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CONVERGENCE OF THE ZETA FUNCTIONS OF

PREHOMOGENEOUS VECTOR SPACES

HIROSHI SAITO

Abstract. Let (G, ρ, X) be a prehomogeneous vector space with singular set
S over an algebraic number field F . The main result of this paper is a proof for
the convergence of the zeta fucntions Z(Φ, s) associated with (G, ρ, X) for large
Re s under the assumption that S is a hypersurface. This condition is satisfied
if G is reductive and (G, ρ, X) is regular. When the connected component G0

x of
the stabilizer of a generic point x is semisimple and the group Πx of connected
components of Gx is abelian, a clear estimate of the domain of convergence is
given.

Moreover when S is a hypersurface and the Hasse principle holds for G, it is
shown that the zeta fucntions are sums of (usually infinite) Euler products, the
local components of which are orbital local zeta functions. This result has been
proved in a previous paper by the author under the more restrictive condition
that (G, ρ, X) is irreducible, regular, and reduced, and the zeta function is
absolutely convergent.

§1. Introduction

Let (G, ρ,X) be a prehomogeneous vector space for a connected alge-

braic group G, a vector space X and a rational representation ρ of G on X,

all defined over an algebraic number field F . Then for a closed subset S of

X, X0 = X − S is an orbit of G. For x ∈ X0, let Gx be the stabilizer of x

and G0
x its connected component. Set

X∗(F ) = {x ∈ X0(F ) | X(G0
x)F = {1} },

where X(G0
x) is the group of characters of G0

x and X(G0
x)F is its subset

consisting of elements defined over F . For x ∈ X0, we set Πx = Gx/G
0
x.

Let S1 =
⋃n
i=1 Si be the disjoint union of all F -irreducible hypersurfaces

Si in S and let Pi be an F -irreducible homogeneous polynomial on X which

defines Si. Then Pi is a relative invariant of (G, ρ,X) and the group of F -

rational relative invariants is generated by Pi up to F×. We denote by
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χ1, χ2, . . . , χn the characters of G associated to them. Throughout this

paper, we assume

(1.1) S = S1, X∗(F ) 6= ∅.

Then there exist integers m, d1, d2, . . . , dn satisfying

det ρm = χd11 χ
d2
2 · · ·χ

dn
n

(cf. (3.15)), and we set κi = di/m.

For a Schwartz-Bruhat function Φ ∈ S(X(A)), a zeta function Z(Φ, s)

in s = (s1, s2, . . . , sn) ∈ Cn is defined by

(1.2) Z(Φ, s) =

∫

G(A)/G(F )

n
∏

i=1

|χi(g)|
si

A

∑

x∈X∗(F )

Φ(ρ(g)x)dg.

Here A is the adele ring of F . The purpose of this paper is to prove the

convergence of Z(Φ, s) and an explicit expression of Z(Φ, s) by local orbital

integrals in [Sa1] under a general condition.

On the convergence, we prove

Theorem 1.1. Assume that S is a hypersurface and X ∗(F ) 6= ∅. Then

Z(Φ, s) converges absolutely if Re si is sufficiently large for i = 1, 2, . . . , n.

If we assume more conditions, we can give a clear estimate for the

domain of convergence as follows.

Theorem 1.2. Assume that S is a hypersurface, X ∗(F ) 6= ∅, and that

G0
x is semisimple and Πx is abelian. Then Z(Φ, s) converges absolutely if

Re si > κi for i = 1, 2, . . . , n.

These two theorems are proved in a unified way. The difference is caused

by the fact that in the proof of Theorem 1.1, special values of L-functions

and cardinalities of some algebraic extensions have to be estimated.

As shown in p.600-601 of [Sa1], for example, Z(Φ, s) can be written

as a finite sum of products of Dirichlet series and local zeta functions at

infinite places. These Dirichlet series are also called zeta functions of pre-

homogeneous vector spaces. Our theorems imply also the convergence of

these Dirichlet series.
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The convergence of zeta functions of prehomogeneous vector space was

treated by Sato-Shintani [S-S], Sato [S2], Yukie [Yu1], [Yu2] and Yin [Y]

under restrictive conditions (cf. [S3]). Yukie’s results prove estimates on

theta functions on Siegel sets and give stronger results.

The method of our proof is a modification of that in [S2] based on the

description of orbits in prehomogeneous vector spaces given in [Sa1]. For

Φ ∈ S(X(A)), let

(1.3) Zm(Φ, s) =

∫

X0(A)

n
∏

i=1

|Pi(x)|
si

A
Φ(x)dX

be the multiplicative zeta function associated to Φ. Then it is not difficult

to prove the convergence of Zm(Φ, s)(cf. [O], [S2]). We show that the

convergence of Z(Φ, s) can be reduced to that of Zm(Φ, s). Sato proved the

convergence under the asumption that G0
x is semi-simple and Hx = Gx∩H

is connected for H = GderRu(G)G0
x. The second condition implies that Πx

is abelian and our Theorem 1.2 contains his result.

In Section 5, we assume that the Hasse principle holds for H 1(F,G),

and for Φ =
∏

v Φv we give an expression of Z(Φ, s) as a sum of products

of local integrals of the form

∫

Ov

ε̃v(xv)Φv(xv)

n
∏

i=1

|Pi(xv)|
si−κi
v dXv

as in [Sa1]. Here Ov is a union of G(Fv)-orbits in X0(Fv) for a place v of

F , and ε̃v is a function on Ov .
The idea to apply the method in [Sa1] to the proof of the convergence

of the zeta functions of prehomogeneous vector spaces was suggested by

Professor Fumihiro Sato. I wish to express my sincere thanks to him.

§2. Orbits in prehomegeneous vector spaces

Let F be a field of characteristic 0 and let Γ = Gal(F̄ /F ) with the

algebraic closure F̄ of F . Let (G, ρ,X) be a prehomogeneous vector space

defined over F . We write ρ(g)x = gx for short. Let S, X 0, Gx, G
0
x and

Πx be as in Introduction.

First we recall the results on orbits in prehomogeneous vector space in

[Sa1] with some comments. There we assumed that (G, ρ,X) is regular,

irreducible, and reduced and that Ker ρ = {1}. But the results (2.4) and

(2.5) stated below are valid without these assumptions.
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Let ιx : Gx → G and ι0x : G0
x → G be the inclusions. Then for x ∈ X0(F )

they induce the canonical maps

ιx : H1(F,Gx)→ H1(F,G), ι0x : H1(F,G0
x)→ H1(F,G).

Let Yx = G/G0
x. Then by [Se, Corollary 1 of Proposition 35], we have two

bijections

δx : G(F )\X0(F )→ Ker ιx, δ0x : G(F )\Yx(F )→ Ker ι0x.

From the exact sequence

1 −→ G0
x −→ Gx −→ Πx −→ 1,

we obtain an exact sequence

H1(F,G0
x) −→ H1(F,Gx) −→ H1(F,Πx).

Connecting the maps

X0(F )→ G(F )\X0(F ) ' Ker ιx ↪→ H1(F,Gx)→ H1(F,Πx),

we define a map ϕx of X0(F ) to H1(F,Πx). Define an equivalence relation

∼ in X0(F ) by

a ∼ b⇐⇒ ϕx(a) = ϕx(b)

for a, b ∈ X0(F ). Then this equivalence relation is independent of the

choice of x. For a class α̃ ∈ H1(F,Πx), set

X0(F, α̃) = { a ∈ X0(F ) | ϕx(a) = α̃ }.

Then we have a disjoint union

(2.4) X0(F ) =
⋃

α̃∈H1(F,Πx)

X0(F, α̃).

The set X0(F, α̃) may be empty for some α̃. We note that for a, b ∈
X0(F, α̃), G0

a is an inner form of G0
b(cf. [Sa1, Lemma 1.1]). Hence X(G0

a) '
X(G0

b) as Γ -groups and X∗(F )∩X0(F, α̃) is empty or is equal to X0(F, α̃).

Let a ∈ X0(F, α̃). Then Πa(F ) acts Ya(F ) on the right, and the natural

morphism µa : gG0
a 7−→ ga of Ya to X0 induces a bijection

(2.5) Ya(F )/Πa(F ) ' X0(F, α̃)
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(cf. [Sa1, Lemma 1.1]). We note that µa : Ya → X0 is the normalization of

X0 in F (Ya).

For a ∈ X0(F ), let a = hx with h ∈ G(F̄ ). Then α = (h−1σh) defines

a 1-cocycle with values in Gx. We note that the inner automorphism Inth
of G induces an isomorphism of Yx to Ya which satisfies

Yx
Inth−−−−→ Ya

µx





y





y

µa

X0 h
−−−−→ X0.

We can make Gx act on Yx by the inner action

Intk(gG
0
x) = kgk−1G0

x

for g ∈ G and k ∈ Gx. By this action we can consider the twist α(Yx) of

Yx by α, and we see that α(Yx) ' Ya.

Now let F be an algebraic number field, and let A be the adele ring of

F . Let Σ be the set of all places of F and let Σf and Σ∞ be the subsets of

consisting of all finite and infinite places respcetively. For v ∈ Σ, let Fv be

the completion of F at v, and F̄v the algebraic closure of Fv. For v ∈ Σf ,

let Ov the ring of integers in Fv, pv its maximal ideal and qv = |Ov/pv |.

For a connected algebraic group H defined over F , let τ(H) be the

Tamagawa number of H and let ker1(H) be the cardinality of the kernel of

the Hasse map

H1(F,H) −→
∏

v

H1(Fv,H).

We recall a group A(H) associated to H, which was introduced by Kot-

twitz [K1], [K2], following Borovoi [B]. For a while, F is a field of charac-

teristic 0. Assume H is reductive. Let π1(H̄) be the algebraic fundamental

group of H(cf. [B, 1.4]). We set

A(H) = (π1(H̄)Γ )tor.

Here π1(H̄)Γ is the group of coinvariants of π1(H̄) and A(H) is its subgroup

of torsion elements. When F is an algebraic number field, it is known that

(2.6) |A(H)| = τ(H) ker1(H)
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by Kottwitz [K1, (5.5.1)]. When H is not reductive, we set A(H) =

A(H/Ru(H))). We note that (2.6) is valid also in this case if F is an

algebraic number field.

Let F be an algebraic number field again. For a ∈ X 0(F ), we have a

surjective map

ηa : G(F )\Ya(F ) −→ G(A)\G(A)Ya(F ),

and for zG0
a ∈ Ya(F ), we have (cf. [Sa1, Proposition 1.4])

(2.7) |η−1
a (ηa(zG

0
a))| ≤ ker1(G0

a).

The equality holds if G satisfies the Hasse principle. We note G(A)Ya(F )

is an open subset of Ya(A) since G0
a is connected.

Next for v ∈ Σf , we consider Ov-structure of the relavant varieties,

and describe the orbits G(Ov)\X
0(Ov) via Galois cohomology. Let F ur

v be

the maximal unramified extension of Fv, O
ur
v its ring of integers, kv the

residue field of v and k̄v its algebraic closure. Let Γ urv = Gal(F urv /Fv).

Then Γ urv ' Gal(k̄v/kv) and we identify these two groups.

For x ∈ X0(Fv), let µx : Yx → X0 be as above and consider two other

morphisms

λx : G→ Yx, νx : G→ X0

defined by

g 7→ gG0
x, g 7→ gx.

Then νx = µxλx.

We fix a system of coordinates x1, x2, . . . , xd of X, d = dimX, and

assume that Pi ∈ Ov[X] = Ov[x1, x2, . . . , xd] and Pi 6∈ pv [X] for all i. We

set P =
∏

i Pi. Let X̃0 = SpecOv [X]P and S̃ = SpecOv[X]/(P ). Then

X̃0⊗Ov Fv = X0⊗F Fv and S̃⊗OvFv = S⊗F Fv . Assume x ∈ X̃0(Ov). Here

we see X̃0(Ov) as a subset of X0(Fv). Assume that there exist an affine

group scheme G̃, integral noetherian smooth over Ov such that G̃⊗Ov Fv '
G⊗F Fv, and also assume that the actions of G on X0 is extended to that

of G̃ on X̃0 and the morphism νx is extended to a smooth morphism ν̃x of

G̃ to X0. Let e the unit point of G̃(Ov). Then ν̃x(e) = x. Let be G̃x be the

stabilizer of x.

Let Ỹx is the normalization of X̃0 in the function field F (Yx) of Yx.

Then there exist morphisms λ̃x : G̃→ Ỹx and µ̃ : Ỹx → X̃0 extending λx, µx,

which satisfy ν̃x = µ̃xλ̃x. The morphism µ̃x is finite. Let y = λ̃x(e). Also
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the action of G on Yx and the inner action of Gx are extended to that of

G̃ on Ỹx and the of G̃x on Ỹx. We denote by G̃y the stabilizer of y. For

the object A over Ov, we denote by Ā the object over the spcial point of

Spec(Ov). For the unit element ē, we set x̄ = ν̄x(ē) and ȳ = λ̄x(ē). Then

µ̄x(ȳ) = x̄.

Proposition 2.1. Let the notation be as above. Assume the following

conditions :

(1) Pi ∈ Ov[X], 6∈ pv [X] for all i ;

(2) Ḡ and Ḡy are connected ;

(3) λ̃x and ν̃x are smooth, and µ̃x is étale ;

(4) λ̄x is surjective.

Then one has

(2.8) G̃(Our
v )y = Ỹx(O

ur
v ), G̃(Our

v )x = X̃0(Ourv ).

Proof. First we show G̃(Our
v )y = Ỹx(O

ur
v ). For z ∈ Ỹx(O

ur
v ), let

fz : Spec(Our
v ) → Ỹx the morphism corresponding to z. Then G̃ ×Ỹx

Spec(Our
v ) is smooth over Spec(Our

v ). It is enough to prove that the Our
v -

valued point of this scheme is non-empty. The set of k̄v-valued points of
the special fibre of this scheme is not empty, since λ̄x is surjective. The
assertion follows from this since Our

v is Henselian.
By the assumption (3), µ̄x is surjective, hence ν̄x is also surjective. Since

ν̃x is smooth, we obtain the assertion for X̃0 in the same way as above.

We set G(Our
v ) = G̃(Our

v ), G(Ov) = G̃(Ov), Gx(O
ur
v ) = G̃x(O

ur
v ), etc.

for short.

Corollary 2.2. Under the assumptions in Proposition 2.1, Yx(Ov)
consists of a single G(Ov)-orbit, and there exists a bijection

(2.9) G(Ov)\X
0(Ov) ' H

1(Γ urv , Gx(O
ur
v )).

Proof. From G(Our
v )/Gx(O

ur
v ) = X0(Ourv ), we obtain an exact se-

quence

G(Ov)\X
0(Ov) −→ H1(Γ urv , Gx(O

ur
v )) −→ H1(Γ urv , G(Our

v )).
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We note the first map is injective. We see that this is bijective since
H1(Γ urv , G(Our

v )) = {1}(cf. [P-R, Theorem 6.8′]).

The assertion for Yx follows form the fact that H1(Γ ur, Gy(O
ur
v )) = {1}

in the same way as above.

By the reduction modulo pv, we can define surjective maps

G(Our
v ) −→ Ḡ(k̄v), G(Ov) −→ Ḡ(kv), X

0(Ov)→ X̄0(kv),

etc. The inclusion and the reduction map give rise to a commutative dia-

gram

(2.10)

Ḡ(kv)\X̄
0(kv) ←−−−− G(Ov)\X

0(Ov) −−−−→ G(Fv)\X
0(Fv)





y

'





y

'





y

H1(kv , Ḡx̄) ←−−−− H1(Γ urv , Gx(O
ur
v )) −−−−→ H1(Fv , Gx).

The first vertical map is bijective since Ḡ(k̄v) acts transitively on X̄0(k̄v)

and H1(kv, Ḡ) = {1}. The second vertical map is also bijective as we have

seen in Corollary 2.2. The upper left map is surjective since the reduction

map of X0(Ov) to X̄0(kv) is surjective.

Lemma 2.3. Let Π̃x = Gx(O
ur
v )/Gy(O

ur
v ) and Π̄x = Ḡx(k̄v)/Ḡy(k̄v)

and assume the conditions in Proposition 2.1. Then

Πx ' Π̃x ' Π̄x

as abstract groups. Hence Gal(F̄v/F
ur
v ) acts trivially on Πx, and Π̃x ' Π̄x

as Γ urv -groups.

Proof. The inclusion of Gx(O
ur
v ) into Gx(F̄v) induces an injective ho-

momorphism of Π̃x to Πx(= Gx(F̄v)/G
0
x(F̄v)). On the other hand the re-

duction map induces a surjective homomorphism of Π̃x to Π̄x, since G̃x is
smooth over Spec(Ov) by the condition (3) of Proposition 2.1, and we have
an inequality

|Π̄x| ≤ |Π̃x| ≤ |Πx|.

We note that |Πx| and |Π̄x| are degrees of µx and µ̄x respectively. But µ̃x
is finite étale. Hence we have |Πx| = |Π̄x|. The assertion follows form this.
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Proposition 2.4. Let the notation and the assumptions be as in

Proposition 2.1. Then the reduction map induces a bijection

G(Ov)\X
0(Ov) −→ Ḡ(kv)\X̄

0(kv).

Moreover the inclusion induces an injection

G(Ov)\X
0(Ov) −→ G(Fv)\X

0(Fv),

and ϕx induces an injection

G(Ov)\X
0(Ov) −→ H1(Fv ,Πx).

Proof. By the definition of Πx, Π̃x and Π̄x, we have the following
commutative diagram

(2.11)

H1(kv , Ḡy) ←−−−− H1(Γ urv , Gy(O
ur
v )) −−−−→ H1(Fv, G

0
x)





y





y





y

H1(kv , Ḡx) ←−−−− H1(Γ urv , Gx(O
ur
v )) −−−−→ H1(Fv, Gx)





y





y





y

H1(kv, Π̄x)
∼

←−−−− H1(Γ urv , Π̃x) −−−−→ H1(Fv,Πx).

Here the right horizontal arrows are inflation maps. Since Ḡy is connected,
H1(Γ urv , Gy(O

ur
v )) = H1(kv , Ḡy) = {1} and by the argument of twist,

we see the map of H1(kv, Ḡx) to H1(kv , Π̄x) and that of H1(Γ urv , Gx(O
ur
v ))

to H1(Γ urv , Π̃x) are injective. From this it follows that the map of
H1(Γ urv , Gx(O

ur
v )) to H1(kv , Ḡx) is injective. By (2.10), this map is sur-

jective. From this we conclude that this map is bijective and that the
reduction map of G(Ov)\X

0(Ov) to Ḡ(kv)\X̄
0(kv) is also bijective. This

assertion can be proved also by (2.10) and [B-T, Lemma 2].

By Lemma 2.3, we see that the map

H1(Γ urv , Π̃x) −→ H1(Fv,Πx)

is injective. From this it follows that the map of H 1(Γ urv , Gx(O
ur
v )) to

H1(Fv , Gx) is injective and that the inclusion map of G(Ov)\X
0(Ov) to

G(Fv)\X
0(Fv) is injective. The last assertion follows also from this. This

completes the proof.
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Under the condition of Proposition 2.1, we may and will consider

H1(Γ urv , Gx(O
ur
v )) as a subset of H1(Fv , Gx), also H1(Γ urv , Π̃x) as that of

H1(Fv,Πx) by inflations.

Proposition 2.5. Assume the conditions in Propositiion 2.1. For a ∈
X0(Ov), let a = gx for g ∈ G(Our

v ) and let α̃ be the image in H1(Γ urv , Π̃x)
of the class in H1(Γ urv , Gx(O

ur
v )) of the 1-cocycle α = (g−1σg) of Γ urv . Let

µ̃a : Ỹa → X̃0 be the normalization of X̃0 in the function field Fv(Ya) of Ya,
which is seen as an extension of Fv(X

0) via µa, and set

X0(Ov, α̃) = X0(Ov)
⋂

X0(Fv, α̃).

Then µ̃a induces a covering

Ya(Ov) −→ X0(Ov, α̃)

of degree |Πa(Fv)|, and µ̄a induces a covering

Ȳa(kv) −→ X0(Ov , α̃) mod pv

of degree |Πa(Fv)|.

Proof. We note that X0(Ov, α̃) is a single G(Ov)-orbit by Proposition
2.4. First we prove the assertion for µ̃a.

Let 1̃ be the pointed class in H1(Γ urv , Π̃x). Then µ̃x induces a map

µ̃x : Yx(Ov) −→ X0(Ov , 1̃)

For z ∈ X0(Ov , 1̃), we can choose g ∈ G(Our
v ) so that gx = z and g−1σg ∈

Gy(O
ur
v ) for σ ∈ Γ urv . We see µ̃−1

x (z) = gGx(O
ur
v )y and for h ∈ Gx(O

ur
v ),

ghy ∈ Yx(Ov) if and only if h−1σh ∈ Gy(O
ur
v ) for σ ∈ Γ urv . This shows the

degree of µ̃x is |Π̃
Γur

v
x | = |Πx(Fv)|.

For a ∈ X0(Ov, α̃), let a = gx for g ∈ G(Our
v ), and let α be the 1-cocycle

(g−1σg) of Γ urv in Gx(O
ur
v ). We compare the schemes g ◦ µ̃x : Ỹx → X̃0

and µ̃a : Ỹa → X̃0 over X̃0. If we identify the function fields F ur
v (Yx) and

F urv (Ya) via Intg, they give the normalization of X̃0 in the field F urv (Ya).
Hence there exists an isomorphism Ig over Our

v which allows the commuta-
tive diagram

Ỹx
Ig

−−−−→ Ỹa

µ̃x





y





y

µ̃a

X̃0 g
−−−−→ X̃0
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such that the restriction of Ig to the generic fiber is Intg. Let α(Ỹx) and

α(X̃
0) be the twists of Ỹx and X̃0 by the 1-cocycle α. Then we have

α(Ỹx)
αIg
−−−−→ Ỹa

α(µ̃x)





y





y

µ̃a

α(X̃0)
αg
−−−−→ X̃0,

where αIg and αg are isomorphisms over Ov. The point y ∈ Yx(Ov) is
invariant under the inner action of Gx(O

ur
v ) on Yx(O

ur
v ). Hence y belongs

to α(Ỹx)(Ov) and µ̃a ◦ αIg(y) = a. Since the condition in Proposition 2.1 is
satisfied for a = x, Ỹa(Ov) consists of a single G(Ov)-orbit.

For z ∈ X0(Ov, α̃), let z = hx with h ∈ G(Oun
v ). Noting Πa ' αΠx, we

see that under the bijections

H1(F,Gx) ' H
1(F, αGx) ' H

1(F,Ga)

the 1-cocycle (h−1σh) corresponds to

g(h−1σh(g−1σg)−1)g−1 = (hg−1)−1σ(hg−1),

and we see that ϕa(z) = 1̃. The assertion follows from this in the same way
as above.

The assertion for µ̄a can be deduced easily from the above argument
and Lemma 2.3.

We note that for z ∈ X0(Ov), z ∈ X
0(Ov , α̃) if and only if z mod pv ∈

X0(Ov, α̃) mod pv . This can be seen easily by the proof of Proposition 2.4.

For a set of finite places Σ0 such that Σ \ Σ0 is finite, let OΣ0
be the

ring of Σf \ Σ0-integers in F , that is, the ring consisting of all elements z

of F satisfying z ∈ Ov for all v ∈ Σ0.

In the rest of the paper, we fix x ∈ X∗(F ), and assume the conditions in

Proposition 2.1 are satisfied for each v ∈ Σ0. Namely, we assume that there

exists an affine group scheme G̃, integral noetherian smooth over SpecOΣ0
,

whose fibre at each v ∈ Σ0 is connected. We assume Pi ∈ OΣ0
[X], 6∈ pv [X]

for each v ∈ Σ0. We set X̃0 = SpecOΣ0
[X]P , S̃ = SpecOΣ0

[X]/(P ) for

P =
∏

i Pi, and assume x ∈ X̃0(OΣ0
). The action on G on X0 is extended

to that of G̃ on X̃0, and the morphism νx is extended to a smooth morphism

ν̃x of G̃ to X̃0.
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Let Ỹx be the normalization of X̃0 in F (Yx). The morphism λx is

extended to a smooth morphism of G̃ to Ỹx and µx is extended to an étale

morphism µ̃x of Ỹx to X̃0. Let y = λ̃x(ẽ) for the unit element of G̃(OΣ0
)

and G̃y the stabilizer of y. We assume that the fibres of G̃ and G̃y are

connected and λ̃x is surjective at each v ∈ Σ0.

We also assume the following:

(1) The `-adic Betti numbers of each fibres of S̃ at v ∈ Σ0 are independent

of v;

(2) For v ∈ Σ0, v is unramified in the representations of Gal(F̄ /F ) in

Πx, X(G) and X(G0
x);

(3) For v ∈ Σ0, Npv is prime to |Πx| and to the orders of finite groups in

GLl(Z) for l = rank(X(G0
x));

(4) For v ∈ Σ0, X(G) ' X(Ḡ) as Γ urv -modules, dimRu(Ḡ) is independent

of v, and the exponents of Hder for H = Ḡ/Ru(Ḡ) are given by

a(1)− 1, a(2) − 1, . . . , a(r)− 1, a(i) ≥ 2.;

(5) For v ∈ Σ0, X(G0
x) ' X(Ḡy) as Γ urv -modules, dimRu(Ḡy) is indepen-

dent of v, and the exponents of Hder for H = Ḡy/Ru(Ḡy) are given

by b(1)− 1, b(2) − 1, . . . , b(r′)− 1, b(i) ≥ 2.

We can easily verify there exists Σ0 satisfying these conditions excluding

bad places. For the condition (4) of Proposition 2.1, we refer to [P-R,

Proposition 3.22].

By the conditions (4), (5), we have estimates

r
∏

i=1

(1− q−a(i)v ) ≤ q−dimG
v Lv(1, χX(G))|Ḡ(kv)| ≤

r
∏

i=1

(1 + q−a(i)v ),

(2.12)

r′
∏

i=1

(1− q−b(i)v ) ≤ q− dimGx
v Lv(1, χX(G0

x))|(Ḡx)
0(kv)| ≤

r′
∏

i=1

(1 + q−b(i)v ),

(2.13)

where Lv(s, χX(G)) and Lv(s, χX(G0
x)) are the v-components of the Artin

L-functions for representations of Γ on X(G) and X(G0
x) respectively.

For a ∈ X∗(F ), let Σa be the maximal subset of Σ0 such that a ∈
X0(OΣa). Define Ỹa to be the normalization of X̃0⊗OΣ0

OΣa in the function
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field F (Ya) of Ya. Then the action of G on Ya extends to that of G̃×OΣ0
OΣa

on Ỹa. If v ∈ Σa, (Ḡa)
0 is a twist of (Ḡx)

0 and the estimate (2.13) holds

also for (Ḡa)
0. We also note that for v ∈ Σa, Πa ' Π̄a as Γ urv -groups for

Π̄a = Ḡa/(Ḡa)
0.

§3. Multiplicative zeta functions

In this section, we prove the convergence of the multiplicative zeta

function (1.3) and an integral on Ya(A).

Let G1 = GderGa for a ∈ X0. Then the group G1 is defined over F and

independent of the choice of a ∈ X0. Set

X1(G) = { χ ∈ X(G) : χ|G1
= 1 }.

Then it is known that for χ ∈ X(G), there exists a relative invariant with

the associated character χ if and only if χ ∈ X1(G)(cf. [S-K, Proposition

19]). Let Si, Pi and χi be as in Introduction. We know that the characters

χi’s make a basis of X1(G)F (cf. [S1, Lemma 1.3]).

LetG0 = GderG
0
a for a ∈ X0. Then this group is also defined over F and

is independent of the choice of a. By the assumption (1.1), X(G0)F = {1}.
Let

X0(G) = { χ ∈ X(G) : χ|G0
= 1 }.

Then we have an exact sequence

1 −→ X0(G)F −→ X(G)F −→ X(G0)F .

The second map is the inclusion and the third one is the restriction. From

X(G0)F = {1}, we see

(3.14) X0(G)F = X(G)F .

Now we define measures on G(A), G0
a(A), Ya(A) for a ∈ X∗(F ) and

X0(A). Let ω be a gauge form on G defined over F . Let ωv be the measure

on G(Fv) associated to ω. On G(A), we take the Tamagawa measure

dg = γ−1
G |∆F |

− dimG/2
∏

v∈Σ

cvωv.

Here ∆F is the discriminant of F , L(s, χX(G)) is the Artin L-function of the

representation of Γ in X(G),

γG = lim
s→1

(s− 1)tL(s, χX(G))
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for the order t of the pole at s = 1 of L(s, χX(G)) and cv is the convergence

factor given by

cv =

{

Lv(1, χX(G)) if v ∈ Σf ,

1 if v ∈ Σ∞.

To define a measure on Ya(A), we need the following.

Lemma 3.1. Let dX be the differential form dx1dx2 · · · dxd(d=dimX)
on X for a system of coordinates x1, x2, . . . , xd of X̃ over OΣ0

. Let dY =
µ∗adX. Then there exists a function f(y) on Ya such that

η =
1

f(y)
dY

defines a G-invariant gauge form on Ya. Moreover there exists an integer

m such that

fm = caµ
∗
aR

for a relative invariant R on X0 defined over F and a constant ca ∈ F
×.

Proof. By the definition of dY , we have

g∗dY = det ρ(g)dY

for g ∈ G and det ρ ∈ X(G)F . By (3.14), det ρ ∈ X0(G)F . Hence det ρ is
trivial on G0 = GderG

0
a. Define a function f on Ya by

f(gG0
a) = det ρ(g).

Then f is a function rational over F and satisfies

f(gy) = det ρ(g)f(y).

From this, we see η satisfies the required condition.

Since [X0(G)F : X1(G)F ] < ∞, there exists a positive integer m such
that det ρm ∈ X1(G)F . Hence there exist integers d1, d2, . . . , dn satisfying

(3.15) det ρm = χd11 χ
d2
2 · · ·χ

dn
n

Set R = P d11 P d22 · · ·P
dn
n . Then we see that µ∗

aR/f
m is a constant. This

proves the second assertion.
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Let ξ = ω/λ∗aη be the gauge form on G0
a determined by ω and λ∗aη.

We note that ξ is bi-invariant and L(1, χX(G0
a)) is finite if a ∈ X∗(F ). On

G0
a(A), we employ the Tamagawa measure

dh = L(1, χX(G0
a))

−1|∆F |
− dimG0

a/2
∏

v∈Σ

dvξv,

where ξv is the measure on G0
x(Fv) associated to ξ and dv is the convergence

factor given by

dv =

{

Lv(1, χX(G0
a)) if v ∈ Σf ,

1 if v ∈ Σ∞.

On Ya(A), we take the measure

dy = γ−1
G L(1, χX(G0

a))|∆F |
− dimX/2

∏

v∈Σ

cvd
−1
v ηv

= γ−1
G L(1, χX(G0

a))|∆F |
− dimX/2

∏

v∈Σ

|ca|
1/m
v cvd

−1
v ηv.

Here ηv is the measure on Ya(Fv) associated to η and ca is the constant in

Lemma 3.1. Then we see the measures dg, dh and dy are compatible. We

note that |ca|
1/mηv is independent of the choice of ca and f for a fixed R.

Let dX be as in Lemma 3.1 and let dXv be the measure on X(Fv)

associated to dX. We define a convergence factor ev by

ev =

{

Lv(1, χX1(G)) if v ∈ Σf ,

1 if v ∈ Σ∞,

and define a measure on X0(A) by dX = γ−1
G

∏

v evdXv . Let di and m be

as in the proof of Lemma 3.1 and set κi = di/m. Then

(3.16)

n
∏

i=1

|Pi(xv)|
−κi
v dXv

defines a G(Fv)-invariant measure on X0(Fv). For a function Ψ on X0(Fv),

we have
∫

Ya(Fv)
Ψ(µa(yv))|ca|

1/m
v ηv

= |Πa(Fv)|

∫

X0(Fv ,α̃v)
Ψ(xv)

n
∏

i=1

|Pi(xv)|
−κi
v dXv

(3.17)



170_01 : 2003/6/16(15:59)

16 H. SAITO

with the notation in Proposition 2.5. Hence the integral on the left hand

side depends only on the class α̃v and is independent of the choice of a.

We recall that the multiplicative zeta function Zm(Φ, s) is defined by

Zm(Φ, s) =

∫

X0(A)

n
∏

i=1

|Pi(x)|AΦ(x)dX

for Φ ∈ S(X(A)). To prove the convergence, we may assume Φ =
∏

v Φv.

In the following, making Σ0 smaller if necessary, we assume that the set of

places Σ0 satisfies the following conditions:

(1) For v ∈ Σ0, Φv is the characteristic function of X(Ov);

(2) c0q
−3/2
v < 1 for v ∈ Σ0 for the constant c0 in the following Lemma

3.2.

Lemma 3.2. Assume Re si > 0 for i = 1, 2, . . . , n. There exists a

constant c0 independent of v ∈ Σ0 such that for v ∈ Σ0

(3.18) |

∫

X0(Ov)

n
∏

i=1

|Pi(xv)|
si
v Φv(xv)evdXv − 1| ≤ c0q

−3/2
v .

Proof. Let P =
∏m
i=1Qi be a decomposition into Fv-irreducible poly-

nomials Qi ∈ Ov[X], and assume that each Qi decomposes into ti absolutely
irreducible polynomials. Then we see

Lv(1, χX1(G)) =

m
∏

i=1

(1− q−tiv )−1.

On X0(Ov), we have
∏

i |Pi(xv)|
si
v Φv(xv) = 1, and

∫

X0(Ov)

n
∏

i=1

|Pi(xv)|
si
v Φv(xv)dXv = q−dimX

v |X̄0(kv)|.

To estimate |X̄0(kv)|, it is enough to estimate |S̄(kv)|. This can be written
as an alternating sum over the traces of the Frobenius endomorphim on
Hi
c(S̄,Q`) for i = 0, 1, . . . , 2(dimX − 1). By the assumptions (1) and (4)

in Section 2, Q̄i, the reduction modulo pv of Qi, is irreducible over kv and
decomposes into ti absolutely irreducible polynomials. Hence the trace on
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H
2(dimX−1)
c (S̄,Q`) is equal to qdimX−1

v times the number l of ti such that
ti = 1. From this, we see

||X̄0(kv)| − q
dimX
v + lqdimX−1

v | ≤ CqdimX−3/2
v

for a constant C independent of v and

∣

∣

∣
evq

−dimX
v |X̄0(kv)| − 1

∣

∣

∣
≤ c0q

−3/2
v

for a constant c0 independent of v. This completes the proof.

This lemma can be proved also by a coarser estimate by Lang and Weil

[L-W].

Proposition 3.3. If Re si > 0 for i = 1, 2, . . . , n, then Zm(Φ, s) con-

verges absolutely.

Proof. It is enough to prove that if Re si > 0 for i = 1, 2, . . . , n, then

(3.19)
∏

v∈Σ0

∫

X(Ov)

n
∏

i=1

|Pi(xv)|
si
v evdXv

converges absolutely. For v ∈ Σ0, let E0 = X0(Ov) and E1 = X(Ov) \
X0(Ov). If Re si ≥ ε > 0 for i = 1, 2, . . . , n, then for z ∈ E1, we have
|
∏

i |Pi(z)|
si
v | ≤ q

−ε
v and

∫

E1

∣

∣

∣

∏

i

|Pi(xv)|
si
v

∣

∣

∣
dXv ≤ C1q

−1−ε
v ,

since
∫

E1

dXv ≤ q
− dimX
v |{E1 mod pv}|

and |{E1 mod pv}| ≤ C1q
dimX−1
v with a constant C1 independent of v.

From this and Lemma 3.2, we have

∣

∣

∣
1−

∫

X(Ov)

∏

i

|Pi(xv)|
si
v evdXv

∣

∣

∣
≤ C2q

−1−ε
v .

Here C2 is a constant independent of v. From this, our assertion follows
easily.
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For the application in Section 4, we modify this result as follows. Set

(3.20) Cv =

∏r
i=1(1 + q

−a(i)
v )

∏r′

i=1(1− q
−b(i)
v )(1− c0q

−3/2
v )

for the constant c0 in Lemma 3.2, and choose M so that

|Πx|cvd
−1
v e−1

v C−1
v ≤M.

We can choose M independent of v. We note that Cv > 0 under the above

assumption (2). Define a function Φ′
v on X(Fv) by

(3.21) Φ′
v(z) =











1 if z ∈ X0(Ov),

M if z ∈ X(Ov) \X
0(Ov),

0 otherwise.

Then we have

Corollary 3.4. Let

Tv(s) =

∫

X0(Fv)

n
∏

i=1

|Pi(xv)|
si
v Φ′

v(xv)evdXv.

If Re si > 0 for i = 1, 2, . . . , n, then the infinite product
∏

v∈Σ0
Tv(s) con-

verges.

Proof. This follows from the proof of the proposition and the fact that
the set of points z satisfying Φ′(z) 6= Φ(z) is contained in X(Ov) \X

0(Ov).

Similarly we can prove

Proposition 3.5. Let κi be as in (3.16). If Re si − κi > 0 for i =
1, 2, . . . , n, the integral

∫

Ya(A)

n
∏

i=1

|Pi(µa(y))|
si

A
Φ(µa(y))dy

converges absolutely.
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Proof. First we estimate the integral

Iv =

∫

Ya(Ov)

∏

i

|Pi(µa(yv))|
si
v Φv(µa(yv))|ca|

1/m
v cvd

−1
v ηv

=

∫

Ya(Ov)
|ca|

1/m
v cvd

−1
v ηv

for v ∈ Σa. By Proposition 2.5 and (3.17), we see

Iv = cvd
−1
v q−dimX

v |Π̄a(kv)||X
0(Ov , α̃v) mod pv |

= cvd
−1
v q−dimYa

v |Ȳa(kv)|.

By the definition of Σa and (2.12), (2.13), we have |Ȳa(kv)| =
|Ḡ(kv)|/|(Ḡa)

0(kv)|, and

∏r
i=1(1− q

−a(i)
v )

∏r′

i=1(1 + q
−b(i)
v )

≤ Iv ≤

∏r
i=1(1 + q

−a(i)
v )

∏r′

i=1(1− q
−b(i)
v )

.

Hence |Iv − 1| ≤ C1q
−2
v with a constant C1 independent of v.

Choose ε so that Re si− κi ≥ ε > 0. By Proposition 2.5 and (3.17), we
see

∫

Ya(Fv)\Ya(Ov)

∣

∣

∣

n
∏

i=1

|Pi(µa(yv))|
si
v

∣

∣

∣
|Φv(µa(yv))||ca|

1/m
v cvd

−1
v ηv

≤ |Πa(Fv)|cvd
−1
v

∫

X0(Fv)\X0(Ov)

∣

∣

∣

n
∏

i=1

|Pi(xv)|
si−κi
v

∣

∣

∣
|Φv(xv)|dXv

≤ |Πa(Fv)|cvd
−1
v

∫

X(Ov)\X0(Ov)

∣

∣

∣

∏

i

|Pi(xv)|
si−κi
v

∣

∣

∣
dXv

≤ C2q
−1−ε
v

with a constant C2 independent of v, since.

∣

∣

∣

n
∏

i=1

|Pi(µa(yv))|
si−κi
v

∣

∣

∣
≤ q−εv .

on X(Ov) \X
0(Ov). The assertion follows in the same way as Proposition

3.3.
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§4. Convergence of zeta functions

In this section, we give a proof of Theorem 1.1 and Theorem 1.2, that

is, the convergence of Z(Φ, s) in (1.2). As in Sections 2 and 3, we fix

x ∈ X∗(F ) and assume that Φ and Σ0 satisfy the condition in the previous

sections

For α̃ ∈ H1(F,Πx), set

X∗(F, α̃) = X0(F, α̃)
⋂

X∗(F ).

Then X∗(F, α̃) = X0(F, α̃), or ∅. We define

(4.22) Z(Φ, s; α̃) =

∫

G(A)/G(F )

n
∏

i=1

|χi(g)|
si

A

∑

z∈X∗(F,α̃)

Φ(gz)dg.

Then we have

Z(Φ, s) =
∑

α̃∈H1(F,Πx)

Z(Φ, s; α̃).

First we show that Z(Φ, s; α̃) converges absolutely for Re si − κi > 0.

Assume X∗(F, α̃) 6= ∅ and fix a ∈ X0(F, α̃). Assume si ∈ R. Then by (2.5),

(2.7), we have
∫

G(A)/G(F )

∏

i

|χi(g)|
si

A

∑

z∈X0(F,α̃)

|Φ(gz)|dg

=
1

|Πa(F )|

∫

G(A)/G(F )

∏

i

|χi(g)|
si

A

∑

w∈Ya(F )

|Φ(µa(gw))|dg

=
1

|Πa(F )|

∑

w∈G(F )\Ya(F )

∫

G(A)/Gw(F )

∏

i

|χi(g)|
si

A
|Φ(µa(gw))|dg

=
τ(G0

a)

|Πa(F )|

∑

w∈G(F )\Ya(F )

∫

G(A)w

∏

i

∣

∣

∣
Pi(µa(y))

∣

∣

∣

si

A

|Φ(µa(y))|dy

≤ c(α̃)
∑

w∈G(A)\G(A)Ya(F )

∫

G(A)w

∏

i

∣

∣

∣
Pi(µa(y))

∣

∣

∣

si

A

|Φ(µa(y))|dy

= c(α̃)

∫

G(A)Ya(F )

∏

i

∣

∣

∣
Pi(µa(y))

∣

∣

∣

si

A

Φ(µa(y))|dy

≤ c(α̃)

∫

Ya(A)

∏

i

∣

∣

∣
Pi(µa(y))

∣

∣

∣

si

A

|Φ(µa(y))|dy,
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where

c(α̃) =
τ(G0

a) ker1(G0
a)

|Πa(F )|
=
|A(G0

a)|

|Πa(F )|
.

We note that c(α̃) depends only on α̃. The last integral converges for

Re si > κi by Proposition 3.5.

Now we turn to the proof of the convergence of Z(Φ, s). Assume si ∈ R.

Since
∏

v∈Σ\Σ0
H1(Fv,Πx) is a finite set, it is enough to show that the series

∑

α̃∈H1(F,Πx), ãΣ\Σ0
=α̃0

Z(Φ, s; α̃)

converges absolutely. Here α̃0 is a fixed element of
∏

v∈Σ\Σ0
H1(Fv ,Πx), and

α̃Σ\Σ0
is the image of α̃ into

∏

v∈Σ\Σ0
H1(Fv,Πx). By the above inequality,

it is enough to show that

∑

c(α̃)|L(1, χX(G0
a))|

∫

Ya(A)

∏

i

∣

∣

∣
Pi(µa(y))

∣

∣

∣

si

A

|Φ(µa(y))|
∏

v

|ca|
1/mcvd

−1
v ηv

converges absolutely, where the sum is extended over all α̃ ∈ H 1(F,Πx)

satisfying α̃Σ\Σ0
= α̃0. As noted after (3.17), the local integrals on Ya(Fv)

in the above expression depends only on α̃v. Hence, we see that it is also

enough to show the convergence of

(4.23)
∑

α̃∈H1(F,Πx), α̃Σ\Σ0
=α̃0

c(α̃)|L(1, χX(G0
a))|Iα̃,

where

Iα̃ =

∫

Ya(AΣ0
)

∏

i

|Pi(µa(yΣ0
))|si

Σ0
|ΦΣ0

(µa(yΣ0
))|dyΣ0

=
∏

v∈Σ0

∫

Ya(Fv)

∏

i

|Pi(µa(yv))|
si
v |Φv(µa(yv))|v |ca|

1/m
v cvd

−1
v ηv.

(4.24)

Here

AΣ0
=

∏′

v∈Σ0

Fv , yΣ0
∈ Ya(AΣ0

), |Pi(µa(yΣ0
))|Σ0

=
∏

v∈Σ0

|Pi(µa(yv))|v ,

ΦΣ0
=

∏

v∈Σ0

Φv, dyΣ0
=

∏

v∈Σ0

|ca|
1/mcvd

−1
v ηv.

To complete the proof, we need some estimates.
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Lemma 4.1. There exists a constant C depending only on the rank of

X(G0
x) such that

|A(G0
a)| < C

for all a ∈ X∗(F ).

Proof. Let H = G0
a/Ru(G

0
a). Then we have an exact sequence

1 −→ π1(H̄der) −→ π1(H̄) −→ π1(H/Hder) −→ 1

and from this we obtain another exact sequence

π1(H̄der) −→ π1(H̄)Γ −→ π1(H/Hder)Γ −→ 1.

Since |π1(H̄der)| is bounded, it is enough to show that |π1(H/Hder)Γ | is
bounded. For a ∈ X∗(F ), π1(H/Hder)Γ is a finite group. Let π1(H/Hder) '
Zl as Z-modules. Then the order of π1(H/Hder)Γ depends only on the
GLl(Z)-conjugacy class of the image of Gal(F̄ /F ) into GLl(Z). The as-
sertion follows from the fact that there exist only a finite number of finite
groups in GLl(Z) up to GLl(Z)-conjugacy(cf. [P-R, Theorem 4.3]).

Let a ∈ X∗(F ), and let K be the Galois extension K of F corresponding

to the kernel of the representation of Gal(F̄ /F ) on X(G0
a). Then we can see

X(G0
a) as a Gal(K/F )-module. By the proof of Lemma 4.1, we may assume

that [K : F ] are less than a constant depending only on the rank of X(G0
x).

Lemma 4.2. Let a ∈ X∗(F ) and let fa be the Artin conductor of the

representation of Gal(K/F ) on X(G0
a). Then there exist positive constants

C and e independent of a ∈ X∗(F ) such that

|L(1, χX(G0
a))| ≤ CN(fa)

e.

This can be deduced easily by expressing L(s, χX(G0
a)) via L-functions

for characters of degree 1 by means of Brauer’s theorem on characters of

finite groups and by using the lower and the upper bounds of their values

or residues at s = 1 by the conductors of characters in [L, Hauptzatz,

Satz5] and [Br, II, Lemma, §5]. In [L], it is assumed that the characters

are complex-valued. In the case of real characters, we can use the results

of [Br].
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Corollary 4.3. For a ∈ X∗(F ) let ϕx(a) = α̃ and let α̃v be the

image of α̃ into H1(Fv,Πx). Then there exist positive constsnts β and C
independent of a ∈ X∗(F ) such that

|L(1, χX(G0
a))|

∏

v∈Σ0

n
∏

i=1

|Pi(zv)|
β
v ≤ C

for z = (zv) ∈
∏

v∈Σ0 X(Ov)
⋂

X0(Fv , α̃v).

Proof. If zv ∈ X0(Ov), by the assumption (2) in Section 2, we see
that the representation of Gal(K/F ) on X(G0

a) is unramified at v since z ∈
G(Our

v )x. Hence if the representation ramifies at v ∈ Σ0, then
∏

i |Pi(zv)|v ≤
q−1
v . The conductor-discriminant theorem says that

DK/F =
∏

χ∈Irr((Gal(K/F ))

f(χ)χ(1),

where Irr(Gal(K/F )) is the set of isomorphism calsses of irreducible rep-
resentation of Gal(K/F ), DK/F is the discriminant of K/F , and f(χ) is

the Artin conductor of χ. Hence it implies that fa divides Dl
K/F , where

l = rank X(G0
a). On the other hand, the places in Σ0 ramify at most tamely

by the assumption (3) in Section 2. Hence fa is divided by pv at most
l[K : F ] times. We note that

∏

v∈Σ\Σ0
H1(Fv ,Πx) is a finite set, and that

the contribution from the places v 6∈ Σ0 is bounded. The assertion follows
from this.

From Lemma 4.1 and Corollary 4.3, we deduce the following.

Corollary 4.4. Let Iα̃ be as in (4.24). Then there exists a constant

C such that

c(α̃)|L(1, χX(G0
a))|Iα̃

≤ C
∏

v∈Σ0

∫

Ya(Fv)

n
∏

i=1

|Pi(µa(yv))|
si−β
v |Φv(µa(yv))||ca|

1/m
v cvd

−1
v ηv

for all a ∈ X∗(F ).

Let

Xur
v =

⋃

α̃v∈H1(Γur
v ,Π̃x)

X0(Fv , α̃v).

Then Xur
v ⊃ X

0(Ov).
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Lemma 4.5. For v ∈ Σ0, let Φ′
v and Cv be as in (3.20) and (3.21). If

α̃v ∈ H
1(Γ urv , Π̃x), then

∫

Ya(Fv)

n
∏

i=1

|Pi(µa(yv))|
si−β
v Φv(µa(yv))|ca|

1/m
v cvd

−1
v ηv

≤ Cv

∫

Xur
v

∏

i

|Pi(xv)|
si−κi−β
v Φ′

v(xv)evdXv ,

and if α̃v /∈ H
1(Γ urv , Π̃x), then

∫

Ya(Fv)

∏

i

|Pi(µa(yv))|
si−β
v Φv(µa(yv))|ca|

1/m
v cvd

−1
v ηv

≤ Cv

∫

X0(Fv)

∏

i

|Pi(xv)|
si−κi−β
v Φ′

v(xv)evdXv .

Proof. First assume α̃v ∈ H
1(Γ urv , Π̃x). The integral on the left hand

side is equal to

|Πa(Fv)|

∫

X0(Fv ,α̃v)

n
∏

i=1

|Pi(xv)|
si−κi−β
v Φv(xv)cvd

−1
v dXv

by (3.17). By the assumption, there exists b ∈ X 0(Ov , α̃v), and the above
integral is equal to that on the left hand side of the lemma for a = b. Hence
we may assume that a ∈ X0(Ov , α̃v). Let Z = X0(Fv , α̃v)

⋂

(X(Ov) \
X0(Ov)). Then we get

Xur
v ⊃ X

0(Fv, α̃v)
⋂

X(Ov) = X0(Ov , α̃v)
⋃

Z,

where the union of the last member is disjoint. OnYa(Ov)=µ
−1
a (X0(Ov, α̃v)),

by Lemma 3.2 and the proof of Proposition 3.5, we have

∫

Ya(Ov)

∏

i

|P (µa(yv))|
si−β
v Φv(µa(yv))|ca|

1/m
v cvd

−1
v ηv

=

∫

Ya(Ov)
|ca|

1/m
v cvd

−1
v ηv

≤ Cv

∫

X0(Ov)

∏

i

|P (xv)|
si−κi−βΦ′

v(xv)evdXv .
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By the definition of Φ′ and Cv, and (3.17), we see

∫

µ−1
a (Z)

∏

i

|Pi(µa(yv))|
si−β
v Φv(µa(yv))|ca|

1/m
v cvd

−1
v ηv

≤ |Πa(Fv)|

∫

Z

∏

i

|Pi(xv)|
si−κi−β
v Φv(xv)cvd

−1
v dXv

≤ Cv

∫

Z

∏

i

|Pi(xv)|
s−κi−β
v Φ′

v(xv)evdXv .

The assertion follows from this.
When α̃v /∈ H

1(Γ urv , Π̃x), X
0(Fv , α̃v) ∩X

0(Ov) = ∅. The second asser-
tion follows from this in the same way as above.

Let Jv be the set obtained from H1(Fv ,Πx) by contracting H1(Γ urv , Π̃x)

to one element, and consider Π′
v∈Σ0

Jv. Here the prime indicates that all

components are the pointed element H1(Γ urv , Π̃x) except for a finite number

of places. For j = (jv) ∈ Π′
v∈Σ0

Jv, we define a subset Xj of X0(AΣ0
) by

Xj =
∏

jv=H1(Γur
v ,Π̃x)

Xur
v ×

∏

jv 6=H1(Γur
v ,Π̃x)

X0(Fv , jv).

It is easy to see that the union ∪jXj is disjoint. We note that Xj is an

open subset of X0(AΣ0
). We define a map of H1(F,Πx) to

∏′
v∈Σ0

Jv by

ψ : H1(F,Πx) −→
∏′

v∈Σ0

H1(Fv ,Πv) −→
∏′

v∈Σ0

Jv .

Lemma 4.6. There exist positive constants γ and C independent of

α̃ ∈ H1(F,Πx) such that

|ψ−1(ψ(α̃))|
n

∏

i=1

|Pi(aΣ0
)|γΣ0
≤ C

for all aΣ0
= (av)v∈Σ0

∈ Xj ∩
∏

v∈Σ0
X(Ov) with j = ψ(α̃).

Proof. Let K be the Galois extension of F which corresponds to the
kernel of the homomorphism of Gal(F̄ /F ) to the automrophism group of
Πx. We note that v ∈ Σ0 is unramified in K by the assumption (2) in
Section 2. Let ΣK be the set of places of K and ΣK

0 the set of places of
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K lying above Σ0. Define Jw, w ∈ ΣK
0 , and ψK in the same way as above

taking K instead of F . Then we have a commutative diagram

(4.25)

H1(F,Πx)
ψ

−−−−→
∏

v∈Σ0
Jv

ι





y





y

H1(K,Πx) −−−−→
ψK

∏

w∈ΣK
0

Jw.

The vertical maps are induced by the restriction of Gal(F̄ /F ) to Gal(K̄/K).
Let ι be the first vertical map. The cardinality of each fibre of ι does not
exceed [K : F ]|Πx|. Let β̃ = ι(α̃) and set

N(β̃) = { β̃′ ∈ ι(H1(F,Πx)) | β̃
′
ΣK\ΣK

0

= β̃0, ψK(β̃) = ψK(β̃′) }.

Here β̃0 is the image of α̃0 into
∏

w∈ΣK\ΣK
0

H1(Kw,Πx). It is enough to
show that there exist constants ε and C such that

|N(β̃)|
∏

i

|Pi(aΣ0
)|εΣ0
≤ C

for all aΣ0
∈ Xj ∩

∏

v∈Σ0
X(Ov).

Since Gal(K̄/K) acts trivially on Πx, a 1-cocycle of Gal(K̄/K) in Πx

is a homomorphism of Gal(K̄/K) to Πx and two homorphisms τ1, τ2 are
equivalent if and only if there exists h ∈ Πx such that τ1 = hτ2h

−1. Let Kβ̃′

be the field corresponding to the kernel of a homomorphism in the class
of β̃′. Let Inj(Gal(Kβ̃′/K),Πx) be the set of injective homomorphisms of
Gal(Kβ̃′/K) into Πx and let Inj(Gal(Kβ̃′/K),Πx)/ ∼ be the set of con-
jugacy classes with respect to Πx. Then we can find a constant C1 such
that

|Inj(Gal(Kβ̃′/K),Πx)/ ∼ | ≤ C1

for all β̃′ ∈ H1(F,Πx), and from this we obtain

|N(β̃)| ≤ C1|{ Kβ̃′ | β̃
′ ∈ N(β̃)}|.

Since the number of subgroups of Πx is finite, it is enough to count
Kβ̃′ which satisfy Gal(Kβ̃′/K) ' H for a fixed subgroup H of Πx. For

β̃′ ∈ N(β̃) satisfying this condition, [Kβ̃′ : Q] and |∆K
β̃′ | are identical. We

know that the cardinality of fields having the same degree and the same
discriminant as Kβ̃′ is less than C2|∆K

β̃′ |
ε1 for positive constants ε1 and C2

depending only on Πx by the classical theorem of Hermite-Minkowski.
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Let w be a place of K lying above v and let Γ urw = Gal(Kur
w /Kw). The

inflations give rise to the commutative diagram

H1(Γ urv , Π̃x) −−−−→ H1(Fv ,Πx)




y





y

H1(Γ urw , Π̃x) −−−−→ H1(Kw,Πx).

Let β̃′ = ι(α̃′). From this diagram, we see that if X0(Fv, α̃
′
v)∩X

0(Ov) 6= ∅,
that is, if α̃′

v ∈ H
1(Γ urv , Π̃x), then w is unramified in Kβ̃′ . Hence if w ∈ ΣK

0

ramifies in Kβ̃′ , then α̃′
v 6∈ H

1(Γurv , Π̃x). Therefore av ∈ X
0(F, α̃′

v) ∩X(Ov)

does not belong to Xur
v , hence

∏

i Pi(av) ∈ pv. Since w ∈ ΣK
0 is unramified

or ramifies at most tamely in Kβ̃′ by the assumption (3) in Section 2, there
exist constants ε2 depending only on Πx such that

|NKw/Fv
(dK

β̃′,w̃/Kw
)|−1
v

n
∏

i=1

|Pi(av)|
ε2
v ≤ 1

for the relative different dK
β̃′,w̃/Kw

of Kβ̃′,w̃/Kw, where w̃ is a place of Kβ̃′

lying above w. For w ∈ ΣK \ ΣK
0 , the completions of Kβ̃′ at places lying

above w are contained in a finte set of extensions of Kw, since their degrees
do not exceed |Πx|. Hence we have

|∆K
β̃′ |

ε1
∏

v∈Σ0

n
∏

i=1

|Pi(av)|
ε3
v ≤ C3

for positive constants ε3 and C3 independent of α̃. This proves the assertion.

When Πx is abelian, by class field theory, |{Kβ′ |β̃′ ∈ N(β̃)}| ≤ C5 with

a constant C5 and by the proof of the above lemma, we obtain

Lemma 4.7. Assume Πx is abelian. Then there exists a constant C
which satisfies

|ψ−1(ψ(α̃))| ≤ C

for all α̃ ∈ H1(F,Πx).

We are ready to prove the convergence. First we prove Theorem 1.1.

Assume si ∈ R. We note
∏

v∈Σ0
Cv converges. Hence by Corollary 4.4 and
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Lemma 4.5, we see

c(α̃)|L(1, χX(G0
a))|Iα̃

≤ C ′

∫

Xj

∏

i

|Pi(xΣ0
)|si−κi−β

Σ0
Φ′

Σ0
(xΣ0

)dXΣ0
.

for a constant C ′. Here j = ψ(α̃) and

dXΣ0
=

∏

v∈Σ0

evdXv , Φ′
Σ0

=
∏

v∈Σ0

Φ′
v.

To estimate (4.23), it is enough to count the above integral |ψ−1(ψ(α̃))|
times. Hence by Lemma 4.6, (4.23) has

C ′′
∑

j

∫

Xj

∏

i

|Pi(xΣ0
)|si−κi−β−γ

Σ0
Φ′

Σ0
(xΣ0

)dXΣ0

as its upper bound for a constant C ′′. This converges if si− κi− β − γ > 0

by Corollary 3.4. This completes the proof of Theorem 1.1.

For the proof of Theorem 1.2, it is enough to notice that β = 0, since

G0
x is semisimple, and also that we may take γ = 0, since we can apply

Lemma 4.7.

§5. Explicit form of zeta functions

For α̃ ∈ H1(F,Πx), let Z(Φ, s; α̃) be as in (4.22). We recall

Z(Φ, s) =
∑

α̃∈H1(F,Πx)

Z(Φ, s; α̃).

In this section, we show that for Φ =
∏

v Φv ∈ S(X(A)), Z(Φ, s; α̃) is a

finite sum of Euler products under the assumption that the Hasse principle

holds for G.

For a ∈ X∗(F ), let ι0a,A : A(G0
a) → A(G) be the canonical map. When

G or G0
a is not reductive, we note that there exists a homorphism ι′ of

G0
a/Ru(G

0
a) to G/Ru(G) such that the diagram

G0
a

ι
−−−−→ G





y





y

G0
a/Ru(G

0
a)

ι′
−−−−→ G/Ru(G)
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is commutative. The map ι′ induces a map ι0a,A of A(G0
a) to A(G). This

depends on the choice of ι′, but Ker ι0a,A is indepedent of the choice of ι′.

Let X(Ker ι0a,A) be the group of characters of Ker ι0a,A. For each ε ∈
X(Ker ι0a,A), we define a function εv on Ya(Fv) by connecting the following

maps

Ya(Fv) −−−−→ H1(Fv , G
0
a) −−−−→ A(G0

a,v) −−−−→ A(G0
a)

and ε. Here G0
a,v = G0

a⊗FFv . We note that the image of Ya(Fv) is contained

in Ker ι0a,A and for y = (yv) ∈ Ya(A),
∏

v εv(yv) is well-defined. Then by

the assumption on the Hasse principle we have(cf. [Sa1, Proposition 1.7])

∑

ε∈X(Ker ι0
a,A

)

∏

v

εv(yv) =

{

|Ker ι0a,A| y ∈ G(A)Ya(F ),

0 otherwise.

We define a fucntion ε̃v on X∗(Fv , α̃v) by

ε̃v(xv) =
1

|Πa(Fv)|

∑

yv∈µ
−1
a (xv)

εv(yv).

Then we can prove the following theorem in the same way as [Sa1, Theorem

2.1].

Theorem 5.1. Assume that S is a hypersurface and the Hasse prin-

ciple holds for G. Then for α̃ ∈ H1(F,Πx) with X∗(F, α̃) 6= ∅ and for

Φ =
∏

v Φv ∈ S(X(A)), one has

Z(Φ, s; α̃) = γ−1
G |∆F |

− dimX/2 |A(G0
a)|

|Πa(F )|

L(1, χX(G0
a))

|Ker ι0a,A|

×
∑

ε∈X(Ker ι0
a,A

)

∏

v

Zv(Φv, s; α̃v , ε̃v),

where a ∈ X∗(F, α̃) and

Zv(Φv, s; α̃v , ε̃v)

= |Πa(Fv)|

∫

X0(Fv ,α̃v)
ε̃v(xv)Φv(xv)

n
∏

i=1

|Pi(xv)|
si−κi
v cvd

−1
v dXv.
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Remark 5.2. In [Sa1], we assumed that Ker ρ = {1}. This assumption
is unnecesary. But the zeta function Z(Φ, s) and the expression via Euler
products depend on the choice of G. For example, let G = GLn, X = Sn
the space of symmetric matrices of degree n, and define

ρ(g)x = gxtg, g ∈ G, x ∈ X.

Then Ker ρ = {±1}. In [Sa1], we gave an explicit expression of Z(Φ, s) of
(G/Ker ρ, ρ̄,X) for a good Φ. Here ρ̄ is the representation of G/Ker ρ on
X induced by ρ. For example, if n is odd, then Πx = {1}, Ker ι0a,A = {±1},
and Z(Φ, s) is a sum of two Euler products.

Let us consider Z(Φ, s) of (G, ρ,X) for n odd. For a ∈ X 0(F ), Ga =
Oa(= SOa{±1}) and G0

a = SOa, where

Oa = { g ∈ GLn | ga
tg = a },

SOa = { g ∈ SLn | ga
tg = a }.

Hence Πx = {±1}, H1(F,Πx) ' F×/F×2 and Z(Φ, s) is a sum of in-
finitely many Euler products. We see that A(G0

a) = {±1}, A(G) = {1}
and Ker ι0a,A = A(G0

a) = {±1}, and that ε̃v for the non-trivial element in

X(Ker ι0a,A) is given by

ε̃v(z) =
sv(z)

sv(a)

on X0(Fv , α̃v). Here α̃ = ϕx(a) and sv is the Hasse symbol. We can easily
compute Z(Φv, s; α̃v , εv) for ε ∈ X(Ker ι0a,A) at good v using [Sa2, Theorem
2.2].
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