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THE STRUCTURE OF

POINTWISE RECURRENT MAPS HAVING

THE PSEUDO ORBIT TRACING PROPERTY

JIEHUA MAI and XIANGDONG YE

Abstract. We show that a continuous map of a metric space is pointwise
recurrent and has the pseudo orbit tracing property if and only if the map is
uniformly conjugate to an adding-machine-like map restricted to some invariant
subset.

§1. Introduction

The pseudo orbit tracing property (abbrev. POTP) comes from the

study of Anosov diffeomorphisms: POTP and expansiveness imply the sta-

bility of the system, see [AH]. POTP has been studied by many authors.

For a manifold M , this property is generic in the space of all homeomor-

phisms of M with C0-topology [PP]. For a closed interval I, in [K] the

author determines all zero entropy continuous maps of I having POTP. For

a positive entropy continuous map of I the situation is more complicated.

In fact, for the family of tent maps, almost all maps have POTP and the set

of parameters for which the maps do not have POTP is locally uncountable

[CKY].

Recurrence is one of the most important subjects in the study of dy-

namical systems. It is known that a recurrent homeomorphism of the plane

or of a compact surface with negative Euler characteristic is periodic ([OT]

and [KP]), i.e. some iterates of the homeomorphims are identity. Moreover,

a transitive, non-minimal recurrent homeomorphism of a compact metric

space does exist [KW].

In this note we shall discuss the structure of pointwise recurrent maps

with POTP. In [M], the first author of this note studied some properties

of pointwise recurrent maps having POTP. In particular, he proved that
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such maps should be pointwise minimal. Here we completely determine

the structure of pointwise recurrent maps having POTP using inverse limit

description. To be more precise, we introduce the following notion.

Assume that X is a metric space with metric d and f : X → X is

a continuous map. For x ∈ X, the orbit of x, denoted by O(x, f), is

the set {x, f(x), f2(x), . . . }. x ∈ X is a recurrent point of f , if for each

ε > 0, there is n = n(ε) ∈ N such that d(fn(x), x) < ε. The set of

periodic points and recurrent points of f are denoted by P (f) and R(f)

respectively. f is said to be pointwise recurrent (resp. pointwise periodic) if

R(f) = X (resp. P (f) = X) and f is recurrent if there is ni → +∞ such

that supx∈X d(fni(x), x) → 0 (in some papers it is called uniformly rigid).

For a subset X0 of X, if f(X0) ⊂ X0, then we say that X0 is invariant

(under f) and f |X0 : X0 → X0 is a subsystem. If X0 is a non-empty,

closed, invariant subset of X and each non-empty closed proper subset of

X0 is not invariant, then X0 is called a minimal set of f . If X is a minimal

set of f , then f is called a minimal map. It is clear that a minimal map on

a space with finitely many points is a cyclic permutation.

Suppose that (xn)bn=0 is a sequence in X with b ≤ +∞ and δ > 0. If

for each 0 ≤ n < b we have d(xn+1, f(xn)) < δ, then (xn)bn=0 is said to

be a δ-pseudo orbit of length b (from x0 to xb if b is finite). For a given

ε > 0, if there is y ∈ X such that d(x0, y) ≤ ε and d(xn+1, f
n+1(y)) ≤ ε

for 0 ≤ n < b, then we say that the δ-pseudo orbit (xn)bn=0 is ε-traced by

y or the orbit of y. (X, f) is said to have the pseudo orbit tracing property

(abbrev. POTP) if for each ε > 0, there is δ = δ(ε) > 0 such that each

δ-pseudo orbit of infinite length can be ε-traced by some point in X.

Given K = (k1, k2, . . . ) with ki ≥ 1, we define ΣK =
∏

∞

i=1{0, . . . , ki −

1}, where {0, . . . , ki − 1} and ΣK are equipped with the discrete and the

product topology respectively. If x = (x1, x2, . . . ) and y = (y1, y2, . . . )

are two elements of ΣK then their sum x ⊕ y = (z1, z2, . . . ) is defined

as follows. If x1 + y1 < k1, then z1 = x1 + y1; if x1 + y1 ≥ k1, then

z1 = x1 + y1 − k1 and we carry 1 to the next position. The other terms

z2, . . . are successively determined in the same fashion. Let fK : ΣK → ΣK

be defined by fK(z) = z ⊕ 1 for each z ∈ ΣK , where 1 = (1, 0, 0, . . . ). It

is known that fK is a minimal map, which is called an adding machine

(abbrev. AM). We note that if {i ∈ N : ki > 1} is finite, then fK is periodic

and ΣK is the unique periodic orbit of fK .

Assume that ψi : Yi → Yi is continuous, Yi is a metric space, i = 1, 2.
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ψ1 is said to be conjugate to ψ2 if there is a homeomorphism h : Y1 → Y2

such that hψ1 = ψ2h. If both h and h−1 are uniformly continuous, then we

say that ψ1 is uniformly conjugate to ψ2.

Let (Xi, di) be a metric space and φi : Xi+1 → Xi be continuous onto

maps for i ∈ N. Define X∞ = inv lim{Xi, φi} = {(x1, x2, . . . ) : xi ∈ Xi,

φi(xi+1) = xi, i ∈ N}. X∞ is called the inverse limit space of {Xi, φi}
and φi is called the bonding map. As a subspace of the product space
∏

∞

i=1Xi, X∞ is a metric space with a compatible metric d∞ defined by

d∞(x, y) =
∑

∞

i=1 di(xi, yi)/(2
i(1 + di(xi, yi))) for x = (x1, x2, . . . ), y =

(y1, y2, . . . ) ∈ X∞.

If fi : Xi → Xi is continuous and satisfies that φifi+1 = fiφi for

i ∈ N, then {fi} induces a map f∞ on X∞ defined by f∞(x1, x2, . . . ) =

(f1(x1), f2(x2), . . . ). We refer [N] for the basic properties of the inverse limit

space and the induced map. If for each i ∈ N, (Xi, di) is a standard discrete

metric space, i.e. di(x, y) = 1 for all x 6= y ∈ Xi, and fi is pointwise periodic,

then f∞ is called an AM-like map. Obviously, every AM is topologically

conjugate to an AM-like map (in this case each fi has only one periodic

orbit). It is easy to see if W is a non-empty invariant subset of an AM-like

map, then f∞|W : W →W has POTP.

Now we are ready to state the main result of the paper.

Main Theorem. Let X be a metric space and f : X → X be continu-

ous. Then

(1) f is pointwise recurrent and has POTP if and only if f is uniformly

conjugate to a subsystem of some AM-like map.

(2) If X is complete, then f is pointwise recurrent and has POTP if and

only if f is uniformly conjugate to some AM-like map.

(3) f is a minimal map and has POTP if and only if f is uniformly conju-

gate to a subsystem of some AM map.

In [AH] the authors show that minimal homeomorphisms of connected

compact metric spaces having more than one point do not have POTP. The-

orem A generalizes the result. By [A] distal homeomorphisms of connected

compact metric spaces having more than one point do not have POTP. The-

orem A also generalizes the result as distal homeomorphisms are pointwise

recurrent. We remark that if we replace pointwise recurrent by pointwise

non-wandering, the above theorem is false, the full shift serves as such an

example.
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§2. Some properties of pointwise recurrent maps having POTP

Assume that (X,d) is a metric space and f : X → X is continuous.

A partition of X is a family of disjoint non-empty subsets of X whose

union is all of X. Suppose ε and δ are positive numbers. A partition

{Xα : α ∈ A} (where A is an index set) is called a δ-decomposition of X if

d(Xα,Xβ) ≥ δ for all α and β ∈ A with α 6= β, and is said to be f -invariant

if f(Xα) ⊂ Xα for all α ∈ A. An δ-decomposition {Xα : α ∈ A} is called

an (ε, δ)-decomposition if diam(Xα) ≤ ε for all α ∈ A. It is obvious that if

{Xα : α ∈ A} is an δ-decomposition, then each Xα is open and closed.

For δ > 0 define a relation ∼δ,f on X as follows: x ∼δ,f y if and only

if there exist x0, . . . , xk ∈ X such that x = x0, y = xk and d(O(xi−1, f),

O(xi, f)) < δ for each i ∈ Nk, where Nk = {1, . . . , k}. It is easy to verify

that ∼δ,f is an equivalence relation on X. This relation induces a partition

{Xαδ : α ∈ A(δ)}, where A(δ) is an index set depending on δ. It is easy to

see

Lemma 2.1. The partition {Xαδ : α ∈ A(δ)} induced by ∼δ,f is an

f -invariant δ-decomposition of X.

In the sequel we assume that f : X → X is pointwise recurrent.

Lemma 2.2. For x, y ∈ X, x ∼δ,f y if and only if there exists a δ-
pseudo orbit of finite length from x to y.

For α ∈ A(δ) and x, y ∈ Xαδ, let

Z(x, y, δ, f) =(2.1)

{i ∈ Z+ : there is a δ-pseudo orbit of length i from x to y}.

For convenience, we regard (x) as a δ-pseudo orbit from x to x of

length 0. Thus, 0 ∈ Z(x, y, δ, f) if and only if x = y.

For two nonempty subsets M1 and M2 of Z, denote {i+ j : i ∈M1, j ∈
M2} and {−i : i ∈M1} by M1 +M2 and −M1 respectively. Then we have

Z(x, y, δ, f) + Z(y, x, δ, f) ⊂ Z(x, x, δ, f) ∩ Z(y, y, δ, f),(2.2)

and

Z(x, y, δ, f) + Z(y, y, δ, f) + Z(y, x, δ, f) ⊂ Z(x, x, δ, f).(2.3)
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From (2.2) and (2.3) we get

Z(y, y, δ, f) ⊂ (−Z(x, y, δ, f)) + Z(x, y, δ, f) + Z(y, y, δ, f)(2.4)

+ Z(y, x, δ, f) + (−Z(y, x, δ, f))

⊂ Z(x, x, δ, f) + (−Z(x, y, δ, f)) + (−Z(y, x, δ, f))

⊂ Z(x, x, δ, f) + (−Z(x, x, δ, f)).

For a subset M ⊂ Z, let gcd(M) denote the greatest common divisor of

numbers in M . It is easy to see that gcd(M + (−M)) = gcd(M), and

if M ′ ⊂ M then gcd(M) is a divisor of gcd(M ′). Thus, it follows from

(2.4) that gcd(Z(x, x, δ, f)) is a divisor of gcd(Z(y, y, δ, f)). By the same

reasoning gcd(Z(y, y, δ, f)) is a divisor of gcd(Z(x, x, δ, f)). Thus, we have

gcd(Z(x, x, δ, f)) = gcd(Z(y, y, δ, f)), for all x, y ∈ Xαδ.(2.5)

Now fix v ∈ Xαδ and set

nαδ = n(α, δ) = n(α, δ, f) = gcd(Z(v, v, δ, f)).(2.6)

Lemma 2.3. For any x, y ∈ Xαδ and i, j ∈ Z(x, y, δ, f), we have

nαδ|(i − j).

Proof. Take b ∈ Z(y, x, δ, f). By (2.2) we have {i + b, j + b} ⊂
Z(x, x, δ, f). By (2.5) and (2.6), it follows that {(i+b)/nαδ, (j+b)/nαδ} ⊂ Z.
Thus, nαδ|(i− j).

For n, j ∈ Z write nZ + j = {ni + j : i ∈ Z}. Then by Lemma 2.3 we

have

Lemma 2.4. For x, y ∈ Xαδ there is a unique µ(x, y) ∈ {0, 1, . . . , nαδ−
1} such that Z(x, y, δ, f) ⊂ nαδZ + µ(x, y).

It is easy to verify that
{

µ(f(x), y) ≡ µ(x, y) − 1 (mod nαδ),

µ(x, f(y)) ≡ µ(x, y) + 1 (mod nαδ).
(2.7)

For i = 0, 1, . . . , nαδ − 1 set

Wi = Wiαδ = {x ∈ Xαδ : µ(v, x) = i}.(2.8)

It is easy to see that {W0, . . . ,Wnαδ−1} is a partition of Xαδ. Moreover,

from (2.7), we have

f(Wnαδ−1) ⊂W0, and f(Wi) = Wi+1 for 0 ≤ i ≤ nαδ − 2.(2.9)
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Lemma 2.5. There exists b ∈ Z+ such that nαδZ∩[b,∞) ⊂ Z(v, v, δ, f).

Proof. From (2.6) there exists {m1, . . . ,mk} ⊂ Z(v, v, δ, f) \ {0} such
that gcd(m1, . . . ,mk) = nαδ. Set m0 = min(Z(v, v, δ, f) \ {0}) and µi =
mi/nαδ for 0 ≤ i ≤ k. Then gcd(µ1, . . . , µk) = 1. Thus, there exists
{λ1, . . . , λk} ⊂ Z with

∑k
i=1 λiµi = 1. This implies that

∑k
i=1 λimi = nαδ.

Let b1 =
∑k

i=1 |λimi| and b2 = µ0b1. From (2.2) we know that for j =
0, 1, . . . , µ0,

b2 − jnαδ =

k
∑

i=1

(µ0|λi| − jλi)mi ∈ Z(v, v, δ, f).(2.10)

Noting m0 = µ0nαδ ∈ Z(v, v, δ, f), by (2.10) and (2.2) we have for each
j ∈ N, b2 + jnαδ ∈ Z(v, v, δ, f). Thus, [b,∞)∩ nαδZ ⊂ Z(v, v, δ, f) if we set
b = b2 −m0.

Assume that L = (x0, . . . , xk) and L1 = (y0, . . . , ym) are two finite δ-

pseudo orbits of f , and L2 = (z0, z1, . . . ) is a δ-pseudo orbit of f . If xk = y0

denote (x0, . . . , xk, y1, . . . , ym) by LL1; if xk = z0, denote (x0, . . . , xk, z1,

z2, . . . ) by LL2, if xk = x0 and k > 0, denote L · · ·L (j times) by Lj ,

denote LL · · · by L∞.

Lemma 2.6. Suppose x ∈ Wi, 0 ≤ i ≤ nαδ − 1 and y ∈ Xαδ. If

d(x, y) < δ, then y ∈Wi.

Proof. Let L be a δ-pseudo orbit from v to x of length m. Then m ≡ i
(mod nαδ). As x is a recurrent point of f , x is also a recurrent point of
fnαδ . Thus, there exists k ∈ N such that d(fknαδ(x), x) < δ − d(x, y). Set

L′ = (L, f(x), f2(x), . . . , fknαδ−1(x), y).

Then L′ is a δ-pseudo orbit from v to y of length m+knαδ. As m+knαδ ≡
m ≡ i (mod nαδ), y ∈Wi.

A sequence (W0, . . . ,Wk) of subsets of X is said to be f -cyclic if

f(Wk) ⊂W0 and f(Wi−1) ⊂Wi for i = 1, . . . , k.

By Lemma 2.6 and (2.9) we get immediately

Lemma 2.7. (W0αδ,W1αδ, . . . ,W(nαδ−1)αδ) is a f -cyclic δ-decomposi-

tion of Xαδ.
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From now on we assume that f is pointwise recurrent and has POTP.

Then, there is a function η : (0,∞) → (0,∞) such that for each ε > 0, each

η(ε)-pseudo orbit of f can be ε/4-traced by some orbit of f and η(ε) ≤ ε.

For any given ε > 0, set δ = η(ε).

Lemma 2.8. For each 0 ≤ i ≤ nαδ − 1 we have diam(Wiαδ) ≤ ε.

Proof. Let x, y ∈Wiαδ. Assume that L1 is a δ-pseudo orbit from x to
v, L3 is a δ-pseudo orbit from v to y and L4 is a δ-pseudo orbit from y to
v. Suppose the length of Lj is cj for j = 1, 3, 4. By (2.8) and (2.6), we get
c3 ≡ i (mod nαδ), c3 + c4 ≡ 0 (mod nαδ) and c1 + c3 ≡ 0 (mod nαδ). By
Lemma 2.5, there is a δ-pseudo orbit L2 from v to v of length c2 such that
c1 + c2 + c3 ≡ 0 (mod m0), where m0 = min(Z(v, v, δ, f) \ {0}) as above.

Let L5 = (v0, . . . , vm0
) be a δ-pseudo orbit from v to v of length m0.

Set L = L1L2L3L4L
∞

5 . Then L is a δ-pseudo orbit of f . As δ = η(ε), L can
be ε/4-traced by some point w ∈ X. Let wj = f j(w), c = c1 + c2 + c3 + c4
and Yj = O(wc+j , f

m0), (j ∈ Z+). As w is a recurrent point of f , we have

O(w, f) ⊂ O(wc, f) =

m0−1
⋃

k=0

Yk,(2.11)

and

f(Yj) = Yj+1, and Yj+m0
⊂ Yj, j ∈ Z+.(2.12)

From (2.11), there exists q ∈ {0, 1, . . . ,m0 − 1} such that w ∈ Yq. Let
a = c1 + c2 + c3. As a ∈ m0Z, by (2.12) we have wa ∈ Yq. Since L∞

5 is ε/4-

traced by O(wc, f), we have Yk ⊂ B(vk, ε/4) for 0 ≤ k < m0. As L1L2L3

is ε/4-traced by (w, f(w), . . . , fa(w)), we have d(x, Yq) ≤ d(x,w) < ε/4 and
d(y, Yq) ≤ d(y,wa) < ε/4. Thus,

d(x, y) < ε/4 + diam(Yq) + ε/4 ≤ ε

for any x, y ∈Wiαδ. Hence, diam(Wiαδ) ≤ ε.

By Lemmas 2.8 and 2.7 we obtain

Lemma 2.9. {Wiαδ : 0 ≤ i ≤ nαδ − 1} is an (ε, δ)-decomposition of

Xαδ.

Remark 2.10. By Lemmas 2.9 and 2.6, if diam(Xαδ) > ε then nαδ > 1,
and if diam(Xαδ) < δ then nαδ = 1.
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§3. Proof of Main Theorem

Proof of Main Theorem. The sufficiency of the theorem is obvious and
it remains to show the necessity of the theorem. Let η : (0,∞) → (0,∞) be
the function defined in Section 2. Set ε0 = 1. For j = 0, 1, . . . , let δj = η(εj)
and εj+1 = δj/2. Set

Sj = {Wiαδj
: i = 0, 1, . . . , nαδj−1, and α ∈ A(δj)}.

Each Wiαδj
can be regarded as a “point” of Sj. Let ρj be the standard

discrete metric on Sj. Then (Sj , ρj) is a standard discrete metric space.
Define φj : (Sj+1, ρj+1) → (Sj, ρj) such that

φj(Wkβδj+1
) = Wiαδj

if and only if,(3.1)

as subsets of X, Wkβδj+1
⊂Wiαδj

.

As εj+1 < δj , by Lemma 2.9 each point of Sj+1 (as a subset of X) is
contained in a unique point of Sj . Thus, φj is well defined. It is easy to see
that φj is surjective and continuous. Hence, we get an inverse limit space

(S∞, ρ∞) = inv lim{(Sj , ρj), φj}.(3.2)

Define gj : (Sj , ρj) → (Sj, ρj) such that for each α ∈ A(δj)

gj(Wiαδj
) =

{

W0αδj
, if i = nαδj

− 1,

W(i+1)αδj
, if 0 ≤ i ≤ nαδj

− 2.
(3.3)

By (2.9),

gj(Wiαδj
) = Wkβδj

if and only if f(Wiαδj
) ⊂Wkβδj

.(3.4)

By (3.1) and (3.4) we have gjφj = φjgj+1. Thus, (g0, g1, . . . ) induces
a map g∞ : (S∞, ρ∞) → (S∞, ρ∞). By (3.3), gj is pointwise periodic and
hence g∞ is an AM-like map.

Each σ = (Wi0α0δ0 ,Wi1α1δ1 , . . . ) ∈ S∞ is a sequence of subsets of X
with Wi0α0δ0 ⊃ Wi1α1δ1 ⊃ · · · . Set Xσ =

⋂

∞

j=0Wijαjδj
. As limj→∞ εj = 0,

by Lemma 2.8 Xσ contains at most one point. Since each Wijαjδj
is a

closed and open subset of X, Xσ contains exact one point if X is complete.
If Xσ 6= ∅, set Xσ = {xσ}.

As each Sj is a partition of X, for each y ∈ X, there is a unique
σ(y) ∈ S∞ such that y = xσ(y). Thus, we may define h : X → S∞ by
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h(y) = σ(y) for each y ∈ X. As limj→∞ εj = 0, h is injective. Moreover, if
X is complete, h is surjective.

Define pj : S∞ → S0 × S1 × · · · × Sj such that

pj(Wi0α0δ0 ,Wi1α1δ1 ,Wi2α2δ2 , . . . ) = (Wi0α0δ0 , . . . ,Wijαjδj
).

By Lemma 2.9, for x, y ∈ X with d(x, y) < δj , pjh(x) = pjh(y). Thus, h is
uniformly continuous. At the same time, for σ, σ′ ∈ h(X), if pj(σ) = pj(σ

′),
by Lemma 2.8, d(h−1(σ), h−1(σ′)) ≤ εj. Thus, h−1|h(X) is uniformly con-
tinuous. Hence h : X → h(X) is a uniform homeomorphism.

It is easy to see from (3.4) that g∞h = hf . Hence f is uniformly
conjugate to g∞|h(X). This proves (1) and (2) of Theorem A.

If f is minimal, for each δ > 0, A(δ) is a singleton. Thus for j ≥ 0,
by Lemma 2.7, gj : Sj → Sj is a cyclic permutation. This proves (3) of
Theorem A.
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