calabi-Yau's type:

$$
\begin{equation*}
\operatorname{Ric}^{\sigma}(\omega)=\omega_{0} \tag{A.4.1}
\end{equation*}
$$

Here, any solution ω of (A.4.1) is required to belong to \mathcal{K}_{X}. The purpose of this appendix is to show the following uniqueness:

Proposition A.4. The equation (A.4.1) has a unique solution ω in \mathcal{K}_{X}.

Before getting into the proof, we give some remark. Let $0<\alpha<1$, and we consider the mapping $\Gamma: \mathcal{H}_{X, 0}^{2, \alpha} \times \mathbb{R} \rightarrow C_{0}^{0, \alpha}(M)_{\mathbb{R}}$ defined in (5.1.2) by

$$
\Gamma(\varphi, t):=A(\varphi)-\left\{\frac{1}{V_{0}} \int_{M} \exp \left(-t \varphi+\tilde{f}_{\omega_{0}}\right) \tilde{\omega}_{0}^{n}\right\}^{-1} \exp \left(-t \varphi+\tilde{f}_{\omega_{0}}\right)
$$

where $V_{0}:=\int_{M} \tilde{\omega}^{n}$ and $A(\varphi):=\tilde{\omega}_{\varphi}^{n} / \tilde{\omega}_{0}^{n}$. Note that, if $(\varphi, t) \in \mathcal{H}_{X, 0}^{2, \alpha} \times \mathbb{R}$ satisfies $\Gamma(\varphi, t)=0$, then φ automatically belongs to $C^{\infty}(M)_{\mathbb{R}}$. Hence, it is easily seen that the set of the solutions of (A.4.1) and the set of the solutions of $\Gamma(\varphi, 0)=0$ are identified by

$$
\begin{equation*}
\left\{\varphi \in \mathcal{H}_{X, 0}^{2, \alpha} ; \Gamma(\varphi, 0)=0\right\} \simeq\left\{\omega \in \mathcal{K}_{X} ; \operatorname{Ric}^{\sigma}(\omega)=\omega_{0}\right\}, \quad \varphi \leftrightarrow \omega_{\varphi} \tag{A.4.2}
\end{equation*}
$$

Proof of Proposition A.4. By (A.4.2), it suffices to show that $\varphi \in \mathcal{H}_{X, 0}^{2, \alpha}$ satisfying $\Gamma(\varphi, 0)=0$ is unique. Suppose that $\varphi^{\prime}, \varphi^{\prime \prime}$ in $\mathcal{H}_{X, 0}^{2, \alpha}$ satisfy

$$
\Gamma\left(\varphi^{\prime}, 0\right)=0=\Gamma\left(\varphi^{\prime \prime}, 0\right)
$$

Since the Fréchet derivatives $D_{\varphi} \Gamma_{\mid\left(\varphi^{\prime}, 0\right)}, D_{\varphi} \Gamma_{\mid\left(\varphi^{\prime \prime}, 0\right)}$ are invertible (cf. (5.1.5)), we have smooth one-parameter families $\left\{\varphi_{t}^{\prime} ;-\varepsilon<t \leq 0\right\}$, $\left\{\varphi_{t}^{\prime \prime} ;-\varepsilon<t \leq 0\right\}$ (where $0<\varepsilon \ll 1$) of functions in $\mathcal{H}_{X, 0}^{k, \alpha}$ satisfying $\varphi_{0}^{\prime}=\varphi^{\prime}$ and $\varphi_{0}^{\prime \prime}=\varphi^{\prime \prime}$ such that $\Gamma\left(\varphi_{t}^{\prime}, t\right)=0=\Gamma\left(\varphi_{t}^{\prime \prime}, t\right)$ for all t with $-\varepsilon<t \leq 0$. Put

$$
e_{t}^{\prime}:=\frac{1}{V_{0}} \int_{M} \exp \left(-t \varphi_{t}^{\prime}+\tilde{f}_{\omega_{0}}\right) \tilde{\omega}_{0}^{n} \quad \text { and } \quad e_{t}^{\prime \prime}:=\frac{1}{V_{0}} \int_{M} \exp \left(-t \varphi_{t}^{\prime \prime}+\tilde{f}_{\omega_{0}}\right) \tilde{\omega}_{0}^{n}
$$

For $t=0$, (b) of Lemma 2.9 yields $e_{0}^{\prime}=1$ and $e_{0}^{\prime \prime}=1$, and hence we can find $c_{t}^{\prime}, c_{t}^{\prime \prime} \in \mathbb{R},-\varepsilon<t \leq 0$, depending on t continuously such that $e_{t}^{\prime}=\exp \left(t c_{t}^{\prime}\right)$ and $e_{t}^{\prime \prime}=\exp \left(t c_{t}^{\prime \prime}\right)$ for all t with $-\varepsilon<t \leq 0$. Then by setting $\xi_{t}^{\prime}:=\varphi_{t}^{\prime}+c_{t}^{\prime}$ and $\xi_{t}^{\prime \prime}:=\varphi_{t}^{\prime \prime}+c_{t}^{\prime \prime}$, we have

$$
\begin{equation*}
A\left(\xi_{t}^{\prime}\right)=\exp \left(-t \xi_{t}^{\prime}+\tilde{f}_{\omega_{0}}\right) \quad \text { and } \quad A\left(\xi_{t}^{\prime \prime}\right)=\exp \left(-t \xi_{t}^{\prime \prime}+\tilde{f}_{\omega_{0}}\right) \tag{A.4.3}
\end{equation*}
$$

For simplicity, we put $\omega_{t}^{\prime}:=\omega_{\xi_{t}^{\prime}}$ and $\omega_{t}^{\prime \prime}:=\omega_{\xi_{t}^{\prime \prime}}(-\varepsilon<t \leq 0)$. Note that, by (2.5), $\psi_{\omega_{t}^{\prime}}=\sigma\left(u_{\omega_{t}^{\prime}}\right)=\sigma\left(u_{\omega_{0}}-\sqrt{-1} \bar{X} \xi_{t}^{\prime}\right)$ and $\psi_{\omega_{t}^{\prime \prime}}=\sigma\left(u_{\omega_{0}}-\sqrt{-1} \bar{X} \xi_{t}^{\prime \prime}\right)=$ $\sigma\left(u_{\omega_{t}^{\prime}}-\sqrt{-1} \bar{X}\left(\xi_{t}^{\prime \prime}-\xi_{t}^{\prime}\right)\right)$, while $A\left(\xi_{t}^{\prime \prime}\right) / A\left(\xi_{t}^{\prime}\right)=\left\{e^{-\psi_{\omega_{t}^{\prime \prime}}}\left(\omega_{t}^{\prime \prime}\right)^{n}\right\} /\left\{e^{-\psi_{\omega_{t}^{\prime}}}\left(\omega_{t}^{\prime}\right)^{n}\right\}$. For each t with $-\varepsilon<t<0$, let p_{t} be the point on M at which the function $\xi_{t}^{\prime \prime}-\xi_{t}^{\prime}$ on M takes its maximum. Then by (A.4.3), the maximum principle shows that

$$
1 \geq\left\{A\left(\xi_{t}^{\prime \prime}\right) / A\left(\xi_{t}^{\prime}\right)\right\}\left(p_{t}\right)=\exp \left\{-t\left(\xi_{t}^{\prime \prime}-\xi_{t}^{\prime}\right)\left(p_{t}\right)\right\}
$$

Then $\left(\xi_{t}^{\prime \prime}-\xi_{t}^{\prime}\right)(p) \leq\left(\xi_{t}^{\prime \prime}-\xi_{t}^{\prime}\right)\left(p_{t}\right) \leq 0$ for all $p \in M$, i.e., $\xi_{t}^{\prime \prime} \leq \xi_{t}^{\prime}$ on M. By exactly the same argument, we have $\xi_{t}^{\prime} \leq \xi_{t}^{\prime \prime}$ on M. Hence, $\xi_{t}^{\prime \prime}=\xi_{t}^{\prime}$ on M for all t with $-\varepsilon<t<0$. Let t tend to 0 . By passing to the limit, we see that $\xi_{0}^{\prime \prime}=\xi_{0}^{\prime}$, i.e., $\varphi^{\prime \prime}-\varphi^{\prime}$ is a constant on M. Then by $\varphi^{\prime}, \varphi^{\prime \prime} \in \mathcal{H}_{X, 0}^{2, \alpha}$, we immediately obtain $\varphi^{\prime \prime}=\varphi^{\prime}$ on M, as required.

Appendix 5. A multiplier Hermitian analogue of Matsushima's obstruction

In this appendix, Matsushima's obstruction [Mat] will be generalized for multiplier Hermitian metrics of type σ, where σ is an arbitrary realvalued function on I_{X}. Assuming $\mathcal{E}_{X}^{\sigma} \neq \emptyset$, let $\theta \in \mathcal{E}_{X}^{\sigma}$. Write

$$
\theta=\sqrt{-1} \sum_{\alpha, \beta} g(\theta)_{\alpha \bar{\beta}} d z^{\alpha} \wedge d z^{\bar{\beta}}
$$

in terms of a system $\left(z^{1}, z^{2}, \ldots, z^{n}\right)$ of holomorphic local coordinates on M. Since $\operatorname{Ric}^{\sigma}(\theta)=\theta$, the Kähler class of \mathcal{K}_{X} is $2 \pi c_{1}(M)_{\mathbb{R}}$. Then by (2.8) and (a) of Lemma 2.9,

$$
\begin{equation*}
f_{\theta}=-\psi_{\theta}+C_{0} \tag{A.5.1}
\end{equation*}
$$

for some real constant C_{0}. By [F1, p. 41], \mathfrak{g}^{θ} in (2.6) coincides with the kernel $\operatorname{Ker}_{\mathbb{C}}\left(\tilde{\square}_{\theta}+1\right)$ of the operator $\tilde{\square}_{\theta}+1$ on $C^{\infty}(M)_{\mathbb{C}}$, since by (A.5.1), $\tilde{\square}_{\theta}$ is written in the form

$$
\tilde{\square}_{\theta}=\square_{\theta}+\sum_{\alpha, \beta} g(\theta)^{\bar{\beta} \alpha} \frac{\partial f_{\theta}}{\partial z^{\alpha}} \frac{\partial}{\partial z^{\bar{\beta}}}
$$

Lemma A.5.2. The vector space \mathfrak{g}^{θ} in (2.6) forms a complex Lie algebra in terms of the Poisson bracket by θ, and in particular the \mathbb{C}-linear isomorphism $\mathfrak{g}^{\theta} \cong \mathfrak{g}$ in (2.6) is an isomorphism of complex Lie algebras.

Proof. For each $v_{1}, v_{2} \in C^{\infty}(M)_{\mathbb{C}}$, we consider their Poisson bracket $\left[v_{1}, v_{2}\right] \in C^{\infty}(M)_{\mathbb{C}}$ on the Kähler manifold (M, θ) as in $[F M]$. Let $u_{1}, u_{2} \in$ \mathfrak{g}^{θ}. Then by $\operatorname{grad}_{\theta}^{\mathbb{C}}\left[u_{1}, u_{2}\right]=\left[\operatorname{grad}_{\theta}^{\mathbb{C}} u_{1}, \operatorname{grad}_{\theta}^{\mathbb{C}} u_{2}\right]$, we see that $\left[u_{1}, u_{2}\right]+k_{0}$ belongs to \mathfrak{g}^{θ} for some constant $k_{0} \in \mathbb{C}$. Hence it suffices to show $k_{0}=0$, i.e.,

$$
\int_{M}\left[u_{1}, u_{2}\right] \tilde{\theta}^{n}=0
$$

Let $F: \mathfrak{g} \rightarrow \mathbb{C}$ be the Futaki character. Then by $[F M,(2.1)]$ and $[\mathrm{M} 1$, Theorem 2.1], we see that $\int_{M}\left(1-e^{f_{\theta}}\right)\left[u_{1}, u_{2}\right] \theta^{n}=F\left(\left[\operatorname{grad}_{\theta}^{\mathbb{C}} u_{1}, \operatorname{grad}_{\theta}^{\mathbb{C}} u_{2}\right]\right)=$ 0 . Therefore, in view of (A.5.1), we obtain

$$
\int_{M}\left[u_{1}, u_{2}\right] \tilde{\theta}^{n}=\exp \left(-C_{0}\right) \int_{M}\left[u_{1}, u_{2}\right] e^{f_{\theta}} \theta^{n}=\exp \left(-C_{0}\right) \int_{M}\left[u_{1}, u_{2}\right] \theta^{n}=0
$$

as required.
For the centralizer $\mathfrak{z}(X)$ of X in \mathfrak{g}, the group $Z^{0}(X)$ in the introduction is exactly the complex Lie group generated by $\mathfrak{z}(X)$ in G. Consider the Lie subalgebra \mathfrak{k} of $\mathfrak{z}(X)$ associated to the group K of all isometries in $Z^{0}(X)$ on the Kähler manifold (M, θ). Let $\mathfrak{k}_{\mathbb{C}}$ be the complexification of \mathfrak{k} in the complex Lie algebra \mathfrak{g}. Put

$$
\left\{\begin{align*}
\mathfrak{z}^{\theta}(X) & :=\left\{u \in \operatorname{Ker}_{\mathbb{C}}\left(\tilde{\square}_{\theta}+1\right) ; X_{\mathbb{R}} u=0\right\} \tag{A.5.3}\\
\mathfrak{k}^{\theta} & :=\left\{u \in \operatorname{Ker}_{\mathbb{R}}\left(\tilde{\square}_{\theta}+1\right) ; X_{\mathbb{R}} u=0\right\}
\end{align*}\right.
$$

where $\operatorname{Ker}_{\mathbb{R}}\left(\tilde{\square}_{\theta}+1\right)$ denotes the kernel of the operator $\left(\tilde{\square}_{\theta}+1\right)$ on $C^{\infty}(M)_{\mathbb{R}}$. Put $\mathfrak{k}_{\mathbb{C}}^{\theta}:=\mathfrak{k}^{\theta}+\sqrt{-1} \mathfrak{k}^{\theta}$ in $C^{\infty}(M)_{\mathbb{C}}$. Then by $\mathfrak{k}_{\mathbb{C}}^{\theta} \subset \mathfrak{z}^{\theta}(X) \subset \mathfrak{g}^{\theta}$ and $\mathfrak{g}^{\theta} \cong \mathfrak{g}$, we obtain

$$
\begin{equation*}
\mathfrak{k}_{\mathbb{C}} \subset \mathfrak{z}(X) \tag{A.5.4}
\end{equation*}
$$

Note that $Z(X)$ acts on \mathcal{E}_{X}^{σ} by $Z(X) \times \mathcal{E}_{X}^{\sigma} \ni(g, \theta) \mapsto\left(g^{-1}\right)^{*} \theta \in \mathcal{E}_{X}^{\sigma}$. Since the isotropy subgroup of $Z^{0}(X)$ at θ is K, we can write the $Z^{0}(X)$-orbit \mathbf{O} through θ as

$$
\begin{equation*}
\mathbf{O} \cong Z^{0}(X) / K \tag{A.5.5}
\end{equation*}
$$

Let $T_{\theta}\left(\mathcal{E}_{X}^{\sigma}\right)$ and $T_{\theta}(\mathbf{O})$ denote the tangent spaces at θ of \mathcal{E}_{X}^{σ} and \mathbf{O}, respectively. In view of the homeomorphism $\tilde{\mathcal{E}}_{X}^{\sigma} \simeq \mathcal{E}_{X}^{\sigma}$ immediately after (5.4.1) in Section 5 , the differentiation of the equation $A(\varphi)=\exp \left(-\varphi+\tilde{f}_{0}\right)$ with respect to φ yields

$$
\begin{array}{rlll}
T_{\theta}\left(\mathcal{E}_{X}^{\sigma}\right) & \cong & \mathfrak{k}_{\mathbb{C}} / \mathfrak{k} & \cong \mathfrak{k}^{\theta} \quad\left(=T_{\theta}\left(\tilde{\mathcal{E}}_{X}^{\sigma}\right)\right) \tag{A.5.6}\\
\sqrt{-1} \partial \bar{\partial} v & \leftrightarrow & {\left[\sqrt{-1} \operatorname{grad}_{\theta}^{\mathbb{C}} v / 2\right]} & \leftrightarrow v
\end{array}
$$

where for every γ in $\mathfrak{k}_{\mathbb{C}}$, we mean by $[\gamma]$ the natural image of γ under the projection of $\mathfrak{k}_{\mathbb{C}}$ onto $\mathfrak{k}_{\mathbb{C}} / \mathfrak{k}$. On the other hand, by (A.5.5), we have the isomorphism

$$
\begin{equation*}
T_{\theta}(\mathbf{O}) \cong \mathfrak{z}(X) / \mathfrak{k} \tag{A.5.7}
\end{equation*}
$$

Since $\mathbf{O} \subset \mathcal{E}_{X}^{\sigma}$, we have $T_{\theta}(\mathbf{O}) \subset T_{\theta}\left(\mathcal{E}_{X}^{\sigma}\right)$. This together with (A.5.4), (A.5.6) and (A.5.7) implies that $\mathfrak{z}(X)=\mathfrak{k}_{\mathbb{C}}$, i.e., $T_{\theta}(\mathbf{O})=T_{\theta}\left(\mathcal{E}_{X}^{\sigma}\right)$. Thus, we obtain

Proposition A.5. (a) If $\mathcal{E}_{X}^{\sigma} \neq \emptyset$, then $Z^{0}(X)$ is a reductive algebraic group. Actually for an arbitrary $\theta \in \mathcal{E}_{X}^{\sigma}$, we have $\mathfrak{z}(X)=\mathfrak{k}_{\mathbb{C}}$, i.e., $\mathfrak{z}^{\theta}(X)=$ $\mathfrak{k}_{\mathbb{C}}^{\theta}$ by the above notation.
(b) If $\mathcal{E}_{X}^{\sigma} \neq \emptyset$, then each connected component of \mathcal{E}_{X}^{σ} is a single $Z^{0}(X)$ orbit under the natural action of $Z^{0}(X)$ on \mathcal{E}_{X}^{σ}.

Remark A.5.8. The above arguments are valid also for $X=0$. If $X=0$, then (a) of Proposition A. 5 is nothing but Matsushima's theorem [Mat].

References

[A1] T. Aubin, Réduction du cas positif de l'équation de Monge-Ampère sur les variété Kählériennes compactes à la démonstration d'une inégualité, J. Funct. Anal., 57 (1984), 143-153.
[B1] J. P. Bourguignon et al., Preuve de la conjecture de Calabi, Astérisque 58, Soc. Math. France, 1978.
[Ba] S. Bando, The K-energy map, almost Einstein-Kähler metrics and an inequality of the Miyaoka-Yau type, 39 (1987), Tohoku Math. J., 231-235.
[BM] S. Bando and T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, Algebraic Geometry, Sendai, 1985, Adv. Stud. in Pure Math. 10, Kinokuniya and North-Holland, Tokyo and Amsterdam (1987), pp. 11-40.
[F1] A. Futaki, Kähler-Einstein metrics and integral invariants, Lect. Notes in Math. 1314, Springer-Verlag, Heidelberg, 1988.
[FM] A. Futaki and T. Mabuchi, Bilinear forms and extremal Kähler vector fields associated with Kähler classes, Math. Ann., 301 (1995), 199-210.
[K1] S. Kobayashi, Transformation groups in differential geometry, Erg. der Math. 70, Springer-Verlag, Heidelberg, 1972.
[L1] A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris, 1958.
[L2] A. Lichnerowicz, Variétés kählériennes et première classe de Chern, J. Diff. Geom., 1 (1967), 195-224.
[LY] P. Li and S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153-201.
[M1] T. Mabuchi, Kähler-Einstein metrics for manifolds with nonvanishing Futaki character, Tôhoku Math. J., 53 (2000), 171-182.
[M2] T. Mabuchi, Vector field energies and critical metrics on Kähler manifolds, Nagoya Math. J., 162 (2001), 41-63.
[M3] T. Mabuchi, Heat kernel estimates and the Green functions on multiplier Hermitian manifolds, Tôhoku Math. J., 54 (2002), 259-275.
[M4] T. Mabuchi, A multiplier Hermitian manifold with a Hamiltonian holomorphic vector field, in preparation.
[M5] T. Mabuchi, A Theorem of Calabi-Matsushima's type, Osaka J. Math., 39 (2002), 49-57.
[Mat] Y. Matsushima, Holomorphic vector fields on compact Kähler manifolds, Conf. Board Math. Sci. Regional Conf. Ser. in Math. 7, Amer. Math. Soc., 1971.
[Mil] J. Milnor, Morse Theory, Ann. of Math. Stud. 51, Princeton University Press, Princeton, 1963.
[N1] Y. Nakagawa, An isoperimetric inequality for orbifolds, Osaka J. Math., 30 (1993), 733-739.
[S1] Y.-T. Siu, Lectures on Hermitian-Einstein metrics for stable bundles and KählerEinstein metrics, DMV seminar 8, Birkhäuser, Basel • Boston, 1987.
[T1] G. Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $C_{1}(M)>0$, Invent. Math., 89 (1987), 225-246.
[TZ1] G. Tian and X. H. Zhu, Uniqueness of Kähler-Ricci solitons on compact Kähler
manifolds, C. R. Acad. Sci. Paris, 329 (1999), 991-995.
[TZ2] G. Tian and X. H. Zhu, Uniqueness of Kähler-Ricci solitons, Acta Math., 184 (2000), 271-305.
[TZ3] G. Tian and X. H. Zhu, A new holomorphic invariant and uniqueness of Kähler-Ricci solitons, Comm. Math. Helv., 77 (2002), 297-325.
[Y1] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the MongeAmpère equation I, Comm. Pure Appl. Math., 31 (1978), 339-441.

Department of Mathematics
Osaka University
Toyonaka
Osaka, 560-0043
Japan
mabuchi@math.sci.osaka-u.ac.jp

[^0]: ${ }^{\dagger}$ For a similar result on Kähler-Ricci solitons, see [TZ1]. For "Kähler-Einstein metrics" in the sense of [M1], the arguments in Section 5 were given at the meeting in 1997 at ICMS, though at that time a crucial gap in a priori C^{0} estimates was pointed out by G. Tian. Theorems A and B above solve this gap.

