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MODIFICATION OF BALAYAGE SPACES BY

TRANSITIONS WITH APPLICATION

TO COUPLING OF PDE’S

WOLFHARD HANSEN

Abstract. Modifications of balayage spaces are studied which, in probabilistic
terms, correspond to killing and transitions (creation of mass combined with
jumps). This is achieved by a modification of harmonic kernels for sufficiently
small open sets. Applications to coupling of elliptic and parabolic partial dif-
ferential equations of second order are discussed.

§1. Introduction

Balayage spaces provide a potential theory which is as rich as that

of harmonic spaces, the only difference being that harmonic measures for

open sets may live on the entire complement instead of being concentrated

on the boundary (see [BH86]). While harmonic spaces are designed for a

unified discussion of solutions to large classes of linear elliptic and parabolic

partial differential equations of second order, the notion of a balayage space

covers, in addition, Riesz potentials, Markov chains on discrete spaces, and

integro-differential equations.

In this paper we shall study modifications of balayage spaces which,

in probabilistic terms, correspond to killing and transitions (creation of

mass combined with jumps). This will be achieved by a modification of

harmonic kernels for sufficiently small open sets. Considering transitions

on direct sums we obtain coupling of balayage spaces.

For Markov processes, semigroups and resolvents such procedures have

been developed in a series of papers [Bou79a], [Bou79b], [Bou80], [Bou81],

[Bou82] and recently (apparently without knowledge of the work of

N. Bouleau) in [CZ96]. So it should come as no surprise that our application

to PDE’s leads to similar results. We would like to stress, however, that

our method yields an immediate solution to Dirichlet problems for coupled

Received February 5, 2001.
2000 Mathematics Subject Classification: 31D05, 31B10, 31B30, 35J55, 35K50.



78 W. HANSEN

PDE’s since we may directly apply the general theory of balayage spaces,

whereas in [Bou81] and [CZ96] additional considerations are necessary.

To give a first idea of our approach let us look at a very simple example

where the transition merely consists in jumping back and forth between

two copies of an open set: Consider two global Kato measures µ1, µ2 ≥ 0

on a Green domain D in Rd, d ≥ 1, (i.e., we have a Green function GD

on D and G
µj

D =
∫
GD( · , y)µj(dy) is a bounded continuous real function

on D, j = 1, 2) and assume that ‖Gµ1

D ‖∞‖Gµ2

D ‖∞ < 1. Let U be a regular

relatively compact open subset of D and fix continuous real functions ϕ1,

ϕ2 on the boundary ∂U . Suppose we want to solve the coupled Dirichlet

problem

∆h1 = −h2µ1 on U, h1 = ϕ1 on ∂U,(1.1)

∆h2 = −h1µ2 on U, h2 = ϕ2 on ∂U.(1.2)

Note that e.g. the biharmonic problem

(1.3) ∆(∆h) = 0 on U, h = ϕ1 on ∂U, −∆h = ϕ2 on ∂U

is a special case (take µ1 = λd, µ2 = 0).

Let X be the topological sum of two copies X1, X2 of D, each equipped

with the harmonic structure given by the Laplacian and let π denote the

canonical mapping between these two copies (in Section 8 we shall do this

more formally). Let Uj be the set U in Xj, j = 1, 2. Taking µ on X, h on

U1 ∪ U2, ϕ on ∂U1 ∪ ∂U2 such that

(1.4) µ|Xj
= µj , h|U j

= hj , ϕ|∂Uj
= ϕj (j = 1, 2)

the equations (1.1) and (1.2) may be rewritten as a single equation

(1.5) ∆h = −(h ◦ π)µ on U1 ∪ U2 , h = ϕ on ∂(U1 ∪ U2).

For j = 1, 2, let GUj
denote the Green function on Uj and define a ker-

nel Kµ
Uj

by

Kµ
Uj
ψ := GψµUj

=

∫
GUj

( · , z)ψ(z) dµ(z).

Then ∆h = −(h ◦ π)µ if and only if

(1.6) ∆
(
h−Kµ

Uj
(h ◦ π)

)
= 0 on Uj , j = 1, 2.
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The idea is now the following: Given j ∈ {1, 2} and a regular subset V ofXj ,

let HV denote the harmonic kernel of V (i.e., HV is a kernel on X such that,

for every continuous function ϕ on X, the function HV ϕ is continuous onX,

harmonic on V , and equal to ϕ on X \V ) and define a new kernel H̃V on X

by

(1.7) H̃V ϕ = HV ϕ+Kµ
V (ϕ ◦ π).

The family of all H̃V , V regular, V ⊂ X1 or V ⊂ X2, yields a balayage

space (X, W̃) (this requires some proof, see Example 7.3) and then there

are corresponding harmonic kernels H̃U for every open subset U of X. In

particular, U1 ∪ U2 is regular with respect to (X, W̃) and then

h := H̃U1∪U2
ϕ

is the solution of (1.5). Indeed, clearly h = ϕ on ∂(U1 ∪U2). And, for every

j ∈ {1, 2}, we have H̃U1∪U2
= H̃Uj

H̃U1∪U2
, hence

h = H̃Uj
h = HUj

h+Kµ
Uj

(h ◦ π).

Since HUj
h is harmonic on Uj, this implies that ∆

(
h − Kµ

Uj
(h ◦ π)

)
= 0

on Uj , i.e., (1.6) holds.

This paper is organized as follows: First we shall briefly recall some

basic definitions for balayage spaces (Section 2) and discuss stability with

respect to increasing limits of harmonic kernels (necessary for Section 9).

Section 3 presents some fundamental properties of parabolic balayage spaces

(applied in Sections 7 and 8). In Section 4 we shall generalize definition

(1.7) to study a first modification of balayage spaces by transitions. A short

discussion of perturbed balayage spaces in Section 5 will allow us to com-

bine transitions with (positive or negative) perturbations (Section 6). In

Section 7 we consider the special case of coupling in direct sums of balayage

spaces, and in Section 8 we apply these results to coupling of partial dif-

ferential equations. The most general modification of balayage spaces will

be studied in Section 9 (which is independent of Sections 7 and 8). An

appendix on lifting of potentials and potential kernels finishes the paper.

§2. Balayage spaces

There are various ways of describing a balayage space: By its cone W

of positive hyperharmonic functions, by a family of harmonic kernels, by a
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corresponding semigroup, by an associated Hunt process (see [BH86, Theo-

rem IV.8.1] or the survey article [Han87]). For our purpose the description

using harmonic kernels is very appropriate.

We begin by introducing some notation: Let X be a locally compact

space with countable base. For every open set U in X, let B(U) denote

the set of all numerical Borel measurable functions on U . Further, C(U)

will denote the space of all real continuous functions on U and K(U) (C0(U)

resp.) the set of all functions in C(U) having compact support (vanishing at

infinity) with respect to U . Occasionally, functions on U will be identified

with functions on X which are zero on U c. Finally, given any set A of

functions let Ab (A+ resp.) denote the set of all functions in A which are

bounded (positive resp.)

Let U be a base of relatively compact open subsets of X and, for every

U ∈ U , let HU be a kernel on X such that HU (x, · ) = εx for every x ∈ U c

andHU1U = 0. It will be convenient to assume that U is stable with respect

to finite intersections (by [BH86, Remark VII.3.2.4] this is no restriction of

generality). Define

(2.1) W := {v | v : X → [0,∞] l.s.c., HUv ≤ v for every U ∈ U}

and, for every numerical function f ≥ 0 on X, let

Rf := inf{v ∈ W : v ≥ f}.

A function s ∈ C+(X) is called strongly (W-)superharmonic if, for every

U ∈ U , HUs < s on U .

Then (HU)U∈U is a family of (regular) harmonic kernels and (X,W) is

a balayage space provided the following holds (where U, V ∈ U):

(H1) Given x ∈ X, limU↓{x}HUϕ(x) = ϕ(x) for all ϕ ∈ K(X) or R1{x}
is

l.s.c. at x.

(H ′
2) HVHU = HU if V ⊂ U .

(H3) For every f ∈ Bb(X) with compact support, the function HUf is

continuous on U .

(H ′
4) For every ϕ ∈ K(X), the function HUϕ is continuous on U .

(H ′
5) There exists a strongly superharmonic function s ∈ C+(X).

Remarks 2.1. 1. Let f be a strictly positive continuous function on X
and define kernels H ′

U on X by H ′
U (x, · ) := (f/f(x))HU (x, · ). Obviously

(HU)U∈U is a family of harmonic kernels if and only if (H ′
U )U∈U is a family
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of harmonic kernels, and the corresponding set W ′ is related to W by W ′ =
(1/f)W. If f = s, s being a strongly superharmonic function in C+(X), we
have 1 ∈ W ′ (even strongly W ′-superharmonic). This implies that for the
proof of many results on general balayage spaces we may assume without
loss of generality that 1 ∈ W.

2. It will be clear to the specialist how to proceed if we would not
assume having a base of regular sets, i.e., if instead of (H ′

4) we would only
suppose that the following property (H4) holds: For every x ∈ U there
exists a l.s.c. function w ≥ 0 on U such that w(x) < ∞, HV w ≤ w if
V ⊂ U , and limF w = ∞ for every non-regular ultrafilter F on U (see
[BH86, p. 94]).

Moreover, properties (H1)–(H
′
5) imply the following property (H5): W

is linearly separating (i.e., for x, y ∈ X, x 6= y, and λ ∈ R+ there exists
v ∈ W such that v(x) 6= λv(y)) and there exists a strictly positive function
s0 ∈ W ∩ C(X). Indeed, let s ∈ C+(X) be strongly superharmonic. Then
of course s > 0 and s ∈ W. Furthermore, HUs ∈ W for every U ∈ U :
Because of (H ′

4) the function HUs is l.s.c. Given V ∈ U , we have to show
that HVHUs ≤ HUs. Since HUs ≤ s and HV s ≤ s, we obtain first that

HVHUs ≤ HV s ≤ s = HUs on U c.

In addition, HVHUs = HUs on V c. Since (U ∩V )c = U c ∪V c, we conclude
that

HVHUs = HU∩VHVHUs ≤ HU∩VHUs = HUs.

It is now easily seen that W is linearly separating: Fix x, y ∈ X, x 6= y.
Choose U ∈ U such that x ∈ U , y /∈ U . For every λ ∈ R+, s(x) 6= λs(y) or
HUs(x) 6= λs(y) = λHUs(y).

We finally note that (H ′
5) holds for every balayage space by [BH86,

pp. 17, 118].

3. It will be useful to know that W as defined by (2.1) does not change
if we replace U by a smaller base U ′ (see [BH86, Remark III.6.13]).

As for harmonic spaces continuous potentials play an important role.

The convex cone P(X) of all continuous real potentials can be defined and

characterized in several ways:

P(X) =
{
p ∈ W ∩ C(X) : inf

K compact ⊂ X
R1Kcp = 0

}

=
{
p ∈ W ∩ C(X) : p

q ∈ C0(X) for some q ∈ W ∩ C(X)
}

= {p ∈ W ∩ C(X) : 0 ≤ g ≤ p, g ∈ H+(X) ⇒ g = 0}
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where H+(X) denotes the set of all positive harmonic functions on X, i.e.,

H+(X) = {g ∈ C+(X) : HUg = g for every U ∈ U}.

Moreover, we have a Riesz decomposition

W ∩ C(X) = H+(X) ⊕P(X).

A function f on X is called P-bounded if |f | ≤ p for some p ∈ P(X).

For every open subset V of X, the set ∗H+(V ) of all positive functions

which are hyperharmonic on V is defined by

∗H+(V ) :=

{
s ∈ B+(X) :

s l.s.c. on V ,

HUs ≤ s for every U ∈ U with U ⊂ V

}
.

(see [BH86, p. 94]). Of course, ∗H+(X) = W and, by [BH86, Corollary

III.4.5],

(2.2) ∗H+

( ⋃

i∈I

Vi

)
=

⋂

i∈I

∗H+(Vi)

for every family (Vi)i∈I of open subsets of X. Note that HU(B+(X)) ⊂
∗H+(U) for every U ∈ U (consequence of (H ′

2) and (H3)).

It is easily seen that we may restrict the balayage space (X,W) on any

open subset Y of X defining kernels

HY
U (x, · ) := HU (x, · )|Y (x ∈ U ∈ U , U ⊂ Y ).

The corresponding cone WY is ∗H+(Y )|Y .

It is trivial that finite and countable direct sums of balayage spaces are

balayage spaces as well: Let (Xi,Wi), i ∈ I ⊂ N, be balayage spaces. If

X =
∑

i∈I Xi denotes the topological sum of all Xi, i ∈ I, and

W =
∑

i∈I

Wi = {v | v : X → [0,∞], v|Xi
∈ Wi for every i ∈ I}

(we identify vi ∈ Wi with a function on X taking vi = 0 on X \Xi), then

(X,W) is a balayage space. To see this it suffices to take U =
⋃
i∈I Ui

(Ui being a base of regular sets for the balayage space (Xi,Wi)) and to

extend the harmonic kernels HU , U ∈ Ui, defining HU (x, · ) = εx for all

x ∈ X \ Xi. Of course, for every i ∈ I, the restriction of (X,W) on Xi is

(Xi,Wi).

In Section 9 we shall need the following stability result with respect to

increasing limits which is of interest in itself:
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Proposition 2.2. Let U be a base of relatively compact open sets in X
and, for every n ∈ N, let (Hn

U )U∈U be a family of (regular) harmonic kernels

on X. Suppose that, for every U ∈ U , the sequence (Hn
U )n∈N is increasing

to a kernel H∞
U . Then the following are equivalent :

(1) (H∞
U )U∈U is a family of harmonic kernels on U .

(2) There exists s ∈ C+(X) such that, for every U ∈ U , the function H∞
U s

is continuous on X and H∞
U s < s on U .

Proof. (1) ⇒ (2): By general properties of a family of harmonic kernels
(see [BH86]).

(2) ⇒ (1): For every n ∈ N ∪ {∞}, define

Wn := {v | v : X → [0,∞], v l.s.c., Hn
Uv ≤ v for every U ∈ U}.

Then

W∞ =
∞⋂

n=1

Wn.

By assumption (2), the function s is strongly W∞-superharmonic.

If U, V ∈ U and V ⊂ U , then Hn
VH

n
U = Hn

U for every n ∈ N, and hence

H∞
V H

∞
U = H∞

U .

Fix a sequence (ψm) in K+(X) which is increasing to 1, fix U ∈ U and
f ∈ B+

b (X) with compact support. Choose α ∈ R+ such that f ≤ αs. Then,
for every n ∈ N, the function Hn

Uf is continuous on U and the function
Hn
U (αs− f) = supmH

n
U (ψm(αs− f)) is l.s.c. on U . So the increasing limits

H∞
U f and H∞

U (αs− f) are l.s.c. on U . Knowing that their sum H∞
U (αs) =

αH∞
U s is continuous on U we obtain continuity of H∞

U f and H∞
U (αs − f)

on U . Now suppose that f is even continuous, i.e., that f ∈ K+(X). Then
we have the corresponding continuity properties on X. In particular, we
see that H∞

U f ∈ K(X).

So we already know that (H∞
U )U∈U has the properties (H ′

5), (H2), (H3),
and (H ′

4).

It remains to show that (H1) is satisfied. So fix x ∈ X. Assume first
that, for every ϕ ∈ K(X),

lim
V ↓{x}

H1
V ϕ(x) = ϕ(x).
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Fix ϕ1 ∈ K+(X) and choose α ∈ R+, ϕ2 ∈ K+(X) such that ϕ1 +ϕ2 ≤ αs,
(ϕ1 + ϕ2)(x) = αs(x). Then

lim inf
V ↓{x}

H∞
V ϕj(x) ≥ lim

V ↓{x}
H1
V ϕj(x) = ϕj(x), j = 1, 2

and, for every x ∈ V ∈ U ,

H∞
V ϕ1(x) +H∞

V ϕ2(x) ≤ H∞
V (αs)(x) ≤ αs(x) = ϕ1(x) + ϕ2(x).

Therefore
lim
V ↓{x}

H∞
V ϕj(x) = ϕj(x), j = 1, 2.

Finally, define

r1 = inf{v ∈ W1 : v(x) ≥ 1}, r∞ = inf{v ∈ W∞ : v(x) ≥ 1},

and suppose that r1 is l.s.c. at x. Since W∞ is contained in W1, we have
r1 ≤ r∞. Moreover, obviously r∞ ≤ s/s(x). Therefore

1 = lim inf
y→x

r1(y) ≤ lim inf
y→x

r∞(y) ≤ lim inf
y→x

s(y)/s(x) = 1 = r∞(x),

i.e., r∞ is l.s.c. at x.

Given a balayage space (X,W), a kernel KX on X is called a potential

kernel provided

KXf ∈ P(X) ∩H(X \ supp(f))(2.3)

for f ∈ B+
b (X) with compact support.

For ϕ ∈ B+(X) let Mϕ denote the multiplication operator f 7→ ϕf . It

follows immediately from the definition that KXMϕ is a potential kernel

on X if KX is a potential kernel on X and ϕ ∈ B+(X) is locally bounded.

Moreover, for every potential kernel KX , a general minimum principle

implies that v ≥ KXf whenever v ∈ W and f ∈ B+(X) such that v ≥ KXf

on supp(f).

For every U ∈ U , the equation

KUϕ := KXϕ−HUKXϕ (ϕ ∈ K(X))

defines a kernel KU on X such that

(2.4) KX = KU +HUKX
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and

(2.5) KUf = KU (1Uf) ∈ C0(U) ∩ ∗H+(U) for every f ∈ B+
b (X).

In particular, KU may be regarded as a kernel on U . Furthermore,

(2.6) KU = KV +HVKU for all U, V ∈ U with V ⊂ U.

(All this follows immediately from (H ′
2), (H3), and (H4).)

Remarks 2.3. 1. If we have a Green function GX for X, then KXf =
GfµX for some measure µ ≥ 0 on X and KUf = GfµU where GU ( · , y) =
GX( · , y) −HUGX( · , y) for y ∈ X, U ∈ U .

2. For every p ∈ P(X), there exists a unique potential kernel K p
X such

that Kp
X1 = p (see [BH86, p. 75]). It is called the potential kernel associated

with p.

3. Conversely, for every potential kernel KX , there exists p ∈ P(X)
and a strictly positive function ϕ ∈ C+(X) such that

KX = Kp
XMϕ.

Indeed, fix a sequence (ψn) in K+(X) such that X =
⋃∞
n=1{ψn > 0}. Since

pn := KXψn ∈ P(X), we may choose reals αn > 0, n ∈ N, such that

ψ :=

∞∑

n=1

αnψn ∈ C+(X), p :=

∞∑

n=1

αnpn ∈ P(X).

Obviously, KXψ = p and hence KXMψ = Kp
X by Remarks 2.3, 2. So

ϕ := 1/ψ has the desired properties.

4. If KX is a potential kernel on X, then every KU , U ∈ U , is a
potential kernel on U . For the converse, i.e., for the construction of KX

from a compatible family of potential kernels (KU )U∈U , see Section 10.

§3. Parabolic balayage spaces

Extending the notion used in [HH88] for harmonic spaces let us say

that the balayage space (X,W) is parabolic, if for every non-empty compact

subset C of X there exists x ∈ C such that lim infy→xR1C
(y) = 0. To get

equivalent properties we shall need the following result on compactness of

operators Kq
X which is of independent interest:
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Lemma 3.1. Suppose that there exists a strictly positive bounded func-

tion in W and let p ∈ P(X) such that p is harmonic outside a compact

set C. Then Kp
X is a compact operator on Bb(X).

Proof (cf. also [Han81, p. 504]). Let K := Kp
X and let us fix w ∈ W

such that 0 < w ≤ 1. There exists α > 0 such that p ≤ αw on C and hence
p ≤ αw on X. So p is bounded. We intend to show first that the subset
{Kf : f ∈ B(X), 0 ≤ f ≤ 1} of Pb(X) is equicontinuous. Fix x ∈ X, ε > 0,
and let L be a compact neighborhood of x. By Dini’s theorem, there exists
an open neighborhood U of x in L such that K1U\{x} < ε on L. For every
f ∈ B(X) such that 0 ≤ f ≤ 1,

Kf = f(x)K1{x} +K(1U\{x}f) +K(1Ucf)

whereK1{x} is continuous (it vanishes if {x} is semi-polar), 0 ≤ K(1U\{x}f)
< ε on L, and the functions K(1Ucf) are equicontinuous on U , since they
are harmonic on U and bounded by p. So there exists a neighborhood V
of x in U such that, for every f ∈ B(X) with 0 ≤ f ≤ 1,

|Kf −Kf(x)| < 3ε on V .

Fix a sequence (fn) in B(X) such that 0 ≤ fn ≤ 1 for every n ∈ N. By our
preceding considerations, there exist a subsequence (gn) of (fn) such that
the sequence (Kgn) is locally uniformly convergent on X. Fix δ > 0. There
exists a natural n0 such that, for all n,m ≥ n0,

|Kgn −Kgm| < δw on C.

Fix n,m ≥ n0. Having Kgn ≤ δw +Kgm on C and knowing that Kgn is
harmonic outside C, we conclude that Kgn ≤ δw +Kgm on X. Similarly,
Kgm ≤ δw +Kgn on X. Thus

|Kgn −Kgm| ≤ δw ≤ δ on X.

Remark 3.2. If follows easily that for every potential kernel KX and
for every U ∈ U (even for every relatively compact open U in X) the kernel
KU is a compact operator on Bb(U).

Theorem 3.3. Suppose that there exists a strictly positive bounded

function in W and let p ∈ P(X) be strongly superharmonic. Then the

following statements are equivalent :
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(1) (X,W) is parabolic.

(2) For every q ∈ P(X) and for every non-empty compact subset C of X,

there exists x ∈ C such that Kq
X1C(x) = 0.

(2′) For every non-empty compact subset C of X, there exists x ∈ C such

that Kp
X1C(x) = 0.

(3) For every q ∈ Pb(X) such that Kq
X is a compact operator on Bb(X),

the operator I −Kq
X is invertible.

(3′) For every compact subset C of X and for every α > 0, the operator

I − αKp
XM1C

on Bb(X) is invertible.

Proof. (1) ⇒ (2): Fix q ∈ P(X) and a non-empty compact subset C
of X. There exists α > 0 such that αq ≤ 1 on C and hence αK q

X1C ≤ R1C
.

By (1), there exists x ∈ C such that lim infy→xR1C
(y) = 0 and therefore

αKq
X1C(x) = lim

y→x
αKq

X1C(y) ≤ lim inf
y→x

R1C
(y) = 0

whence Kq
X1C(x) = 0.

(2) ⇒ (2′): Trivial.

(2′) ⇒ (1): Suppose that there is a non-empty compact subset C of X
such that lim infy→xR1C

(y) > 0 for every x ∈ C. Then there exists a
compact neighborhood C ′ of C such that R1C

> 0 on C ′. Define q′ :=
Kp
X1C′ . Since p is strongly superharmonic, we know that q ′ > 0 on the

interior of C ′ whence βq′ ≥ 1 on C for some β > 0. This implies that
βq′ ≥ R1C

. In particular, q′ > 0 on C ′.

(2) ⇒ (3): Fix q ∈ Pb(X) such that K := Kq
X is a compact operator on

Bb(X). Assume that I −K is not invertible. Then there exists a function
f ∈ Bb(X) \ {0} such that f = Kf , and we may assume without loss of
generality that |f | ≤ 1 and {f > 0} 6= ∅. Since the kernel K is a compact
operator on Bb(X), there exist a real ε > 0 and a compact subset C of
{f ≥ ε} such that

K1{0<f<ε} < 1/2 and K1{f≥ε}\C < ε/2.

By (2), there exists x ∈ C such that K1C(x) = 0 and therefore

ε ≤ f(x) = Kf(x) ≤ K(f1{f>0})(x) ≤ εK1{0<f<ε}(x)+K1{f≥ε}\C(x) < ε.

This contradiction shows that I −K is invertible.

(3) ⇒ (3′): Trivial, since, for every compact subset C of X, K p
XM1C

is
the operator Kq

X for q := Kp
X1C ∈ Pb(X) (see Remarks 2.3, 2) and Kq

X is
compact by Lemma 3.1.
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(3′) ⇒ (2′): Suppose that there exists a non-empty compact subset C
of X such that Kp

X1C > 0 on C. Then there exists a real γ > 0 such
that γKp

X1C ≥ 1 on C. Defining q := γKp
X1C we already noted before

that Kq
X = γKp

XM1C
. In particular, Kq

X1 = q ≥ 1 on C and Kq
X1Cc = 0.

Therefore (Kq
X)n1 ≥ 1 on C whence

∑∞
n=0(K

q
X)n1 = ∞ on C. Thus the

following lemma implies that (3′) does not hold.

Lemma 3.4. Let K be a bounded kernel on X and γ > 0 such that

I−αK is invertible for every 0 < α ≤ γ. Then (I−γK)−1 =
∑∞

n=0(γK)n.

Proof. Let

β := sup{α ∈ [0, γ] : (I − αK)−1f ≥ 0 for every f ∈ B+
b (X)}.

By continuity, (I − βK)−1f ≥ 0 for every f ∈ B+
b (X). So

(I − βK)−1 =

∞∑

n=0

(βK)n

by [HH88, Lemma 1.3]. If β < γ, then by continuity again, there exists
β < β′ ≤ γ such that

(I − β′K)−1 =
∞∑

n=0

(β′K)n

and therefore (I − β ′K)−1f ≥ 0 for every f ∈ B+
b (X). This contradicts the

definition of β. Thus β = γ and the proof is finished.

§4. First modification by transitions

In the following (X,W) will always denote a balayage space associated

with a family (HU)U∈U of regular harmonic kernels and KX a potential

kernel for (X,W). Moreover, we fix a kernel T on X and assume that, for

some sequence (Wn) of open sets increasing to X,

(4.1) T1Wn <∞, KX(1WnT1Wn) ∈ C(X) (n ∈ N).

Such a kernel T will be called an admissible transition kernel .

Remarks 4.1. 1. If the sets Wn are relatively compact and the func-
tions T1Wn are bounded on Wn, then (4.1) is already a consequence of (2.3).
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So every kernel T on X such that Tϕ is locally bounded for every ϕ ∈ K(X)
is an admissible transition kernel.

2. It is easily seen that (4.1) implies that, for all U ∈ U ,

(4.2) KU (Tf) ∈ C0(U) f ∈ Bb(X) with compact support.

Indeed, choosing n ∈ N such that U ⊂ Wn and supp(f) ⊂ Wn, the lower
semi-continuity of the functions KX(1WnTf

±), KX(1WnT (‖f‖∞1Wn −f
±))

and the continuity of the sum ‖f‖∞KX(1WnT (1Wn)) implies that the func-
tions KX(1WnTf

±) are continuous. Thus by (2.6)

KU (Tf) = KX(Tf) −HUKX(Tf)

= KX(1WnTf) −HUKX(1WnTf) ∈ C0(U)

(the harmonicity of KX(1W c
n
Tf) on Wn implies that HUKX(1W c

n
Tf) =

KX(1W c
n
Tf)).

3. Using lifting of potentials (see Remarks 2.3, 4) it can be shown that,
conversely, (4.2) implies (4.1).

Let UT be the set of all U ∈ U such that T is a transition from U to

the complement of U , i.e.,

UT = {U ∈ U : 1UT1U = 0}.

In this section we shall assume that

(4.3) UT is a base of X

(in Section 9 we shall deal with the general case by approximation). We

define

KT
U := KUT, HT

U := HU +KT
U (U ∈ UT )

(cf. definition (1.7)) and

WT := {v | v : X → [0,∞] l.s.c., HT
U v ≤ v for every U ∈ UT }.

By Remarks 2.1, 3,

WT ⊂ W.

Let us check that most of the axioms of a family of harmonic kernels

are satisfied by (HT
U )U∈UT without any further assumption: Fix U, V ∈ UT ,

V ⊂ U . Then

(4.4) KT
V 1U = KV T1U = KV (1V T1U ) = 0,
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hence (taking V = U)

HT
U 1U = HU1U = 0.

Let f ∈ Bb(X) with compact support. Then

(4.5) HT
U f = HUf = f on U c

showing that HT
U (x, · ) = εx for every x ∈ U c. Since KT

U f ∈ C0(U), we

obtain by (H3) that HT
U f is continuous on U . And if f ∈ K(X), then

HT
U f ∈ K(X) by (H ′

4). Thus the family (HT
U )U∈UT satisfies (H3) and (H ′

4).

Moreover, by (4.4) and (4.5), KT
VH

T
U f = KT

V (1UcHT
U f) = KT

V (1Ucf) =

KT
V f , i.e.,

(4.6) KT
VH

T
U = KT

V .

Since HVHU = HU by (H2), we obtain by (4.6) and (2.6) that

HT
VH

T
U = HV (HU +KT

U ) +KT
VH

T
U = HVHU +HVK

T
U +KT

V

= HU +KT
U = HT

U .

So (HT
U )U∈UT satisfies (H2) as well.

Given x ∈ U and ϕ ∈ K+(X), we obtain by (2.6) that limV ↓{x}K
T
V ϕ(x)

= 0, since limV ↓{x}HVKU (Tϕ)(x) = KU (Tϕ)(x). Hence

lim
V ↓{x}

HT
V ϕ(x) = ϕ(x) if lim

V ↓{x}
HV ϕ(x) = ϕ(x).

Moreover, defining

r := R1{x}
, rT := RT1{x}

= inf{v ∈ WT : v(x) ≥ 1}

we have rT ≥ r, since WT ⊂ W. Hence lim infy→x r
T (y) ≥ lim infy→x r(y)

= 1, if r is l.s.c. at x. And then rT is l.s.c. at x provided there exists v ∈ WT

with v(x) <∞ (since then v/v(x) ≥ rT , 1 ≥ rT (x)).

Thus we have the following result:

Theorem 4.2. If UT is a base of X, the following properties are equiv-

alent :

(1) (X,WT ) is a balayage space (i.e., (HT
U )U∈UT is a family of harmonic

kernels on X).
(2) There exists a strongly WT -superharmonic function s ∈ C+(X).
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Remark 4.3. Let T ′ be a kernel on X such that T ′ ≤ T , UT is a base
ofX, and (X,WT ) is a balayage space. Then T ′ is admissible and every WT -
strongly superharmonic function is obviously WT ′

-strongly superharmonic.
So Theorem 4.2 implies that (X,WT ′

) is a balayage space as well.

Corollary 4.4. Suppose that UT is a base of X and that there exist

s ∈ W and u ∈ B+(X) such that

v := s+KXu ∈ C(X), T v ≤ u

and, for every U ∈ UT ,

{HUs < s} ∪ {KU (u− Tv) > 0} = U.

Then (X,WT ) is a balayage space and v is strongly WT -superharmonic.

Proof. It suffices to note that, for every U ∈ UT ,

v −HT
U v = v −HUv −KU (Tv) = s−HUs+KU (u− Tv) > 0 on U.

Remarks 4.5. 1. For a version not assuming that U T is a base see
Theorem 9.2.

2. If KX = Kp
X for some strongly superharmonic p ∈ P(X), then

TKXu < u implies that taking s = 0 we have KU (u− Tv) > 0 on U ∈ U .

3. For some applications (see e.g. Corollary 7.9) it will be useful to
keep in mind that, given any strictly positive locally bounded function
ϕ ∈ B(X), we may replace the potential kernel KX by the potential kernel
f 7→ KX(ϕf) and the transition kernel T by the transition kernel f 7→
(Tf)/ϕ without changing (X,WT ).

Corollary 4.6. Suppose that UT is a base of X, KX is associated

with p ∈ P(X), and that for some s ∈ W ∩ C(X) the function v := p + s
is strongly superharmonic and Tv < 1. Then (X,WT ) is a balayage space

and v is strongly WT -superharmonic.

Proof. Fix U ∈ U and x ∈ U . By assumption, HUv(x) < v(x). Sup-
pose that HUs(x) = s(x). Then HUp(x) < p(x), i.e., KU1(x) > 0. Since
1 − Tv > 0, this implies that KU (1 − Tv)(x) > 0. So the statement follows
from Corollary 4.4.
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If (X,WT ) is a balayage space, then, for every U ∈ UT , HT
U is the

kernel solving the Dirichlet problem for U with respect to (X,WT ). We

may, however, solve the Dirichlet problem with respect to (X,WT ) for any

U ∈ U (if we wanted to we could even solve it for any open set U in X,

see [BH86, VII.2]). This leads to the larger family (HT
U )U∈U where HT

U for

arbitrary U ∈ U can be characterized in the following way:

Proposition 4.7. Suppose that (X,WT ) is a balayage space. Then,

for every U ∈ U , the harmonic kernel HT
U for U with respect to (X,WT )

has the following property :

For every ϕ ∈ K+(X), the function HT
Uϕ is the unique function h in

K+(X) such that

h−KT
Uh = HUϕ.

Proof. 1. Fix ϕ ∈ K+(X) and define h := HT
Uϕ. Then h ∈ K+(X)

and hence KT
Uh ∈ C0(U). So

g := h−KT
Uh ∈ K(X), g = ϕ on U c.

For every V ∈ UT with V ⊂ U ,

h = HT
V h = HV h+KT

V h,

hence

g = h−KT
V h−HVK

T
Uh = HV (h−KT

Uh)

is harmonic on V . Thus g is harmonic on U , g = HUϕ.

2. Now let h be any function in K+(X) such that

h−KT
Uh = HUϕ.

Then h = ϕ on U c and, for every V ∈ UT with V ⊂ U ,

HT
V h = HV h+KT

V h = HVHUϕ+HVK
T
Uh+KT

V h = HUϕ+KT
Uh = h.

Thus h = HT
Uϕ.

Remark 4.8. Assuming that (X,WT ) is a balayage space we may show
in the same way that, for every ϕ ∈ K(X), HT

Uϕ is the unique function
h ∈ K(X) such that KT

U |h| ∈ C0(U) and h−KT
Uh = HUϕ.
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Proposition 4.9. Let v be a positive numerical function on X. Then

v ∈ WT if and only if there exists a function w ∈ W such that v = KT
Xv+w.

In particular, the fine topologies for (X,W) and (X,WT ) coincide.

Proof. Suppose first that w ∈ W and v = KT
Xv+w. Then v is l.s.c. Fix

U ∈ UT and x ∈ U . We have to show that HT
U v(x) ≤ v(x). To that end we

may assume that v(x) <∞ and hence HUK
T
Xv(x) ≤ KT

Xv(x) ≤ v(x) <∞.
Then

HT
U v(x) = HUv(x) +KT

U v(x) = HUv(x) −HUK
T
Xv(x) +KT

Xv(x)

= HUw(x) +KT
Xv(x) ≤ w(x) +KT

Xv(x) = v(x).

Thus v ∈ WT .
Suppose now conversely that v ∈ WT . Then v ∈ W, so v is finely

continuous. Let us choose an increasing sequence (Wn) of relatively compact
open sets satisfying (4.1). Defining

ϕn := 1WnT (1Wn inf(v, n)) (n ∈ N)

we then have KXϕn ∈ P(X) for every n ∈ N and

KXϕn ↑ KT
Xv, KUϕn ↑ KT

U v

for every U ∈ UT . Define

wn := v −KXϕn (n ∈ N).

For every U ∈ UT ,

HUwn +KXϕn = HUv +KUϕn ≤ HUv +KT
Uv = HT

U v ≤ v,

i.e., HUwn ≤ wn. Since wn is l.s.c. and wn ≥ −KXϕn, we therefore obtain
that wn ∈ W. The sequence (wn) is decreasing and the function w defined
by

w(x) = f-liminf
y→x

inf
n
wn(y), x ∈ X,

is contained in W. Since the functions v and KT
Xv are finely continuous

and obviously
v = KT

Xv + inf
n
wn,

we finally obtain that v = KT
Xv + w.
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§5. Perturbation of balayage spaces

In order to get further possibilities for transitions let us briefly discuss

perturbation of (X,W). To that end we fix a real function k ∈ B(X) such

that, for every U ∈ U ,

KU |k| ∈ C0(U).

Such a function will be called a Kato function (with respect to KX). Let

us note that, given U ∈ U , the kernels

KUMk± : f 7−→ KU (k±f)

are the potential kernels associated with KUk
± (see Remarks 2.3, 2).

Lemma 5.1. For every U ∈ U , the mapping I +KUMk+ is a bijection

on Bb(X). For every bounded s ∈ ∗H+(U),

0 ≤ (I +KUMk+)−1s ≤ s on X, (I +KUMk+)−1s > 0 on {s > 0}.

Proof. Obviously, (I +KUMk+)f = f on U c, (I +KUMk+)f = (I +
KUMk+)(1Uf) on U , and the claim follows as for harmonic spaces (see
[BHH87, p. 104], or [HM90, p. 558]).

In particular, for every U ∈ U , the operator

LU := (I +KUMk+)−1KUMk−

on Bb(X) defines a kernel on X. Obviously, LU lives on U , i.e., LU1U = 0

on U c and LU1Uc = 0. As for harmonic spaces we obtain (see [HM90]):

Lemma 5.2. For every U ∈ U , the following statements are equiva-

lent :

(1) The operator I − LU is invertible on Bb(X) and (I −LU )−1f ≥ 0 for

every f ∈ B+
b (X).

(2)
∑∞

n=0 L
n
U1 is bounded on U .

If (2) holds, then U is called k-bounded and

(I +KUMk)
−1 =

∞∑

n=1

LnU (I +KUMk+)−1.
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Theorem 5.3.
(
(I +KUMk+)−1HU

)
U∈U

is a family of harmonic ker-

nels on X.

More generally:

Theorem 5.4. Suppose that there exist s ∈ W and u ∈ B+(X) such

that

v := s+KXu ∈ C(X), 0 ≤ u+ kv,

and, for every U ∈ U , {HUs < s} ∪ {KU (u + kv) > 0} = U . Then every

U ∈ U is k-bounded and defining

(5.1) H̃U := (I +KUMk)
−1HU (U ∈ U)

and

(5.2) W̃ := {w | w : X → [0,∞] l.s.c., H̃Uw ≤ w for every U ∈ U}

the family (H̃U )U∈U is a family of harmonic kernels on X, the pair (X, W̃)

is a balayage space, and v is strongly W̃-superharmonic.

Proof. For the moment fix U ∈ U and define

f := 1Uv − LUv = 1Uv − LU (1Uv).

By induction 1Uv =
∑m−1

n=0 L
n
Uf + LmU (1Uv) for every m ∈ N and therefore

(5.3)
∞∑

n=0

LnUf ≤ 1Uv.

To prove that inf f(U) > 0 we note that

(I +KUMk+)f = 1Uv +KUMk+v −KUMk−v

= 1Uv +KU (kv) = 1Us+HUKXu+KU (u+ kv)

is a bounded function in ∗H+(U) and strictly positive on U . So we conclude
by Lemma 5.1 that f > 0 on U . Moreover, LUv ∈ C0(U) and inf v(U) > 0.
Therefore inf f(U) > 0, and (5.3) shows that U is k-bounded. We define a
kernel H̃U by

(5.4) H̃U := (I +KUMk)
−1HU =

∞∑

n=0

LnU (I +KUMk+)−1HU .
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and observe that

(I+KUMk)(v− H̃Uv) = v+KU (kv)−HUv = (s−HUs)+KU (u+kv) =: t

is a bounded function in ∗H+(U) which is strictly positive on U . Applying
Lemma 5.1 once more we obtain that

v − H̃Uv = (I +KUMk)
−1t ≥ (I +KUMk+)−1t > 0.

In particular, (H̃U )U∈U satisfies (H ′
5).

Obviously, H̃U1U = 0 and H̃U(x, · ) = εx for all U ∈ U and x ∈ U c. If
f ∈ Bb(X) with compact support, then H̃Uf ∈ Bb(X), hence KU (kH̃Uf) ∈
C0(U). So the equality

H̃Uf +KU (kH̃Uf) = HUf

immediately implies that (H̃U )U∈U satisfies (H3) and (H ′
4). Applied to

functions in K(X) we have for all U, V ∈ U with V ⊂ U

(I +KVMk)H̃U = H̃U + (KU −HVKU )MkH̃U

= HU −HVKUMkH̃U = HV (HU −KUMkH̃U ) = HV H̃U ,

i.e.,

H̃U = (I +KVMk)
−1HV H̃U = H̃V H̃U .

So (H̃U )U∈U satisfies (H ′
2).

To show that (H1) holds let us fix x ∈ X and assume first that
limU↓{x}HUϕ(x) = ϕ(x) for every ϕ ∈ K(X). Let W be a neighborhood

of x. Then, for every U ∈ U with U ⊂W ,

KU (|k|H̃Uv) ≤ KU (|k|v) ≤ sup(v(W ))KU |k|

and limU↓{x} ‖KU |k|‖∞ = 0. So we conclude that, for every ϕ ∈ K(X),

lim
U↓{x}

H̃Uϕ(x) = lim
U↓{x}

HUϕ(x) = ϕ(x).

By [BH86, Proposition III.2.7], it remains to consider the case where x is
(W-)finely isolated. Let

r̃ = inf{w ∈ W̃ : w(x) ≥ 1}.
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By Choquet’s lemma, there exist wn ∈ W̃, such that wn(x) ≥ 1 for every
n ∈ N and

ˆ̃r = înf wn.

Of course we may assume without loss of generality that wn+1 ≤ wn ≤
v/v(x) for every n ∈ N. Define

sn := wn +KU (k+wn) (n ∈ N).

Then sn is l.s.c. and, for every V ∈ U with V ⊂ U ,

HV sn = H̃V wn +KV (kH̃V wn) +HVKU (k+wn)

≤ wn +KV (k+wn) +HVKU (k+wn) = sn,

i.e., sn ∈ ∗H+(U). Defining s := inf sn, we hence know that ŝf = ŝ (see
[BH86, p. 58]). Let w = inf wn. Then s = w+KU (k+w) and the continuity
of KU (k+w) implies that

ŵf +KU (k+w) = ŝf = ŝ = ŵ +KU (k+w),

i.e., ŵf = ŵ. Since x is finely isolated, we conclude that

ˆ̃r(x) = ŵ(x) = ŵf(x) = f-liminf
y→x

w(y) = w(x) = 1 = r̃(x).

Thus r̃ is l.s.c. at x. This finishes the proof of Theorem 5.4.

Theorem 5.3 is a special case: If k ≥ 0, then we may take u = 0 and

any strongly superharmonic s ∈ C+(X). But of course we may as well take

the preceding proof and omit its first part noting that, by Lemma 5.1, the

operators (I +KUMk)
−1HU , U ∈ U , yield kernels H̃U and that W ⊂ W̃ if

k ≥ 0.

Moreover we shall need the following:

Proposition 5.5. If every U ∈ U is k-bounded and (H̃U )U∈U is a

family of harmonic kernels on X, then there exists a (unique) potential

kernel K̃X on X with respect to W̃ such that

K̃X − H̃UK̃X = (I +KUMk)
−1KU for every U ∈ U .
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Proof. Define

K̃U = (I +KUMk)
−1KU (U ∈ U).

If U, V ∈ U with V ⊂ U , we have I + KVMk = I + KUMk − HVKUMk,
hence

(I +KVMk)(K̃V + H̃V K̃U − K̃U )

= KV +HV K̃U − (KU −HVKUMkK̃U )

= KV −KU +HV (I +KUMk)K̃U = KV −KU +HVKU = 0,

i.e.,

(5.5) K̃V = K̃U − H̃V K̃U .

By Remarks 2.3, 4, it therefore suffices to show that every K̃U is a potential
kernel on U with respect to W̃.

So fix U ∈ U and f ∈ B+
b (U). If V ∈ U with V ⊂ U , then (5.5) implies

that H̃V K̃Uf ≤ K̃Uf with equality if f = 0 on V . If 0 ≤ h ≤ K̃Uf such
that h is harmonic on U with respect to (H̃V )V ∈U , then g := h +KU (kh)
is harmonic on U and 0 ≤ g ≤ KUf , hence g = 0, h = 0.

§6. Perturbation and transitions in balayage spaces

We shall now combine assumptions of Section 4 and Section 5: Let us

assume that k is a Kato function on X (with respect to KX) and that T

is an admissible transition kernel on the balayage space (X,W). In this

section we shall still assume that UT is a base of X (we shall get rid of this

assumption in Section 9).

For every k-bounded U ∈ UT we define a kernel H̃T
U by

(6.1) H̃T
U = (I +KUMk)

−1(HU +KUT ).

We shall simply say that (H̃T
U )U∈UT is a family of harmonic kernels if every

U ∈ UT is k-bounded and (H̃T
U )U∈UT is a family of harmonic kernels, and

then we define

(6.2) W̃T := {v | v : X → [0,∞] l.s.c., H̃T
U v ≤ v for every U ∈ UT }.

The following result generalizes Corollary 4.4:
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Theorem 6.1. Suppose that there exist s ∈ W and u ∈ B+(X) such

that

v := s+KXu ∈ C(X), T v ≤ u+ kv,

and, for every U ∈ U ,

{HUs < s} ∪ {KU (u+ kv − Tv) > 0} = U.

Then every U ∈ U is k-bounded, (H̃T
U )U∈UT is a family of harmonic kernels

on X, (X, W̃T ) is a balayage space, and v is strongly W̃T -superharmonic.

Proof. By Theorem 5.4, every U ∈ U is k-bounded and H̃U := (I +
KUMk)

−1HU , U ∈ U , defines a family of harmonic kernels on X. By
Proposition 5.5, there exists a potential kernel K̃X with respect to (H̃U )U∈U

such that, for every U ∈ U ,

K̃U := K̃X − H̃UK̃X = (I +KUMk)
−1KU .

Fix U ∈ U and let

f := v − H̃T
U v = v − (I +KUMk)

−1(HUv +KU (Tv)).

Then

t := (I +KUMk)f = v +KU (kv) −HUv −KU (Tv)

= s−HUs+KU (u+ kv − Tv)

is a positive superharmonic function on U , hence f ≥ 0. By assumption
t > 0 and therefore f > 0. The proof is finished by an application of
Theorem 4.2.

Corollary 6.2. Assume that, for every U ∈ U , the function KU1 is

strictly positive on U . Then the following holds:

(1) If 1 ∈ W and k > T1, then the assumptions of Theorem 6.1 are

satisfied and 1 is strongly W̃T -superharmonic.

(2) If u ∈ B+(X) such that q := KXu ∈ C(X) and Tq < u + kq, then

the assumptions of Theorem 6.1 are satisfied and q is strongly W̃T -

superharmonic.
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Proposition 6.3. Suppose that (H̃T
U )U∈UT is a family of harmonic

kernels. Then, for every U ∈ U , the harmonic kernel H̃T
U for U with respect

to (X, W̃T ) has the following property : For every ϕ ∈ K+(X), the function

H̃T
Uϕ is the unique function h ∈ K+(X) such that

h+KU (kh− Th) = HUϕ.

Proof (see the proof of Proposition 4.7). 1. Fix ϕ ∈ K+(X) and define
h := H̃T

Uϕ. Then h ∈ K+(X), hence KU (kh − Th) ∈ C0(U). So

g := h+KU (kh− Th) ∈ K(X), g = ϕ on U c.

For every V ∈ UT with V ⊂ U ,

h = H̃T
V h = (I +KVMk)

−1(HV ϕ+KV (Tϕ))

and therefore

g = h+KV (kh) +HVKU (kh) −KU (Th)

= HV ϕ+KV (Tϕ) +HVKU (kh) −KU (Th) = HV (ϕ +KU (kh− Th))

is harmonic on V (note that ϕ = h on U c implies that Tϕ = Th on V , since
1V T1V = 0). Thus g is harmonic on U , g = HUϕ.

2. Now let h be any function in K+(X) such that

h+KU (kh− Th) = HUϕ.

Then h = ϕ on U c and, for every V ∈ UT with V ⊂ U ,

(I +KVMk)H̃
T
V h = HV h+KT

V h = HVHUϕ−HVKU (kh− Th) +KT
V h

= HUϕ+KU (Th) −HVKU (kh) = h+KV (kh),

i.e., H̃T
V h = h. Thus h = H̃T

Uϕ.

§7. Coupling in direct sums of balayage spaces

In this section we shall first consider general transitions between spaces

forming a direct sum and then study the important case of direct sums

with the same underlying topological space Y and transition between cor-

responding points in the copies of Y .

Let I = {1, 2, . . . , n}, n ∈ N, or I = N and let (X,W) be the direct sum

of balayage spaces (Xi,Wi), i ∈ I (see Section 2). Let KX be the potential
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kernel associated with a potential p ∈ P(X) and fix an admissible kernel T

on X satisfying

(7.1) T (x,Xi) = 0 for every i ∈ I and x ∈ Xi.

Clearly UT = U =
⋃
i∈I Ui is a base of X. Sometimes a very coarse consid-

eration of the transitions may already lead to the conclusion that (X,W T )

is a balayage space: Let s0 ∈ W ∩ C(X) be strongly superharmonic and let

us define kernels P and P ′ on I by

P (i, {j}) := ‖1Xi
T (1Xj

p)‖∞ = sup
x∈Xi

∫

Xj

p(z)T (x, dz),

P̃ (i, {j}) := ‖1Xi
T (1Xj

(s0 + p))‖∞

for i, j ∈ I where of course P (i, {i}) = 0 by (7.1). Then Corollary 4.4 leads

to the following result:

Theorem 7.1. If there exists a positive real function t on I such that

P̃ t ≤ t, then (X,WT ) is a balayage space.

Remark 7.2. It is sufficient to know that Pt < t if I is finite and
if, moreover, there exists a strictly positive w ∈ Wb such that Tw is
bounded. Indeed, then there exists ε > 0 such that Pt+εn‖Tw‖∞‖t‖∞ < t
(n being the number of elements in I), we may choose a strongly W-
superharmonic function s0 ∈ W ∩ C(X) with s0 ≤ εw, and obtain that
P̃ t ≤ Pt+ εn‖Tw‖∞‖t‖∞ < t.

Proof of Theorem 7.1. We define functions s and u on X by

s(x) := t(i)s0(x), u(x) := t(i) (i ∈ I, x ∈ Xi)

and take v := s+KXu. Then v ∈ C(X), s is strongly superharmonic, and,
for every i ∈ I and x ∈ Xi,

Tv(x) =
∑

j∈I

t(j)T (1Xj
(s0 + p))(x) ≤

∑

j∈I

t(j)P̃ (i, {j})

= P̃ t(i) ≤ t(i) = u(x).

The proof is completed by Corollary 4.4.
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Example 7.3. Let us consider the example given in the introduction.
There we have I = {1, 2} and T (x, · ) = επ(x), hence P (i, {j}) = (1 −

δij)‖G
µj

D ‖∞ so that by assumption P (1, {2})P (2, {1}) < 1. If P (1, {2}) > 0,
then Pt < t if we take t(1) = 1 and P (2, {1}) < t(2) < P (1, {2})−1.
Similarly, if P (2, {1}) > 0. The case P (1, {2}) = P (2, {1}) = 0 (which is
of no interest, since we have no transition at all) can be dealt with taking
t = 1. Thus (X,WT ) is a balayage space by Theorem 7.1 and Remark 7.2.

Corollary 7.4. Suppose that I = {1, . . . , n} and that T (x,Xj) = 0
for all x ∈ Xi and 1 ≤ j ≤ i ≤ n. Moreover, assume that p > 0 and Tp is

bounded. Then (X,WT ) is a balayage space.

Proof. In view of Theorem 7.1 and Remark 7.2 it suffices to note that
we may easily find a positive real function t on I satisfying Pt < t: Having
P (i, {j}) = 0 for 1 ≤ j ≤ i and P (i, {j}) < ∞ for 1 ≤ i < j ≤ n we
may take t(n) = 1 and choose t(i) >

∑n
j=i+1 P (i, {j})t(j) recursively for

i = n− 1, n− 2, . . . , 1.

Remark 7.5. Using the results of [Bou84] it can easily be seen that
(strong) biharmonic spaces as introduced by [Smy75], [Smy76] (or, more
generally, polyharmonic spaces) are a special case. They are balayage spaces
if interpreted in the right way.

Let us now suppose that all Xi, i ∈ I, are copies of a space Y and

that we have transitions only between corresponding points in these copies:

Let Wi, i ∈ I, be convex cones of l.s.c. positive numerical functions on Y

such that every (Y,Wi) is a balayage space. For every i ∈ I, let pi be

a strongly superharmonic continuous real potential for (Y,Wi), K
pi

Wi
the

corresponding potential kernel and gij , j ∈ I, Kato functions with respect

to Kpi

Wi
, positive for j 6= i. We define

T ((y, i), · ) :=
∑

j∈I\{i}

gij(y)ε(y,j), k(y, i) := −gii(y) (y ∈ Y, i ∈ I).

The potentials pi define a strongly superharmonic continuous real potential

p for the direct sum (X,W), the restriction of Kp
X on the copy of Y cor-

responding to (Y,Wi) is the kernel Kpi

Wi
, T is admissible, and k is a Kato

function with respect to KX . Therefore Theorem 6.1 immediately leads to

the following result:
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Theorem 7.6. If there exist functions ui ∈ B+(Y ) such that Kpi

Wi
ui ∈

C(Y ) and ∑

j∈I

gijK
pj

Wj
uj < ui

for every i ∈ I, then (H̃T
U )U∈UT is a family of harmonic kernels.

Corollary 7.7. Assume that Wi = W1 and pi = p1 for every i ∈ I.
Then (H̃T

U )U∈UT is a family of harmonic kernels if there exists a strictly

positive function u ∈ B+(Y ) and strictly positive reals bi such that Kp1
W1
u ∈

C(Y ) and, for all i ∈ I,

(7.2)
∑

j∈I

gijbj < biu/K
p1
W1
u.

Remark 7.8. Suppose that I = {1, . . . , n}, aij := sup gij(Y ) < ∞ for
all i, j and denote A := (aij). Assume that u ∈ B+(Y ) is strictly positive
and α > 0 such that

αKp1
W1
u ≤ u.

Then (7.2) is satisfied if there exists b ∈ Rn, b > 0, such that

(7.3) Ab < αb.

(Note that aij ≥ 0 for i 6= j. If, in addition, aii ≥ 0 for all i, then (7.3)
holds if and only if the spectral radius of A is strictly less than α.)

Corollary 7.9. Assume that Wi = W1 and pi = p1 for all i ∈ I.
Then (H̃T

U )U∈UT is a family of harmonic kernels if (Y,W1) is parabolic and

the function ψ := maxi∈I
∑

j∈I |gij | is a Kato function with respect to Kp1
W1

having compact support.

Proof. It is no restriction of generality if we assume that there exists
a strictly positive bounded function in W1 (even that 1 ∈ W1, see Re-
marks 2.1, 1). Moreover, we may assume without loss of generality that
ψ ≤ 1 and that K := Kp1

W1
is a compact operator on Bb(Y ). Indeed,

using Lemma 3.1 we may find a strictly positive ψ0 ∈ Bb(Y ) such that
f 7→ Kp1

W1
(ψ0f) is a compact operator on Bb(Y ). It now suffices to replace

p1 by K(ψ0 + ψ) and the functions gij by gij/(ψ0 + ψ).
Then u :=

∑∞
n=0K

n1 ∈ B+
b (Y ), Ku ∈ Cb(Y ), and, for all i ∈ I,∑

j∈I gijKu ≤ Ku = u − 1 < u. By Theorem 7.6 we conclude that

(H̃T
U )U∈UT is a family of harmonic kernels.
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Proposition 6.3 can be expressed as follows:

Proposition 7.10. Let I = {1, . . . , n}. Suppose that (H̃T
U )U∈UT is a

family of harmonic kernels and that U is a relatively compact open subset

of Y which is Wi-regular for every 1 ≤ i ≤ n.
Then, for any choice of functions ϕ1, . . . , ϕn ∈ K(Y ), there exist unique

functions h1, . . . , hn ∈ K(Y ) such that, for every 1 ≤ i ≤ n,

hi −
∑

j∈I

K
pj

Wj
(gijhj) is Wi-harmonic on U, hi = ϕi on U c.

Moreover, the functions h1, . . . , hn are positive, if the functions ϕ1, . . . , ϕn
are positive.

§8. Application to coupling of PDE’s

Let D be a domain in Rd, d ≥ 1, let n ∈ N, and let Li, 1 ≤ i ≤ n,

be second order (elliptic or parabolic) linear partial differential operators

on D leading to harmonic spaces (D,HLi
). (For the definition of harmonic

spaces and various sufficient conditions for the differential operators the

reader might consult [Her62], [CC72], [BH86], [Kro88], [Her68], [Bon70]).

Moreover, we assume that, for every 1 ≤ i ≤ n, we have a base of Li-regular

sets for D, a Green function GLi
for (D,HLi

), and a Radon measure µi ≥ 0

on D such that Gµi

Li
∈ Cb(D) and (GLi

)µi

V > 0 on V for every (Li-regular)

open subset V of D.

We want to study the coupled system

Lihi +

n∑

j=1

gijhjµi = 0 (1 ≤ i ≤ n)

where gij ∈ B(D) such that gij ≥ 0 for i 6= j and G
1A|gij |µi

Li
∈ C(D) for every

compact subset A of D and all i, j ∈ {1, . . . , n}.

This will be possible by introducing associated transitions on the direct

sum of the spaces (D,HLi
) (cf. the example given in the introduction). Our

formal procedure is as follows: For every 1 ≤ i ≤ n, let

Xi := D × {i}

and let πi denote the canonical projection from Xi on D. Then the direct

sum (X,H) of the spaces (Xi,HLi
◦ πi), 1 ≤ i ≤ n, is a harmonic space
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(with the subspace X = D × {1, 2, . . . , n} of Rd × N). (If Wi denotes the

convex cone of all positive hyperharmonic functions for (Xi,HLi
◦ πi) and

W the convex cone of all positive hyperharmonic functions for (X,H), then

of course (X,W) is the direct sum of (X1,W1), . . . , (Xn,Wn).)

We define a continuous bounded potential p, a kernel T and a function k

on X by

p(x, i) = Gµi

Li
(x), T ((x, i), · ) =

∑

j 6=i

gij(x) ε(x,j), k(x, i) = −gii(x).

Then T is admissible, k is a Kato function with respect to K p
X , and the

results of the preceding section can be applied.

Suppose for a moment that (H̃T
U )U∈UT is a family of harmonic kernels.

Fix a relatively compact subset U of D and functions ϕ1, . . . , ϕn ∈ K(D).

For simplicity suppose that U is Li-regular for every 1 ≤ i ≤ n (it will be

clear for the specialist how to proceed if this does not hold). Then

Ũ :=

n⋃

i=1

U × {i}

is a regular subset of X. Defining

ϕ(x, i) := ϕi(x) (x ∈ D, 1 ≤ i ≤ n)

we obtain a function ϕ ∈ K(X). By Proposition 4.7, there is a unique

function h ∈ K(X) such that

h+KeU (kh − Th) = HeUϕ.

Of course, h|eU
depends only on ϕ|

∂ eU
, since T (Ũ) ⊂ Ũ and HeU

ϕ depends

only on ϕ|
∂ eU

. Define

hi := h ◦ π−1
i (1 ≤ i ≤ n)

and fix 1 ≤ i ≤ n. Clearly, hi ∈ K(D) and hi = ϕi on D \ U , since h = ϕ

on X \ Ũ . Furthermore, Li((HeUϕ)◦π−1
i ) = 0 on U , since HeUϕ ∈ H(Ũ) and

hence (HeU
ϕ) ◦ π−1

i ∈ HLi
(U). And

(KeU (kh− Th)) ◦ π−1
i = (GLi

)(kh−Th)◦π−1
i µi
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where, for every x ∈ D, by definition of T and k

(kh− Th) ◦ π−1
i (x) = (kh− Th)(x, i) =

n∑

j=1

gij(x)h(x, j) =
n∑

j=1

gij(x)hj(x).

Thus

0 = Li((HeU
ϕ) ◦ π−1

i ) = Li[(h+KeU
(kh− Th)) ◦ π−1

i ] = Lihi +
n∑

j=1

gijhjµj

and we obtain the following consequence of Proposition 7.10 (cf. [Bou81,

Proposition 11.5]):

Proposition 8.1. Assume that (H̃T
U )U∈UT is a family of harmonic

kernels. Let U be a relatively compact open subset of D which is Li-regular

for every 1 ≤ i ≤ n and ϕ1, . . . , ϕn ∈ C(∂U). Then there exist unique

functions h1, . . . , hn ∈ C(U) such that

Lihi +

n∑

j=1

hjgijµi = 0 on U, hi|∂U = ϕi (1 ≤ i ≤ n).

Further, if ϕ1, . . . , ϕn are positive, then h1, . . . , hn are positive.

If the functions ϕi are bounded and measurable, but not necessarily

continuous and/or if the set U is not Li-regular, we still have a unique

generalized solution of the Dirichlet problem (see [BH86, Chapter VII]).

By Corollary 7.4, (H̃T
U )U∈UT is a family of harmonic kernels provided

gij = 0 for all 1 ≤ i ≤ j ≤ n. A very special case is the situation where all

operators Li are equal and gijµi = δi+1,jλ:

Corollary 8.2. Let D be a bounded domain in Rd, d ≥ 1, and let

L be a second order linear partial differential operator on D leading to a

harmonic space (D,HL) with Green function GL such that GλL is continuous

and bounded. Let U be a relatively compact (L−)regular subset of D, n ∈ N,

and ϕ1, . . . , ϕn ∈ C(∂U). Then there exists a unique function h ∈ C(U) such

that Lh,L2h, . . . , Ln−1h ∈ C(U),

Lnh = 0 on U, lim
x→z

(−L)i−1h(x) = ϕi(z)

for every 1 ≤ i ≤ n and for all z ∈ ∂U.

Further, h,−Lh,L2, . . . , (−L)n−1h are positive, if ϕ1, . . . , ϕn are positive.
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We shall complete our application by giving further conditions implying

that (H̃T
U )U∈UT is a family of harmonic kernels:

Proposition 8.3. Suppose that there exists a strictly positive real

function s on D such that, for each 1 ≤ i ≤ n, one of the following condi-

tions is satisfied :

(1)
∑n

j=1 gij ≤ 0 and s is strongly Li-superharmonic.

(2)
∑n

j=1 gij < 0 and s is Li-superharmonic.

Then (H̃T
U )U∈UT is a family of harmonic kernels.

Proof. Define s ∈ W by s(x, i) = s(x) and fix 1 ≤ i ≤ n. Then, for
every x ∈ D,

(ks− Ts)(x, i) = −gii(x) −
∑

j 6=i

gij(x) ≥ 0.

So (H̃T
U )U∈UT is a family of harmonic kernels by Theorem 6.1 (taking u = 0).

In [CZ96] it is assumed that, for every 1 ≤ i ≤ n, the operator Li is

uniformly elliptic, µi = λ,
∑n

j=1 gij ≤ 0, and 1 is Li-superharmonic.

Moreover, Theorem 7.6 implies the following result involving µi-eigen-

functions for the operators Li (cf. [Bou81, pp. 348–350] and [Bou82]):

Proposition 8.4. Suppose that there exist strictly positive PLi
(D)-

bounded functions ui ∈ Cb(D) and strictly positive real numbers αi, βij,
i, j ∈ {1, . . . , n}, such that

Liui + αiuiµi = 0,

and

uj ≤ βijui,

n∑

j=1

βijgij/αj < 1, βii = 1.

Then (H̃T
U )U∈UT is a family of harmonic kernels.

Remark 8.5. If there exists an Li-superharmonic function si ≥ 1 on D,
then every function u ∈ C0(D) is PLi

(D)-bounded.
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Proof of Proposition 8.4. For every 1 ≤ i ≤ n,

αiG
uiµi

Li
= ui,

since ui − αiG
uiµi

Li
is PLi

(D)-bounded and Li-harmonic on D. Therefore

n∑

j=1

gijG
ujµj

Lj
=

n∑

j=1

gij
uj
αj

≤
n∑

j=1

gij
βij
αj

ui < ui

for every 1 ≤ i ≤ n. Thus (H̃T
U )U∈UT is a family of harmonic kernels by

Theorem 7.6.

Proposition 8.6. Suppose that L1 = · · · = Ln =: L. Then (H̃T
U )U∈UT

is a family of harmonic kernels if one of the following conditions is satis-

fied :

(1) µ1 = · · · = µn =: µ and there exist α > 0, a strictly positive

PL(D)-bounded function u ∈ Cb(D), and strictly positive real num-

bers b1, . . . , bn such that

Lu+ αuµ = 0 and

n∑

j=1

gijbj < αbi for every 1 ≤ i ≤ n.

(2) (D,HL) is parabolic, the functions gij have compact support and the

L-potentials G
|gij |µi

L , i, j ∈ {1, . . . , n}, are continuous.

Remark 8.7. Note that the harmonic space associated with the heat
equation or a similar parabolic equation is parabolic. Moreover, the last
property clearly holds if the functions gij are bounded. Finally, to obtain
the conclusion of Proposition 8.1 we obviously may drop the assumption on
the compact support (replacing gij by 1Ugij).

Proof of Proposition 8.6. By Proposition 8.4, (1) implies that (H̃T
U )U∈UT

is a family of harmonic kernels (take ui = biu and βij = bj/bi).

So suppose that (2) holds. Since of course gijµi = g̃ij(µ1 + · · · + µn)
for some Borel functions g̃ij such that g̃ij ≥ 0 for j 6= i and |g̃ij | ≤ |gij | for
all i, j, we may assume without loss of generality that µ1 = · · · = µn. Thus
Corollary 7.9 implies that (H̃T

U )U∈UT is a family of harmonic kernels.
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§9. Perturbation and general transitions

Let us go back to a general situation as considered in Section 6. So we

have a balayage space (X,W), a potential kernel KX for (X,W), a Kato

function k and an admissible transition kernel T . However, we shall no

longer assume that UT is a base of X. So our result will be new even if

there is no perturbation at all, i.e., if k = 0.

Let us suppose for the moment that at least T (x, {x}) = 0 for every

x ∈ X (we shall see that this is no restriction, since we may modify k).

Moreover, assume that there exists s ∈ C+(X) such that, for every U ∈ U ,

HUs+KT
U s < s on U .

Let ρ be a metric for X and define kernels Tn, T
′
n on X by

Tn(x, · ) = 1B(x,1/n)c T (x, · ), T ′
n(x, · ) = 1B(x,1/n) T (x, · ) (n ∈ N, x ∈ X)

(where of course B(x, 1/n) = {y ∈ X : ρ(x, y) < 1/n}). Then, for every

n ∈ N, the set UTn = {U ∈ U : 1UTn1U = 0} is a base of X and we have

kernels

KTn

U = KUTn, HTn

U = HU +KTn

U (U ∈ UTn).

Since obviously, for every V ∈ UTn ,

HTn

V s = HV s+KTn

V s ≤ HV s+KT
V s < s on V ,

the function s is strongly WTn -superharmonic and we conclude by Theo-

rem 4.2 that (HTn

U )U∈UTn is a family of harmonic kernels and that (X,WTn )

is a balayage space. In particular, for every n ∈ N and for every U ∈ U , we

have a harmonic kernel HTn

U solving the Dirichlet problem with respect to

(X,WTn) (see [BH86, Chapter VII]).

Clearly, UTn+1 ⊂ UTn and HTn

U ≤ H
Tn+1

U for every U ∈ UTn+1 . We claim

that in fact

(9.1) HTn

U ≤ H
Tn+1

U for every U ∈ U .

Indeed, fix U ∈ U , ϕ ∈ K+(X), and define

t := H
Tn+1

U ϕ.

Then, for every V ∈ UTn+1 with V ⊂ U ,

HTn

V t ≤ H
Tn+1

V t = t,
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hence t is superharmonic on U with respect to (X,WTn). Moreover, t ∈
K+(X) and t = ϕ on U c. Therefore

HTn

U ϕ ≤ t

proving (9.1). In particular, the sequence (WTn) is decreasing and defining

HT
U := sup

n
HTn

U

we have

WT := {v | v : X → [0,∞] l.s.c., HT
U v ≤ v for every U ∈ U} =

⋂

n∈N

WTn .

We now obtain the following extension of Theorem 4.2 (see also Re-

mark 9.3):

Theorem 9.1. Let T be an admissible kernel such that T (x, {x}) = 0
for every x ∈ X. Suppose that there exists s ∈ C+(X) such that, for every

U ∈ U , KT
U s is continuous on U and HUs + KT

U s < s on U . Then the

following holds:

(1) (X,WT ) is a balayage space and s is strongly WT -superharmonic.

(2) For every U ∈ U and for every ϕ ∈ K+(X), the Dirichlet solution

HT
Uϕ is the unique function h ∈ K+(X) such that h−KT

Uh = HUϕ.

(3) If v is any positive numerical function on X, then v ∈ WT if and only

if there exists a function w ∈ W such that

v = KT
Xv + w.

Proof. 1. Fix U ∈ U . By Proposition 2.2 it suffices to show that HT
U s

is continuous on X and HT
U s < s on U . Let us note first that obviously

s ∈ W ∩C(X) and hence HUs ∈ C(X) and s−HUs ∈ C0(X). Given n ∈ N,
we have s ∈ WTn . So

hn := HTn

U s ≤ s.

and, by Proposition 4.7,

hn = HUs+KTn

U hn.

Letting n tend to infinity we obtain that

h := HT
U s = lim

n→∞
hn = HUs+KT

Uh ≤ s
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and hence
h ≤ HUs+KT

U s < s on U.

Moreover, KT
Uh ∈ C(U), since 0 ≤ h ≤ s and KT

U s is continuous on U by
assumption. Since 0 ≤ KT

Uh ≤ KT
U s ≤ s−HUs, we know that KT

Uh tends to
zero at the boundary of U . ThusKT

Uh ∈ C0(U) and h = HUs+K
T
Uh ∈ C(X).

2. Fix ϕ ∈ K+(X). Since by Proposition 4.7

HTn

U ϕ−KTn

U HTn

U ϕ = HUϕ,

we immediately obtain that

(9.2) HT
Uϕ−KT

UH
T
Uϕ = HUϕ.

Conversely, let h be any function in K+(X) such that

(9.3) h−KT
Uh = HUϕ.

Let C be the support of h. By (4.2), KT
U 1C ∈ C0(U). Given x ∈ U , the

functions
KT
V 1C = KT

U1C −HVK
T
U 1C , x ∈ V, V ⊂ U

are uniformly decreasing to zero as V decreases to {x}. So we may choose
Vx ∈ U such that x ∈ Vx, V x ⊂ U and KT

V 1C ≤ γ for some real γ < 1. Fix
V ∈ U such that x ∈ V ⊂ Vx and define a positive operator N on Bb(X) by
Nf := KT

V (1Cf). Then the operator I −N is invertible.
Applying HV on both sides of (9.3) we obtain that

HV h−HVK
T
Uh = HVHUϕ = HUϕ = h−KT

Uh,

and therefore

HV h = h−KT
Uh+HVK

T
Uh = h−KT

V h = (I −N)h.

On the other hand,

HV h = HT
V h−KT

VH
T
V h = (I −N)HT

V h

(using (9.2) for h instead of ϕ and V instead of U). Since I−N is invertible,
we conclude that

h = HT
V h.

By [BH86, Proposition III.4.4], this shows that h is harmonic on U with
respect to (X,WT ). Thus h = HT

Uϕ.
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3. Suppose that w ∈ W such that v = KT
Xv+w. Then, for every n ∈ N,

v = KTn

X v +K
T ′

n

X v + w

where K
T ′

n

X v + w ∈ W. Thus Proposition 4.9 implies that

v ∈
∞⋂

n=1

WTn = WT .

Assume conversely that v ∈ WT . Then, for every n ∈ N, there exists a
function wn ∈ WTn such that

KTn

X v + wn = v.

Defining w ∈ W by

w(x) = f-liminf
y→x

inf
n
wn(y)

we finally get that KT
Xv + w = v.

We now obtain the results of Theorem 6.1 and Proposition 6.3 not

assuming any more that UT is a base of X.

Theorem 9.2. Let T be an admissible transition kernel and let k be

a Kato function (with respect to KX). Suppose that there exist s ∈ W and

u ∈ B+(X) such that

v := s+KXu ∈ C(X), T v ≤ u+ kv,

and, for every U ∈ U , {HUs < s} ∪ {KU (u+ kv − Tv) > 0} = U .

Then, for every U ∈ U and for every ϕ ∈ K+(X), there exists a unique

function h = H̃T
Uϕ ∈ K+(X), such that

h+KU (kh− Th) = HUϕ.

Moreover, (H̃T
U )U∈U is a family of harmonic kernels on X for which v is

strongly superharmonic.

Remark 9.3. Note that taking k = 0 we obtain the statements of The-
orem 9.1 without the assumption that T (x, {x}) = 0 for x ∈ X.
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Proof of Theorem 9.2. Replacing T by the kernel x 7→ T (x, · ) −
T (x, {x})εx, k by the function x 7→ k(x) − T (x, {x}) we may assume that
T (x, {x}) = 0 for every x ∈ X.

We now proceed as in the proof of Theorem 6.1: By Theorem 5.4, every
U ∈ U is k-bounded and defining H̃U , U ∈ U , by (5.1) and W̃ by (5.2) we

obtain a family (H̃U )U∈U of harmonic kernels and a balayage space (X, W̃)

such that v is strongly W̃-superharmonic. Moreover, by Proposition 5.5,
there exists a potential kernel K̃X such that, for every U ∈ U ,

(9.4) K̃U := K̃X − H̃UK̃X = (I +KUMk)
−1KU .

We claim that, for every U ∈ U ,

H̃Uv + K̃T
U v < v on U.

Indeed, defining f := v − H̃Uv − K̃T
U v we obtain that

(I+KUMk)f = v+KU (kv)−HUv−KU (Tv) = s−HUs+KU(u+kv−Tv)

is a strictly positive superharmonic function on U and hence f > 0 on U .
Clearly, KXu ∈ C(X) and hence KUu ∈ C0(U). Since |kv| ≤ sup v(U)|k|
on U , we know that KU |kv| ∈ C0(U). Therefore the inequality 0 ≤ Tv ≤
u+ kv implies that KT

Uv ∈ C0(U) and hence K̃T
U v ∈ C0(U).

Replacing (HU )U∈U by (H̃U )U∈U and (KU )U∈U by (K̃U )U∈U we get a

balayage space (X, W̃T ) such that v is strongly W̃T -superharmonic.

Moreover, for every ϕ ∈ K+(X), the function

H̃T
Uϕ = lim

n→∞
H̃Tn

U ϕ

is the unique function h ∈ K+(X) such that

h− K̃T
Uh = H̃Uϕ.

By (5.1) and (9.4), the last equation is equivalent to

h+KU (kh − Th) = HUϕ,

and the proof is finished.
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§10. Appendix: Lifting of potentials in balayage spaces

In this section we shall construct a potential kernel corresponding to a

compatible family of potential kernels (KU )U∈U (see Remarks 2.3, 4). We

shall need the following lifting property :

Theorem 10.1. Let U be an open subset of X and q a continuous real

potential on U which is harmonic outside a compact subset C of U . Then

there exists a unique p ∈ P(X) such that p is harmonic outside C and p−q
is harmonic on U .

For harmonic spaces the proof is already fairly technical (see [Her62,

Theorem 13.2]), for balayage spaces it is even more delicate. For every

open subset V of X let Spb(V ) denote the set of all P-bounded s ∈ B(X)

such s is l.s.c. on V and HW s ≤ s for every W ∈ U with W ⊂ V . An

easy generalization of [BH86, Proposition II.4.4] yields the following sheaf

property (cf. also (2.2)): For every family (Vi)i∈I of open subsets of X,

(10.1) Spb

( ⋃

i∈I

Vi

)
=

⋂

i∈I

Spb(Vi).

Proof of Theorem 10.1 (cf. [Alb95]). The uniqueness of p is easily es-
tablished. Indeed, if p and p′ have the desired properties, then p − p′ is
harmonic on U and harmonic outside C. Therefore p − p′ is harmonic
on X by (10.1) (applied to p − p′ and p′ − p). Since p − p′ is of course
P(X)-bounded, we conclude that p = p′.

To prove the existence let us define

F := {p ∈ P(X) : p− q ∈ S+
pb(U)}.

We intend to show that there is a smallest element in F and that this
function inf F has the desired properties.

1. First we claim that the set F is non-empty: We choose an open
set V and a compact set L such that C ⊂ V ⊂ L ⊂ U . By a general
approximation property (see [BH86, I.1.2]) there exist q1, q2 ∈ P(X) such
that

q2 − q1 ≥ q on V , q1 = q2 on Lc.

Then

p0 := inf(q + q1, q2) ∈ S+
pb(U).
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Moreover, p0 = q2 on Lc and p0 ≤ q2 on X whence p0 ∈ S+
pb(L

c). Thus

p0 ∈ S+
pb(X) by (10.1). In fact, p0 ∈ P(X), since p0 is continuous.

Clearly, p0−q = q1 ≥ 0 on V . Therefore p0−q ≥ 0, since q is harmonic
outside C. Knowing that p0 − q ≤ q1 on X we conclude by (10.1) that

p0 − q ∈ S+
pb(V ) ∩ S+

pb(U \ C) = S+
pb(U).

Thus p0 ∈ F .

2. Obviously F is stable with respect to finite infima, since both P(X)
and S+

pb(U) are.

3. Next we show that inf F is harmonic outside C: Let us fix an
open neighborhood W of C in U . Clearly it suffices to show that inf F
is harmonic outside the closure of W . For the present fix p ∈ F . Then
Kp
X1W − q = (p − q) − Kp

X1W c ∈ Spb(W ) and Kp
X1W − q ∈ Spb(U \ C),

hence Kp
X1W − q ∈ Spb(U) by (10.1). Since q ∈ P(U), we obtain that

Kp
X1W − q ≥ 0. Therefore Kp

X1W ∈ F , i.e.,

inf F = inf{Kp
X1W : p ∈ F}.

Since F is stable with respect to finite infima, the set of all K p
X1W , p ∈ F ,

is decreasingly filtered and therefore contains a decreasing sequence (pn)
converging to inf F . Since all functions Kp

X1W , p ∈ F , are harmonic out-
side W , we conclude in particular that inf F is harmonic outside W as
well.

4. Moreover, inf F − q is harmonic on U : Fix p ∈ F , a compact
neighborhood L of C in U and an open neighborhood W of C such that W
is contained in the interior of L. Choose ϕ ∈ C(X) such that 0 ≤ ϕ ≤ 1,
ϕ = 1 on Lc, and ϕ = 0 on W . Define

p′ := inf(Rϕp + q, p).

Then p′ = p on Lc, so p′ is continuous on Lc. Further, the continuity of the
functions Rϕp, q, and p on U implies that p′ is continuous on U . Therefore
p′ is continuous on X.

Clearly, p′ ∈ S+
pb(U). Moreover, p′ ∈ S+

pb(L
c), since p′ = p on Lc and

p′ ≤ p. Therefore p′ ∈ S+
pb by (10.1) and even p′ ∈ P(X), since p′ is

continuous. Since p− q ∈ S+
pb(U), we obtain that p′ − q = inf(Rϕp, p− q) ∈

S+
pb(U). Thus p′ ∈ F .
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Further, Rϕp ≤ R1Wcp = HWp whence p′ − q ≤ HWp. So, for every
n ∈ N and for every V ∈ U with V ⊂W , we obtain that

pn − q ≥ HV (pn − q) ≥ HW (pn − q) = HWpn −HW q ≥ p′n − q −HW q.

Since obviously inf F = inf pn = inf p′n, we conclude that

inf F − q ≥ HV (inf F − q) ≥ inf F − q −HW q.

Because of limW↑U HW q = 0 this implies that

inf F − q = HV (inf F − q)

for all V ∈ U with V ⊂ U . Thus inf F − q is harmonic on U .

Knowing that inf F − q is harmonic on U and inf F is harmonic on C c

we see immediately that inf F is continuous on X. Thus inf F ∈ P(X), and
the proof is finished.

Proposition 10.2. Let (KU )U∈U be a compatible family of potential

kernels, i.e., for every U ∈ U , we have a potential kernel KU on U and

KU = KV +HVKU whenever U, V ∈ U with V ⊂ U . Then there exists a

unique potential kernel KX on X such that KU = KX −HUKX for every

U ∈ U .

Proof. Indeed, if f ∈ B+
b (X) with compact support in some U ∈ U ,

then KXf has to be the lifting of KUf . So we have uniqueness of KX .

To prove its existence we may choose a locally finite covering of X by
a sequence (Un) in U and continuous functions ϕn ≥ 0 on X with compact
support in Un, n ∈ N, such that

∑∞
n=1 ϕn = 1. For every n ∈ N, let pn be

the lifting of KUnϕn on X so that

(10.2) Kpn

X −HUnK
pn

X = KUnMϕn .

Define

KX :=
∞∑

n=1

Kpn

X .

Clearly, KX is a potential kernel on X. Fix U ∈ U , n ∈ N, and f ∈ B+
b (X)

with compact support in U . Then ϕnf has compact support in Un ∩ U
and our compatibility assumption implies that KU (ϕnf) is the lifting of
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KUn∩U (ϕnf) on U and KUn(ϕnf) is the lifting of KUn∩U (ϕnf) on Un. By
(10.2), Kpn

X f is the lifting of KU (ϕnf) on X. Therefore

Kpn

X f −HUK
pn

X f = KU (ϕnf).

Taking the sum over all n ∈ N we finally conclude that KX−HUKX = KU .
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Application à la construction de processus de Harris, Seminar on Potential

Theory, Paris, No. 6, Springer, Berlin (1982), pp. 53–87.

[Bou84] A. Boukricha, Espaces biharmoniques, Théorie du Potentiel, Proceedings, Or-

say 1983, Lecture Notes in Mathematics 1983, 239 (1984), pp. 116–148.

[CC72] C. Constantinescu and A. Cornea, Potential Theory on Harmonic Spaces,

Grundlehren d. math. Wiss. Springer, Berlin-Heidelberg-New York, 1972.

[CZ96] Z. Q. Chen and Z. Zhao, Potential theory for elliptic systems, Ann. Prob., 24

(1996), 293–319.

[Han81] W. Hansen, Semi-polar sets and quasi-balayage, Math. Ann., 257 (1981),

495–517.

[Han87] W. Hansen, Balayage spaces – a natural setting for potential theory, Potential

Theory – Surveys and Problems, Proceedings, Prague 1987, Lecture Notes 1344

(1987), pp. 98–117.



118 W. HANSEN
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