NUMERICAL CRITERIA FOR CERTAIN FIBER SPACES TO BE BIRATIONALLY TRIVIAL

JIN-XING CAI

Abstract

Let $f: X \rightarrow B$ be a fiber space over a curve B whose general fiber F belongs to one of the following type: 1) F is of general type and satisfying some mild conditions, 2) F is with trivial canonical sheaf. In this note, a numerical characterization for $f: X \rightarrow B$ to be birationally trivial is given.

§1. Introduction

Let X be a complex projective manifold, and $f: X \rightarrow B$ be a morphism over a smooth projective curve B with connected fibers. A natural problem is to find a numerical characterization for $f: X \rightarrow B$ to be birationally trivial (see (2.1) for the definition).

When X is a surface, it is well-known that, if $g(F) \geq 2, f$ is birationally trivial if and only if $q(X)-g(B)=g(F)$, where F is a general fiber of f, $g(F)$ (resp. $g(B)$) is the genus of F (resp. B), and $q(X)$ is the irregularity of X (cf. [2]).

In this note, we consider the higher dimensional case.
For any $1 \leq i \leq \operatorname{dim} X$, let \mathcal{H}_{X}^{i} be the image of the map $H^{0}\left(\Omega_{X}^{i}\right) \otimes$ $\mathcal{O}_{X} \rightarrow \Omega_{X}^{i}$, where Ω_{X}^{i} is the sheaf of holomorphic i-forms on X. Let $\mathrm{rk} \mathcal{H}_{X}^{i}$ be the rank of \mathcal{H}_{X}^{i}. It is easy to see that $\mathrm{rk} \mathcal{H}_{X}^{i}$ is a birational invariant. Let $h^{i, 0}(X)=\operatorname{dim} H^{0}\left(\Omega_{X}^{i}\right)$ and $p_{g}(X)$ be the geometric genus of X. Our main result is the following.

Theorem 1.1. Let X be a complex projective manifold of dimension $n+1(n \geq 2)$, and $f: X \rightarrow B$ be a morphism over a smooth projective curve B with connected fibers. Let F be a general fiber of f. Assume that $h^{n-1,0}(F)=0$, and that either the canonical map ϕ_{F} of F is birational, or ϕ_{F} is generically finite of degree being a prime number and $p_{g}\left(\operatorname{Im} \phi_{F}\right)=0$. Then f is birationally trivial if and only if $\operatorname{rk} \mathcal{H}_{X}^{n}=1$ and $h^{n, 0}(X)=p_{g}(F)$.

[^0]Theorem 1.1 will be proved in Section 2. In Section 3 we will give some criteria for fiber spaces whose general fibers have trivial canonical sheaf to be birationally trivial.

We use standard notations as in [3] or [10].
Acknowledgements. I would like to thank Professor S.-T. Yau for his invitation to Harvard University in Spring 1998 and Morningside Center of Mathematics for providing support, where part of this work was realized. I am grateful to the referee for helpful suggestions. This work is supported by the National Natural Science Foundation of China.

§2. Proof of Theorem 1.1

2.1. A fiber space $f: X \rightarrow B$ of relative dimension n is a surjective morphism between smooth projective varieties X and B with connected geometric fibers of dimension n. We say that two fiber spaces $f_{i}: X \rightarrow B_{i}$ $(i=1,2)$ are birationally equivalent if there are birational maps $\pi_{1}: X_{1} \rightarrow$ X_{2} and $\pi_{2}: B_{1} \rightarrow B_{2}$ such that $f_{2} \pi_{1}=\pi_{2} f_{1}$. A fiber space $f: X \rightarrow B$ is called birationally trivial, if it is birationally equivalent to the trivial fiber space $p: F \times B \rightarrow B$, where F is a general fiber of f and p is the projection.
2.2. Let $f: X \rightarrow B$ be a fiber space, and F a general fiber of f. We say that f has constant moduli, if any two smooth geometric fibers of f are birationally equivalent.

Assume that f has constant moduli and that the Kodaira dimension of F is non-negative. Then f admits a very concrete description, i.e., there exists a finite group G acting on F and on some smooth variety \widetilde{B} such that f is birationally equivalent to (the smooth model of) the fiber space $p:(F \times \widetilde{B}) / G \rightarrow \widetilde{B} / G$, where the action of G on the production $F \times \widetilde{B}$ is compatible with the actions on each factor and p is the projection to the second factor. (See [6, Theorem 2.11] or [7, Proposition 1] for a proof.)
2.3. Let $f: X \rightarrow B$ be a fiber space of relative dimension n, and F a general fiber of f. In what follows we always assume that B is a curve. Then $R^{n} f_{*} \mathcal{O}_{X}$ is a locally free sheaf of rank $p_{g}(F)$. By Theorem 3.1 [5], $\mathcal{O}_{B}^{\oplus} h^{0}\left(R^{n} f_{*} \mathcal{O}_{X}\right)$ is a direct factor of $R^{n} f_{*} \mathcal{O}_{X}$. By the Leray spectral sequence,

$$
h^{0}\left(R^{n} f_{*} \mathcal{O}_{X}\right)+h^{1}\left(R^{n-1} f_{*} \mathcal{O}_{X}\right)=h^{n}\left(\mathcal{O}_{X}\right)
$$

Combining these two facts, we get $h^{n}\left(\mathcal{O}_{X}\right) \leq h^{1}\left(R^{n-1} f_{*} \mathcal{O}_{X}\right)+p_{g}(F)$.

Notation 2.4. Let X be a complex projective manifold. For any $0 \neq$ $\alpha \in H^{0}\left(\Omega_{X}^{i}\right)(1 \leq i \leq \operatorname{dim} X)$, we denote by $\mathrm{Z}(\alpha)$ the zero-locus of the holomorphic i-form α.
2.5. Let $f: X \rightarrow B$ and F be as in 2.3. Let ι be the embedding of F in X. We can factor the pullback of forms under the restriction map $\iota^{*}: \Omega_{X}^{n} \rightarrow \Omega_{F}^{n}$ by

$$
\left.\Omega_{X}^{n} \xrightarrow{r} \Omega_{X}^{n}\right|_{F} \longrightarrow \Omega_{F}^{n} .
$$

Consider the long exact sequences associated with the exact sequences of sheaves

$$
\begin{gathered}
\left.0 \longrightarrow \Omega_{X}^{n}(-F) \longrightarrow \Omega_{X}^{n} \stackrel{r}{\longrightarrow} \Omega_{X}^{n}\right|_{F} \longrightarrow 0 \quad \text { and } \\
\left.0 \longrightarrow \Omega_{F}^{n-1} \longrightarrow \Omega_{X}^{n}\right|_{F} \longrightarrow \Omega_{F}^{n} \longrightarrow 0
\end{gathered}
$$

Then we have that, if $h^{n-1,0}(F)=0$, then for any $0 \neq \varphi \in H^{0}\left(\Omega_{X}^{n}\right), \iota^{*} \varphi=0$ if and only if $\varphi \in \operatorname{Ker} r$, i.e., $F \subset \mathrm{Z}(\varphi)$.
2.6. Let X be a complex projective manifold of dimension $n+1$ ($n \geq 2$), with $h^{n, 0}(X) \geq 2$. Assume that there are two linearly independent n-forms φ_{1} and φ_{2} such that $\varphi_{1} \wedge \varphi_{2}=0$ in $H^{0}\left(\bigwedge^{2} \Omega_{X}^{n}\right)$. Then there exists a non-constant rational function h on X such that $\varphi_{2}=h \varphi_{1}$. Let $\pi: X^{\prime} \rightarrow X$ be the blowing up of the locus of indeterminacy of the rational map

$$
(1: h): X \rightarrow-\rightarrow \mathbb{P}^{1}
$$

and $f_{h}: X^{\prime} \rightarrow C$ the Stein factorization of $(1: h) \circ \pi$. We have that h is constant along the fibers of f_{h}.

Lemma 2.7. Let X and f_{h} be as above. Then for any smooth fiber F of f_{h}, we have
(i) $\iota_{F}^{*}\left(\pi^{*} \varphi_{i}\right)=0$ for $i=1$ and 2 , where we denote by ι_{F} the embedding of F in X^{\prime},
(ii) $h^{n-1,0}(F)>0$.

Proof. (i) Indeed, for any $x \in F$, let $z_{0}, z_{1}, \ldots, z_{n}$ be a set of analytic local coordinates of X around x, such that z_{0} is the pullback of a local coordinate of C around the image c of F by f_{h}. Then h is the pull-back of
a non-constant holomorphic function of a neighborhood of c, and within an analytic neighborhood of x, we can write

$$
\begin{aligned}
& \pi^{*} \varphi_{1}=\sum_{i=0}^{n} A_{i} d z_{0} \wedge \cdots \wedge \widehat{d z_{i}} \wedge \cdots \wedge d z_{n} \\
& \pi^{*} \varphi_{2}=\sum_{i=0}^{n} B_{i} d z_{0} \wedge \cdots \wedge \widehat{d z_{i}} \wedge \cdots \wedge d z_{n}
\end{aligned}
$$

($\widehat{d z}_{i}$ indicating the omission of the i-th factor $d z_{i}$) where A_{i} and B_{i} are holomorphic functions of this neighborhood. Clearly we have that

$$
\iota_{F}^{*}\left(\pi^{*} \varphi_{1}\right)=\left.A_{0}\right|_{F} d z_{1} \wedge \cdots \wedge d z_{n}
$$

Since $\varphi_{2}=h \varphi_{1}$, we have $B_{i}=h A_{i}$ for $i=0, \ldots, n$. Since $\pi^{*} \varphi_{j}$ are d-closed, we have

$$
\sum_{i=0}^{n}(-1)^{i} \frac{\partial A_{i}}{\partial z_{i}}=0 \quad \text { and } \quad \sum_{i=0}^{n}(-1)^{i} \frac{\partial B_{i}}{\partial z_{i}}=0
$$

Now

$$
\begin{aligned}
\frac{\partial h}{\partial z_{0}} A_{0} & =\frac{\partial B_{0}}{\partial z_{0}}-h \frac{\partial A_{0}}{\partial z_{0}}=\frac{\partial B_{0}}{\partial z_{0}}+h \sum_{i=1}^{n}(-1)^{i} \frac{\partial A_{i}}{\partial z_{i}} \\
& =\frac{\partial B_{0}}{\partial z_{0}}+\sum_{i=1}^{n}(-1)^{i} \frac{\partial B_{i}}{\partial z_{i}}=0
\end{aligned}
$$

Note that $\partial h / \partial z_{0} \neq 0$. Hence we get $A_{0} \mid F=0$.
(ii) Let F^{\prime} be a general fiber of f_{h} such that $F^{\prime} \not \subset \mathrm{Z}\left(\pi^{*} \varphi_{1}\right)$. Suppose that $h^{n-1,0}\left(F^{\prime}\right)=0$. Then by 2.5 we get $\iota_{F^{\prime}}^{*}\left(\pi^{*} \varphi_{1}\right) \neq 0$. On the other hand, by (i), we have $\iota_{F^{\prime}}^{*}\left(\pi^{*} \varphi_{1}\right)=0$. This is a contradiction.

The following lemma plays an important role in the proof of the Theorem 1.1.

Lemma 2.8. Let $f: X \rightarrow B$ be a fiber space of relative dimension $n \geq$ 2, and F a general fiber of f. Assume that $\mathrm{rk} \mathcal{H}_{X}^{n}=1$ (where \mathcal{H}_{X}^{n} is as in Section 1), and $h^{n-1,0}(F)=0$. Then $h^{0}\left(\Omega_{X}^{n}(-F)\right)=0$.

Proof. Consider the exact sequence

$$
0 \longrightarrow H^{0}\left(\Omega_{X}^{n}(-F)\right) \longrightarrow H^{0}\left(\Omega_{X}^{n}\right) \xrightarrow{r} H^{0}\left(\left.\Omega_{X}^{n}\right|_{F}\right) .
$$

Note that for any $\varphi \in H^{0}\left(\Omega_{X}^{n}\right), \varphi \in \operatorname{Ker} r$ if and only if $\mathrm{Z}(\varphi) \supset F$. Since F is a general fiber of f, we have $\operatorname{Im} r \neq 0$ if $h^{n, 0}(X)>0$. We choose and fix a section $\varphi_{0} \in H^{0}\left(\Omega_{X}^{n}\right)$ such that $r\left(\varphi_{0}\right) \neq 0$. Now it's enough to prove that $\operatorname{Ker} r=0$. Otherwise, let $0 \neq \varphi_{1} \in \operatorname{Ker} r$. Then $\mathrm{Z}\left(\varphi_{1}\right) \supset F$. Since rk $\mathcal{H}_{X}^{n}=1, \varphi_{1} \wedge \varphi_{0}=0$. So there exists a rational function h on X such that $\varphi_{1}=h \varphi_{0}$. Since $\mathrm{Z}\left(\varphi_{0}\right) \not \supset F$ by the choice of φ_{0}, h vanishes on F.

Let $f_{h}: X \rightarrow C$ be the fiber space induced by the rational map

$$
(1: h): X \rightarrow-\mathbb{P}^{1}
$$

By $2.7, h^{n-1,0}\left(F_{h}\right)>0$, where F_{h} is a smooth fiber of f_{h}. This implies f and f_{h} are different fibrations of X since $h^{n-1,0}(F)=0$ by the assumption. So $\left.f_{h}\right|_{F}: F \rightarrow C$ is surjective. Since h vanishes on F and is constant on the fibers of f_{h}, we get that h vanishes on X. This is a contradiction.

The following proposition is a special case of 7.2 .1 in [9].
Proposition 2.9. Let $f: X \rightarrow Y$ be a morphism from $a(n+1)$-fold to a smooth projective n-fold. Suppose that, over a Zariski open set U of $X, \varphi \in H^{0}\left(X, \Omega_{X}^{n}\right)$ can be writen locally around each point $p \in U$ as $\varphi=\alpha f^{*}(\omega)$, where $\alpha \in \mathcal{O}_{p, X}$ and $\omega \in \Omega_{f(p), Y}^{n}$. Then $\varphi=\alpha f^{*}\left(\omega^{\prime}\right)$ for some $\omega^{\prime} \in H^{0}\left(Y, \Omega_{Y}^{n}\right)$.

2.10. Proof of Theorem 1.1

We prove that if rk $\mathcal{H}_{X}^{n}=1$ and $h^{n, 0}(X)=p_{g}(F)$, then f is birationally trivial; the converse is clear since rk \mathcal{H}_{X}^{n} is a birational invariant of X (note that $\operatorname{rk} \mathcal{H}_{X}^{n}$ equals to the greatest integer i such that $\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{i} \neq 0$ in $H^{0}\left(\bigwedge^{i} \Omega_{X}^{n}\right)$ for some $\left.\varphi_{1}, \ldots, \varphi_{i} \in H^{0}\left(\Omega_{X}^{n}\right)\right)$.

Let $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{m}\left(m=h^{n, 0}(X)-1\right)$ be a basis of $H^{0}\left(\Omega_{X}^{n}\right)$. Since rk $\mathcal{H}_{X}^{n}=1$, there are non-constant rational functions h_{i} on X such that $\varphi_{i}=h_{i} \varphi_{0}$ for $i=1, \ldots, m$. Consider the rational map

$$
\Phi=\left(1: h_{1}: h_{2}: \cdots: h_{m}\right): X \rightarrow-\mathbb{P}^{m}
$$

By Bogomolov's theorem [4], $\operatorname{dim}(\operatorname{Im} \Phi) \leq n$.

Let F be a general fiber of f, and ι the embedding of F in X. Since $h^{n-1,0}(F)=0$, by 2.5 ,

$$
\operatorname{Ker}\left(\iota^{*}: H^{0}\left(\Omega_{X}^{n}\right) \rightarrow H^{0}\left(\Omega_{F}^{n}\right)\right) \simeq H^{0}\left(\Omega_{X}^{n}(-F)\right)
$$

By Lemma 2.8, $h^{0}\left(\Omega_{X}^{n}(-F)\right)=0$. So $\iota^{*}: H^{0}\left(\Omega_{X}^{n}\right) \rightarrow H^{0}\left(\Omega_{F}^{n}\right)$ is an embedding, hence an isomorphism by the assumption $h^{n, 0}(X)=p_{g}(F)$. This implies that $\left.h_{i}\right|_{F}$, the restricion of h_{i} on F, are non-constant rational functions on F, and

$$
\left.\Phi\right|_{F}=\left(1:\left.h_{1}\right|_{F}:\left.h_{2}\right|_{F}: \cdots:\left.h_{m}\right|_{F}\right): X \rightarrow \mathbb{P}^{m}
$$

is nothing but the canonical map ϕ_{F} of F. Since ϕ_{F} is generically finite by assumption, we get $\operatorname{dim}(\operatorname{Im} \Phi) \geq \operatorname{dim}\left(\operatorname{Im}\left(\left.\Phi\right|_{F}\right)\right)=n$. So $\operatorname{Im} \Phi=\operatorname{Im}\left(\left.\Phi\right|_{F}\right)$ is a variety of dimension n. This implies that f has constant moduli if ϕ_{F} is birational. Now we show that if $\operatorname{deg} \phi_{F}$ is prime and $p_{g}\left(\operatorname{Im} \phi_{F}\right)=0, f$ also has constant moduli.

Consider the following commutative diagram

where π is the blowing up of the locus of indeterminacy of the rational map Φ and Φ^{\prime} is the Stein factorization of $\Phi \circ \pi$. Taking the desingularisation of Y instead of Y, we can assume that Y is smooth.

Claim. $p_{g}(Y)=h^{n, 0}(X)$.
Proof of the Claim. The case when $\operatorname{dim} X=3$ is proved in [8, p. 861]; the general case can be similarly verified. Indeed, it's enough to verify that $\pi^{*} \varphi_{i}(i=0, \ldots, m)$ are pull-backs of holomorphic n-forms on Y. Since $\operatorname{Im} \Phi$ has dimension n in \mathbb{P}^{m}, we may assume, after changing coordinates, that $z_{i}=Z_{i} / Z_{0}$ for $i=1, \ldots, n$, forms a local coordinate system at a generic point $p \in \operatorname{Im} \Phi$, where Z_{0}, \ldots, Z_{m} are homogeneous coordinates of \mathbb{P}^{m}. Consider the compositions g_{i} of $s \circ \Phi^{\prime}$ with the projection

$$
p_{i}: \operatorname{Im} \Phi \longrightarrow \mathbb{P}^{1}, \quad\left(1: h_{1}(x): h_{2}(x): \cdots: h_{m}(x)\right) \longmapsto\left(1: h_{i}(x)\right) .
$$

By blowing up if necessary, we may assume that all $g_{i}(i=1, \ldots, n)$ are morphisms. Let

$$
U=X^{\prime} \backslash \bigcup_{i=1}^{n}\left\{\text { singular fibers of } g_{i}\right\}
$$

Let $i_{1}: F_{1} \subset X^{\prime}$ be the inclusion of a smooth fiber of g_{1}. Then by 2.7 , we have $\iota_{1}^{*}\left(\pi^{*} \varphi_{i}\right)=0$ for $i=0$ and 1 . Since $\varphi_{i}=h_{i} \varphi_{0}$, we get $\iota_{1}^{*}\left(\pi^{*} \varphi_{i}\right)=0$ for all i. It implies that around $x \in U$,

$$
\pi^{*} \varphi_{i}=\alpha_{1 i} g_{1}^{*}\left(d z_{1}\right) \wedge \tau_{1 i}
$$

where $\alpha_{1 i} \in \mathcal{O}_{x, X^{\prime}}$ and $\tau_{1 i} \in \Omega_{x, X^{\prime}}^{n-1}$. Similarly, we have

$$
\pi^{*} \varphi_{i}=\alpha_{2 i} g_{2}^{*}\left(d z_{2}\right) \wedge \tau_{2 i}=\cdots=\alpha_{n i} g_{n}^{*}\left(d z_{n}\right) \wedge \tau_{n i}
$$

where $\alpha_{2 i}, \ldots, \alpha_{n i}$ are in $\mathcal{O}_{x, X^{\prime}}$ and $\tau_{2 i}, \ldots, \tau_{n i}$ are in $\Omega_{x, X^{\prime}}^{n-1}$. This shows that around $x \in U$,

$$
\begin{aligned}
\pi^{*} \varphi_{i} & =\alpha g_{1}^{*}\left(d z_{1}\right) \wedge g_{2}^{*}\left(d z_{2}\right) \wedge \cdots \wedge g_{n}^{*}\left(d z_{n}\right) \\
& =\alpha \Phi^{* *}\left(\left(p_{1} \circ s\right)^{*}\left(d z_{1}\right) \wedge\left(p_{2} \circ s\right)^{*}\left(d z_{2}\right) \wedge \cdots \wedge\left(p_{n} \circ s\right)^{*}\left(d z_{n}\right)\right)
\end{aligned}
$$

for some $\alpha \in \mathcal{O}_{x, X^{\prime}}$. Now by Proposition 2.9, we have that $\pi^{*} \varphi_{i}$ are pullbacks of holomorphic n-forms on Y.

Now we continue to prove the Theorem 1.1. Let F^{\prime} be the strict transform of F under π. We have the following commutative diagram

$$
\begin{aligned}
& F^{\prime} \xrightarrow{\left.\Phi^{\prime}\right|_{F^{\prime}}} \quad Y \\
& \downarrow_{\left.\pi\right|_{F^{\prime}}} \quad \downarrow^{\prime} \\
& F \xrightarrow{\left.\Phi\right|_{F}=\phi_{F}} \operatorname{Im} \Phi .
\end{aligned}
$$

If $\operatorname{deg} \phi_{F}$ is prime and $p_{g}\left(\operatorname{Im} \phi_{F}\right)=0$, then $\operatorname{deg} s \neq 1$ since $p_{g}(Y) \neq$ $p_{g}\left(\operatorname{Im} \phi_{F}\right)$. So $\operatorname{deg}\left(\left.\Phi^{\prime}\right|_{F^{\prime}}\right)=1$, and we have that f has constant moduli.

By $2.2, X$ is birationally equivalent to $(F \times \widetilde{B}) / G$, where \widetilde{B} and G are in 2.2. We claim that $|G|=1$. In fact, from

$$
h^{n, 0}(F \times \widetilde{B})=p_{g}(F)=h^{n, 0}(X)=\operatorname{dim} H^{0}\left(\Omega_{F \times B^{\prime}}^{n}\right)^{G}
$$

we get $H^{0}\left(\Omega_{F}^{n}\right)^{G}=H^{0}\left(\Omega_{F}^{n}\right)$. So G induces identity on $\operatorname{Im} \phi_{F}$. This implies ϕ_{F} factors through $F \rightarrow F / G \rightarrow \operatorname{Im} \phi_{F}$. So we have $|G|=1$ under the condition that either ϕ_{F} of F is birational, or ϕ_{F} is generically finite of degree being a prime number and $p_{g}\left(\operatorname{Im} \phi_{F}\right)=0$.

Remark 2.11. We give some remarks about the conditions on F in Theorem 1.1.
(1) If we only assume that F is of general type, the question may be too general to have a positive answer. But I failed to find an example of a birationally trivial fiber space which has a birationally non-trivial smooth deformation.
(2) If $h^{n-1,0}(F) \neq 0$, the existence of non-zero global $(n-1)$-forms on F makes the case more complicated (compare 2.5). Fortunately, since varieties with $h^{n-1}\left(\mathcal{O}_{F}\right)=h^{n-1,0}(F)>0$ are special in the class of n dimensional varieties of general type, this is not a strong condition.
(3) Some typical examples of n-folds of general type with vanishing $h^{n-1,0}$: (a) regular surfaces of general type when $n=2$, (b) smooth complete intersections in a projective space, (c) cyclic coverings of $\mathbb{C P}^{n}$ branched along a smooth divisor, and (d) products of varieties satisfying certain numerical conditions; e.g., let $F=Y \times S$, where Y (resp. S) is a smooth projective $(n-2)$-fold (resp. surface) of general type satisfying one of the following conditions: (i) $p_{g}(S)=0$, (ii) $q(S)=0$ and $h^{n-3,0}(Y)=0$, or (iii) $p_{g}(Y)=0$ and $h^{n-3,0}(Y)=0$.
(4) We note that, if the canonical map ϕ_{F} of F is generically finite, then we have either $p_{g}\left(\operatorname{Im} \phi_{F}\right)=0$ or $p_{g}\left(\operatorname{Im} \phi_{F}\right)=p_{g}(F)$ (cf. [1, Theorem 3.1]). The following example shows that the condition on ϕ_{F} can not be weaken.

Example 2.12. Let S be a (smooth projective) regular surface. Assume that $\phi_{S}: S \rightarrow \operatorname{Im} \phi_{S}$ is generically finite of degree 2 and $p_{g}(S)=$ $p_{g}\left(\operatorname{Im} \phi_{S}\right)$. (See [1, Proposition 3.6] for examples of such surfaces.) Let σ be the involution of S corresponding to ϕ_{S}. Let \widetilde{B} be a smooth curve with an involution τ such that $\widetilde{B} \rightarrow B:=\widetilde{B} / \tau$ is étale. Take $X=(S \times \widetilde{B}) / \mathbb{Z}_{2}$, where \mathbb{Z}_{2} acts on $S \times \widetilde{B}$ by $(s, \widetilde{b}) \rightarrow(\sigma(s), \tau(\widetilde{b}))$. It's easy to check that rk $\mathcal{H}_{X}^{2}=1$ and $h^{2,0}(X)=p_{g}(S)$. But the fiber space $f: X \rightarrow B$, which is induced by the projection $S \times \widetilde{B} \rightarrow \widetilde{B}$, is not birationally trivial.

§3. Miscellaneous results

Let F be a projective manifold with trivial canonical sheaf. An automorphism σ of F is said symplectic, if σ induces trivial action on $H^{0}\left(\omega_{F}\right)$, where ω_{F} is the canonical sheaf of F.

Theorem 3.1. Let $f: X \rightarrow B$ be a fiber space of relative dimension n over a curve B, and F a general fiber of f. Assume that F is a projective manifold with trivial canonical sheaf and that $h^{n-1,0}(F)=0$ (e.g.,
an algebraic $K 3$ surface and its higher dimensional analogue, a projective Calabi-Yau manifold, etc.). Then $h^{n, 0}(X) \leq 1$, and $h^{n, 0}(X)=1$ if and only if either f is birationally trivial, or f is birationally isomorphic to $(F \times \widetilde{B}) / G \rightarrow \widetilde{B} / G$, where G is a finite group acting on F and \widetilde{B} such that the action of G on F is symplectic and $\widetilde{B} / G \simeq B$.

Proof. $h^{n, 0}(X) \leq 1$ follows by 2.3. Now we assume that $h^{n, 0}(X)=1$. Let

$$
\Sigma=\{\text { critical points of } f\} \cup\left\{p \in B \mid f^{*} p \subset \mathrm{Z}(\varphi)\right\}
$$

where φ be the unique holomorphic n-form on X up to scalar multiple. Set $B^{o}=B \backslash \Sigma, X^{o}=f^{-1} B^{o}$ and $f^{o}=\left.f\right|_{X^{o}}$.

Since $p_{g}(F)=1, \mathcal{L}:=f_{*}^{o} \omega_{X^{o}}$ is an invertible sheaf. We have an exact sequence of sheaves

$$
0 \longrightarrow\left(f^{o}\right)^{*} \mathcal{L} \longrightarrow \omega_{X^{o}}
$$

So $\omega_{X^{o}}=\left(f^{o}\right)^{*} \mathcal{L} \otimes \mathcal{O}_{X^{o}}(D)$ for some non-negative divisor D on X^{o}. From $\mathcal{O}_{F}=\left.\omega_{X^{o}}\right|_{F}=\left.\left(f^{o}\right)^{*} \mathcal{L} \otimes \mathcal{O}_{X^{o}}(D)\right|_{F}=\mathcal{O}_{F}(D)$, we have that D consists of fibers of f^{o}. Hence $\omega_{X^{o}}=\left(f^{o}\right)^{*} \mathcal{L}^{\prime}$ for some $\mathcal{L}^{\prime} \in \operatorname{pic}\left(B^{o}\right)$.

Since $h^{n-1,0}(F)=0$ by the assumption, by 2.5 we have that for any fiber F of $f^{o}, \iota^{*} \varphi \neq 0$, where ι is the embedding of F in X^{o}. By Lemma 4.3 of [5], we get that f^{o} has constant moduli.

By $2.2, X$ is birational to $(F \times \widetilde{B}) / G$, where G and \widetilde{B} are in 2.2. Since

$$
\operatorname{dim} H^{0}\left(\Omega_{F \times \widetilde{B}}^{n}\right)^{G}=h^{0}\left(\Omega_{X}^{n}\right)=1=h^{0}\left(\Omega_{F \times \widetilde{B}}^{n}\right)
$$

we have that either $|G|=1$ or G acts trivially on $H^{0}\left(\Omega_{F}^{n}\right)$. This proves the "only if" part. The "if" part is clear.

Theorem 3.2. Let $f: X \rightarrow B$ be a fiber space of relative dimension n over a curve B, and F a general fiber of f. Assume that F is an Abelian variety. Then $q(X) \leq n+g(B)$, and $q(X)=n+g(B)$ if and only if either f is birationally trivial, or f is birationally isomorphic to $(F \times \widetilde{B}) / G \rightarrow \widetilde{B} / G$, where G is a finite Abelian group acting on F and \widetilde{B} such that the action of G on F consists of translations of F and $\widetilde{B} / G \simeq B$.

Proof. By the universal property of the Albanese map, we have a
morphism $\alpha: \operatorname{Alb} X \rightarrow \operatorname{Alb} B$ such that the following diagram

commutes. Note that α is a fiber bundle whose fiber A is an Abelian variety of dimension $q(X)-g(B)$. Let p be a general point of B. We have that

$$
\left.\operatorname{alb}_{X}\right|_{f^{*}(p)}: f^{*}(p) \longrightarrow A=\alpha^{*}\left(\operatorname{alb}_{B}(p)\right)
$$

is surjective since the image of $f^{*}(p)$ in A generates A and $f^{*}(p)$ itself is an Abelian variety. So $q(X)-g(B) \leq n=\operatorname{dim} f^{*}(p)$.

Now assume that $q(X)-g(B)=n$. Then f has constant moduli since there are at most coutable Abelian varieties isogenous to a given Abelian variety. By $2.2, X$ is birational to $(F \times \widetilde{B}) / G$, where G and \widetilde{B} are in 2.2. Since

$$
\operatorname{dim} H^{0}\left(\Omega_{F \times \widetilde{B}}^{1}\right)^{G}=h^{0}\left(\Omega_{X}^{1}\right)=n+g(B)=h^{0}\left(\Omega_{F \times \widetilde{B}}^{1}\right)
$$

we have that G acts trivially on $H^{0}\left(\Omega_{F}^{1}\right)$. If there is an element $\sigma \in G$ such that σ has a fixed point, say $p \in F$, then σ acts trivially on the tangent space $\mathrm{T}_{p} F$, since σ acts trivially on $H^{0}\left(\Omega_{F}^{1}\right)$. This implies $\sigma=1$. So we have either $|G|=1$ or G consists of translations of F. This proves the "only if" part. The converse is clear.

References

[1] A. Beauville, L'application canonique pour les surfaces de type général, Invent. Math., 55 (1979), 121-140.
[2] A. Beauville, L'inegalite $p_{g} \geq 2 q-4$ pour les surfaces de type général, Appendice à O. Debarre: "Inégalités numériques pour les surfaces de type général", Bull. Soc. Math. France, 110 (1982), 343-346.
[3] W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb., 1984.
[4] F. Bogomolov, Holomorphic tensors and vector bundles on projective varieties, Math. USSR, Izv. 13 (1979), 499-555.
[5] T. Fujita, On Kaehler fibre spaces over curves, J. Math. Soc. Japan, 30 (1978), 779-794.
[6] J. Kollár, Subadditivity of the Kodaira dimension: fibers of general type, Alg. Geom. Sendai, 1985, Adv. Studies Pure Math., 10 (1987), 361-398.
[7] M. Levine, Deformation of irregular threefolds, Lect. Notes in Math. 947, Springer (1982), pp. 269-286.
[8] T. Luo, Global 2-forms on regular 3-folds of general type, Duke Math. Jour., 71 (1993), 859-869.
[9] T. Mabuchi, Invariant β and uniruled threefolds, J. Math. Kyoto Univ., 22 (1982), 503-554.
[10] S. Mori, Classification of higher-dimensional varieties, Proceedings of Symposia in Pure Math., 46 (1987), 269-331.

School of Mathematical Sciences
Peking University
Beijing, 100871
P. R. China
cai@math.pku.edu.cn

[^0]: Received March 12, 2001.
 2000 Mathematics Subject Classification: 14D05.

