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ALGEBRAIC DEPENDENCE OF MEROMORPHIC

MAPPINGS IN VALUE DISTRIBUTION THEORY

YOSHIHIRO AIHARA∗

Abstract. In this paper we first prove some criteria for the propagation of al-
gebraic dependence of dominant meromorphic mappings from an analytic finite
covering space X over the complex m-space into a projective algebraic mani-
fold. We study this problem under a condition on the existence of meromorphic
mappings separating the generic fibers of X. We next give applications of these
criteria to the uniqueness problem of meromorphic mappings. We deduce unic-
ity theorems for meromorphic mappings and also give some other applications.
In particular, we study holomorphic mappings into a smooth elliptic curve E

and give conditions under which two holomorphic mappings from X into E are
algebraically related.

Introduction

Let f1, . . . , fl be dominant meromorphic mappings from a finite analytic

(ramified) covering space π : X → Cm into a projective algebraic manifold

M . Suppose that they have the same inverse images of given divisors on

M . Our aim in this paper is to seek conditions under which f1, . . . , fl are

algebraically related. We study this problem from the point of view in value

distribution theory. Roughly speaking, our results say that if these map-

pings satisfy the same algebraic relation at all points of the set of the inverse

images of divisors and if the given divisors are sufficiently ample, then they

must satisfy this relationship identically. These results are considered as

the propagation theorems of algebraic dependence. The propagation of de-

pendence from a proper analytic subset to the whole space was first studied

by L. Smiley [17] (cf. [19, p. 176]). There have been several studies on the

propagation of dependence (cf. [5], [6], [8] and [21]). So far, this problem

has been studied under the conditions on the growth of meromorphic map-

pings. However, there can be only a few restricted cases where meromorphic
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mappings satisfying these conditions exist. In this paper we first give some

criteria for the propagation of algebraic dependence of meromorphic map-

pings from X into M under the condition on the existence of meromorphic

mappings separating the fibers of π : X → Cm. Thanks to the theory of

algebroid reduction of meromorphic mappings, we can always find such a

mapping. Thus it seems that our condition is more natural and essential

than the above mentioned conditions. The theorem on algebroid reduction

of meromorphic mappings and the ramification estimate due to J. Noguchi

[11] are essentially important in the proofs of our results. In some of our

criteria, we assume somewhat complicated conditions. However, they have

a wide range of applicability and give sharpness. These criteria are actu-

ally corollaries of two basic theorems, which are Theorems 2.2 and 2.15 in

Section 2. In the next part of this paper, we give their applications to the

uniqueness problem of meromorphic mappings. For example, we study the

uniqueness problem of holomorphic mappings into smooth elliptic curves.

Let L be a line bundle over M . We denote by H0(M,L) the space of

all holomorphic sections of L → M . A line bundle L over M is said to be

big provided that

dimH0(M,νL) ≥ CνdimM

for all sufficiently large positive integers ν and for some positive constant

C. Let Pic(M) be the Picard group over M . Let F ∈ Pic(M) ⊗ Q and

γ ∈ Q. We simply write γF for F⊗γ . Then F is said to be big (resp. ample)

provided that a line bundle νF ∈ Pic(M) is big (resp. ample) for some

positive integer ν. We fix an ample line bundle L→M . Let D1, . . . , Dq be

divisors in |L| such that D1 + · · · + Dq has only simple normal crossings,

where |L| is the complete linear system defined by L. Let S1, . . . , Sq be

hypersurfaces in X such that dimSi ∩ Sj ≤ m− 2 for any i and j (i 6= j).

We define a hypersurface S in X by S = S1∪· · ·∪Sq. Assume that, for each

i, the union of all irreducible components of f ∗
i Dj with the multiplicities

at most kj coincides with Sj for all j with 1 ≤ j ≤ q, where kj is a

fixed positive integer. Set M l = M × · · · × M (l-times). Suppose that

f1, . . . , fl are algebraically dependent on S, that is, (f1 × · · · × fl)(S) ⊆ Σ

for some indecomposable hypersurface Σ in M l. By Noguchi’s theorem on

the algebroid reduction of meromorphic mappings, we may assume that

each fj : X → M separates the fibers of π : X → Cm. Since L is ample,

there exist the least positive integer µ0 and a pair of sections σ0, σ1 ∈
H0(M,µ0L) such that each meromorphic function f ∗

j (σ0/σ1) separates the
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fibers of π : X → Cm. Let F0 be a big line bundle over M . We denote

by s0 the sheet number of π : X → Cm. Set k0 = max1≤j≤l kj . We define

L0 ∈ Pic(M)⊗Q by

L0 =

( q∑

j=1

kj

kj + 1
− 2µ0(s0 − 1)

)
L⊗

(
− γ̃lk0

k0 + 1
F0

)
,

where γ̃ is a positive rational number depending only on Σ and on F0.

Then we have our fundamental result, from which we see that the algebraic

dependence on S propagates to the whole space X if L0 is sufficiently big.

Theorem. Suppose that f1, . . . , fl are algebraically dependent on S.

If L0 ⊗KM is big, then f1, . . . , fl are algebraically dependent on X.

In Section 2, we give the proof of the above theorem, which is just

Theorem 2.2. Furthermore, we consider the case where given divisors may

determine distinct line bundles and Theorem 2.15 is fundamental in this

case. We also study the effect of the existence of deficient divisors to the

propagation of dependence. In Sections 3–5, we will give their applications.

These sections are actually the principal part of this paper. We note that

a certain kind of unicity theorems such as results in [2] and [4] may be

considered as a special case of theorems on the propagation of dependence.

In these theorems we can see that, for two meromorphic mappings

f, g : X → M with the same inverse images of divisors as point sets (say

Z) satisfying f = g on Z, the algebraic relation f = g on Z propagates

to the whole space X. We prove some unicity theorems from this point of

view in Section 3. In Section 4, we investigate meromorphic mappings into

complex projective spaces and give theorems on algebraic dependence. We

finally study the uniqueness problem of holomorphic mappings into smooth

elliptic curves in Section 5. In particular, we give some conditions under

which two holomorphic mappings are related by endomorphism of elliptic

curves. The last section is devoted to giving the proof of Katsura’s theorem,

which is a crucial step in the proof of the main result in Section 5.

Acknowledgement. The author would like to thank Professor Toshi-
yuki Katsura for his useful advice. In particular, he has agreed with making
his theorem public in this paper.
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§1. Preliminaries

Let π : X → Cm be a finite analytic (ramified) covering space over

Cm and let s0 be its sheet number, that is, X is a reduced irreducible

normal complex space and π : X → Cm is a proper surjective holomorphic

mapping with discrete fibers. We denote by B the ramification divisor. Let

z = (z1, . . . , zm) be the natural coordinate system in Cm, and set

‖z‖2 =
m∑

ν=1

zνzν , X(r) = π−1({z ∈ Cm ; ‖z‖ < r}) and α = π∗ddc‖z‖2,

where dc = (
√
−1/4π)(∂ − ∂). For a (1, 1)-current ϕ of order zero on X we

set

N(r, ϕ) =
1

s0

∫ r

1
〈ϕ ∧ αm−1, χX(t)〉

dt

t2m−1
,

where χX(r) denotes the characteristic function of X(r). Let M be a com-

pact complex manifold and let L→M be a line bundle over M . Denote by

| · | a hermitian fiber metric in L and by ω its Chern form. Let f : X →M

be a meromorphic mapping. We set

Tf (r, L) = N(r, f ∗ω),

and call it the characteristic function of f with respect to L. We also define

Tf (r, F ) for F ∈ Pic(M)⊗Q in the following way. If ν is a positive integer

with νF ∈ Pic(M), then we set

Tf (r, F ) =
1

ν
Tf (r, νF ).

It is easy to see that Tf (r, F ) is well-defined. We have the following Nevan-

linna’s inequality for meromorphic mappings (cf. [11, p. 269]):

Theorem 1.1. Let L → M be a line bundle over M and let f : X →
M be a nonconstant meromorphic mapping. Then

N(r, f∗D) ≤ Tf (r, L) +O(1)

for D ∈ |L| with f(X) 6⊆ SuppD, where O(1) stands for a bounded term as

r→ +∞.
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Let f : X → M be a meromorphic mapping, and let D ∈ |L|. We

define Nevanlinna’s deficiency δf (D) by

δf (D) = 1− lim sup
r→+∞

N(r, f∗D)

Tf (r, L)
.

If δf (D) > 0, then D is called a deficient divisor in the sense of Nevanlinna.

Let Z be an effective divisor on Cm such that Z =
∑

j νjZj for distinct

irreducible hypersurfaces Zj in Cm and for nonnegative integers νj , and let

k be a positive integer. We set

Nk(r, Z) =
∑

j

min{k, νj}N(r, Zj).

A meromorphic mapping f : X → M is said to be dominant provided

that rank f = dimM . The following second main theorem for dominant

meromorphic mappings gives an essential computational way in the next

section (cf. [11, Theorem 1]):

Theorem 1.2. Let M be a projective algebraic manifold with m ≥
dimM and let L → M be an ample line bundle. Suppose that D1, . . . , Dq

are divisors in |L| such that D1 + · · ·+Dq has only simple normal crossings.

Let f : X →M be a dominant meromorphic mapping. Then

q Tf (r, L) + Tf (r,KM ) ≤
q∑

j=1

N1(r, f
∗Dj) +N(r,B) + Sf (r),

where Sf (r) = O(log Tf (r, L)) + o(log r) except on a Borel subset I ⊆
[1,+∞) with finite measure.

In applications of Theorem 1.2, it is essential to give the estimate for

N(r,B) by the characteristic function of f . In the case where m = 1 and

M = P1(C), the ramification theorem due to H. Selberg is well-known (cf.

[15]). In the case of meromorphic mappings f : X →M , we have a following

ramification estimate proved by J. Noguchi.

Definition 1.3. Let Y be a compact complex manifold. We say that
a meromorphic mapping f : X → Y separates the fibers of π : X → Cm, if
there exists a point z in Cm − (Suppπ∗B ∪ π(I(f))) such that f(x) 6= f(y)
for any distinct points x, y ∈ π−1(z). In this case, X is said to be the proper

existence domain of f .
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Assume that f : X → M separates the fibers of π : X → M . Since

L is ample, there exist the least positive integer µ0 and a pair of sections

σ0, σ1 ∈ H0(M,µ0L) such that a meromorphic function f ∗(σ0/σ1) separates

the fibers of π : X → Cm. Then we have the following ramification estimate

due to J. Noguchi ([11, p. 277]):

Theorem 1.4. (Noguchi) Suppose that L→M is ample and f : X →
M separates the fibers of π : X →M . Let µ0 be as above. Then

N(r,B) ≤ 2µ0(s0 − 1)Tf (r, L) +O(1).

In the case where f does not separate fibers of π : X →M , we cannot

estimate the growth of the ramification divisor in general. However, we

have the following reduction theorem proved by J. Noguchi ([11, p. 272]):

Theorem 1.5. (Noguchi) Let f : X →M be a meromorphic mapping.

Then there exist a finite analytic covering space $ : X → Cm, a surjective

proper holomorphic mapping λ : X → X and a meromorphic mapping

f : X → M separating the fibers of $ : X → Cm such that the following

diagram

Cm
π

←−−− X
f

−−−→M

id

y λ

y
yid

Cm ←−−−
$

X −−−→
f

M

is commutative. Furthermore, if f is dominant, so is f .

From the above theorem, we can determine the proper domain of exis-

tence for an arbitrary meromorphic mapping f : X → M . For the theory

of algebroid reduction, see also [20].

Remark 1.6. We note that X is also a normal complex space. By
making use of Theorem 1.4, we can easily obtain the following equalities
(cf. [11, p. 273]):

Tf (r, L) = Tf (r, L), and N(r, f ∗D) = N(r, f ∗D).

Thus we also have

Nk(r, f
∗D) = Nk(r, f

∗D)
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for each positive integer k. Hence, by Theorems 1.2 and 1.4, we have the
following: For an arbitrary dominant meromorphic mapping f : X → M ,
the following inequality

q Tf (r, L) + Tf (r,KM ) ≤
q∑

j=1

N1(r, f
∗Dj) +N(r,B) + Sf (r)

holds, where B is the ramification divisor of $ : X → Cm. We also see that
the following inequality holds:

N(r,B) ≤ 2µ0(s0 − 1)Tf (r, L) +O(1).

Therefore we can apply Theorems 1.2 and 1.4 for an arbitrary meromorphic
mapping f : X →M . This observation is very useful and will be essentially
used in the next section.

We finally give the defect relation and the ramification theorem for

f : X →M , which are needed later. For a line bundle F over M , we define

[F/L] by

[F/L] = inf{γ ∈ Q ; γL⊗ F−1 is big}.
Note that [F/L] < 0 if and only if F−1 is big. This is an easy consequence

of Kodaira’s lemma. We also set

Θf (D) = 1− lim sup
r→+∞

N1(r, f
∗D)

Tf (r, L)
.

Then Theorems 1.2 and 1.4 yield the following defect relation:

Theorem 1.7. (Defect Relation) Let f and Dj be as in Theorem 1.2.
Suppose that f separates the fibers of π : X → Cm. Then

q∑

j=1

Θf (Dj) ≤ [K−1
M /L] + 2µ0(s0 − 1).

Definition 1.8. Let ν be a positive integer and D ∈ |L|. A noncon-
stant holomorphic mapping f : X →M is ramified to order at least ν over

D if
f∗D ≥ ν Supp f ∗D.

In the case Suppf ∗D = ∅, we may say that f is ramified to order +∞. If
ν ≥ 2, then D is said to be a totally ramified divisor for f .
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Now, by Theorems 1.2 and 1.4, we have the following ramification the-

orem:

Theorem 1.9. (Ramification Theorem) Let f and Dj be as in Theo-

rem 1.2. Suppose that f is ramified to order at least νj over Dj (1 ≤ j ≤ q).
Then

q∑

j=1

(
1− 1

νj

)
≤ [K−1

M /L] + 2µ0(s0 − 1).

The following corollary directly follows from Theorem 1.9:

Corollary 1.10. The number of totally ramified divisors D ∈ |L| for
f does not exceed 2[K−1

M /L] + 4µ0(s0 − 1).

Remark 1.11. Let f and Dj be as in Theorem 1.2. Suppose that

q > 2[K−1
M /L] + 4µ0(s0 − 1).

By the above corollary, we see that Supp1 f
∗Dj is not empty for at least

one j.

§2. Criteria for algebraic dependence

In this section we prove theorems on the propagation of algebraic de-

pendence for some families of dominant meromorphic mappings fromX into

a projective algebraic manifold M . We first give a definition of algebraic

dependence of meromorphic mappings. Let l be a positive integer not less

than two. A proper algebraic subset Σ of M l is said to be decomposable if,

for some positive integer s not grater than l, there exist positive integers

l1, . . . , ls with l = l1 + · · · + ls and algebraic subsets Σj ⊆ M lj such that

Σ = Σ1 × · · · × Σs. In the case where Σ is not decomposable, we say that

Σ is indecomposable. For meromorphic mappings f1, . . . , fl : X → M , we

define a meromorphic mapping f1 × · · · × fl : X →M l by

(f1 × · · · × fl)(z) = (f1(z), . . . , fl(z)), z ∈ X − (I(f1) ∪ · · · ∪ I(fl)),

where I(fj) are the indeterminacy loci of fj.

Definition 2.1. Let S be an analytic subset ofX. Nonconstant mero-
morphic mappings f1, . . . , fl : X → M are said to be algebraically de-

pendent on S if there exists a proper algebraic subset Σ of M l such that
(f1 × · · · × fl)(S) ⊆ Σ and Σ is indecomposable. In this case, we also say
that f1, . . . , fl are Σ-related on S.
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Let L → M be an ample line bundle. Let D1, . . . , Dq be divisors in

|L| such that D1 + · · ·+Dq has only simple normal crossings. Let Z be an

effective divisor on X, and let k be a positive integer. If Z =
∑

j νjZj for

distinct irreducible hypersurfaces Zj in X and for nonnegative integers νj ,

then we define the support of Z with order at most k by

Suppk Z =
⋃

0<νj≤k

Zj.

Let S1, . . . , Sq be hypersurfaces in X such that dimSi∩Sj ≤ m−2 for i and

j (i 6= j), and let k1, . . . , kq be fixed positive integers. Assume that there

exists at least one dominant meromorphic mapping f0 : X →M such that

Suppkj
f∗0Dj = Sj for all j with 1 ≤ j ≤ q. As a matter of convenience, f0

separates the fibers of π : X →M . We denote by

F = F (f0; {kj}; (X, {Sj}), (M, {Dj}))

the set of all dominant meromorphic mappings f : X →M with

Suppkj
f∗Dj = Sj

for all j with 1 ≤ j ≤ q. Let F1, . . . , Fl be big line bundles over M . We

define a line bundle F̃ over M l by

F̃ = π∗1F1 ⊗ · · · ⊗ π∗l Fl,

where πj : M l → M are the natural projections on the j-th factor. Let L̃

be a big line bundle over M l. Note that, in general,

L̃ 6∈ π∗1 Pic(M)⊕ · · · ⊕ π∗l Pic(M).

In the case of L̃ 6= F̃ , we assume that there exists a positive rational number

γ̃ such that γ̃F̃ ⊗ L̃−1 is big. If L̃ = F̃ , then we take γ̃ = 1. Let R be the

set of all hypersurfaces Σ in X such that Σ = Supp D̃ for some D̃ ∈ |L̃|
and Σ is not decomposable. We assume that there exists a line bundle, say

F0, in {F1, . . . , Fl} such that F0 ⊗ F−1
j is either big or trivial for all j. Set

k0 = max{k1, . . . , kq}. Since L is ample, there exist a positive integer µ and

a pair of sections σ0, σ1 ∈ H0(M,µL) such that a meromorphic function

f∗(σ0/σ1) separates the fibers of π : X → Cm for all such mappings f .
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We denote by µ0 the least positive integer among those µ’s. We define

L0 ∈ Pic(M)⊗Q by

L0 =

( q∑

j=1

kj

kj + 1
− 2µ0(s0 − 1)

)
L⊗

(
− γ̃lk0

k0 + 1
F0

)
.

The following theorem is just the theorem stated in the Introduction.

Theorem 2.2. Let f1, . . . , fl be arbitrary mappings in F and let Σ be

in R. Suppose that f1, . . . , fl are Σ-related on S and that L0 ⊗KM is big.

Then f1, . . . , fl are Σ-related on X.

For the proof of Theorem 2.2, we need some lemmas. The following

lemma is well-known as Kodaira’s lemma:

Lemma 2.3. (Kodaira) Let L1 be an arbitrary line bundle over M . If

L is big, then there exists a positive integer µ such that µL⊗ L1 is big and

H0(M,νL⊗ L1) 6= {0}
for all sufficiently big positive integers ν.

For a proof, see, e.g., [9, Lemma 2].

Lemma 2.4. Let F be a big line bundle over M . Let f : X →M be a

dominant meromorphic mapping. If µF ⊗ L−1 is big for a positive integer

µ, then

Tf (r, L) ≤ µTf (r, F ) +O(1).

Proof. Since the line bundle µF ⊗ L−1 is big, we see that there exists
a nonzero holomorphic section τ ∈ H0(M,ν(µF ⊗ L−1)) for a sufficiently
large positive integer ν. By Theorem 1.1, we have

N(r, f∗(τ)) ≤ Tf (r, ν(µ(F ⊗ L−1)) +O(1)

= µν Tf (r, F )− ν Tf (r, L) +O(1).

This shows the desired conclusion.

Lemma 2.5. Let f be an arbitrary mapping in F . Then

q Tf (r, L) + Tf (r,KM )

≤ k0

k0 + 1
N(r, S) +

q∑

j=1

1

kj + 1
N(r, f∗Dj) +N(r,B) + Sf (r).
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Proof. Since kj/(kj + 1) ≤ k0/(k0 + 1) for all j with 1 ≤ j ≤ q, we
easily see

N1(r, f
∗Dj) ≤

k0

k0 + 1
N(r, Sj) +

1

kj + 1
N(r, f∗Dj).

Hence, by Theorem 1.2 and dimSi ∩ Sj ≤ m − 2 for i 6= j, we have our
assertion.

For brevity, set f̃ = f1 × · · · × fl.

Lemma 2.6. Let f1, . . . , fl ∈ F . Suppose that f̃(S) ⊆ Σ and f̃(X) 6⊆
Σ for some Σ ∈ R. Then

N(r, S) ≤ γ̃
l∑

j=1

Tfj
(r, Fj) +O(1).

In particular, the following two inequalities hold :

N(r, S) ≤ γ̃
l∑

j=1

[Fj/L]Tfj
(r, L) +O(1) and

N(r, S) ≤ γ̃
l∑

j=1

Tfj
(r, F0) +O(1).

Proof. Take a divisor D̃ ∈ |L̃| so that Σ = Supp D̃. Then, by Theo-
rem 1.1, we see

N(r, S) ≤ N(r, f̃∗D̃)

≤ T ef
(r, L̃) +O(1)

≤ γ̃ T ef
(r, F̃ ) +O(1)

≤ γ̃
l∑

j=1

Tfj
(r, Fj) +O(1).

Thus we have our assertion.

We now give the proof of Theorem 2.2. For brevity, we set

S(r) =
l∑

j=1

Sfj
(r) and T (r, F ) =

l∑

j=1

Tfj
(r, F )

for F ∈ Pic(M)⊗Q.
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Proof of Theorem 2.2. By Remark 1.6, we may assume that all fj sep-
arate the fibers of π : X → Cm. Suppose that f̃(X) 6⊆ Σ. By Theorem 1.1,
Lemmas 2.5 and 2.6, we have

q∑

j=1

( kj

kj + 1

)
Tfi

(r, L) + Tfi
(r,KM ) ≤ k0

k0 + 1
N(r, S) +N(r,B) + Sfi

(r)

≤ γ̃k0

k0 + 1
T (r, F0) +N(r,B) + Sfi

(r)

for all i. Hence we have

( q∑

j=1

kj

kj + 1

)
T (r, L) + T (r,KM ) ≤ γ̃lk0

k0 + 1
T (r, F0) + lN(r,B) + S(r).

Therefore we see

T (r, L0) + T (r,KM ) ≤ S(r).

Since L0 ⊗ KM is big, there exists a positive integer µ such that µ(L0 ⊗
KM )⊗ L−1 is big. Thus, by Lemma 2.4, we get

T (r, L) ≤ µ(T (r, L0) + T (r,KM )) +O(1).

This gives a contradiction. Therefore, we have f̃(X) ⊆ Σ. We have now
completed the proof of Theorem 2.2.

As was stated in the above proof, under our assumptions, we may

assume that all meromorphic mappings fj : X → M separate the fiber of

X → Cm. This comes from Noguchi’s theorem. Thus we assume this in

what follows.

Set γ0 = [L−1
0 ⊗ K−1

M /L]. Under the condition that L0 ⊗ KM is big,

we see γ0 < 0. In the case where γ0 is nonnegative, we cannot conclude

the propagation of algebraic dependence in general. In the case of a pos-

itive γ0, the propagation of algebraic dependence does not occur even if

we assume the existence of Picard’s deficient divisors (see Remarks 2.14

below). However, in the case of γ0 = 0, we have the following theorem

on the propagation of algebraic dependence under a condition on the ex-

istence of Nevanlinna’s deficient divisors. This shows that the existence of

such a divisor gives strong effect on the uniqueness problem of meromorphic

mappings.
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Theorem 2.7. Let f1, . . . , fl be as in Theorem 2.2. Suppose that f0 =
fk for some k with 1 ≤ k ≤ q and that [L−1

0 ⊗K−1
M /L] = 0. If δf0

(Dj) > 0
for at least one j with 1 ≤ j ≤ q, then f1, . . . , fl are Σ-related on X.

The following lemma is a crucial step for the proof of Theorem 2.7:

Lemma 2.8. Let f1, . . . , fl be as in Theorem 2.7. If [L−1
0 ⊗ K−1

M /L]

= 0 and f̃(X) 6⊆ Σ, then there exist positive constants C1 and C2 such that

C1 ≤
Tfj

(r, L)

Tf1
(r, L)

≤ C2

for all sufficiently large r with r 6∈ I, where I is an exceptional set for S(r).

Proof. We first show the following: For any positive rational number
ν with γ̃ν < 1, we have that

(2.9) νγ̃T (r, F0) +O(1) < N(r, S)

for all sufficiently large r 6∈ I. Assume the contrary. Then there exist
a positive rational number ν0 with γ̃ν0 < 1 and a monotone increasing
sequence {rk} with rk 6∈ I such that rk → +∞ and

N(rk, S) ≤ ν0γ̃T (rk, F0) +O(1).

By Lemmas 2.5 and 2.6, we have

( q∑

j=1

kj

kj + 1

)
T (rk, L) + T (rk,KM )

≤
( lk0

k0 + 1

)
ν0γ̃T (rk, F0) + lN(rk, B) + S(rk).

We define a positive rational number µ1 by

µ1 =
k0(1− ν0γ̃)

k0 + 1
.

Then we have

T (rk, L0 ⊗KM ) + µ1 T (rk, F0) ≤ S(rk).
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It follows from [L−1
0 ⊗K−1

M /L] = 0 that L0⊗KM⊗µ1F0 is big. Hence there
exists a positive constant C such that

CT (rk, L) ≤ T (rk, L0) + T (rk,KM ) + µ1T (rk, F0) +O(1).

Thus we see CT (rk, L) ≤ S(rk). This shows C ≤ 0, which is absurd. Hence
we have (2.9). Next we note that

N(r, S) ≤ q Tf1
(r, L) +O(1).

This is an immediate consequence of Theorem 1.1. We now have

µT (r, L) ≤ q Tf1
(r, L) +O(1),

where µ = νγ̃. Note that 0 < µ < 1. This completes the proof of
Lemma 2.8.

Proof of Theorem 2.7. For the proof of Theorem 2.7, it suffices to show
that f̃(X) ⊆ Σ. Assume the contrary. We may assume that f0 = f1. By
the definition of Nevanlinna’s deficiency, for any ε > 0, there exists r0 > 0
such that

N(r, f∗kDj) < (1− δfk
(Dj) + ε)Tfk

(r, L)

for all r ≥ r0 (r 6∈ I), where I ⊆ [1,+∞) is a Borel subset with finite
measure. We may assume that the exceptional set for S(r) is included in
I. By Lemmas 2.5 and 2.6, we have

T (r, L0) + T (r,KM ) ≤ −
p∑

k=0

q∑

j=1

1

kj + 1
(δfk

(Dj)− ε)Tfk
(r, L) + S(r)

≤ qε T (r, L) − 1

k1 + 1
δf1

(D1)Tf1
(r, L) + S(r).

Hence

1

k1 + 1
δf1

(D1)Tf1
(r, L) + T (r, L0) + T (r,KM )− qε T (r, L) ≤ S(r).

Take a rational number γ > 0. It follows from [L−1
0 ⊗K−1

M /L] = 0 that

−γ T (r, L) ≤ T (r, L0) + T (r,KM ) +O(1)

and hence

1

k1 + 1
δf1

(D1)Tf1
(r, L)− (γ + qε)T (r, L) ≤ S(r).

By Lemma 2.8, we see δf1
(D1) = 0, which contradicts the assumption.

Thus we have now completed the proof of Theorem 2.7.
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We now give a criteria for the propagation of dependence, which is an

immediate corollary of the proof of Theorem 2.2 (cf. [5] and [21]). Set

p0 =

q∑

j=1

kj

kj + 1
− [K−1

M /L]− 2µ0(s0 − 1).

We also set

m1 = q − [K−1
M /L]− 2µ0(s0 − 1) and mj = q − [K−1

M /L] (2 ≤ j ≤ l).

Then we have the following:

Proposition 2.10. Let f1, . . . , fl ∈ F . Suppose that they are Σ-

related on S. If all mj are positive and if

p0 −
γ̃lk0

k0 + 1
[F1/L] +m1

l∑

j=2

(
p0 −

γ̃lk0

k0 + 1
[Fj/L]

)
> 0,

then f1, . . . , fl are Σ-related on X.

Proof. We note that

−Tf (r,KM ) ≤ [K−1
M /L]Tf (r, L) +O(1)

and hence

(q − [K−1
M /L])Tf (r, L) ≤

q∑

j=1

N1(r, f
∗Dj) +N(r,B) + Sf (r).

We first show

(2.11) m1 Tf1
(r, L) ≤ Tfj

(r, L) + Sf1
(r)

for all j. By Theorems 1.1 and 1.2, we see

q Tf1
(r, L) + Tf1

(r,KM ) ≤ N(r, Z) +N(r,B) + Sf1
(r)

≤ Tfj
(r, L) +N(r,B) + Sf1

(r)

≤ Tfj
(r, L) + 2µ0(s0 − 1)Tf1

(r, L) + Sf1
(r),

which gives (2.11). We also have

mj Tfj
(r, L) ≤ Tf1

(r, L) +N(r,B) + Sfj
(r)
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for j (6= 1) in the same way, and hence

(2.12) mj Tfj
(r, L) ≤ (2µ0(s0 − 1) + 1)Tf1

(r, L) + Sfj
(r).

The inequalities (2.11) and (2.12) yield

(2.13) Tf1
(r, L) ∼ Tfj

(r, L) as r → +∞.

As in the proof of Theorem 2.2, we have

( q∑

j=1

kj

kj + 1
− [K−1

M /L]

)
Tfi

(r, L) ≤ k0

k0 + 1
N(r, S) +N(r,B) + Sfi

(r)

for all i. Hence, by Lemmas 2.4 and 2.6, we have

p0 T (r, L) ≤ γ̃lk0

1 + k0

l∑

j=1

[Fj/L]Tfj
(r, L) + 2lµ0(s0 − 1)Tf1

(r, L) + S(r).

By (2.11), we get

(
p0 −

γ̃lk0

k0 + 1
[F1/L] +m1

l∑

j=2

(
p0 −

γ̃lk0

k0 + 1
[Fj/L]

))
Tf1

(r, L) ≤ S(r).

By the assumption in this proposition and (2.13), we have a contradiction.

Remarks 2.14. (1) In the past, the propagation of dependence has been
studied under conditions on the growth of mappings and the ramification
divisor B of π : X → Cm. For example, W. Stoll proved some interesting
theorems on the propagation of dependence of meromorphic mappings f :
X →M under a condition on the growth of mappings in different settings
(cf. [21]). In his results, at least one of the mappings fj must grow quicker
than the ramification divisor B, that is, it is assumed that

lim
r→+∞

N(r,B)

Tf (r, L)
= 0.

However, the existence of such a mapping is a delicate matter even if X and
M are Riemann surfaces (cf. L. Sario [13]). In [21], he already declared that
his condition can be replaced by a condition on the existence of mappings
separating the fibers of π : X → Cm in some cases.
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(2) If [L−1
0 ⊗K−1

M /L] is positive, we cannot conclude the propagation of
dependence under the condition on the existence of deficient divisors. We
now give an example. Let M = P1(C) and l = 2. Suppose that H → P1(C)
is the hyperplane bundle. Let L = H and F1 = F2 = H. We now take

L̃ = F̃ = π∗1H ⊗ π∗2H.
Let f0 : C → P1(C) be a meromorphic function defined by f0(z) = exp z.
Set D1 = 0, D2 = ∞, D3 = 1 and D4 = −1. Then it is clear that D1

and D2 are Picard’s deficient values of f0. Let kj = 1 for all j and put
Sj = Supp1 f

∗
0Dj. Now, we see that [L−1

0 ⊗ K−1
P1(C)/L] = 1 and f1(z) =

exp(−z) ∈ F . If Σ is the diagonal of P1(C)2, then Σ ∈ R. It is clear that
(f0 × f1)(S) ⊆ Σ and (f0 × f1)(C) 6⊆ Σ. Note that the proofs of the above
theorems also work in the case where some of Sj are the empty sets.

(3) The case, where either all kj = 1 or all kj = +∞, are essentially
important in our study. We now consider the case where kj = +∞ for
some j. We first note that Suppf ∗D = Suppkj

f∗D if kj = +∞. Set
kj/(kj + 1) = 1 and 1/(kj + 1) = 0 for kj = +∞. Then it is easy to see
that the proof of Theorem 2.2 also works in the case where kj = +∞ for
some j. In the case where [L−1

0 ⊗K−1
M /L] = 0, we have the same conclusion

as in Theorem 2.7 if we assume that δf0
(Dj) > 0 with kj 6= +∞ for some

j. The proof of Theorem 2.7 remains still valid under this condition. Note
that the condition kj 6= +∞ cannot be dropped. Indeed, let Dj , fj and
Σ be as in (2). Now let kj = +∞ for all 1 ≤ j ≤ 4. Then we see that
[L−1

0 ⊗K−1
P1(C)/L] = 0 and (f0 × f1)(S) ⊆ Σ, but (f0 × f1)(C) 6⊆ Σ.

(4) We consider the case where Di and Dj are not linearly equivalent
for some pair (i, j) but all the Chern classes c1([Dj ]) are identical. In this
case, by the proof of Theorem 2.2, we easily see that Theorem 2.2 remains
valid provided that

( q∑

j=1

kj

kj + 1
− 2µ0(s0 − 1)

)
[D1]⊗

(
− γ̃lk0

k0 + 1
F0

)

is ample. This fact is used lalter.

Now, let us consider a more general case. Let L1, . . . , Ll be ample

line bundles over M and let q1, . . . , ql be positive integers. Assume that

Dj = Dj1 + · · ·+Djqj
∈ |qjLj| has only normal crossings, where Djk ∈ |L|.

Let Z be a hypersurface in X. We denote by

G = G ({kj}; (X,Z); (M, {Dj}))
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the family of dominant meromorphic mappings f : X →M such that

Suppkj
f∗Dj = Z

for some j with 1 ≤ j ≤ l. In the case where all Lj are identical (say L),

we define G0 ∈ Pic(M)⊗Q by

G0 =

(
min

1≤j≤l

{ qjkj

kj + 1

}
− 2µ0(s0 − 1)

)
L⊗

(
− γ̃lk0

k0 + 1
F0

)
.

Then the following theorem is fundamental in this case:

Theorem 2.15. Let f1, . . . , fl be arbitrary mappings in G and let Σ ∈
R. Suppose that f1, . . . , fl are Σ-related on Z. If G0 ⊗ KM is big, then

f1, . . . , fl are Σ-related on X.

Proof. Suppose that f̃(X) 6⊆ Σ. Without loss of generality, we may
assume that Suppkj

f∗jDj = Z for all j. We first note that the following
inequality holds (cf. Lemmas 2.5):

qj Tfj
(r, L) + Tfj

(r,KM )

≤ k0

k0 + 1
N(r, Z) +

1

kj + 1
N(r, f∗j Dj) +N(r,B) + Sfj

(r).

The following inequality also remains valid in this case:

N(r, Z) ≤ γ̃
l∑

j=1

Tfj
(r, Fj) +O(1).

Thus we get

qjkj

kj + 1
Tfj

(r, L) + Tfj
(r,KM ) ≤

( k0

k0 + 1

)
γ̃T (r, F0) +N(r,B) + Sfj

(r).

So we have
(

min
1≤j≤l

{ qjkj

kj + 1

})
T (r, L) + T (r,KM )

≤
( γ̃lk0

k0 + 1

)
T (r, F0) + lN(r,B) + S(r).

Hence we see
T (r,G0) + T (r,KM ) ≤ S(r).

Since G0 ⊗KM is big, this gives a contradiction.
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We now return the general case. We note the following: In the case

where Li and Lj are not same for some i and j but all the Chern classes

c1(Lj) are identical, the conclusion of Theorem 2.15 is atill valid if the line

bundle
(

min
1≤j≤l

{ qjkj

kj + 1

}
− 2µ0(s0 − 1)

)
L1 ⊗

(
− γ̃lk0

k0 + 1
F0

)

is ample. We give two criteria for the propagation of dependence similar to

Proposition 2.10, which are corollaries of the proof of Theorem 2.15. Set

n1 = q1 − [K−1
M /L1]− 2µ0(s0 − 1) and nj = qj − [K−1

M /Lj] (2 ≤ j ≤ l).

We also set

pj =
qjkj

1 + kj
− [K−1

M /Lj ]− 2µ0(s0 − 1)

for all j with 1 ≤ j ≤ l. Then we have the following result:

Proposition 2.16. Let f1, . . . , fl be arbitrary mappings in G and Σ ∈
R. Suppose that f1, . . . , fl are Σ-related on Z. If nj > 0 for all j and if

p1 −
γ̃lk0

k0 + 1
[F1/L1] + n1

l∑

j=2

(
pj −

γ̃lk0

k0 + 1
[Fj/Lj ]

)
> 0,

then f1, . . . , fl are Σ-related on X.

Proof. As in the proof of Proposition 2.10, we get

n1 Tf1
(r, L1) ≤ Tfj

(r, Lj) + Sf1
(r)

for all j, and

nj Tfj
(r, Lj) ≤ (2µ0(s0 − 1) + 1)Tf1

(r, L1) + Sfj
(r).

Hence Tf1
(r, L1) ∼ Tfj

(r, Lj) as r → +∞. Next, we also have

l∑

j=1

( qjkj

kj + 1
− [KM/Lj ]

)
Tfj

(r, Lj)

≤
( lk0

k0 + 1

)
N(r, Z) + lN(r,B) + S(r).
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It follows from

N(r, Z) ≤
l∑

j=1

γ̃[Fj/Lj]Tfj
(r, Lj) +O(1)

that

l∑

j=1

(
qjkj

kj + 1
−

( γ̃lk0

k0 + 1

)
[KM/Lj ]

)
Tfj

(r, Lj)−2lµ0(s0−1)Tf1
(r, L1) ≤ S(r).

Therefore we see
(
p1 −

γ̃lk0

k0 + 1
[F1/L1] + n1

l∑

j=2

(
pj −

γ̃lk0

k0 + 1
[Fj/Lj ]

))
Tf1

(r, L1) ≤ S(r).

This gives a contradiction. We now have completed the proof.

Set e0 = 2µ0(s0 − 1) + 1. By a method similar to the above proof, we

have the following:

Proposition 2.17. Let f1, . . . , fl be as in Proposition 2.16. If nj > 0
for all j and if

p1 −
γ̃lk0

k0 + 1
[F1/L1] +

l∑

j=2

(
n1pj −

γ̃le0k0

nj(k0 + 1)
[Fj/Lj ]

)
> 0,

then f1, . . . , fl are Σ-related on X.

Proof. As in the proof of Proposition 2.16, we see that

n1 Tf1
(r, L1) ≤ Tfj

(r, Lj) + Sf1
(r) and

nj Tfj
(r, Lj) ≤ e0 Tf1

(r, L1) + Sfj
(r)

for all j. On the other hand, we get

(
p1−

γ̃lk0

k0 + 1
[F1/L1]

)
Tf1

(r, L1)+

l∑

j=2

(
pj−

γ̃lk0

k0 + 1
[Fj/Lj ]

)
Tfj

(r, Lj) ≤ S(r).

Thus we see
(
p1−

γ̃lk0

k0 + 1
[F1/L1]+

l∑

j=2

(
n1pj−

γ̃le0k0

nj(k0 + 1)
[Fj/Lj ]

))
Tf1

(r, L1) ≤ S(r).

This contradicts our assumption. Therefore we have the desired conclusion.
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As was mentioned in Remark 2.14, the case where all kj = 1 is impor-

tant from the viewpoint of Nevanlinna theory. Note that the conclusions of

Propositions 2.10, 2.16 and 2.17 are still valid for the case where some of

kj = +∞. Indeed, the proofs of Theorems 2.2 and 2.15 also work in this

case, and hence we have our assertion. We also have a criterion in the case

where G0⊗KM is not big. In this case, we can show the following theorem

by an argument similar to the proof of Theorem 2.7:

Theorem 2.18. Let f1, . . . , fl be arbitrary mappings in G and let Σ ∈
R. Suppose that f1, . . . , fl are Σ-related on Z and [G−1

0 ⊗K−1
M /L] = 0. If

there exists fi such that δfi
(Dj) > 0 for at least one j with 1 ≤ j ≤ q, then

f1, . . . , fl are Σ-related on X.

To see what the criteria proved in this section amount to, we will give

some applications and examples in the next three sections.

§3. Unicity theorems for meromorphic mappings

As we mentioned in the Introduction, a certain kind of unicity theorems

are just theorems on propagation of dependence. In this section, we give

some unicity theorems as an application of criteria for dependence by taking

line bundles Fj of special type. For the details of this direction, see, e.g,

[2], [3], [4] and [18]. We keep the same notation as in Section 2. Let

Φ : M → Pn(C) be a meromorphic mapping with rankΦ = dimM . We

denote by H the hyperplane bundle over Pn(C). Now, let l = 2 and take

F1 = F2 = Φ∗H. We also take L̃ = F̃ . Then we see

L0 =

( q∑

j=1

kj

kj + 1
− 2µ0(s0 − 1)

)
L⊗

(
− 2k0

k0 + 1
Φ∗H

)
.

A set {Dj}qj=1 of divisors is said to be generic with respect to f0 and Φ

provided that

Rj := f0(X − I(f0)) ∩ SuppDj ∩ {w ∈M : rank dΦ(w) = dimM} 6= ∅

for at least one j with 1 ≤ j ≤ q. We assume that {Dj}qj=1 is generic with

respect to f0 and Φ. Let F1 be the set of all mappings f ∈ F such that

f = f0 on S. Then we have the following unicity theorems (cf. [2]):

Theorem 3.1. (1) Suppose that L0 ⊗KM is big. Then the family F1

contains just one mapping f0.
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(2) Suppose that [L−1
0 ⊗K−1

M /L] = 0. If δf0
(Dj) > 0 for at least one j

with 1 ≤ j ≤ q, then the family F1 contains just one mapping f0.

Proof. Let f ∈ F1. We denote by ∆ the diagonal of Pn(C)2. Set
Ψ = Φ × Φ. Since f = f0 on S, it is clear that Ψ ◦ (f × f0)(S) ⊆ ∆.
Suppose that Φ ◦ f 6≡ Φ ◦ f0. Then we can take a hypersurface Σ ∈ R so
that (f × f0)(S) ⊆ Σ and (f × f0)(X) 6⊆ Σ. Indeed, we define the line
bundle H̃ → Pn(C)2 by H̃ = π∗1H ⊗ π∗2H. Note that L̃ = Ψ∗H̃. We define
a meromorphic mapping ϕ : Cm → Pn(C)2 by ϕ = Ψ ◦ (f × f0). Since
Φ ◦ f 6≡ Φ ◦ f0, there exists a holomorphic section σ̃ of H̃ → Pn(C)2 such
that ϕ∗σ̃ 6≡ 0 and ∆ ⊆ Supp(σ̃). Then Σ = SuppΨ ∗(σ̃0) has the desired
properties. By Theorems 2.2 and 2.7, we have a contradiction. Thus we
see Φ ◦ f ≡ Φ ◦ f0. By the assumption, we have Rj 6= ∅ for some j. Take
a point p ∈ Rj. Then there exists an open neighborhood U of p such that
Φ|U : U → Φ(U) is biholomorphic. Set U ′ = f−1

0 (U). It follows from
Φ ◦ f = Φ ◦ f0 and f = f0 on S that f = f0 on U ′. Thus we see f ≡ f0 by
uniqueness of analytic continuation.

We next consider the case dimM = 1. Assume that M is a compact

Riemann surface with genus g0. In the case g0 = 0, we have the following

unicity theorem for meromorphic functions on X (cf. [1, Theorem 3.3]),

which is closely related to the uniqueness problem of algebroid functions.

Theorem 3.2. Let f1, f2 : X → P1(C) be nonconstant holomorphic

mappings. Let a1, . . . , ad be distinct points in P1(C).

(1) Suppose that Supp f ∗
1aj = Suppf ∗2aj for all j. If d ≥ 2s0 + 3, then

f1 and f2 are identical on X.

(2) Suppose that Supp1 f
∗
1aj = Supp1 f

∗
2aj for all j. If d ≥ 4s0 + 3,

then f1 and f2 are identical on X.

Proof. Let M = P1(C) in Theorem 3.1. Assume that kj = +∞ for
all j. Then we see L0 ⊗KP1(C) = (d − (2s0 + 2))H. Hence L0 ⊗KP1(C) is
ample provided that d ≥ 2s0+3. Thus Theorem 3.1 yields that f1 and f2 are
identical. Next, let kj = 1 for all j. Note that at least one Supp1 f

∗
1aj is not

empty by Remark 1.11. In this case, we have L0⊗KP1(C) = (d−(4s0+2))H.
Thus we have our conclusion.

We note that Theorem 3.2 is sharp. The following example due to

H. Ueda (cf. [22]):
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Example 3.3. We consider the integral

z = ϕ(w) :=

∫ w

0

1√
1− t4

dt

on the unit disc in C. Set z1 = ϕ(1), z2 = ϕ(
√
−1 ), z3 = ϕ(−1) and

z4 = ϕ(−
√
−1 ). Then ϕ maps the unit disc onto the square z1z2z3z4.

By Schwarz’s reflection principle, the inverse function of z = ϕ(w) can be
analytically continued over the complex plane C, and the resulting function
w = f(z) is doubly periodic. Let a1 = 1, a2 =

√
−1, a3 = −1, a4 = −

√
−1,

a5 = 0 and a6 = ∞. Set f1 = f and f2 =
√
−1f . Then Supp1 f1

∗aj =
Supp1 f2

∗aj for all j, but f1 6≡ f2.

The uniqueness problem of holomorphic mappings into a compact Rie-

mann surface with positive genus is not well studied (cf. [1], [4], [5] and

[14]). In the case of g0 = 1, we will discuss the uniqueness for holomorphic

mappings into smooth elliptic curves and give some results in Section 5.

Assume that g0 ≥ 2. Then there can be only restricted cases where there

really exists a nonconstant holomorphic mapping f : X → M . Now, we

will prove the following unicity theorem, which gives an improvement of

Theorem 3.6 in [1].

Theorem 3.4. Let f1, f2 : X →M be nonconstant holomorphic map-

pings. Let a1, . . . , ad be distinct points in M .

(1) Suppose that Suppf ∗
1aj = Supp f ∗2aj for all j. If d > max{4g0,

2(g0 + 1)(s0 − 1)}, then f1 and f2 are identical on X.

(2) Suppose that Supp1 f
∗
1aj = Supp1 f

∗
2aj for all j. If d > max{4g0,

2(g0 + 1)(2s0 + 1)− 8g0}, then f1 and f2 are identical on X.

Proof. Since H2(M,Z) ∼= Z, we identify the Chern class c1(L) of L
with an integer. In general, ai and aj with i 6= j are not linearly equivalent,
but c1([ai]) = c1([aj ]) = 1. In the proof below, we only use this fact. Hence,
without loss of generality, we may assume that all aj are lineary equivalent.
Now, by Riemann-Roch’s theorem, we have µ0 ≤ g0 + 1 (see the proof
of Theorem 2 in [12]). Take a meromorphic function Φ on M such that
degΦ = µ0 and let kj = +∞ for all j. Then

c1(L0 ⊗KM ) = (d− 2µ0(s0 − 1)− 2µ0) + (2g0 − 2).
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Hence L0⊗KM is ample if d > 2µ0s0−(2g0−2). Thus, if d > 2(g0+1)(s0−1),
then Φ ◦ f1 = Φ ◦ f2. On the other hand, if t is the number of branch points
of Φ : X → P1(C), then Riemann-Hurwitz’ formula gives

t ≤ 2(g0 + µ0 − 1) ≤ 4g0.

By Theorem 1.7, we have the following defect relation:

d∑

j=1

Θf1
(aj) ≤ 4 + 2(g0 + 1)(s0 − 2).

Note that 4+2(g0 +1)(s0− 2) < 2(g0 +1)(s0− 1). Thus, if the assumption
of (1) is satisfied, then there exists at least one of the point aj such that
Suppf∗1aj is not empty and is not a branch point of Φ. Therefore, as in the
proof of Theorem 3.1, we have (1). Next, we assume that kj = 1 for all j.
By Remark 1.11, at least one Supp1 f

∗
1aj is not empty. In this case

c1(2(L0 ⊗KM )) = (d− 4µ0(s0 − 1)− 2µ0) + (4g0 − 4).

Hence L0 ⊗ KM is ample if d > 4µ0s0 + 2µ0 − 4(g0 − 1). By the above
argument, we have our assertion.

Note that there have been examples of holomorphic mappings into com-

pact Riemann surfaces that satisfy our condition (cf. [12]). The details on

the uniqueness problem of holomorphic mappings into compact Riemann

surfaces will be published elsewhere.

§4. Meromorphic mappings into complex projective spaces

In this section, we consider the case where M = Pn(C). In the remain-

der of this paper, we always assume that l = 2. Note that, if f : X → Pn(C)

separates the fibers of π : X → Cm, we can always take µ0 = 1. Let H be

the hyperplane bundle over Pn(C). Then Pic(Pn(C)) ∼= Z and H is the gen-

erator of Pic(Pn(C)) with c1(H) = 1. Let KPn(C) be the canonical bundle

of Pn(C). It is well-known that

KPn(C) = −(n+ 1)H.

In this case, F ∈ Pic(Pn(C)) ⊗Q is big if and only if F is ample. We also

note that

Pic(Pn(C)2) = π∗1 Pic(Pn(C))⊕ π∗2 Pic(Pn(C)).
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Hence we may assume that L̃ = F̃ . Since Pic(Pn(C)) ∼= Z, there exists a

positive integer d such that L = dH. There also exist positive integers dj

such that Fj = djH for j = 1, 2. Thus a holomorphic section of L̃→ Pn(C)2

is a homogeneous polynomial P (ξ; ζ) of degree d1 in ξ = (ξ0, . . . , ξn) and

degree d2 in ζ = (ζ0, . . . , ζn). Set d0 = max{d1, d2}. Let D be an effective

divisor in Pn(C) with simple normal crossings. Assume that D = D1 + · · ·+
Dq for some Dj ∈ |L|. Let S be a hypersurface in X. We will show some

theorems on the propagation of dependence, which are the prototype of our

study in this paper. By Theorem 2.2, we now have the following theorem:

Theorem 4.1. Let D,S and P (ξ; ζ) be as above. Let f, g : X → Pn(C)
be dominant meromorphic mappings such that Suppk f

∗Dj = Suppk g
∗Dj =

Sj for some k with 1 ≤ k ≤ +∞. Suppose that P (f ; g) = 0 on S. If

d(q − 2(1 + k−1)(s0 − 1)) > 2d0 + (1 + k−1)(n+ 1),

then P (f ; g) = 0 on X.

Proof. Let M = Pn(C) and L = dH in Theorem 2.2. Since KPn(C) =
−(n+ 1)H, we have

L0 ⊗KM =
( k(dq − 2d0)

k + 1
− 2(s0 − 1)d− n− 1

)
H.

Hence L0 ⊗KM is ample provided that the assumption in the theorem is
satisfied. Therefore we have the desired conclusion.

In [5], S. J. Drouilhet dealt with the case of n = 1 and obtained some

theorems on the dependence of meromorphic functions. Related to this, we

have the following:

Theorem 4.2. Let D and D′ be hypersurfaces of degree d which have

only simple normal crossings. Let f, g : Cm → Pn(C) be dominant mero-

morphic mappings such that Suppk f
∗D = Suppk g

∗D′ = Z as point sets

(1 ≤ k ≤ +∞). Let P (ξ; ζ) be as in Theorem 4.1. Suppose that P (f ; g) = 0
on Z. If

d ≥ d1 + d2 + 1 + (1 + k−1)(n+ 1),

then P (f ; g) = 0 on Cm.
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Proof. In this case, we have that

nj =
d− n− 1

d
and pj =

k

k + 1
− n+ 1

d

for j = 1, 2 in Proposition 2.16. We also see [Fj/L] = dj/d. We can easily
see that n1 and n2 are positive under the condition on d. Now, we have

Q := p1 −
2k

k + 1
[F1/L] + n1

(
p2 −

2k

k + 1
[F2/L]

)

=
k

k + 1
− n+ 1

d
− 2kd1

(k + 1)d

+
d− n− 1

d

( k

k + 1
− n+ 1

d
− 2kd2

(k + 1)d

)
.

For brevity, we set u = k/(k + 1). Then it is easy to see that Q is positive
provided that

2ud2 − 2(u(d1 + d2 + 1) + n+ 1)d+ (n+ 1)2 > 0.

If the assumption of Theorem 4.2 is satisfied, then the last inequality is
valid, and hence Q is positive. Therefore we have the desired conclusion by
Proposition 2.16.

If X = C, n = 1 and k = +∞, then we have Drouilhet’s theorem. He

also gave some examples which show his result is sharp. In the case where

[L−1
0 ⊗K−1

Pn(C)/L] = 0, we have the following:

Theorem 4.3. Let f, g,D, S and P (ξ; ζ) be as in Theorem 4.1. Let

k = 1 and d = d0 + n+ 1. Suppose that P (f ; g) = 0 on S and q = 4s0 − 2.
If δf (D) > 0, then P (f ; g) = 0 on X.

Proof. In this case, L0⊗KPn(C) is trivial. Hence [L−1
0 ⊗K−1

Pn(C)/L] = 0.

Thus we have our assertion by Theorem 2.7.

§5. Holomorphic mappings into smooth elliptic curves

We finally consider the case where M is a smooth elliptic curve E. The

uniqueness problem of holomorphic mappings into elliptic curves was first

studied by E. M. Schmid [14] and he obtained the following unicity theorem:

Let f, g : R→ E be nonconstant holomorphic mappings, where R is an open

Riemann surface of a certain type. Then there exists a nonnegative integer
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d depending only on R such that, if f−1(aj) = g−1(aj) for distinct d + 5

points a1, . . . , ad+5 in E, then f and g are identical. In the special case

R = C, we have d = 0.

Until now, there have been only few studies on the uniqueness problem

of holomorphic mappings f : X → E (cf. [4], [5] and [14]). In this section,

we consider the problem to determine the condition which yields f = ϕ(g)

for an endomorphism ϕ of the abelian group E. We first note the following

fact: If f : X → E separates the fibers of π : X → Cm, then we can take

µ0 = 2 (cf. [12, p. 286]). Let L ∈ Pic(E). Since H2(E,Z) ∼= Z, we identify

the Chern class c1(L) of L with an integer. We now consider the infimum

[F/L] of the set of rational numbers γ such that γc1(L) − c1(F ) is ample.

We note that [F/L] = [F/L′] if c1(L) = c1(L
′). Hence the conclusions of

Theorem 2.15, Propositions 2.16 and 2.17 are still valid provided that Dj ∈
|qjLj | and all c1(Lj) are identical. We also note that γ̃ is not necessarily

rational number in this section. It is well-known that

Pic(E2) 6= π∗1 Pic(E) ⊕ π∗2 Pic(E).

We denote by [p] the point bundle determined by p ∈ E. Let F1 = F2 = [p].

Let f, g : X → E be nonconstant holomorphic mappings. We denote by

End(E) the ring of endomorphisms of E. If E has no complex multiplica-

tion, it is well-known that End(E) ∼= Z. Hence ϕ(x) = nx for some integer

n.

We now seek conditions which yield g = ϕ(f) for some ϕ ∈ End(E).

To this end, we first remark that the number of the totally ramified value

for nonconstant holomorphic mappings f : X → E is at most 8s0 − 8. Let

ϕ ∈ End(E) and consider a curve

S̃ = {(x, y) ∈ E ×E ; y = ϕ(x)}

in E × E. Let L̃ be the line bundle [S̃] determined by S̃. In this section,

γ̃ denotes the infimum of rational numbers such that γF̃ ⊗ [S̃]−1 is ample.

Then we essentially use the following theorem proved by T. Katsura:

Theorem (Katsura). Let γ̃ be as above. Then γ̃ = degϕ+ 1.

By the above theorem, we have the following corollary (cf. [16, p. 89]):

Corollary. Let n be an integer. If ϕ ∈ End(E) is an endomorphism

defined by ϕ(x) = nx, then γ̃ = n2 + 1.
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If E has no complex multiplication, we can give the value of γ̃ by

direct calculation of Chern forms. This method is based on the existence

of valence of correspondence and hence does not work in the case where E

has complex multiplication (cf. [7, p. 286]). We give the proof of Katsura’s

theorem in the next section.

Theorem 5.1. Let f, g and ϕ be as above. Let D1 = {a1, . . . , ad} be

a set of d points and ϕ a endomorphism of E. Set D2 = ϕ(D1). Assume

that the number of points in D2 is also d. Suppose that Suppk f
∗D1 =

Suppk g∗D2 for some k. If d > 2(deg ϕ+ 1) + 8(s0 − 1)(1 + k−1), then

g = ϕ(f).

Proof. Note that [D1] may be not equal to [D2] but c([D1]) = c([D2]) =
d. We take a line bundle L→ E with c(L) = d. In this case, we may assume
that

G0 =
( k

k + 1
− 8(s0 − 1)

)
L⊗

(
− 2γ̃k

k + 1

)
F0.

Thus the assumption of Theorem 5.1 yields that G0 is ample. We have now
completed the proof of our theorem.

Note that, by Remark 1.11, Supp1 f
∗D1 is not empty under the condi-

tion in Theorem 5.1. In the above theorem, we assume that the cardinality

]D2 of the point set D2 equals d. However, it may happen that ]D2 < d.

For example, if ϕ(x) = nx (n ∈ Z) and there exists at least one pair (i, j)

such that ai − aj is n-torsion point, then ]D2 < d. In this case, by making

use of Proposition 2.17, we have the following:

Theorem 5.2. Let f, g : Cm → E be nonconstant holomorphic map-

pings. Let D1 = {a1, . . . , ad} be a set of d points and ϕ ∈ End(E). Set

D2 = ϕ(D1). Assume that the number of points in D2 is d′. Suppose that

Supp1 f
∗D1 = Supp1 g

∗D2. If dd′ > (d+ d′)(degϕ+ 1), then g = ϕ(f).

Proof. We take line bundles Lj over E such that Dj ∈ |Lj|. In Propo-
sition 2.17, let n1 = n2 = 1 and p1 = p2 = k/(k + 1). We also have
[F1/L1] = 1/d and [F2/L2] = 1/d′. Hence

p1 −
2γ̃k

k + 1
[F1/L1] + n1p2 −

2γ̃e0k

n2(k + 1)
[F2/L2]

can be written as

P :=
k

k + 1
− 2γ̃k

d(k + 1)
+

k

k + 1
− 2γ̃k

d′(k + 1)
.
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If dd′ > (d + d′)γ̃, then P > 0. Hence the assumption of Proposition 2.17
is satisfied. This proves Theorem 5.2.

Corollary 5.3. Let f and g be as in Theorem 5.2. Let D1 = {a1, . . . ,
ad} be a set of d points and set D2 = {na1, . . . , nad} for some integer n.
Assume that the number of points in D2 is d′. Suppose that Supp1 f

∗D1 =
Supp1 g

∗D2. If dd′ > (d+ d′)(n2 + 1), then g = nf .

In the case where X = C, Supp f ∗D1 = Supp g∗D2 and E has no

complex multiplication, we have Drouilhet’s theorem (cf. [5, Theorem 6]).

We do not know whether Theorem 5.2 is sharp or not. However, if the

condition dd′ > (d+d′)(degϕ+ 1) is not satisfied, then it is not necessarily

true that g = ϕ(f).

Example 5.4. Let ϕ ∈ End(E) be an endomorphism defined by
ϕ(x) = 2x. Define f, g : C→ E by f(z) = π(x) and g(z) = −2π(x), where
π : C→ E be the universal covering mapping. Let D1 = {x ∈ E ; 4x = 0}.
Then D2 = ϕ(D1) = 2D1. It is clear that Supp1 f

∗D1 = Supp1 g
∗D2. In

this case, d = 16, d′ = 4 and degϕ+ 1 = 5. Thus we have

dd′ − (d+ d′)(degϕ+ 1) = −36 < 0

and g 6= ϕ(f).

The following unicity theorem is a direct conclusion of Theorem 5.1:

Theorem 5.5. Let a1, . . . , ad be distinct points in E. Let f, g : X → E
be nonconstant holomorphic mappings. Suppose that Suppk f

∗aj = Suppk

g∗aj for all j, where 1 ≤ k ≤ +∞. If d > 8s0 − 4 + 8k−1(s0 − 1), then f
and g are identical.

In the case of X = Cm, we have the following:

Theorem 5.6. Let a1, . . . , ad be distinct points in E. Let f, g : Cm →
E be nonconstant holomorphic mappings. Suppose that Supp1 f

∗aj = Supp1

g∗aj for all j. If d ≥ 5, then f and g are identical.

We give here the concluding remark. If we choose special points of

E, we obtain an example which yields that Theorem 5.6 is sharp. Indeed,

let a1, . . . , a4 be two-torsion points in E and let ℘ be the Weierstrass ℘
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function. If f ∗1aj = f∗2aj for j = 1, . . . , 4, it is easy to see that ℘◦f1 = ℘◦f2

by Nevanlinna’s four points theorem (cf. [10, p. 122]). Hence f1 = f2 or

f1 = −f2. Since p 7→ −p (p ∈ E) is an automorphism of E, it is acceptable

that f1 and f2 are essentially identical. In this example, it seems that the

structure of the function field of E affects strongly the uniqueness problem

for holomorphic mappings. We conjecture that, if we take “generic points”

in E, then the number of points that implies the unicity of holomorphic

mappings is less than five. Further studies in this direction are expected.

§6. Appendix: Proof of Katsura’s theorem

In this section we give the proof of Katsura’s theorem, which is the

original proof due to T. Katsura.

Let E be a smooth elliptic curve as in Section 5. Let E1 = E2 = E

and ϕ ∈ End(E). Then we regard ϕ as an isogeny ϕ : E1 → E2. Set

A = E1 ×E2 and

S̃ = {(x, ϕ(x)) ; x ∈ E1} ⊆ A.

Let C be an irreducible curve in A. We denote by π(C) the virtual genus

of C, that is,

π(C) =
C2 + (C ·KA)

2
+ 1.

Since KA is trivial, we have

π(C) =
C2 + 2

2
.

Since S̃ ∼= E1, it is clear that S̃ is a smooth elliptic curve. Thus S̃2 = 0.

Set D̃ = E1 × {0} + {0} × E2. Then D̃2 = 2. For brevity, we write E1 for

E1 × {0} and E2 for {0} ×E2 in what follows. Then we set

γ̃ = inf{γ ∈ Q ; γD̃ − S̃ is ample}.

For the proof of the theorem, we need some lemmas. The following lemma

directly follows from the definition.

Lemma 6.1. Let S̃, E1 and E2 be as above. Then

(S̃ ·E1) = degϕ and (S̃ ·E2) = 1.



ALGEBRAIC DEPENDENCE OF MEROMORPHIC MAPPINGS 175

Lemma 6.2. Let A be an Abelian surface, and C1 and C2 irreducible

curves in A. Denote by Tx : A→ A the translation by x ∈ A. If (C1 ·C2) =
0, then C1 and C2 are smooth elliptic curves and T ∗

xC1 = C2 for some

x ∈ A.

Proof. Take y ∈ C1 and z ∈ C2 and set x = y−z. Then z ∈ T ∗
xC1∩C2.

If T ∗
xC1 6= C2, then (C1 · C2) = (T ∗

xC1 · C2) > 0. This contradicts the
assumption. Thus we have T ∗

xC1 = C2 and hence

C2
1 = (T ∗

xC1 · C1) = (C2 · C1) = 0.

Thus π(C1) = 1. This implies that C1 is a smooth elliptic curve and so is
C2.

Lemma 6.3. Let A be an Abelian surface, and C1 and C2 irreducible

curves in A. If (C1 · C2) = 1, then C1 and C2 are smooth elliptic curves

and A ∼= C1 × C2.

Proof. Suppose that C2
1 > 0. Set ξ = (C2

1 )C2 − (C1 · C2)C1. Then we
have (C1 · ξ) = 0. By Hodge’s index theorem, we see ξ2 ≤ 0. Then we get

C2
1 · C2

2 ≤ (C1 · C2)
2 = 1.

It follows from C2
2 = 2χ(OA(C2)) that C2

2 is even. Hence C2
2 = 0. This

implies that C2 is a smooth elliptic curve. Without loss of generality, we
may assume that C2 contains an identity element of A. Hence C2 is an
Abelian subvariety of A. Thus we have a fiber space

ψ : A→ A/C2.

It follows from ψ−1(0) = C2 and (C1 · C2) = 1 that C1 is a section of ψ.
Thus C1

∼= A/C2 is a smooth elliptic curve, and hence C2
1 = 0. This is

absurd. Therefore C2
1 = 0. This implies that C1 is a smooth elliptic curve.

By the same method, we have C2
2 = 0 and C2 is a smooth elliptic curve. We

may assume that both of C1 and C2 are Abelian subvarieties. We define
Φ : C1 × C2 → A by Φ(x, y) = x + y. Since (C1 · C2) = 1, we infer that Φ
gives an isomorphism.

Lemma 6.4. (A. Weil) Let A be an Abelian surface and Θ an effective

divisor on A. Suppose that Θ2 = 2. Then one of the following occurs.

(1) Θ is a smooth curve with genus two.

(2) There exists smooth elliptic curves C1 and C2 with (C1 · C2) = 1
such that Θ = C1 + C2.
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Proof. Let Θ =
∑l

i=1 niΘi, where Θi are distinct irreducible compo-
nents of Θ. Then

Θ2 =
∑

i

n2
i Θ

2
i +

∑

i<j

2ninj(Θi ·Θj) = 2.

If l = 1, then n1 = 1 and Θ = Θ1. Hence the virtual genus π(Θ) equals
2. Suppose that Θ is a singular curve. Since A contains no rational curve,
Θ is a singular elliptic curve. Let ψ : Θ̃ → Θ be the desingularization of
Θ. Then Θ̃ is a smooth elliptic curve, and hence φ is a composite of a
homomorphism and a translation. Thus Θ is smooth. This is absurd. Thus
we conclude that Θ is a smooth curve with genus two. Next we assume
that l ≥ 2. Suppose that all (Θi · Θj) = 0. By Lemma 6.2, we see that
all Θ2

i = 0. This contradicts the assumption. Hence, for at least one pair
of i and j, (Θi · Θj) > 0. In this case, it is easy to see that l = 2 and
n1 = n2 = 1. We also have (Θ1 ·Θ2) = 1.

Now we return the proof of the theorem of Katsura. Set γ̃ ′ = degϕ+1

and let F = γ̃ ′D̃ − S̃. Then we have F 2 = 0. On the other hand, we see

(F · E1) = 1 and (F ·E2) = degϕ. Since (F +E1)
2 = 2, we have

χ(OA(F +E1)) =
(F +E1)

2

2
= 1 > 0.

Hence h0(OA(F +E1)) > 0 or h2(OA(F +E1)) > 0. Since ((F +E1) · D̃) =

degϕ + 2 > 0, we get h0(OA(F + E1) > 0. Then there exists an effective

divisor D such that

F +E1 ∼ D and D2 = 2.

Suppose that D is irreducible. It follows from F ∼ D −E1 that

0 = F 2 = D2 − 2(D · E1) = 2− 2(D ·E1).

Thus (D · E1) = 1, which contradicts Lemmas 6.3 and 6.4. Therefore

there exist smooth elliptic curves C1 and C2 such that (C1 · C2) = 1 and

D = C1 + C2. Since F ∼ D − E1, we have (D · E1) = 1 as above. Hence

(C1 · E1) + (C2 · E1) = 1. Without loss of generality, we may assume that

(C1 ·E1) = 1 and (C2 ·E1) = 0. By making use of Lemma 6.2, there exists

a point x ∈ A such that C2 = T ∗
xC1. Hence

F ∼ D −E1 = C1 + T ∗
xE1 −E1.
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Thus F and C1 are algebraically equivalent. Note that, for an arbitrary

curve C in A, we have (F · C) = (C1 · C) ≥ 0. Let ε be a sufficiently small

positive rational number. Then we have

(γ̃′ + ε)D̃ − S̃ = εD̃ + F.

We also note that, for an arbitrary curve C in A, (D̃ ·C) > 0 and (F ·C) ≥ 0.

Hence, for an arbitrary curve C in A,

(
{(γ̃′ + ε)D̃ − S̃} · C

)
> 0.

This implies γ̃ ′ ≥ γ̃. On the other hand, we have

(γ̃′ − ε)D̃ − S̃ = −εD̃ + F.

By Lemmas 6.1 and 6.3, we see that (D̃ · C1) > 0 and (F · C1) = 0. Hence

we get (
{(γ̃′ − ε)D̃ − S̃} · C1

)
< 0.

This implies γ̃ ′ ≤ γ̃. Therefore we have γ̃ ′ = γ̃. We have now completed

the proof of Katsura’s theorem.
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