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MULTIPLIER HERMITIAN STRUCTURES ON

KÄHLER MANIFOLDS

TOSHIKI MABUCHI

Abstract. The main purpose of this paper is to make a systematic study of a
special type of conformally Kähler manifolds, called multiplier Hermitian mani-
folds, which we often encounter in the study of Hamiltonian holomorphic group
actions on Kähler manifolds. In particular, we obtain a multiplier Hermitian
analogue of Myers’ Theorem on diameter bounds with an application (see [M5])
to the uniquness up to biholomorphisms of the “Kähler-Einstein metrics” in the
sense of [M1] on a given Fano manifold with nonvanishing Futaki character.

§1. Introduction

For a connected complete Kähler manifold (M,ω0) of complex dimen-

sion n, let K denote the set of all Kähler forms on M expressible as

(1.1) ωϕ := ω0 +
√
−1 ∂∂̄ϕ

for some real-valued smooth function ϕ ∈ C∞(M)
R

on M . In this paper, we

fix once for all a holomorphic vector field X 6= 0 on M , and M is assumed

to be compact except in Section 4 and in Theorem B below. Put

KX := {ω ∈ K ; LX
R

ω = 0},
where X

R
:= X + X̄ denotes the real vector field on M associated to the

holomorphic vector field X. Let HX denote the set of all XR-invariant

functions ϕ in C∞(M)R such that ωϕ is in KX . Let KX 6= ∅, so that we

may assume without loss of generality that

ω0 ∈ KX .

In terms of a system (z1, z2, . . . , zn) of holomorphic local coordinates on M

above, we write each Kähler form ω in KX as

ω =
√
−1

∑

α,β

gαβ̄ dz
α ∧ dzβ̄ .
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Throughout this paper, we assume that X is Hamiltonian, i.e., to each ω ∈
KX , we can associate a function uω ∈ C∞(M)

R
such that X is expressible

as

gradC
ω uω :=

1√
−1

∑

α,β

gβ̄α
∂uω
∂zβ̄

∂

∂zα
.

Then uω is an XR-invariant function, and the image IX of the function uω
on M is an interval in R. For an arbitrary nonconstant real-valued smooth

function

σ : IX −→ R, s 7−→ σ(s),

we define functions σ̇ = σ̇(s) and σ̈ = σ̈(s) on IX as the derivatives σ̇ :=

(∂/∂s)σ and σ̈ := (∂2/∂s2)σ, respectively. We further define a function

ψω ∈ C∞(M)R by

(1.2) ψω = σ(uω),

which is obviously XR-invariant. The function σ is said to be strictly convex

or weakly convex , according as σ̈ > 0 on IX or σ̈ ≥ 0 on IX . By abuse of

terminology, σ is said to be convex if either σ is strictly convex or σ satisfies

σ̇ ≤ 0 ≤ σ̈ on IX .

Let G := Aut0(M) be the identity component of the group of all holo-

morphic automorphisms of M . Let

Q : closure in G of the real one-parameter group {exp(tXR) ; t ∈ R}.

Under the assumption of the compactness of M , we require the function uω
to satisfy the equality

∫

M uωω
n = 0, and applying the theory of moment

maps to the action on M of the compact torus Q, we obtain

IX = [αX , βX ],

where both αX := minM uω and βX := maxM uω are independent of the

choice of ω in KX . To each ω ∈ KX , we associate the corresponding

Laplacian �ω of the Kähler manifold (M,ω), and define an operator �̃ω

on C∞(M)
R

by

(1.3) �̃ω :=
∑

α,β

gβ̄α
∂2

∂zα∂zβ̄
−

∑

α,β

gβ̄α
∂ψω
∂zα

∂

∂zβ̄
= �ω +

√
−1 σ̇(uω)X̄.
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The natural connection, induced by ω, on the holomorphic tangent bundle

TM of M is denoted by ∇. To each ω in KX , we associate a conformally

Kähler metric ω̃ by

(1.4) ω̃ := ω exp(−ψω/n),

which is called a multiplier Hermitian metric (of type σ). Here, a Hermi-

tian form and the corresponding Hermitian metric are used interchange-

ably. The Hermitian metric ω̃ naturally induces a Hermitian connection

∇̃ : A0(TM) → A1(TM) such that

∇̃ = ∇− ∂ψω
n

idTM ,

where Aq(TM) denotes the sheaf of germs of TM -valued C∞ q-forms on M .

By abuse of terminology, the Ricci form of (ω̃, ∇̃) is denoted by Ricσ(ω).

Then (see [L2], [K1], [Mat])

(1.5) Ricσ(ω) =
√
−1 ∂̄∂ log(ω̃n) = Ric(ω) +

√
−1 ∂∂̄ψω,

where we set Ric(ω) :=
√
−1 ∂̄∂ log(ωn). For each nonnegative real number

ν, let K(ν)
X denote the set of all ω ∈ KX such that

Ricσ(ω) ≥ νω,

i.e., Ricσ(ω) − νω is a positive semi-definite (1, 1)-form on M . Now for

ϕ ∈ HX , we set Osc(ϕ) := maxM ϕ−minM ϕ. Consider the set Sσ of all ω

in KX such that

Ricσ(ω) = tω + (1 − t)ω0 for some t ∈ [0, 1].

Let Iσ − J σ be the analogue of Aubin’s functional as in Appendix 1. The

main purpose of this paper is to prove the following theorems (see Sections

3, 4 and 5):

Theorem A. (a) If σ̇ ≤ 0 ≤ σ̈ on IX , then for each ν > 0, we have

positive real constants C0, C1, C
′
1, C

′′
1 , C2 independent of the choice of the

pair (ωϕ, ν) such that

(1.6) Osc(ϕ) ≤ C0(Iσ − J σ)(ω0, ωϕ) +
C(ν)

ν
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for all ωϕ in K(ν)
X ∩ Sσ, where C(ν) := C1 + C ′

1ν + C ′′
1 e
C2/ν .

(b) If σ is strictly convex, then for each ν > 0, there exist positive real

constants C0, C1, C
′
1 independent of the choice of the pair (ωϕ, ν) such that,

by setting C(ν) := C1 +C ′
1ν, we have the inequality (1.6) for all ωϕ in K(ν)

X .

Theorem B. Let ν > 0 and ω ∈ K(ν)
X . Furthermore, let (X,σ) be of

Hamiltonian type (cf. Definition 4.1), where σ is weakly convex. Let p be

an arbitrary point in zero(X) or in M , according as (4.1.1) or (4.1.2) holds

(cf. Section 4). Put c := sups∈IX |σ(s)|. Then

distω(p, q) ≤ π{(2n− 1 + 4c)/ν}1/2 for all q ∈M,

where distω(p, q) denotes the distance between p and q on the complete

Kähler manifold (M,ω). Hence, the diameter Diam(M,ω) of the complete

Kähler manifold (M,ω) satisfies

(1.7) Diam(M,ω) ≤ 2δπ{(2n − 1 + 4c)/ν}1/2,

where δ denotes 1 or 0, according as (4.1.1) or (4.1.2) holds. In particular,

if |ψω| is bounded from above on M , then M is compact and π1(M) is

finite.

Let EσX be the set of all ω ∈ KX such that Ricσ(ω) = ω. We also consider

the subgroup Z(X) of G consisting of all g ∈ G such that Ad(g)X = X, and

let Z0(X) denote the identity component of Z(X). Then in Section 5, we

apply Theorems A and B (Theorem B will be implicitly used) to showing

that EσX consists of a single Z0(X)-orbit† under the assumption of convexity

of σ.

Theorem C. Assume that σ is convex. Then EσX consists of a single

Z0(X)-orbit, whenever EσX is nonempty.

This work is mainly motivated by the study of “Kähler-Einstein met-

rics” (cf. [M1]) which are closely related to the case where σ(s) = − log(s+

C) (cf. [M5]). Parts of this work were done during my stay in International

Centre for Mathematical Sciences (ICMS), Edinburgh in 1997. I thank es-

pecially Professor Michael Singer who invited me to give lectures at ICMS

on various subjects of Kähler-Einstein metrics.

†For a similar result on Kähler-Ricci solitons, see [TZ1]. For “Kähler-Einstein metrics”
in the sense of [M1], the arguments in Section 5 were given at the meeting in 1997 at
ICMS, though at that time a crucial gap in a priori C

0 estimates was pointed out by
G. Tian. Theorems A and B above solve this gap.
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§2. Notation, convention and preliminaries

To each ω ∈ KX as in the introduction, we associate a multiplier Her-

mitian metric ω̃ in (1.4) and an operator �̃ω in (1.3). For complex-valued

functions u, v ∈ C∞(M)C on M , we put (cf. [L2], [K1], [Mat], [F1])

〈〈u, v〉〉ω̃ :=

∫

M
uv̄e−ψωωn =

∫

M
uv̄ω̃n.

In the arguments in [F1, p. 41], we replace the function F by ψ. Then �̃ω

is easily shown to be self-adjoint with respect to the above Hermitian inner

product as follows:

Lemma 2.1.

〈〈u, �̃ωv〉〉ω̃ = −
∫

M
(∂̄u, ∂̄v)ωω̃

n = 〈〈�̃ωu, v〉〉ω̃, u, v ∈ C∞(M)C.

Proof. 〈〈u, �̃ωv〉〉ω̃ is written as

∫

M
u
{

�ωv − (∂̄ψω, ∂̄v)ω
}

ω̃n

=

∫

M

{

−(∂̄(ue−ψω ), ∂̄v)ω − u(∂̄ψω, ∂̄v)ωe
−ψω

}

ωn

= −
∫

M
(∂̄u, ∂̄v)ωω̃

n,

while 〈〈�̃ωu, v〉〉ω̃ is just

∫

M

{

�ωu− (∂̄u, ∂̄ψω)ω
}

vω̃n

=

∫

M

{

−(∂̄u, ∂̄(e−ψωv))ω − v(∂̄u, ∂̄ψω)ωe
−ψω

}

ωn

= −
∫

M
(∂̄u, ∂̄v)ωω̃

n.

Hence Lemma 2.1 is immediate.

To an arbitrary smooth path φ = {ϕt ; a ≤ t ≤ b} in HX , we associate

a one-parameter family of Kähler forms ω(t), a ≤ t ≤ b, in KX by

(2.2) ω(t) := ωϕt = ω0 +
√
−1 ∂∂̄ϕt, a ≤ t ≤ b.
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Let ϕ̇t denote the partial derivative ∂ϕt/∂t of ϕt with respect to t. Next,

by the notation (1.4) in the introduction, we consider the Hermitian form

ω̃(t) on M defined by

(2.3) ω̃(t) := ω(t) exp{−ψω(t)/n}.

Lemma 2.4. (a) (∂/∂t)ω̃(t)n =
(

�̃ω(t)ϕ̇t
)

ω̃(t)n.

(b)
∫

M ω̃n = V0 for all ω ∈ KX , where V0 :=
∫

M ω̃ n0 > 0.

Proof. (a) Recall that uω(t) is expressible as uω0
+
√
−1Xϕt (cf. [FM]).

On the other hand, by ϕt ∈ HX , we see that X
R
ϕt = 0. Hence,

(2.5) uω(t) = uω0 −
√
−1 X̄ϕt.

Then we obtain the required equality as follows:

∂

∂t
ω̃(t)n =

∂

∂t

{

e−ψω(t)ω(t)n
}

=
{

�ω(t)ϕ̇t − σ̇(uω(t))
∂

∂t
uω(t)

}

e−ψω(t)ω(t)n

=
{

�ω(t)ϕ̇t +
√
−1 σ̇(uω(t))X̄ϕ̇t

}

e−ψω(t)ω(t)n

=
(

�̃ω(t)ϕ̇t
)

ω̃(t)n.

(b) In (a) above, we have (∂/∂t)
∫

M ω̃(t)n =
∫

M

(

�̃ω(t)ϕ̇t
)

ω̃(t)n =

〈〈�̃ωϕ̇t, 1〉〉ω̃ = 0 and hence the function V : KX → R defined by

V (ω) :=

∫

M
ω̃n, ω ∈ KX ,

is constant along any smooth path in KX . Since every ω ∈ KX and ω0

are joined by the smooth path tω0 + (1 − t)ω, 0 ≤ t ≤ 1, in KX , we now
conclude that V is constant on KX , as required.

By 〈〈u, �̃ωu〉〉ω̃ = −
∫

M (∂̄u, ∂̄u)ωω̃
n ≤ 0, all eigenvalues of −�̃ω are non-

negative real numbers. Let λ1 = λ1(ω̃) > 0 be the first positive eigenvalue

of −�̃ω, and assume

K(ν)
X 6= ∅

for some ν > 0. Then we have c1(M) > 0, and by the Kodaira vanishing

theorem, we see that 0 = h0,1(M) = h1,0(M). In particular, G := Aut0(M)
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is a linear algebraic group. The corresponding Lie algebra g is just the

space H0(M,O(TM)) of holomorphic vector fields on M . We now have a

C-linear isomorphism of vector spaces

(2.6) gω ∼= g, u↔ gradC
ω u,

where gω denotes the space of all u ∈ C∞(M)C, normalized by
∫

M uω̃n = 0,

such that the condition gradC
ω ϕ ∈ g is satisfied. Recall that

Fact 2.7. (see for instance [M3]) For a real number ν > 0, let ω ∈
K(ν)
X . Then

(a) λ1(ω̃) ≥ ν.

(b) If λ1(ω̃) = ν, then {u ∈ C∞(M)C ; �̃ωu = −λ1(ω̃)u} is a subspace

of gω.

Next, we consider the special case where the Kähler class of KX is

2πc1(M)R. In this case, to each ω ∈ KX , we can associate a unique function

fω in C∞(M)R satisfying
∫

M (efω − 1)ωn = 0 and Ric(ω) − ω =
√
−1 ∂∂̄fω.

Put cω :=
∫

M ω̃n/
∫

M ωn =
∫

M ω̃ n0 /
∫

M ω n0 , which is independent of the

choice of ω in KX . We now put

(2.8) f̃ω := fω + ψω + log cω = fω + σ(uω) + log cω.

Lemma 2.9. (a) Ricσ(ω) − ω =
√
−1 ∂∂̄f̃ω.

(b)
∫

M (ef̃ω − 1)ω̃n = 0 for all ω ∈ KX .

Proof. (a) follows immediately from (1.5), (2.8) and Ric(ω)−ω = ∂∂̄fω.
As to (b), in view of (b) of Lemma 2.4, we obtain

∫

M
ef̃ω ω̃n =

(
∫

M
efωeψω ω̃n

)

∫

M ω̃ n0
∫

M ω n0
=

(
∫

M
efωωn

)

∫

M ω̃n
∫

M ωn
=

∫

M
ω̃n,

as required.

§3. Proof of Theorem A

Let ω ∈ KX . In the definition of ω̃ in (1.4), replacing σ by 2σ, we

consider volume forms volω̃ and volω̃0
on M by setting

volω̃ := ωn exp{−2σ(uω)} and volω̃0
:= ωn0 exp{−2σ(uω0)}.
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Put V :=
∫

M volω̃ =
∫

M volω̃0
. Replacing σ again by 2σ in the definition of

�̃ω in (1.3), we consider the operators Dω and Dω0 acting on C∞(M)R by

(3.1) Dω := �ω + 2
√
−1 σ̇(uω)X̄ and Dω0 := �ω0 + 2

√
−1 σ̇(uω0

)X̄.

Note that a smooth function on M is XR-invariant if and only if it is Q-

invariant. Hence, we can write ω = ω0 +
√
−1 ∂∂̄ϕ for some Q-invariant

function ϕ in HX . Then we obtain

(3.2) −�ω0ϕ < n and − �ωϕ > −n.

Now by (2.5), we have
√
−1 X̄ϕ = uω0−uω. On the other hand, minM uω0 =

minM uω = αX and maxM uω0 = maxM uω = βX . In particular,

(3.3) max
M

|X̄ϕ| = max
M

|Xϕ| ≤ max
M

|u| + max
M

|u0| ≤ 2C3,

where C3 := max{|αX |, |βX |} is a positive constant independent of the

choice of ω0 and ω in KX . Put C4 := maxs∈IX |σ̇(s)| > 0. Then (3.1) and

(3.2) above imply

−Dω ϕ = −�ω ϕ− 2
√
−1 σ̇(uω)X̄ϕ ≥ −k′ := −n− 4C3C4,(3.4)

−Dω0ϕ = −�ω0ϕ− 2
√
−1 σ̇(uω0)X̄ϕ ≤ k′′ := n+ 4C3C4.(3.5)

Let ReDω := (Dω+D̄ω)/2 and ReDω0 := (Dω0+D̄ω0)/2 denote respectively

the real part of Dω and Dω0 . Moreover, let Gω(x, y) and Gω0(x, y) be the

Green functions for the operators ReDω and ReDω0 , respectively. More

precisely,















h(x) = V −1

∫

M
h(y) volω̃(y) +

∫

M
Gω(x, y){−(ReDω)(h)}(y) volω̃(y),

∫

M
Gω(x, y) volω̃(y) = 0,

hold for all x ∈M and h ∈ C∞(M)
R
, where equalities similar to the above

hold also for the Green function Gω0(x, y) in terms of volω̃0 and ReDω0 .

Proof of Theorem A. Assuming ω ∈ K(ν)
X , let σ̈ ≥ 0 on IX . We further

assume that one of the following holds:

(a) σ̇ ≤ 0 on IX and ω ∈ Sσ;
(b) or σ is strictly convex.
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For the Q-action on M , take the averages G̃ω(x, y), G̃ω0(x, y) of the func-
tions Gω(x, y), Gω0(x, y) respectively, i.e.,



















G̃ω(x, y) :=

∫

Q
Gω(q · x, y) dµ(q) =

∫

Q
Gω(x, q · y) dµ(q),

G̃ω0(x, y) :=

∫

Q
Gω0(q · x, y) dµ(q) =

∫

Q
Gω0(x, q · y) dµ(q),

where dµ = dµ(q) denotes the Haar measure for the compact group Q of
total volume 1. Let Kω, Kω0 be the positive real numbers defined by

−Kω = inf
x6=y

G̃ω(x, y) and −Kω0 = inf
x6=y

G̃0(x, y),

where the infimums are taken over all (x, y) ∈M ×M such that x 6= y. By
writing ω = ω0 +

√
−1 ∂∂̄ϕ for some Q-invarant function ϕ ∈ C∞(M)

R
as

above, we first of all see the equality (ReDω0)(ϕ) = Dω0ϕ. Then by (3.5),
we obtain

ϕ(x) = V −1

∫

M
ϕ volω̃0

+

∫

M
{G̃ω0(x, y) +Kω0}{−(ReDω0)(ϕ)}(y) volω̃0

(y)

(3.6)

≤ V −1

∫

M
ϕ volω̃0

+k′′V Kω0 .

On the other hand, by (ReDω)(ϕ) = Dωϕ and (3.4), we also obtain

ϕ(x) = V −1

∫

M
ϕ volω̃ +

∫

M
{G̃ω(x, y) +Kω}{−(ReDω)(ϕ)}(y) volω̃(y)

(3.7)

≥ V −1

∫

M
ϕ volω̃ −k′V Kω.

Now by (3.6) and (3.7), we see that (cf. (A.1.1) in Appendix 1)

Osc(ϕ) ≤ V −1

∫

M
ϕ(volω̃0

− volω̃) + (k′′Kω0 + k′Kω)V(3.8)

≤ V −1I2σ(ω0, ω) + (k′′Kω0 + k′Kω)V,

where by [M3], there exist positive real constants C ′, C ′′ and C2 independent
of the choice of ν > 0 and ω, such that

(3.9) Kω ≤ ν−1(C ′ + C ′′eC2/ν)
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under the assumption (a) above, while under the assumption (b) above, we
also have (3.9) with C ′′ = 0. Now by Lemma A.1.5 and Proposition A.1 in
Appendix 1, we have

I2σ(ω0, ω) ≤ (m+ 2)(I2σ −J 2σ)(ω0, ω) ≤ (m+ 2)ec(Iσ − J σ)(ω0, ω),

where m := n − 1 + b2σ by the notation in Lemma A.1.6 in Appendix 1,
and we put c := maxs∈IX |σ(s)| = max{|αX |, |βX |} as in the introduction.
Hence in view of (3.8) and (3.9), by setting C(ν) := C1 + C ′

1ν + C ′′
1 e
C2/ν ,

we obtain

Osc(ϕ) ≤ C0(Iσ − J σ)(ω0, ω) +
C(ν)

ν
,

where C1 := k′C ′V , C ′
1 := k′′Kω0V , C ′′

1 := k′C ′′V and C0 := V −1(m+ 2)ec

are positive real constants depending neither on the choice of ω nor on
ν > 0, as required.

§4. Proof of Theorem B

In this section, M is not necessarily compact, and we fix a nonconstant

real-valued function σ : IX → R which is weakly convex, i.e., σ̈ ≥ 0 on IX .

Let zero(X) be the set of all points on M at which the nonzero holomorphic

vector field X = gradC
ω uω vanishes.

Definition 4.1. Under the above assumption of weak convexity of
σ, we say that (X,σ) is of Hamiltonian type, if one of the following two
conditions is satisfied:

zero(X) 6= ∅;(4.1.1)

σ̈(s) = 0 for all s ∈ IX .(4.1.2)

Remark 4.2. If M is compact, then the assumption K(ν)
X 6= ∅ in The-

orem A implies that c1(M) > 0, and in particular G is a linear algebraic
group. Hence, in this case (4.1.1) automatically holds.

Proof of Theorem B. The proof is divided into the following three steps:

Step 1. In this step, we apply the arguments in [Mil] to the Kähler
manifold (M,ω). Let ζ : [0, `] →M be an arclength-parametrized geodesic
with ζ(0) = p. Put ζ(`) = q, and consider the set Ω(M ; p, q) of all smooth
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paths γ : [0, `] → M such that γ(0) = p and γ(`) = q. Recall that the
energy functional E : Ω(M ; p, q) → R is defined by

E(γ) :=

∫ `

0
‖γ∗(∂/∂t)‖ 2

ω dt, γ ∈ Ω(M ; p, q).

Then ζ is a critical point of the functional E. Let Pk = Pk(t), k =
1, 2, . . . , 2n, be parallel vector fields along ζ which are orthonormal every-
where along ζ. Consider the complex structure J : TM

R
→ TM

R
of the

complex manifold M , where TM
R

denotes the real tangent bundle of M .
Then by ∇J = 0, we may assume that P1 = ζ∗(∂/∂t) and P2 = JP1. Put
P̂k(t) = sin(πt/`)Pk(t). Let Hessζ E denote the Hessian of E at ζ. Then by
setting n̂ := 2n− 1, we obtain

(4.3.1)
1

2

2n
∑

k=2

(Hessζ E)(P̂k, P̂k) =

∫ `

0
sin2(πt/`)

{

n̂π2

`2
− Sω(P1, P1)

}

dt,

where Sω denotes the Ricci tensor of the Kähler metric ω, and is related to
the Ricci form Ric(ω) by Sω(P1, P1) = Ric(ω)(P1, JP1).

Step 2. Fix an arbitrary τ ∈ [0, `]. In a small open neighbourhood of
ζ(τ) in M , we choose a system z = (z1, z2, . . . , zn) of holomorphic local
coordinates centered at ζ(τ) such that

P1(τ) = ∂/∂x1 and JP1(τ) = ∂/∂y1,

where we write each zα as a sum xα +
√
−1 yα of the real part and the

imaginary part, and the vector fields ∂/∂xα, ∂/∂yα are taken in terms of
the coordinates system (x1, . . . , xn, y1, . . . , yn). Since

∂/∂zα = (∂/∂xα−
√
−1 ∂/∂yα)/2 and ∂/∂zβ̄ = (∂/∂xβ+

√
−1 ∂/∂yβ)/2,

we observe that the coordinates system z = (z1, z2, . . . , zn) can be chosen
in such a way that g

αβ̄
in the local expression of ω (cf. Section 1) satisfies

(4.3.2) gαβ̄(ζ(τ)) =
1

2
δαβ and dgαβ̄(ζ(τ)) = 0.

Let expζ(τ) : (TM
R
)ζ(τ) →M denotes the exponential map at the point ζ(τ)

of the Kähler manifold (M,ω), and put ξ(s) := expζ(τ)(sJP1), −ε ≤ s ≤ ε,
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with a sufficiently small positive real number ε. Then in a neighbourhood
of ζ(τ),

(4.3.3)

{

P1(t) = ζ∗(∂/∂t) = ∂/∂x1 +O(|t− τ |2),
ξ∗(∂/∂s) = ∂/∂y1 +O(|s|2),

where O(w) denotes a function which is bounded by some constant times w.
Now by our assumption, X = gradC

ω uω is a holomorphic vector field on M .
Hence by the equality ∂̄X = 0 and (4.3.2), we obtain (∂/∂z 1̄)2(uω)|ζ(τ) = 0
at the point ζ(τ), and hence

(4.3.4)

{

(∂/∂x1)2(uω)|ζ(τ) = (∂/∂y1)2(uω)|ζ(τ) ,

(∂2/∂x1∂y1)(uω)|ζ(τ) = 0.

We now define a C∞ map F : [−ε, ε] × [0, `] → M by sending each (s, t) ∈
[−ε, ε] × [0, `] to F (s, t) := expζ(t)(sJP1) ∈ M . Put ũ := F ∗uω and ψ̃ :=

F ∗ψω which are functions on [−ε, ε] × [0, `]. Then by (1.2), we have ψ̃ =
σ(ũ). Next by (4.3.3),

(4.3.5)

{

(∂/∂t)(ũ)|s=0 = ζ∗{(∂/∂x1)(uω)} +O(|t− τ |2),
(∂/∂s)(ũ)|t=τ = ξ∗{(∂/∂y1)(uω)} +O(|s|2),

in a neighbourhood of (s, t) = (0, τ). In view of (4.3.3), we differentiate
the first line of (4.3.5) with respect to t at t = τ , while we differentiate the
second line of (4.3.5) with respect to s at s = 0. Then, since τ ∈ [0, `] is
arbitrary, the first line of (4.3.4) yields

(4.3.6) (∂/∂t)2(ũ) = (∂/∂s)2(ũ),

when restricted to {0} × [0, `]. Recall that ∇ is the natural Hermitian
connection associated to the Kähler metric ω (see Section 1). Since P2 =
JP1 is parallel along the geodesic ζ, and since ξ is a geodesic, we obtain

(

∇∂/∂t∂/∂s
)

|(s,t)=(0,τ)
=

(

∇∂/∂s∂/∂s
)

|(s,t)=(0,τ)
= 0,

where the pullback F ∗∇ is denoted also by ∇ for simplicity. By combining
this with (4.3.2) and F∗∂/∂s|(s,t)=(0,τ) = ∂/∂y1, we obtain

F∗(∂/∂s) = ∂/∂y1 +O(|s|2 + |t− τ |2) for |s|2 + |t− τ |2 � 1
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in a small neighbourhood of ζ(τ) = F (0, τ) in the image of F . Hence,
together with the first line of (4.3.3), the second line of (4.3.4) implies

(4.3.7) (∂2/∂t∂s)(ũ) = 0,

when restricted to {0} × [0, `]. For the time being, until the end of Step 2,
we assume that (4.1.1) above holds. Then by p = ζ(0) ∈ Zero(X), the
function uω on M has a critical value at p. In particular, (∂ũ/∂s)(0, 0) = 0.
On the other hand, (4.3.7) shows that ∂ũ/∂s is constant along {0} × [0, `].
Therefore,

(4.3.8) (∂ũ/∂s)(0, t) = 0 for all t ∈ [0, `], if (4.1.1) holds.

Step 3. Let σ be as in Definition 4.1, so that either (4.1.1) or (4.1.2)
holds. Consider the function ψω = σ(uω). In view of (4.3.3), we see for all
τ ∈ [0, `] the following:

2
√
−1 (∂∂̄ψω)(P1, JP1)|ζ(τ)(4.3.9)

= 2
√
−1 (∂∂̄ψω)(ζ∗(∂/∂t), ξ∗(∂/∂s))|ζ(τ)

=
{

(∂/∂x1)2(ψω) + (∂/∂y1)2(ψω)
}

|ζ(τ)

=
∂2ψ̃

∂t2
(0, τ) +

∂2ψ̃

∂s2
(0, τ).

Consider the vector fields Z1 := (P1 −
√
−1 JP1)/2 and Z̄1 := (P1 +

√
−1

JP1)/2 along the geodesic ζ. Since (2/
√
−1 ) θ(Z1, Z̄1) equals θ(P1, JP1)

along the geodesic for every 2-form θ on M , and since Ric(ω)+
√
−1 ∂∂̄ψω =

Ricσ(ω) ≥ νω, it now follows that

Ric(ω)(P1, JP1) +
√
−1 (∂∂̄ψω)(P1, JP1) = Ricσ(ω)(P1, JP1)

≥ νω(P1, JP1) = (2ν/
√
−1 )ω(Z1, Z̄1) = ν.

By plugging the expression (4.3.9) of 2
√
−1 (∂∂̄ψω)(P1, JP1)|ζ(τ) into the

inequality just above, we see that the following inequality holds for all
τ ∈ [0, `]:

Ric(ω)(P1, JP1)|ζ(τ) ≥ ν − 1

2

∂2ψ̃

∂t2
(0, τ) − 1

2

∂2ψ̃

∂s2
(0, τ).
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By this together with (4.3.1), we obtain

1

2

2n
∑

k=2

(Hessζ E)(P̂k, P̂k)

≤
∫ `

0
sin2(πt/`)

{

n̂π2

`2
− ν +

1

2

∂2ψ̃

∂t2
(0, t) +

1

2

∂2ψ̃

∂s2
(0, t)

}

dt.

If (4.1.1) holds, then by (4.3.6) and (4.3.8), we see from ψ̃ = σ(ũ) that

∂2ψ̃

∂s2
(0, t) =

{

σ̇(ũ)
∂2ũ

∂s2
+ σ̈(ũ)

( ∂ũ

∂s

)2
}

|(0,t)

=

{

σ̇(ũ)
∂2ũ

∂t2

}

|(0,t)

≤
{

σ̇(ũ)
∂2ũ

∂t2
+ σ̈(ũ)

( ∂ũ

∂t

)2
}

|(0,t)

=
∂2ψ̃

∂t2
(0, t),

where the inequality just above follows from the weak convexity of σ. On
the other hand, if (4.1.2) holds, then again by (4.3.6)

∂2ψ̃

∂s2
(0, t) = σ̇(ũ)

∂2ũ

∂s2
(0, t) = σ̇(ũ)

∂2ũ

∂t2
(0, t) =

∂2ψ̃

∂t2
(0, t).

In both cases, we obtain

1

2

2n
∑

k=2

(Hessζ E)(P̂k, P̂k) ≤
∫ `

0
sin2(πt/`)

{

n̂π2

`2
− ν +

∂2ψ̃

∂t2
(0, t)

}

dt.

Let R.H.S. denote the right-hand side of this inequality. Then by taking
integral by parts over and over again, we see that

R.H.S. =

∫ `

0

{

( n̂π2

`2
− ν

)

sin2(πt/`) − π

`

∂ψ̃

∂t
(0, t) sin(2πt/`)

}

dt

=

∫ `

0

{

( n̂π2

`2
− ν

)

sin2(πt/`) +
2π2

`2
ψ̃(0, t) cos(2πt/`)

}

dt

≤ 2π2c

`
+

∫ `

0

( n̂π2

`2
− ν

)

sin2(πt/`) dt =
(n̂+ 4c)π2

2`
− `ν

2
.

Therefore, if ` > π{(n̂+ 4c)/ν}1/2, then R.H.S. < 0, and hence

2n
∑

k=2

(Hessζ E)(P̂k, P̂k) < 0,

which shows that ζ : [0, `] → M is not an arclength-minimizing geodesic.
Thus, we obtain distω(p, q) ≤ π{(n̂+4c)/ν}1/2 for every q ∈M , as required.



MULTIPLIER HERMITIAN STRUCTURES 87

§5. Proof of Theorem C

Fix 0 < α < 1. Let H2,α
X,0 denote the set of all X

R
-invariant function

ϕ ∈ C2,α(M)R such that
∫

M ϕω̃ n
0 = 0 and that ωϕ is positive definite on

M . Put

(5.1.1) A(ϕ) := ω̃ n
ϕ /ω̃

n
0 , ϕ ∈ H2,α

X,0.

For each 0 ≤ k ∈ Z, we consider the space Ck,α
X,0(M)R of all X

R
-invariant

functions ϕ in Ck,α(M)R such that
∫

M ϕω̃ n
0 = 0. Define Γ : H2,α

X,0 × R →
C0,α
X,0(M)

R
by setting (cf. [BM], [S1])

(5.1.2) Γ(ϕ, t) := A(ϕ) −
{

1

V0

∫

M
exp(−tϕ+ f̃ω0

)ω̃ n
0

}−1

exp(−tϕ+ f̃ω0
),

for all (ϕ, t) ∈ H2,α
X,0 × R, where V0 is as in (b) of Lemma 2.4. Let T be the

set of all t ∈ [0, 1) for which the generalized Aubin’s equation

(5.1.3) Γ(ϕ, t) = 0

admits a solution ϕ = ϕt in H2,α
X,0. Note that ϕ automatically belongs to

HX . For such a solution ϕt, we set ω(t) := ωϕt = ω0 +
√
−1 ∂∂̄ϕt as in

(A.2.2) in Appendix 2. Then

(5.1.4) Ricσ(ω(t)) = ω0 + t
√
−1 ∂∂̄ϕt = tω(t) + (1 − t)ω0,

where ω̃(t) is as in (2.3). In particular, ω(t) sits in K(t′)
X for some t′ which

exceeds t. Suppose that Γ(ϕ̂, t̂) = 0 for some (ϕ̂, t̂) ∈ H2,α
X,0 × [0, 1). Then

the Fréchet derivative DϕΓ : C2,α
X,0(M)R → C0,α

X,0(M)R of Γ at (ϕ̂, t̂) with

respect to the factor ϕ is given by

(5.1.5)
{

DϕΓ|(ϕ,t)=(ϕ̂,t̂)

}

(η) := A(ϕ̂)(�̃ϕ̂ + t̂)(η − Cη,ϕ̂), η ∈ C2,α
X,0(M)R,

where Cη,ϕ̂ := V −1
0

∫

M ηω̃ n
ϕ̂ and �̃ϕ̂ := �̃ωϕ̂

. By (5.1.4) and Fact 2.7, t̂ is

less than the first positive eigenvalue of −�̃ϕ̂. Hence, DϕΓ|(ϕ,t) is invertible.

Then by the implicit function theorem, we obtain

Theorem 5.1. If (ϕ̂, t̂) ∈ H2,α
X,0 × [0, 1) satisfies Γ(ϕ̂, t̂) = 0, then

there exist 0 < ε � 1 and a smooth one-parameter family of functions

{ϕt ; t̂ − ε < t < t̂ + ε} in H2,α
X,0 satisfying ϕ

t̂
= ϕ̂ such that ϕ = ϕt is the

unique solution of (5.1.3) for each t under the condition ‖ϕ − ϕ̂‖C2,α ≤ ε.
In particular, T is an open subset of [0, 1).
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Let 0 ≤ a < b ≤ 1, and let ϕt, a < t ≤ b, be a smooth one-parameter

family of functions in H2,α
X,0 such that, for all a < t ≤ b, we have

(5.2.1) Γ(ϕt, t) = 0.

Then each ϕt automatically belongs to HX . By setting ω(t) := ωϕt as in the

above, we obtain (5.1.4). We further put ψt := ψω(t) and f̃t := f̃ω(t), where

on the right-hand sides, we use the notation in the introduction and (2.8).

Since Ricσ(ω(t)) = ω(t) +
√
−1 ∂∂̄f̃t, and since ω(t) = ω0 +

√
−1 ∂∂̄ϕt, the

identity (5.1.4) implies

(5.2.2) f̃t = −(1 − t)ϕt + Ct,

where Ct is a real constant depending on t. By (5.1.1) and (a) of Lemma 2.4,

we have ∂A(ϕt)/∂t =
{

�̃ω(t)ϕ̇t
}

A(ϕt). By differentiating (5.2.1) with re-

spect to t, we obtain

(5.2.3) �̃ω(t)ϕ̇t + tϕ̇t + ϕt = Ĉt,

for some real constant Ĉt depending on t. By (A.1.1) in Appendix 1 and

by (b) of Proposition A.2 in Appendix 2, we see from (5.2.2) and (5.2.3)

the following:

d

dt
µσ(ω(t)) =

∫

M
(∂̄f̃t, ∂̄ϕ̇t)ω(t)ω̃(t)n = −(1 − t)

∫

M
(∂̄ϕt, ∂̄ϕ̇t)ω(t)ω̃(t)n

= −(1 − t)
d

dt
(Iσ − J σ)(ω0, ω(t)) = (1 − t)

∫

M
ϕt

{

�̃ω(t)ϕ̇t
}

ω̃(t)n

= −(1 − t)

∫

M

{

�̃ω(t)ϕ̇t + tϕ̇t
}{

�̃ω(t)ϕ̇t
}

ω̃(t)n ≤ 0,

where in the last inequality, we apply (a) of Fact 2.7 to ω(t) ∈ K(t)
X . Thus,

for any 0 ≤ a < b ≤ 1, we obtain

Theorem 5.2. Along any smooth one-parameter family ϕt, a < t ≤
b, of solutions in HX of (5.2.1), the corresponding ω(t) := ωϕt = ω0 +√
−1 ∂∂̄ϕt satisfies

d

dt
µσ(ω(t)) = −(1 − t)

d

dt
(Iσ − Jσ)(ω0, ω(t)) ≤ 0, a < t ≤ b.
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Given an element θ ∈ EσX , we consider the set Tθ of all τ ∈ [0, 1] such

that there exists a smooth one-parameter family of solutions

(5.3.1) ϕt ∈ H2,α
X,0, τ ≤ t ≤ 1,

of (5.2.1) satisfying ωϕ1 = θ. Put τ∞ := inf Tθ. Later in Theorem 5.6, we

see that a slight perturbation of ω0 allows us to assume τ∞ < 1. Under this

assumption, we obtain

Lemma 5.3.2. Suppose that σ is convex. Then we have the following :

(a) τ∞ = 0.

(b) If σ is furthermore strictly convex, then 0 belongs to Tθ.

Proof. Take a sequence S := {τj}∞j=1 of points in the open interval
(τ∞, 1] such that τj converges to τ∞ as j → ∞. Let

ϕτj ∈ H2,α
X,0, j = 1, 2, . . . ,

be the corresponding solutions of (5.2.1) at t = τj. For simplicity, ϕτj is

denoted by ϕj , and we put ω(j) := ω0 +
√
−1 ∂∂̄ϕj . In view of Theorem 5.1,

the proof is reduced to showing that some subsequence of S is convergent
in C2,α(M)R assuming that either τ∞ is positive or σ is strictly convex. By
Theorem 5.2,

(5.3.3) (Iσ − J σ)(ω0, ω
(j)) ≤ C3, for all j = 1, 2, . . . ,

where C3 := (Iσ −J σ)(ω0, θ). Since ω(j) belongs to K(τj)
X , and since τj ≤ 1

for all j, the combination of (1.6) and (5.3.3) implies

|τj Oscϕj | ≤ τjC0(Iσ − J σ)(ω0, ω
(j)) + C(τj)

≤ C0C3τj + C(τj) = C0C3τj + C1 + C ′
1τj + C ′′

1 e
C2/τj

≤ C0C3 + C1 + C ′
1 + C ′′

1 e
C2/τj ,

where if σ is strictly convex, we can set C ′′
1 = 0 by Theorem A. Note

that the constant C0, C1, C
′
1, C

′′
1 , C2, C3 are independent of the choice of

j, and that |τj Oscϕj |, j = 1, 2, . . . , are bounded from above by C0C3 +
C1 +C ′

1 +C ′′
1 e
C2/τ∞ or C0C3 + C1 +C ′

1 according as τ∞ is positive or σ is
strictly convex. Hence, in both of these cases, we have a positive constant
C4 independent of j such that

‖τjϕj‖C0(M) ≤ C4,
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since we have ϕj(pj) = 0 at some point pj ∈ M in view of the identity
∫

M ϕjω̃
n
0 = 0. Moreover, for all j,

ω nϕj
= A(ϕj) exp{ψω(j) − ψω0}ω n0

=

(

1

V0

∫

M
exp(−τjϕj + f̃ω0)ω̃

n
0

)−1

exp{−τjϕj + f̃ω0 + ψω(j) − ψω0}ω n0 ,

where |ψω(j) |, j = 1, 2, . . . , on M are bounded from above by

c := max
s∈[`0,`1]

|σ(s)|.

Therefore, we have a positive constant C5 independent of j such that

‖ϕj‖C0(M) ≤ C5, for all j.

Then by standard arguments for complex Monge-Ampère equations (see
for instance [M4]), S is uniformly bounded in Ck,α(M)R for all 0 ≤ k ∈ Z,
and consequently some subsequence of S is convergent in C 2,α(M)R, as
required.

Remark 5.3.4. In (b) of Lemma 5.3.2, even if σ is not strictly convex,
we obtain 0 ∈ Tθ just by the convexity of σ. This can be seen as follows:
For each r ∈ R, we put

σr(s) := σ(s) − r log(s− αX + 1), s ∈ IX ,

where αX and IX are as in the introduction. If r is positive, then σ̈r(s) > 0
for all s ∈ IX , and σr is strictly convex. In the arguments above, replacing

σ by σr, we put ψ
[r]
ω := σr(uω) and ω̃[r] := ω exp(−ψ[r]

ω /n) for all ω ∈ KX .
For each ϕ ∈ H2,α

X,0, we put






















A[r](ϕ) =
(ω̃

[r]
ϕ )n

(ω̃
[r]
0 )n

=
ωnϕ exp(−ψ[r]

ωϕ)

ω n0 exp(−ψ[r]
ω0)

,

ϕ[r] = ϕ− 1

Vr

∫

M
ϕ(ω̃

[r]
0 )n,

where Vr :=
∫

M (ω̃
[r]
0 )n. Put f̃

[r]
ω := fω + ψ

[r]
ω + log

{∫

M (ω̃
[r]
0 )n/

∫

M ω n0
}

for

all ω ∈ KX . Let us define a mapping Γ̃ : H2,α
X,0 × R

2 → C0,α
0 (M)R by

Γ̃(ϕ, t, r) :=
(ω̃

[r]
0 )n

ω̃n0

{

A[r](ϕ)

−
( 1

Vr

∫

M
exp(−tϕ[r] + f̃ [r]

ω0
)(ω̃

[r]
0 )n

)−1
exp(−tϕ[r] + f̃ [r]

ω0
)

}

,
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where (ϕ, t, r) ∈ H2,α
X,0 × R

2. Suppose that Γ̃(ϕ̂, t̂, 0) = 0 for some (ϕ̂, t̂) ∈
H2,α
X,0× [0, 1). Then Γ(ϕ̂, t̂) = 0, and the Fréchet derivative DϕΓ̃ : C2,α

X,0(M)R

→ C0,α
X,0(M)R of Γ̃ with respect to ϕ is written as

(5.3.5) DϕΓ̃|(ϕ,t,r)=(ϕ̂,t̂,0) = DϕΓ|(ϕ,t)=(ϕ̂,t̂),

which is invertible. Hence, in a neighbourhood U of (t̂, 0) in R
2, the solution

ϕ̂ of Γ̃(ϕ, t, r) = 0 at (t, r) = (t̂, 0) extends uniquely to

ϕ̂t,r ∈ C2,α
X,0(M)R, (t, r) ∈ U,

depending on (t, r) continuously and satisfying Γ̃(ϕ̂t,r, t, r) = 0 for all (t, r) ∈
U with ϕ̂

t̂,0
= ϕ̂. As in Theorem 5.6 proved later, a slight perturbation of

ω0 (see (5.5.3)) allows us to assume that, for a sufficiently small δ > 0, a
smooth two-parameter family of functions

(5.3.6) ϕt,r ∈ C2,α
X,0(M)R, (t, r) ∈ [1 − δ, 1] × [0, δ],

exists satisfying θ = ω0 +
√
−1 ∂∂̄ϕ1,0 and Γ̃(ϕt,r, t, r) = 0 for all (t, r) ∈

[1−δ, 1]× [0, δ]. Then by Lemma 5.3.2 and Theorem 5.1, we see that (5.3.6)
uniquely extends to a continuous family, denoted by the same notation, of
functions

(5.3.7) ϕt,r ∈ C2,α
X,0(M)R, (0, 0) 6= (t, r) ∈ [0, 1] × [0, δ],

satisfying Γ̃(ϕt,r, t, r) = 0 for all (0, 0) 6= (t, r) ∈ [0, 1] × [0, δ]. On the other

hand, by Appendix 4, there exists a unique element γr of H2,α
X,0 such that

Ricσr(ωγr
) = ω0.

Then for each r ∈ [0, δ], the equation Γ̃(ϕ, 0, r) = 0 in ϕ ∈ H2,α
X,0 has a

unique solution ϕ = γr. In view of (5.3.7) above, this implies

ϕ0,r = γr, 0 < r ≤ δ.

By (5.3.5) applied to (ϕ̂, t̂) = (γ0, 0), letting δ be smaller if necessary, we see
from the inverse function theorem that the solution ϕ = γr of the equation
Γ̃(ϕ, 0, r) = 0 in ϕ ∈ H2,α

X,0 for 0 ≤ r ≤ δ uniquely extends to a continuous
family of functions

(5.3.8) ϕ′
t,r ∈ C2,α

X,0(M)R, (t, r) ∈ [0, δ] × [0, δ],
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satisfying ϕ′
0,r = γr for 0 ≤ r ≤ δ and Γ̃(ϕ′

t,r, t, r) = 0 for all (t, r) ∈
[0, δ] × [0, δ]. Comparing (5.3.7) and (5.3.8), we obtain ϕt,r = ϕ′

t,r for all
(0, 0) 6= (t, r) ∈ [0, δ] × [0, δ]. In particular, ϕt,0 (= ϕ′

t,0) converges to γ0

(= ϕ′
0,0) in C2,α as t tends to 0. Thus, 0 ∈ Tθ.

By combining Lemma 5.3.2 and Remark 5.3.4, we obtain

Theorem 5.3. If σ is convex, then by a slight perturbation of ω0 as in

(5.5.3), we have the situation that 0 belongs to Tθ.

Take an arbitrary Z0(X)-orbit O in EσX , which is a connected compo-

nent of EσX by Proposition A.5 in Appendix 5. Define a nonnegative C∞

function ι : O → R by

(5.4.1) ι(θ) := (Iσ − J σ)(ω0, θ), θ ∈ O.

For ẼσX := {λ ∈ HX ; A(λ) = exp(−λ+f̃0)}, we have a natural identification

ẼσX ' EσX by sending each λ ∈ ẼσX to ωλ ∈ EσX . Then the preimage, denoted

by Õ, of O under the identification ẼσX ' EσX is written as

(5.4.2) Õ = {λ ∈ C2,α(M)R ; A(λ) = exp(−λ+ f̃0) and ωλ ∈ O}.

Moreover, we put OΓ := {λ ∈ H2,α
X,0 ; Γ(λ, 1) = 0 and ωλ ∈ O}. Then OΓ,

O and Õ are identified by

(5.4.3) OΓ ' O ' Õ, λ↔ ωλ ↔ λ+ log

{

1

V0

∫

M
exp(−λ+ f̃ω0)ω̃

n
0

}

.

Theorem 5.4. (a) Assume that σ is convex. Then the function ι :
O → R is a proper map, and hence its absolute minimum is always attained

at some point of the orbit O.

(b) Let kθ be as in (A.5.3) of Appendix 5. By (5.4.3), to each θ ∈ O,

we associate a unique λθ ∈ Õ such that θ = ωλθ
. Then the following are

equivalent :

(i) θ is a critical point for ι;

(ii)
∫

M λθvθ̃
n = 0 for all v ∈ kθ.

Proof of (a). For each positive real number r, we put OΓ
r := {λ ∈

OΓ ; ι(ωλ) ≤ r}. By the same argument as in the proof of Lemma 5.3.2
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(see the arguments after (5.3.3)), there exists a constant C5 = C5(r) > 0
independent of the choice of λ in OΓ

r such that

‖ϕ‖C2,α(M) ≤ C5

holds for all ϕ ∈ OΓ
r , where in this proof we use the inequality ι(ωϕ) ≤ r in

place of (5.3.3). Now, (a) is straightforward.

Proof of (b). Let λ = λ(t), −ε < t < ε, be a smooth one-parameter
family in Õ such that λ(0) = λθ. Then ωλ(0) = θ. In view of (A.1.1) in
Appendix 1,

{

d

dt
ι(ω(t))

}

|t=0

=

∫

M
(∂̄λ(0), ∂̄λ̇(0))θ θ̃

n(5.4.4)

= −
∫

M
λ(0)

(

�̃θλ̇(0)
)

θ̃n =

∫

M
λ(0)λ̇(0)θ̃n,

where we have λ̇(0) ∈ kθ (= Tθ(ẼσX) = Tθ(Õ)) by (A.5.6) and (b) of Propo-
sition A.5 of Appendix 5. The equivalence of (i) and (ii) is now immediate.

We now consider the Hessian of ι : O → R at a critical point θ =

ωλθ
∈ O of ι, where λθ ∈ Õ is as in (b) of Theorem 5.4. Let ϕs,t, (s, t) ∈

[−ε, ε] × [−ε, ε], be a smooth two-parameter family of functions in Õ such

that λθ = ϕ0,0. Put ωs,t := ωϕs,t
. Then

ϕ′ :=
∂ϕs,t
∂s |(s,t)=(0,0)

and ϕ′′ :=
∂ϕs,t
∂t |(s,t)=(0,0)

are regarded as elements in Tθ(O) (= Tθ(EσX)) by the isomorphism Tθ(EσX) ∼=
kθ in (A.5.6) of Appendix 5. By differentiating A(ϕs,t) = exp(−ϕs,t + f̃ω0)

with respect to t, we obtain

(5.5.1) �̃s,t

(

∂ϕs,t
∂t

)

= − ∂ϕs,t
∂t

,

where we put ψs,t := ψωs,t , us,t := uωs,t , �s,t := �ωs,t , �̃s,t := �̃ωs,t for

simplicity. Differentiating (5.5.1) with respect to s at the origin (s, t) =

(0, 0), we obtain

(5.5.2) (∂∂̄ϕ′, ∂∂̄ϕ′′)θ − σ̈(uθ)(X̄ϕ
′)(X̄ϕ′′) = (�̃θ + 1)∂s∂tϕ(0).
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Here, we used the identities �̃s,t = �s,t +
√
−1 σ̇(us,t)X̄ , us,t = uω0 −√

−1 X̄ϕs,t (see (1.3) and (2.5)) and we put

∂s∂tϕ(0) :=

(

∂2ϕs,t
∂s∂t

)

|(s,t)=(0,0)

.

Since �̃θϕ
′ = −ϕ′, by comparing the identity (5.5.2) with (A.3.1) in Ap-

pendix 3 applied to (ω, ζ, v) = (θ, ϕ′, ϕ′′), we obtain

(5.5.3) (�̃θ + 1)(∂ϕ′, ∂ϕ′′)θ = (�̃θ + 1)∂s∂tϕ(0).

Next, we put ιs,t := ι(ωs,t) for simplicity. Then by the same computation

as in (5.4.4), we obtain the identity

∂ιs,t
∂t

=

∫

M
ϕs,t

∂ϕs,t
∂t

ω̃ ns,t.

In view of λθ = ϕ0,0 and (a) of Lemma 2.4, we further differentiate this

with respect to s at the origin (s, t) = (0, 0). Then the Hessian (Hess ι)θ of

ι at θ is given by

(Hess ι)θ(ϕ
′, ϕ′′) =

∂2ιs,t
∂s∂t |(s,t)=(0,0)

(5.5.4)

=

∫

M

{

ϕ′ϕ′′ + λθ∂s∂tϕ(0) + λθϕ
′′(�̃θϕ

′)
}

θ̃n

=

∫

M

{

ϕ′ϕ′′(1 − λθ) + λθ∂s∂tϕ(0)
}

θ̃n.

By (b) of Theorem 5.4 together with (A.5.3) of Appendix 5, we have an

XR-invariant function ξ ∈ C∞(M)R such that λθ = (�̃θ + 1)ξ. As in [BM,

(6.7)], (5.5.4) is rewritten as

(Hess ι)θ(ϕ
′, ϕ′′) =

∫

M

{

ϕ′ϕ′′(1 − λθ) + ξ(�̃θ + 1)∂s∂tϕ(0)
}

θ̃n(5.5.5)

=

∫

M

{

ϕ′ϕ′′(1 − λθ) + ξ(�̃θ + 1)(∂ϕ′, ∂ϕ′′)θ
}

θ̃n (cf. (5.5.3))

=

∫

M
ϕ′ϕ′′θ̃n +

1

2

∫

M
λθ{(�̃θϕ

′)ϕ′′ + ϕ′(�̃θϕ
′′)}θ̃n

+

∫

M
λθ(∂ϕ

′, ∂ϕ′′)θθ̃
n
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=

∫

M
ϕ′ϕ′′θ̃n +

1

2

∫

M
λθ�̃θ(ϕ

′ϕ′′)θ̃n

=

∫

M
ϕ′ϕ′′

(

1 +
1

2
�̃θλθ

)

θ̃n.

We now follows the arguments in [BM, Section 7]. Let 0 < t ≤ 1 and

0 < α < 1. For each nonnegative integer k, let Ck,α
X (M)

R
be the space

of all X
R
-invariant functions in Ck,α(M)R, and consider the set H2,α

X of all

ϕ ∈ C2,α
X (M)R such that ωϕ := ω0 +

√
−1 ∂∂̄ϕ is a positive definite C0,α

form on M . Put

(kθk)
⊥ :=

{

w ∈ Ck,α
X (M)R ;

∫

M
wvθ̃n = 0 for all v ∈ kθ

}

.

We here observe that zθ(X) = kθ
C

by Proposition A.5 in Appendix 5. In

order to solve the equation Γ(ϕ, t) = 0 in ϕ ∈ H2,α
X,0, it suffices to solve the

following equation in γ ∈ H2,α
X :

(5.5.6) A(γ) = exp(−tγ + f̃ω0).

Because any solution γ ∈ Hk,α
X of (5.5.6) allows us to obtain a solution

ϕ ∈ Hk,α
X,0 of the equation Γ(ϕ, t) = 0 by setting ϕ := γ − (1/V0)

∫

M γω̃n0 .

Next, we see that (5.5.6) is further reduced to the equation

(5.5.7) Φ(t, γ) = 0,

where Φ(t, γ) := tγ − f̃ω0 + logA(γ). Note that (kθ2)
⊥ ⊂ (kθ0)

⊥. Let P :

C0,α
X (M)

R
(∼= kθ⊕(kθ0)

⊥) → kθ be the projection to the first factor. For each

γ ∈ H2,α
X , write

γ = λθ + x+ y,

with x := P (γ − λθ) ∈ kθ and y := (1 − P )(γ − λθ) ∈ (kθ2)
⊥. Now, the

equation (5.5.7) is written in the form

PΦ(t, λθ + x+ y) = 0 and Ψ(t, x, y) = 0,

where Ψ : R × kθ × (kθ2)
⊥ → (kθ0)

⊥ is the mapping defined by

Ψ(t, x, y) := (1 − P )Φ(t, λθ + x+ y), (t, x, y) ∈ R × kθ × (kθ2)
⊥.

Then Ψ(1, 0, 0) = 0 and the Fréchet derivative DyΨ|(1,0,0) of Ψ with respect

to y at (t, x, y) = (1, 0, 0) is

(kθ2)
⊥ 3 y′ 7−→ DyΨ|(1,0,0)(y

′) = (�̃θ + 1)y′ ∈ (kθ0)
⊥,
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which is invertible. Hence, the implicit function theorem enables us to ob-

tain a smooth mapping V 3 (t, x) 7→ yt,x ∈ (kθ2)
⊥ of a small neighbourhood

V of (1, 0) in R × kθ to the Banach space (kθ2)
⊥ such that

i) y1,0 = 0,

ii) ‖yt,x‖C2,α ≤ δ on V for some δ > 0, and

iii) Ψ(t, x, y) = 0 (where ‖y‖C2,α ≤ δ) is, as an equation in y ∈ (kθ2)
⊥,

uniquely solvable in the form y = yt,x on U .

The derivative (∂/∂t)yt,x is denoted by ẏt,x for simplicity. Then by differ-

entiating the identity Ψ(t, x, yt,x) = 0 at (t, x) = (1, 0), we obtain

(5.5.8)

{

(�̃θ + 1)(ẏt,x|(1,0)) = −λθ,
(Dxyt,x)|(1,0)(ϕ

′) = 0 for all ϕ′ ∈ kθ,

where (Dxyt,x)|(1,0) : kθ → (kθ2)
⊥ denotes the Fréchet derivative of the

smooth mapping V 3 (t, x) 7→ yt,x ∈ (kθ2)
⊥ with respect to x at (t, x) =

(1, 0). Then the equation (5.5.7), on a small neighbourhood of (t, γ) =

(1, λθ), reduces to

Φ0(t, x) = 0 (with γ = λθ + x+ yt,x),

where we put Φ0(t, x) := PΦ(t, λθ+x+yt,x) for (t, x) ∈ V . Since Φ(1, x) = 0

for all x ∈ Õ, we have Φ0 = 0 on {t = 1}, and hence the mapping

V|{t6=1} 3 (t, x) 7−→ Φ1(t, x) := Φ0(t, x)/(t − 1) ∈ kθ

naturally extends to a smooth map, denoted by the same Φ1, of V to kθ.

In view of the first identity of (5.5.8), we obtain

Φ1(1, 0) = (∂Φ0/∂t)(1, 0) = 0.

Then the Fréchet derivative DxΦ1|(1,0) : kθ → kθ of Φ1 with respect to x at

(t, x) = (1, 0) is given by the following:

Theorem 5.5. By using the notation in Section 2 on the left-hand

side, we have

〈〈DxΦ1|(1,0)(ϕ
′), ϕ′′〉〉

θ̃
= (Hess ι)θ(ϕ

′, ϕ′′), ϕ′, ϕ′′ ∈ kθ.
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Proof. Since P (�̃θ + 1) = 0 on (kθ2)
⊥, the latter identity of (5.5.8)

above together with (1.3) and (2.5) implies

DxΦ1|(1,0)(ϕ
′) = {Dx(∂Φ0/∂t)}|(1,0)(ϕ′)

= ϕ′ − P (∂∂̄ẏt,x|(1,0), ∂∂̄ϕ
′)θ + P{σ̈(uθ)(X̄ϕ

′)X̄ẏt,x|(1,0)}.

Moreover, we observe the first identity of (5.5.8). Then by (A.3.2) in Ap-
pendix 3 applied to (ω, v1, v2, ζ) = (θ, ϕ′′, ϕ′, ẏt,x|(1,0)), we obtain

〈〈DxΦ1|(1,0)(ϕ
′), ϕ′′〉〉

θ̃

=

∫

M

(

ϕ′ − P (∂∂̄ẏt,x|(1,0), ∂∂̄ϕ
′)θ + P{σ̈(uθ)(X̄ϕ

′)X̄ẏt,x|(1,0)}
)

ϕ′′θ̃n

=

∫

M

(

ϕ′ϕ′′ − ϕ′′(∂∂̄ẏt,x|(1,0), ∂∂̄ϕ
′)θ + ϕ′′{σ̈(uθ)(X̄ϕ

′)X̄ẏt,x|(1,0)}
)

θ̃n

=

∫

M
{ϕ′ϕ′′ − ϕ′′ϕ′λθ + (∂ϕ′′, ∂ϕ′)θλθ}θ̃n

=

∫

M
{ϕ′ϕ′′(1 − λθ) + (∂ϕ′, ∂ϕ′′)θλθ}θ̃n.

This together with the second equality of (5.5.5) implies the required iden-
tity.

Regarding ω0 as a function in ε, we write

(5.5.1) ω0 = ω0(ε), ε ∈ [0, 1].

Hence, the corresponding ωϕ := ω0 +
√
−1 ∂∂̄ϕ, f̃ω0 , ι, A(ϕ), Γ(t, γ), µσ

and H2,α
X,0 will be written respectively as ωϕ(ε), f̃ω0(ε)

, ιε, Aε(ϕ), Γε(t, γ),

µσε and H2,α
X,0(ε). For ιε at ε = 0, we see by (a) of Theorem 5.4 that the

functional ι0 : O → R takes its absolute minimum at some point θ ∈ O.

Then we have a unique function λθ;0 ∈ C∞(M)R such that θ = ωλθ;0
(0) and

that A0(λθ;0) = exp(−λθ;0 + f̃ω0(0)). Then by (b) of Theorem 5.4,

(5.5.2)

∫

M
λθ;0vθ̃

n = 0 for all v ∈ kθ,

and the bilinear form (Hess ι0)θ : kθ × kθ → R is positive semidefinite. Let

us now perturb ω0(0) by setting

(5.5.3) ω0(ε) := (1 − ε)ω0(0) + εθ = ω0(0) +
√
−1 ∂∂̄(ελθ;0), 0 ≤ ε ≤ 1.
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Let λθ;ε ∈ C∞(M)R be the unique function satisfying θ = ωλθ;ε
(ε) and

Aε(λθ;ε) = −λθ;ε + f̃ω0(ε). By ωλθ;0
(0) = θ = ωλθ;ε

(ε) = ω0(0) +√
−1 ∂∂̄(ελθ;0) +

√
−1 ∂∂̄λθ;ε, we have

(5.5.4) λθ;ε = (1 − ε)λθ;0 + Cε for some Cε ∈ R.

Since
∫

M vθ̃n = 0 for all v ∈ kθ, (5.5.2) and (5.5.4) aboved imply
∫

M λθ;εvθ̃
n = 0 for all v ∈ kθ. Hence by (b) of Theorem 5.4, it follows

that

(5.5.5) θ is a critical point for ιε : O → R.

Let 0 < ε� 1. For all 0 6= v ∈ kθ,

(Hess ιε)θ(v, v) =

∫

M
v2

(

1 +
1

2
�̃θλθ;ε

)

θ̃n (cf. (5.5.5))

= (1 − ε)

∫

M
v2

(

1 +
1

2
�̃θλθ;0

)

θ̃n + ε

∫

M
v2θ̃n (cf. (5.5.4))

= (1 − ε)(Hess ι0)θ(v, v) + ε

∫

M
v2θ̃n > 0.

Then for such a ω0 = ω0(ε) with ε fixed, Theorem 5.5 shows thatDxΦ1|(1,0) :

kθ → kθ is invertible. Now by the implicit function theorem, the equation

Φ1(t, x) = 0 in x ∈ kθ is uniquely solvable in a small neighbourhood of

(t, x) = (1, 0) to produce a smooth curve x(t), 1− δ ≤ t ≤ 1, in kθ for some

0 < δ � 1 such that

x(1) = 0 and Φ1(t, x(t)) = 0 (1 − δ ≤ t ≤ 1).

Replacing δ > 0 by a smaller number if necessary, we obtain Φ(t, λθ;ε +

x(t) + yt,x(t)) = 0 for 1 − δ ≤ t ≤ 1. In view of the reduction to (5.5.6) and

(5.5.7), we obtain

Theorem 5.6. For each Z0(X)-orbit O in EσX , let θ be a point on O

at which ι in (5.4.1) takes its absolute minimum. Then replacing ω0 by

(1 − ε)ω0 + εθ for some 0 < ε � 1, we have a 0 < δ � 1 such that there

exists a smooth one-parameter family of functions {ϕt ; 1 − δ ≤ t ≤ 1} in

H2,α
X,0 satisfying ωϕ1 = θ and Γ(t, ϕt) = 0 for all t ∈ [1 − δ, 1].
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Proof of Theorem C. Let O′ and O′′ be Z0(X)-orbits in EσX . We con-
sider the nonnegative function ι : KX → R defined by

ι(ω) := (Iσ − J σ)(ω0, ω), ω ∈ KX .

The restrictions of ι to O′ and O′′ are denoted by ι′ : O′ → R and ι′′ :
O′′ → R, respectively. We follow the arguments in [BM, (8.2)]. The proof
is divided into three steps.

Step 1. In view of Theorem 5.6, by perturbing ω0 if necessary, we may
assume that the function ι′ is critical at some θ′ ∈ O′ with positive definite
Hessian. Next by (a) of Theorem 5.4, the function ι′′ takes its absolute
minimum at some point θ′′ ∈ O′′. For 0 < ε � 1, we define a nonnegative
function ιε on KX by

ιε(ω) := (Iσ − J σ)(ω0(ε), ω), ω ∈ KX .

Let ι′ε : O′ → R and ι′′ε : O′′ → R be the restrictions of the function ιε to
O′ and O′′, respectively. Put ω0(ε) := (1 − ε)ω0 + εθ′′. Then by (5.5.5),
the function ι′′ε is critical at θ′′ with positive definite Hessian. Moreover,
by ε � 1, the restriction ι′ε takes its local minimum with positive definite
Hessian at some point θ′ε of O′ near θ′. Hence, replacing ω0 by ω0(ε), we
may assume from the begining that both ι′ : O′ → R and ι′′ : O′′ → R have
critical points with positive definite Hessian. Therefore by Theorem 5.6,
for some 0 < δ � 1, we have smooth one-parameter families of functions
{ϕ′

t ; 1−δ ≤ t ≤ 1} and {ϕ′′
t ; 1−δ ≤ t ≤ 1} in H2,α

X,0 satisfying the following
conditions:

Γ(t, ϕ′
t) = Γ(t, ϕ′′

t ) = 0 for all t ∈ [1 − δ, 1];(5.7.1)

lim
t→1

ωϕ′
t
= ωϕ′

1
∈ O′ and lim

t→1
ωϕ′′

t
= ωϕ′′

1
∈ O′′.(5.7.2)

Then by Theorem 5.3, these extend to smooth one-parameter families of
functions {ϕ′

t ; 0 ≤ t ≤ 1} and {ϕ′′
t ; 0 ≤ t ≤ 1} in H2,α

X,0 satisfying the
equalities in (5.7.1) for all t ∈ [0, 1].

Step 2. Appendix 4 shows that ϕ0 ∈ H2,α
X,0 satisfying the equation

Γ(ϕ0, 0) = 0 is unique. Hence, by Theorem 5.3 together with Step 1, the
local uniqueness in Theorem 5.1 implies the uniqueness of a smooth one-
parameter family of functions

{ϕt ; 0 ≤ t < 1}
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in H2,α
X,0 satisfying Γ(ϕt, t) = 0 for all 0 ≤ t < 1. In particular, we obtain

ϕ′
t = ϕ′′

t for all 0 ≤ t < 1. This together with (5.7.2) implies O′ = O′′, as
required.

§6. Corollaries of Theorem C

Throughout this section, we assume that σ is convex. Let µσ : KX → R

be the function defined in Appendix 2. Then by the arguments in [BM] and

[Ba], we obtain the following corollaries of Theorem C:

Corollary D. If EσX 6= ∅, then the function µσ : KX → R takes its

absolute minimum exactly on EσX .

Corollary E. If EσX 6= ∅, then for any, possibly non-connected, com-

pact subgroup H of Z(X), there exists an H-invariant metric ω in E σX .

Proof of Corollary D. For an arbitrary element η of KX , we have a
unique element η′ of KX such that η = Ricσ(η′) (see for instance [M4] and
Appendix 4). Put

ω0(0) = η

by the notation in (5.5.1). Choosing a Z0(X)-orbit O in EσX , let θ be a point
at which ι : O → R in (5.4.1) takes its absolute minimum. For 0 < ε � 1,
we perturb η = ω0(0) by

ω0(ε) := (1 − ε)η + εθ

as in (5.5.3). Then by Theorem 5.3 together with Theorem 5.6, we have
a smooth one-parameter family of functions {ϕt;ε ; 0 ≤ t ≤ 1} in H2,α

X,0(ε)
satisfying

ω(1; ε) = θ and Γε(t, ϕt;ε) = 0, 0 ≤ t ≤ 1,

where Γε and H2,α
X,0(ε) are as in the arguments immediately after (5.5.1), and

for simplicity we put ω(t; ε) := ωϕt,ε for all 0 ≤ t ≤ 1. Now by Theorem 5.2,

(6.1) Mσ(ω(0; ε), θ) ≤ 0,

where Mσ is as in Appendix 2. We next observe that Ricσ(η′) = η = ω0(0),
and that Ricσ(ω(0; ε)) = ω0(ε). Let ε→ 0. Since ω0(ε) → ω0(0) in C0,α, it
follows that ω(0; ε) → η′ in C2,α. Hence, (6.1) implies

(6.2) Mσ(η′, θ) ≤ 0, i.e., Bσ ≤ µσ(η′) for all η ∈ KX ,
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where we put Bσ := µσ(θ). On the other hand, by Theorem C and (a) of
Proposition A.2 in Appendix 2, the function µσ takes a constant value Bσ
on EσX . Then by Lemma 6.3 below, we have the inequality Bσ ≤ µσ(η′) ≤
µσ(η), and the equality Bσ = µσ(η) holds if and only if η ∈ EσX , as required.

Lemma 6.3. (cf. [Ba] for Kähler-Einstein cases) For each ω ∈ KX , let

ω′ be the element of KX such that Ricσ(ω′) = ω. Then the inequality

µσ(ω′) ≤ µσ(ω) holds, and the equality µσ(ω′) = µσ(ω) holds if and only if

ω′ = ω, i.e., ω ∈ EσX .

Proof. Put ω0 := ω. For ct := log V0 − log
{∫

M exp(tf̃ω0)ω̃
n
0

}

, let

ϕt ∈ H2,α
X,0 denote the solution (see for instance [M4]) of the equation:

(6.4) A(ϕt) = exp(tf̃ω0 + ct), 0 ≤ t ≤ 1.

For simplicity, we put ω(t) := ωϕt and �̃t := �̃ω(t). Then ω(0) = ω0 =

ω. Differentiating (6.4) with respect to t, we obtain �̃tϕ̇t = f̃ω0 + ċt.
Next by taking ∂̄∂ of both sides of (6.4), we see that Ricσ(ω(t)) − ω(t) =√
−1 ∂∂̄{(1 − t)f̃ω0 − ϕt}. Therefore,

d

dt
µσ(ω(t)) = −

∫

M
ϕ̇t�̃t{(1 − t)f̃ω0 − ϕt}ω̃(t)n

= −(1 − t)

∫

M
(�̃tϕ̇t)

2ω̃(t)n +

∫

M
ϕ̇t(�̃tϕt)ω̃(t)n

≤ − d

dt
{(Iσ − J σ)(ω(0), ω(t))},

where ω̃(t) is as in (2.3). Thus, by ω(0) = ω and ω(1) = ω ′ (cf. Appendix 4),
we obtain µσ(ω′) − µσ(ω) ≤ −(Iσ −J σ)(ω, ω′) ≤ 0, and µσ(ω′) = µσ(ω) if
and only if ω′ = ω.

We consider an arbitrary smooth path Λ = {ωλt
; a ≤ t ≤ b} sitting in

EσX , where {λt ; a ≤ t ≤ b} is the corresponding smooth path in C∞(M)R

such that
∫

M λ̇tω̃
n
λt

= 0 for all t. Then the length L(Λ) of the path Λ in EσX
is defined by

L(Λ) :=

∫ b

a

(
∫

M
λ̇ 2
t ω̃

n
λt

)1/2

dt.

This naturally defines a Riemannian metric on EσX . Let θ ∈ EσX . Then by

the notation in Appendix 5, the identity component Z 0(X) of Z(X) (see
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also Section 1) is nothing but the complexification KC of K in G (cf. (a) of

Proposition A.5). Then we have:

Proposition 6.5. If EσX 6= ∅, then Z(X) acts isometrically on EσX ,

and in particular, EσX is isometric to the Riemannian symmetric space

KC/K endowed with a suitable metric.

Proof. Note that EσX ∼= Z0(X)/K = KC/K by Theorem C. Then it
suffices to show that Z(M) acts isometrically on EσX . Let g ∈ Z(M), and
we can write g∗ω0 = ωϕg for some ϕg ∈ C∞(M)R. For a smooth path Λ in
EσX as above, we have g∗ωλt

= ωξt for all t, where ξt := ϕg + g∗λt. In view
of g∗ω̃λt

= ω̃ξt , we obtain

L(g∗Λ) =

∫ b

a

(
∫

M
ξ̇ 2
t ω̃

n
ξt

)1/2

dt =

∫ b

a

(
∫

M
g∗λ̇ 2

t g
∗ω̃ nλt

)1/2

dt = L(Λ),

as required.

Proof of Corollary E. We follow the arguments in [BM]. By Proposi-
tion 6.5, EσX is isometric to the Riemannian symmetric space KC/K without
compact factors. Hence, EσX is a simply connected Riemannian manifold
with nonpositive sectional curvature. Since the compact group H acts iso-
metrically on EσX , the action has a fixed point in EσX , as required.

Appendix 1. Inequalities between Aubin’s functionals

For σ ∈ C∞(IX)
R

as in the introduction, the purpose of this appendix

is to establish inequalities between multiplier Hermitian analogues I σ :

KX × KX → R and J σ : KX × KX → R of Aubin’s functionals (cf. [A1],

[BM], [T1]). Let ω′, ω′′ ∈ KX . In view of (1.1), we can write ω′ := ωϕ′ and

ω′′ := ωϕ′′ for some ϕ′, ϕ′′ ∈ HX . Then by using the notation in (1.4), we

define Iσ and the difference Iσ − J σ by

(A.1.1)















Iσ(ω′, ω′′) :=

∫

M
(ϕ′′ − ϕ′)

{

(ω̃′)n − (ω̃′′)n
}

,

(Iσ − J σ)(ω′, ω′′) :=

∫ b

a

{
∫

M
(∂̄ϕt, ∂̄ϕ̇t)ω(t)ω̃(t)n

}

dt,

where φ := {ϕt ; a ≤ t ≤ b} is an arbitrary smooth path in HX satisfying

the equalities ϕa = 0, ϕb = ϕ′′−ϕ′ and ω(t) = ω′ +
√
−1 ∂∂̄ϕt for all t with

a ≤ t ≤ b.
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Claim. (Iσ−J σ)(ω′, ω′′) defined in the second line of (A.1.1) depends

only on (ω′, ω′′), and is independent of the choice of the path φ.

Proof. In view of (a) of Lemma 2.4 and the first line of (A.1.1), by
using the notation in (2.3), we obtain

(A.1.2)
d

dt
Iσ(ω′, ω(t)) =

∫

M
ϕ̇t{(ω̃′)n − ω̃(t)n} +

∫

M
(∂̄ϕt, ∂̄ϕ̇t)ω(t)ω̃(t)n,

Hence, it suffices to show that the integral
∫ b
a

(∫

M ϕ̇t{(ω̃′)n − ω̃(t)n}
)

dt is
independent of the choice of the path φ above. Let

[0, 1] × [a, b] 3 (s, t) 7−→ ϕs,t ∈ C∞(M)R

be a smooth 2-parameter family of functions in C∞(M)R such that ωϕs,t ∈
KX for all (s, t). For such a family ϕ = ϕs,t of functions, we consider the
1-form

Θ :=

(
∫

M

∂ϕ

∂s

{

(ω̃′)n − ω̃ n
ϕ

}

)

ds+

(
∫

M

∂ϕ

∂t

{

(ω̃′)n − ω̃ n
ϕ

}

)

dt

on [0, 1] × [a, b]. In view of (2.2) and (2.5),

dΘ = ds ∧ dt
∫

M

{

∂ϕ

∂s

∂

∂t

(

ω̃ nϕ
)

− ∂ϕ

∂t

∂

∂s

(

ω̃ nϕ
)

}

= ds ∧ dt
∫

M

{

∂ϕ

∂s

(

�̃ωϕ

∂ϕ

∂t

)

− ∂ϕ

∂t

(

�̃ωϕ

∂ϕ

∂s

)

}

ω̃ nϕ = 0,

and this implies the required independence.

Next, take the infinitesimal form of the second line of (A.1.1) with

respect to t, and subtract it from (A.1.2). Then by integration,

(A.1.3) J σ(ω′, ω′′) =

∫ b

a

(
∫

M
ϕ̇t

{

(ω̃′)n − ω̃(t)n
}

)

dt

for ω(t) and φ as above. In (A.1.1) and (A.1.3), we choose φ such that

ϕt := tϕ̂, 0 ≤ t ≤ 1, where a = 0, b = 1 and ϕ̂ := ϕ′′ − ϕ′. Then

(A.1.4)



































Iσ(ω′, ω′′) = f(1), J σ(ω′, ω′′) =

∫ 1

0
f(t) dt,

(Iσ − J σ)(ω′, ω′′) =

∫ 1

0
{f(1) − f(t)} dt,

(Iσ − J σ)(ω′, ω′′) =

∫ 1

0

{
∫

M
t(∂̄ϕ̂, ∂̄ϕ̂)ω(t)ω̃(t)n

}

dt ≥ 0,
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where f = f(t) is defined by

f(t) :=

∫

M
ϕ̂
{

(ω̃′)n − ω̃(t)n
}

= t−1Iσ(ω′, ω(t))

= t−1Iσ(ω′, ω′ + t(ω′′ − ω′)).

In the last inequality of (A.1.4), we easily see that (Iσ − J σ)(ω′, ω′′) = 0

if and only if ω′ coincides with ω′′. Let k be a nonnegative real number.

Replacing σ ∈ C∞(IX)
R

by kσ ∈ C∞(IX)
R
, we have functionals J kσ :

KX × KX → R and Ikσ : KX × KX → R. For instance, if k = 0, then Ikσ
and J kσ are nothing but the restriction to KX×KX of the ordinary Aubin’s

functional I and J . Put c := maxs∈IX |σ(s)| as in the introduction. Then

by the last line of (A.1.4), we can easily compare Ikσ − J kσ and Iσ − J σ

as follows:

Lemma A.1.5. For all ω′, ω′′ ∈ KX , using the notation in (1.2), we

have the inequalities e−|k−1|c(Iσ − J σ)(ω′, ω′′) ≤ (Ikσ − J kσ)(ω′, ω′′) ≤
e|k−1|c(Iσ − J σ)(ω′, ω′′).

Put bσ := (βX −αX)maxs∈IX |σ̇(s)| > 0. To each positive real number

m > 0, we associate a function qm = qm(t) on the closed interval [0, 1] by

setting

qm(t) := 1 − (1 − t)m+1, 0 ≤ t ≤ 1.

Lemma A.1.6. If m := n− 1 + bσ, then f(t) ≤ f(1)qm(t) for all 0 ≤
t ≤ 1,

Proof. We may assume that ϕ̂ is nonconstant. For ω(t) = ω ′ +
t
√
−1 ∂∂̄ϕ̂, we write the function ψω(t) just as ψ(t) for simplicity. By dif-

ferentiation, the definition of f(t) yields

ḟ(t) = −
∫

M
ϕ̂
(

�̃ω(t) ϕ̂
)

ω̃(t)n =

∫

M
(∂̄ϕ̂, ∂̄ϕ̂)ω(t)ω̃(t)n

= n
√
−1

∫

M
(∂ϕ̂ ∧ ∂̄ϕ̂)e−ψ(t)ω(t)n−1 > 0,

and by f(0) = 0, we have f(t) > 0 for all 0 < t ≤ 1. Differentiate the
equality just above with respect to t. Then by uω(t) = uω′ + t

√
−1Xϕ̂ and

ψ̇(t) =
√
−1 σ̇(uω)Xϕ̂,

f̈(t) = n
√
−1

∫

M
∂ϕ̂ ∧ ∂̄ϕ̂

{

−ω(t)ψ̇(t) + (n− 1)
√
−1 ∂∂̄ϕ̂

}

e−ψ(t)ω(t)n−2
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= n
√
−1

∫

M
∂ϕ̂ ∧ ∂̄ϕ̂

∧
{

−
√
−1ω(t)σ̇(uω(t))Xϕ̂+ (n− 1)

√
−1 ∂∂̄ϕ̂

}

e−ψ(t)ω(t)n−2.

Now by maxM |Xϕ̂| ≤ maxM |uω(1) − uω(0)| ≤ βX − αX , we have

max
M

|σ̇(uω(t))Xϕ̂| ≤ bσ

for all 0 ≤ t ≤ 1. By (1 − t)
√
−1 ∂∂̄ϕ̂+ ω(t) = ω′′ > 0, we further obtain

(1 − t)
{

−
√
−1ω(t)σ̇(uω(t))Xϕ̂ + (n− 1)

√
−1 ∂∂̄ϕ̂

}

+mω(t) > 0

for all 0 ≤ t ≤ 1. Hence,

(1 − t)f̈(t) +mḟ(t) > 0, 0 ≤ t ≤ 1.

This implies (d/dt)(log ḟ(t)) > −m/(1− t) = (d/dt)(log q̇(t)) for 0 ≤ t < 1,
where we put q(t) := f(1)qm(t) for simplicity. Hence, ḟ(t)/q̇(t) is monotone
increasing for 0 ≤ t < 1, while we have both ḟ(1) > 0 = q̇(1) and f(1) =
q(1). Therefore, if there were t0 ∈ (0, 1) such that f(t0) = q(t0), then in
view of the behaviour of the curve {(f(t), q(t)) ; 0 ≤ t ≤ 1}, it would follow
that ḟ(t0) < q̇(t0) in contradiction to f(0) = 0 = q(0). We now conclude
that f(t) ≤ q(t) for all 0 ≤ t ≤ 1, as required.

Remark A.1.7. If σ(s) = − log(s+ C), s ∈ IX , for some real constant
C > −αX , then we obtain f(t) ≤ f(1)qn(t) for all 0 ≤ t ≤ 1 as follows: For
such a function σ, we have

e−ψω(t) = uω′ + t
√
−1Xϕ̂+ C and − σ̇(uω(t))e

−ψω(t) = 1,

and −(1 − t)
√
−1 σ̇(uω(t))e

−ψω(t)Xϕ̂ + e−ψω(t) = uω′ +
√
−1Xϕ̂ + C =

e−ψω′′ > 0 follows. Hence, in view of (1 − t)
√
−1 ∂∂̄ϕ̂ + ω(t) = ω′′ > 0,

we obtain

(1 − t)
{

−
√
−1ω(t)σ̇(uω(t))Xϕ̂ + (n− 1)

√
−1 ∂∂̄ϕ̂

}

+ nω(t) > 0.

Then (1 − t)f̈(t) + nḟ(t) > 0 for all 0 ≤ t ≤ 1. Finally, the same argument
as in the above proof of Lemma A.1.6 yields the required inequality.

In the definition of f(t), since ω(1) = ω ′′, we obtain

f(1) − f(t) =

∫

M
(−ϕ̂){(ω̃′′)n − ω̃(t)n},
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where ω(t) = ω′′ + (1 − t) ∂∂̄ (−ϕ̂). Replace 1 − t by t. Then by (A.1.3),

the right-hand side of the middle line of (A.1.4) is regarded as J σ(ω′′, ω′).

Hence,

(A.1.8) J σ(ω′, ω′′)+J σ(ω′′, ω′) = Iσ(ω′, ω′′) = Iσ(ω′′, ω′), ω′, ω′′ ∈ KX .

By Lemma A.1.6, we have f(1) − f(t) ≥ f(1)(1 − qm(t)) for all 0 ≤ t ≤ 1.

Integrating this inequality over [0,1], we see that

(Iσ −J σ)(ω′, ω′′) ≥ f(1)

∫ 1

0
(1 − qm(t)) dt

= (m+ 2)−1f(1) = (m+ 2)−1Iσ(ω′, ω′′).

Hence, by (A.1.8), we obtain the following fundamental inequalities between

the multiplier Hermitian analogues of Aubin’s functionals:

Proposition A.1. 0 ≤ Iσ(ω′, ω′′) ≤ (m + 2)(Iσ − J σ)(ω′, ω′′) ≤
(m+ 1)Iσ(ω′, ω′′) for all ω′, ω′′ ∈ KX , where m := n− 1 + bσ.

Remark A.1.9. Suppose that σ(s) = − log(s+C), s ∈ IX , for some real
constant C > −αX . Then by Remark A.1.7, we can improve the estimate
as follows:

0 ≤ Iσ(ω′, ω′′) ≤ (n+ 2)(Iσ −J σ)(ω′, ω′′) ≤ (n+ 1)Iσ(ω′, ω′′).

Appendix 2. K-energy maps for multiplier Hermitian metrics

In this appendix, we shall define a multiplier Hermitian analogue µσ :

KX → R of the K-energy map, where the Kähler class of K is assumed to be

2πc1(M)R. As in (2.8) in Section 2, we have functions f̃ω ∈ KX , ω ∈ KX ,

such that

(A.2.1)







Ricσ(ω) − ω =
√
−1 ∂∂̄f̃ω;

f̃ω := fω + ψω + log
(

R

M
ω̃ n

0
R

M
ω n

0

)

= fω + σ(uω) + log
(

R

M
ω̃ n

0
R

M
ω n

0

)

,

where fω is as in (2.8). For ω′ and ω′′ in KX , let {ϕt ; a ≤ t ≤ b} be an

arbitrary smooth path in HX such that ω(a) = ω′ and ω(b) = ω′′, where

we put

(A.2.2) ω(t) := ωϕt = ω0 +
√
−1 ∂∂̄ϕt, a ≤ t ≤ b.
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Lemma A.2.3. In the below, we use the notation (1.4), and in par-

ticular, ω̃(t) is as in (2.3). Then the integral M σ(ω′, ω′′) defined below

depends only on the pair (ω′, ω′′), and is independent of the choice of the

path {ϕt ; a ≤ t ≤ b} in HX :

Mσ(ω′, ω′′) :=

∫ b

a

{
∫

M
(∂̄f̃ω(t), ∂̄ϕ̇t)ω(t)ω̃(t)n

}

= −
∫ b

a

{
∫

M
f̃ηt

(

�̃ω(t)ϕ̇t
)

ω̃(t)n
}

.

Proof. Let [0, 1]× [a, b] 3 (s, t) 7→ ϕs,t ∈ HX be a smooth 2-parameter
family of functions in HX . Then ηs,t := ωϕs,t sits in KX for all (s, t). For

simplicity, fηs,t , f̃ηs,t , ψηs,t , uηs,t , �ηs,t , �̃ηs,t are denoted by fs,t, f̃s,t, ψs,t,

us,t, �s,t, �̃s,t, respectively. We define

Θ :=

{
∫

M
f̃s,t

(

�̃s,t∂sϕ
)

ω̃ ns,t

}

ds+

{
∫

M
f̃s,t

(

�̃s,t∂tϕ
)

ω̃ ns,t

}

dt,

where ∂sϕ := ∂ϕs,t/∂s and ∂tϕ := ∂ϕs,t/∂t. Then the proof is reduced to

showing dΘ = 0 on [0, 1] × [a, b]. By �̃s,t = �s,t +
√
−1 σ̇(us,t)X̄ and [M5,

(2.6.1)],

∂

∂t

(

�̃s,t∂sϕ
)

− ∂

∂s

(

�̃s,t∂tϕ
)

=
√
−1

∂

∂t

{

σ̇(us,t)X̄(∂sϕ)
}

−
√
−1

∂

∂s

{

σ̇(us,t)X̄(∂tϕ)
}

=
√
−1 σ̈(us,t)

∂us,t
∂t

X̄(∂sϕ) −
√
−1 σ̈(us,t)

∂us,t
∂s

X̄(∂tϕ)

= σ̈(us,t)X̄(∂tϕ)X̄(∂sϕ) − σ̈(us,t)X̄(∂sϕ)X̄(∂tϕ) = 0,

where we used the equality us,t = uω0 −
√
−1 X̄ϕs,t (see Section 2). Hence,

by (∂/∂t)(ω̃ n
s,t) = (�̃s,t∂tϕ)ω̃ n

s,t and (∂/∂s)(ω̃ n
s,t) = (�̃s,t∂sϕ)ω̃ n

s,t, we obtain

(A.2.4) dΘ = ds ∧ dt
∫

M

{

− ∂f̃s,t
∂t

(

�̃s,t∂sϕ
)

+
∂f̃s,t
∂s

(

�̃s,t∂tϕ
)

}

ω̃ ns,t.

On the other hand,

∂fs,t
∂t

= −(�s,t + 1)∂tϕ+C ′
s,t and

∂fs,t
∂s

= −(�s,t + 1)∂sϕ+ C ′′
s,t
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for some real constants C ′
s,t and C ′′

s,t depending only on s and t. Hence, by

ψs,t = σ(us,t) = σ(uω0 −
√
−1 X̄ϕs,t), we see that

(A.2.5)














∂f̃s,t
∂t

= −(�s,t + 1)∂tϕ+
∂ψs,t
∂t

+ C ′
s,t = −(�̃s,t + 1)∂tϕ+ C ′

s,t,

∂f̃s,t
∂s

= −(�s,t + 1)∂sϕ+
∂ψs,t
∂s

+ C ′′
s,t = −(�̃s,t + 1)∂sϕ+ C ′′

s,t.

By (A.2.4) and (A.2.5), we finally obtain the following required identity:

dΘ = ds ∧ dt
∫

M

{

∂tϕ
(

�̃s,t∂sϕ
)

− ∂sϕ
(

�̃s,t∂tϕ
)}

ω̃ ns,t = 0.

By Lemma A.2.3 above, for all ω, ω′, ω′′ ∈ KX , it is easily seen that

Mσ satisfies the 1-cocycle conditions

{

Mσ(ω, ω′) +Mσ(ω′, ω) = 0,

Mσ(ω, ω′) +Mσ(ω′, ω′′) +Mσ(ω′′, ω) = 0.

As a multiplier Hermitian analogue of a K-energy map, we can now define

µσ : KX → R by setting µσ(ω) := Mσ(ω0, ω) for all ω ∈ KX . As in the

introduction, let EσX denote the set of all ω in KX such that Ricσ(ω) = ω.

Then by (A.2.1) and Lemma A.2.3 together with (b) of Lemma 2.9, we

obtain

Proposition A.2. (a) An element ω in KX is a critical point of µσ :
KX → R if and only if ω ∈ EσX , i.e., the function f̃ω defined in (A.2.1) is

zero everywhere on M .

(b) For an arbitrary smooth path {ϕt ; a ≤ t ≤ b} in HX , the one-

parameter family of Kähler forms ω(t), a ≤ t ≤ b, in KX defined by (A.2.2)
satisfies

d

dt
µσ(ω(t)) =

∫

M
(∂̄f̃ω(t), ∂̄ϕ̇t)ω(t)ω̃(t)n, a ≤ t ≤ b.
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Appendix 3. Technical equalities related to the operator �̃ω

In this appendix, related to the operator �̃ω, some technical equalities

analogous to those in [BM, Lemma 2.3] will be given. Note that, by the

notation in (2.6) and Appendix 5, we have the inclusion KerR(�̃ω+1) ⊂ gω

for all ω ∈ EσX . Now, we have:

Proposition A.3. Let ω ∈ EσX and ζ ∈ C∞(M)R. Then for all

v, v1, v2 ∈ Ker
R
(�̃ω + 1),

(A.3.1) �̃ω(∂ζ, ∂v)ω = (∂∂̄ζ, ∂∂̄v)ω + (∂(�̃ωζ), ∂v)ω − σ̈(uω)(X̄ζ)(X̄v).

In particular, (�̃ω + 1)(∂v1, ∂v2)ω = (∂∂̄v1, ∂∂̄v2)ω − σ̈(uω)(X̄v1)(X̄v2) =
(�̃ω + 1)(∂v2, ∂v1)ω, and

∫

M
{v1v2 − (∂v1, ∂v2)ω}{(�̃ω + 1)ζ}ω̃n(A.3.2)

= −
∫

M
v1(∂∂̄ζ, ∂∂̄v2)ωω̃

n +

∫

M
σ̈(uω)v1(X̄ζ)(X̄v2) ω̃

n.

Proof. (A.3.1) follows from (1.3) and [BM, (2.3.1)] in view of the fol-
lowing identities:

(∂{
√
−1 σ̇(uω)X̄ζ}, ∂v)ω −

√
−1 σ̇(uω)X̄(∂ζ, ∂v)ω

= (X̄ζ)σ̈(uω)
√
−1 (∂uω, ∂v)ω = σ̈(uω)(X̄ζ)(X̄v).

For (A.3.2), put ξ := (�̃ω + 1)ζ. Then following [BM, p. 21], by (1.3) and
(1.4), we obtain

∫

M
{v1v2 − (∂v1, ∂v2)ω}ξω̃n = −

∫

M
{v1(�̃ωv2) + (∂v1, ∂v2)ω}ξω̃n

= −
√
−1

∫

M
(v1∂∂̄v2 + ∂v1 ∧ ∂̄v2)ξ ∧ ne−ψωωn−1

+

∫

M
v1(∂ψω , ∂v2)ωξe

−ψωωn

= −
√
−1

∫

M
∂(v1∂̄v2)ξ ∧ ne−ψωωn−1

+
√
−1

∫

M
v1(∂ψω ∧ ∂̄v2)ξ ∧ ne−ψωωn−1

=
√
−1

∫

M
v1∂ξ ∧ ∂̄v2 ∧ ne−ψωωn−1 =

∫

M
v1(∂ξ, ∂v2)ωω̃

n
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=

∫

M
v1(∂(�̃ωζ), ∂v2)ωω̃

n +

∫

M
v1(∂ζ, ∂v2)ωω̃

n.

This together with (A.3.1) above implies the required identity (A.3.2) as
follows:

∫

M
{v1v2 − (∂v1, ∂v2)ω}ξω̃n +

∫

M
(∂∂̄ζ, ∂∂̄v2)ωv1ω̃

n

=

∫

M

{

�̃ω(∂ζ, ∂v2)ω + σ̈(uω)(X̄ζ)(X̄v2)
}

v1ω̃
n +

∫

M
v1(∂ζ, ∂v2)ωω̃

n

=

∫

M
(∂ζ, ∂v2)ω

{

(�̃ω + 1)v1

}

ω̃n +

∫

M
σ̈(uω)v1(X̄ζ)(X̄v2)ω̃

n

=

∫

M
σ̈(uω)v1(X̄ζ)(X̄v2)ω̃

n.

Appendix 4. Uniqueness of solutions for equations of Calabi-

Yau’s type

Fix ω0 ∈ KX and σ ∈ C∞(IX)R as in the introduction, and let V0 be

as in Lemma 2.4. In this appendix, we discuss the following equation of

Calabi-Yau’s type:

(A.4.1) Ricσ(ω) = ω0.

Here, any solution ω of (A.4.1) is required to belong to KX . The purpose

of this appendix is to show the following uniqueness:

Proposition A.4. The equation (A.4.1) has a unique solution ω in

KX .

Before getting into the proof, we give some remark. Let 0 < α < 1,

and we consider the mapping Γ : H2,α
X,0 × R → C0,α

0 (M)
R

defined in (5.1.2)

by

Γ(ϕ, t) := A(ϕ) −
{

1

V0

∫

M
exp(−tϕ+ f̃ω0

)ω̃ n
0

}−1

exp(−tϕ+ f̃ω0
),

where V0 :=
∫

M ω̃n and A(ϕ) := ω̃ n
ϕ /ω̃

n
0 . Note that, if (ϕ, t) ∈ H2,α

X,0 × R

satisfies Γ(ϕ, t) = 0, then ϕ automatically belongs to C∞(M)
R
. Hence,

it is easily seen that the set of the solutions of (A.4.1) and the set of the

solutions of Γ(ϕ, 0) = 0 are identified by

(A.4.2) {ϕ ∈ H2,α
X,0 ; Γ(ϕ, 0) = 0} ' {ω ∈ KX ; Ricσ(ω) = ω0}, ϕ↔ ωϕ.
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Proof of Proposition A.4. By (A.4.2), it suffices to show that ϕ ∈ H2,α
X,0

satisfying Γ(ϕ, 0) = 0 is unique. Suppose that ϕ′, ϕ′′ in H2,α
X,0 satisfy

Γ(ϕ′, 0) = 0 = Γ(ϕ′′, 0).

Since the Fréchet derivatives DϕΓ|(ϕ′,0), DϕΓ|(ϕ′′,0) are invertible (cf.
(5.1.5)), we have smooth one-parameter families {ϕ′

t ; −ε < t ≤ 0},
{ϕ′′

t ; −ε < t ≤ 0} (where 0 < ε � 1) of functions in Hk,α
X,0 satisfying

ϕ′
0 = ϕ′ and ϕ′′

0 = ϕ′′ such that Γ(ϕ′
t, t) = 0 = Γ(ϕ′′

t , t) for all t with
−ε < t ≤ 0. Put

e′t :=
1

V0

∫

M
exp(−tϕ′

t + f̃ω0
)ω̃n0 and e′′t :=

1

V0

∫

M
exp(−tϕ′′

t + f̃ω0)ω̃
n
0 .

For t = 0, (b) of Lemma 2.9 yields e′0 = 1 and e′′0 = 1, and hence we can find
c′t, c

′′
t ∈ R, −ε < t ≤ 0, depending on t continuously such that e′t = exp(tc′t)

and e′′t = exp(tc′′t ) for all t with −ε < t ≤ 0. Then by setting ξ ′t := ϕ′
t + c′t

and ξ′′t := ϕ′′
t + c′′t , we have

(A.4.3) A(ξ′t) = exp(−tξ′t + f̃ω0) and A(ξ′′t ) = exp(−tξ′′t + f̃ω0).

For simplicity, we put ω′
t := ωξ′t and ω′′

t := ωξ′′t (−ε < t ≤ 0). Note that, by

(2.5), ψω′
t

= σ(uω′
t
) = σ(uω0 −

√
−1 X̄ξ′t) and ψω′′

t
= σ(uω0 −

√
−1 X̄ξ′′t ) =

σ(uω′
t
−
√
−1 X̄(ξ′′t −ξ′t)), while A(ξ′′t )/A(ξ′t) = {e−ψω′′

t (ω′′
t )
n}/{e−ψω′

t (ω′
t)
n}.

For each t with −ε < t < 0, let pt be the point on M at which the function
ξ′′t − ξ′t on M takes its maximum. Then by (A.4.3), the maximum principle
shows that

1 ≥ {A(ξ′′t )/A(ξ′t)}(pt) = exp{−t(ξ′′t − ξ′t)(pt)}.
Then (ξ′′t − ξ′t)(p) ≤ (ξ′′t − ξ′t)(pt) ≤ 0 for all p ∈M , i.e., ξ ′′t ≤ ξ′t on M . By
exactly the same argument, we have ξ ′t ≤ ξ′′t on M . Hence, ξ′′t = ξ′t on M
for all t with −ε < t < 0. Let t tend to 0. By passing to the limit, we see
that ξ′′0 = ξ′0, i.e., ϕ′′ − ϕ′ is a constant on M . Then by ϕ′, ϕ′′ ∈ H2,α

X,0, we
immediately obtain ϕ′′ = ϕ′ on M , as required.

Appendix 5. A multiplier Hermitian analogue of Matsushima’s

obstruction

In this appendix, Matsushima’s obstruction [Mat] will be generalized

for multiplier Hermitian metrics of type σ, where σ is an arbitrary real-

valued function on IX . Assuming EσX 6= ∅, let θ ∈ EσX . Write

θ =
√
−1

∑

α,β

g(θ)αβ̄ dz
α ∧ dzβ̄,
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in terms of a system (z1, z2, . . . , zn) of holomorphic local coordinates on M .

Since Ricσ(θ) = θ, the Kähler class of KX is 2πc1(M)
R
. Then by (2.8) and

(a) of Lemma 2.9,

(A.5.1) fθ = −ψθ + C0

for some real constant C0. By [F1, p. 41], gθ in (2.6) coincides with the

kernel KerC(�̃θ + 1) of the operator �̃θ + 1 on C∞(M)
C
, since by (A.5.1),

�̃θ is written in the form

�̃θ = �θ +
∑

α,β

g(θ)β̄α
∂fθ
∂zα

∂

∂zβ̄
.

Lemma A.5.2. The vector space gθ in (2.6) forms a complex Lie al-

gebra in terms of the Poisson bracket by θ, and in particular the C-linear

isomorphism gθ ∼= g in (2.6) is an isomorphism of complex Lie algebras.

Proof. For each v1, v2 ∈ C∞(M)
C
, we consider their Poisson bracket

[v1, v2] ∈ C∞(M)
C

on the Kähler manifold (M, θ) as in [FM]. Let u1, u2 ∈
gθ. Then by gradC

θ [u1, u2] = [gradC
θ u1, grad

C
θ u2], we see that [u1, u2] + k0

belongs to gθ for some constant k0 ∈ C. Hence it suffices to show k0 = 0,
i.e.,

∫

M
[u1, u2]θ̃

n = 0.

Let F : g → C be the Futaki character. Then by [FM, (2.1)] and [M1,
Theorem 2.1], we see that

∫

M (1−efθ )[u1, u2]θ
n = F ([gradC

θ u1, grad
C

θ u2]) =
0. Therefore, in view of (A.5.1), we obtain

∫

M
[u1, u2]θ̃

n = exp(−C0)

∫

M
[u1, u2]e

fθθn = exp(−C0)

∫

M
[u1, u2]θ

n = 0,

as required.

For the centralizer z(X) of X in g, the group Z0(X) in the introduction

is exactly the complex Lie group generated by z(X) in G. Consider the Lie

subalgebra k of z(X) associated to the group K of all isometries in Z 0(X)

on the Kähler manifold (M, θ). Let kC be the complexification of k in the

complex Lie algebra g. Put

(A.5.3)

{

zθ(X) := {u ∈ Ker
C
(�̃θ + 1) ; X

R
u = 0},

kθ := {u ∈ KerR(�̃θ + 1) ; X
R
u = 0},
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where KerR(�̃θ+1) denotes the kernel of the operator (�̃θ+1) on C∞(M)
R
.

Put kθ
C

:= kθ +
√
−1 kθ in C∞(M)

C
. Then by kθ

C
⊂ zθ(X) ⊂ gθ and gθ ∼= g,

we obtain

(A.5.4) kC ⊂ z(X).

Note that Z(X) acts on EσX by Z(X) × EσX 3 (g, θ) 7→ (g−1)∗θ ∈ EσX . Since

the isotropy subgroup of Z0(X) at θ is K, we can write the Z0(X)-orbit O

through θ as

(A.5.5) O ∼= Z0(X)/K,

Let Tθ(EσX) and Tθ(O) denote the tangent spaces at θ of EσX and O, respec-

tively. In view of the homeomorphism ẼσX ' EσX immediately after (5.4.1)

in Section 5, the differentiation of the equation A(ϕ) = exp(−ϕ+ f̃0) with

respect to ϕ yields

(A.5.6)
Tθ(EσX) ∼= kC/k ∼= kθ (= Tθ(ẼσX))
√
−1 ∂∂̄v ↔ [

√
−1 gradC

θ v/2] ↔ v,

where for every γ in kC, we mean by [γ] the natural image of γ under the

projection of kC onto kC/k. On the other hand, by (A.5.5), we have the

isomorphism

(A.5.7) Tθ(O) ∼= z(X)/k.

Since O ⊂ EσX , we have Tθ(O) ⊂ Tθ(EσX). This together with (A.5.4),

(A.5.6) and (A.5.7) implies that z(X) = kC, i.e., Tθ(O) = Tθ(EσX). Thus, we

obtain

Proposition A.5. (a) If EσX 6= ∅, then Z0(X) is a reductive algebraic

group. Actually for an arbitrary θ ∈ EσX , we have z(X) = kC, i.e., zθ(X) =
kθ
C

by the above notation.

(b) If EσX 6= ∅, then each connected component of EσX is a single Z0(X)-
orbit under the natural action of Z0(X) on EσX .

Remark A.5.8. The above arguments are valid also for X = 0. If
X = 0, then (a) of Proposition A.5 is nothing but Matsushima’s theorem
[Mat].
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[L1] A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris, 1958.
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