EXISTENCE OF FUNCTIONS IN WEIGHTED SOBOLEV SPACES

TOSHIHIDE FUTAMURA AND YOSHIHIRO MIZUTA

Dedicated to Professor Masayuki Itô on the occasion of his sixtieth birthday

Abstract. The aim of this paper is to determine when there exists a quasicontinuous Sobolev function $u \in W^{1,p}(\mathbf{R}^n;\mu)$ whose trace $u|_{\mathbf{R}^{n-1}}$ is the characteristic function of a bounded set $E \subset \mathbf{R}^{n-1}$, where $d\mu(x) = |x_n|^{\alpha} dx$ with $-1 < \alpha < p-1$.

As application we discuss the existence of harmonic measures for weighted p-Laplacians in the unit ball.

§1. Introduction

For p > 1 and a Borel measure μ , consider the relative (p, μ) -capacity $\operatorname{cap}_{p,\mu}(\cdot;\Omega)$ for an open set $\Omega \subset \mathbf{R}^n$. For a compact set $K \subset \Omega$, it is defined by

$$\operatorname{cap}_{p,\mu}(K;\Omega) = \inf \int_{\Omega} |\nabla u|^p d\mu,$$

where the infimum is taken over all functions $u \in C_c^{\infty}(\Omega)$ such that $u \geq 1$ on K; here $C_c^{\infty}(\Omega)$ denotes the space of infinitely differentiable functions with compact support in Ω . We extend the capacity $\operatorname{cap}_{p,\mu}(\cdot;\Omega)$ in the usual way (see Section 2).

For a subset E of \mathbf{R}^n , denote the characteristic function of E by χ_E . We use the notation $W_E^{1,p}(\mathbf{R}^n;\mu)$ to denote the class of (p,μ) -quasicontinuous Sobolev functions $u \in W^{1,p}(\mathbf{R}^n;\mu)$ such that $u|_{\mathbf{R}^{n-1}}$ is equal to χ_E (p,μ) -q.e. on \mathbf{R}^{n-1} ; here we identify \mathbf{R}^{n-1} with the hyperplane $\mathbf{R}^{n-1} \times \{0\}$. Throughout this paper, for $-1 < \alpha < p - 1$ we consider the Borel measure

$$d\mu(x) = |x_n|^{\alpha} dx,$$

Received March 23, 2000.

2000 Mathematics Subject Classification: Primary 31B30.

where $x=(x_1,...,x_{n-1},x_n)\in\mathbf{R}^n$ and dx denotes the usual Lebesgue measure.

Motivated by the work of Nakai on the existence of Dirichlet finite harmonic measures (cf. [10, 11, 12]), we consider the problem to determine when $W_E^{1,p}(\mathbf{R}^n;\mu) \neq \emptyset$. Our aim in this paper is to show the following result, as a generalization of Herron-Koskela [4] which treats the case $\alpha = 0$.

THEOREM 1.1. Let $E \subset \mathbf{R}^{n-1}$ be a bounded Borel set, $1 and <math>-1 < \alpha < p-1$. Suppose $W_E^{1,p}(\mathbf{R}^n; \mu) \neq \emptyset$.

- (a) If $p > n + \alpha$, then $E = \emptyset$.
- (b) If $2 + \alpha \le p \le n + \alpha$, then $\mathcal{H}^{n-1}(E) = 0$.
- (c) If $\mathcal{H}^{n-1}(E) = 0$, then $cap_{p,\mu}(E) = 0$.

Here \mathcal{H}^s denotes the s-dimensional Hausdorff measure.

In case $p \geq 2 + \alpha$, E has (p, μ) -capacity zero if $W_E^{1,p}(\mathbf{R}^n; \mu) \neq \emptyset$. In Section 5, we give some examples of bounded Borel sets $E \subset \mathbf{R}^{n-1}$ with $\mathcal{H}^{n-1}(E) > 0$ and $W_E^{1,p}(\mathbf{R}^n; \mu) \neq \emptyset$ for 1 .

As applications of our results, we discuss the existence of harmonic measures for the weighted p-Laplace equation

(1.1)
$$-\operatorname{div}\left(\omega(x)|\nabla u(x)|^{p-2}\nabla u(x)\right) = 0$$

in the unit ball \mathbf{B} in \mathbf{R}^n . In this paper, we consider

$$\omega(x) = |1 - |x||^{\alpha}$$
 $(-1 < \alpha < p - 1)$

as the weight function, which is in the Muckenhoupt A_p class. Further, letting $d\nu(x) = \omega(x)dx$, we say that a function w is (p,ν) -Dirichlet finite if

(1.2)
$$\int_{\mathbf{B}} |\nabla w(x)|^p \ d\nu(x) < \infty.$$

A (p, ν) -Dirichlet finite function u on \mathbf{B} is said to be (p, ν) -harmonic if it is a continuous weak solution of (1.1) in \mathbf{B} . We say that w is a (p, ν) -harmonic measure on \mathbf{B} if w is (p, ν) -harmonic in \mathbf{B} and the greatest (p, ν) -harmonic minorant of $\min\{w, 1-w\}$ is zero. We see that $0 \le w \le 1$ if w is a (p, ν) -harmonic measure. For elementary properties of (p, ν) -harmonic functions and (p, ν) -harmonic measures, see Heinonen-Kilpeläinen-Martio [3] and Nakai [10, 11, 12].

Corollary 1.1. Let $1 and <math>-1 < \alpha < p - 1$.

- (1) If $p \ge 2 + \alpha$, then every (p, ν) -Dirichlet finite (p, ν) -harmonic measure on **B** is constant.
- (2) For each $1 , there exists a non-constant <math>(p, \nu)$ -Dirichlet finite (p, ν) -harmonic measure on \mathbf{B} .

§2. Preliminaries

Let \mathbf{R}^n be the *n*-dimensional Euclidean space $(n \geq 2)$. For a point $x \in \mathbf{R}^n$, we write $x = (x', x_n)$, where $x' = (x_1, x_2, \dots, x_{n-1}) \in \mathbf{R}^{n-1}$. Let B(x,r) denote the open ball centered at x with radius r, and \mathcal{H}^s the s-dimensional Hausdorff measure. For $1 , let <math>W^{1,p}(\mathbf{R}^n; \mu)$ denote the Sobolev space of all functions $u \in L^p(\mathbf{R}^n; \mu)$ whose gradient, denoted by ∇u , belongs to $L^p(\mathbf{R}^n; \mu)$, where $d\mu(x) = |x_n|^{\alpha} dx$ with $-1 < \alpha < p - 1$ as above.

Suppose that $\Omega \subset \mathbf{R}^n$ is open. For a compact subset K of Ω , let

$$W(K,\Omega) = \{ u \in C_c^{\infty}(\Omega) : u \ge 1 \text{ on } K \}$$

and define

$$\operatorname{cap}_{p,\mu}(K;\Omega) = \inf_{u \in W(K,\Omega)} \int_{\Omega} |\nabla u|^p d\mu.$$

Further, we set

$$\operatorname{cap}_{p,\mu}(U;\Omega) = \sup_{K \subset U \atop K: \operatorname{compact}} \operatorname{cap}_{p,\mu}(K;\Omega)$$

for an open set $U \subset \Omega$, and then

$$\operatorname{cap}_{p,\mu}(E;\Omega) = \inf_{\substack{E \subset U \subset \Omega \\ U: \operatorname{open}}} \operatorname{cap}_{p,\mu}(U;\Omega)$$

for an arbitrary set $E \subset \Omega$.

The number $\operatorname{cap}_{p,\mu}(E;\Omega)$ is called the (variational) (p,μ) -capacity of E relative to Ω . We know that $\operatorname{cap}_{p,\mu}(E;\Omega)$ is an outer Choquet capacity (see [2, 3, 7]). We say that $E \subset \mathbf{R}^n$ has (p,μ) -capacity zero, denoted by $\operatorname{cap}_{p,\mu}(E) = 0$, if $\operatorname{cap}_{p,\mu}(E \cap \Omega;\Omega) = 0$ for all open sets $\Omega \subset \mathbf{R}^n$.

We say that a property holds (p, μ) -quasieverywhere, often abbreviated to (p, μ) -q.e., if it holds except on a set of (p, μ) -capacity zero. A function u on a bounded open set Ω is said to be (p, μ) -quasicontinuous if given

 $\varepsilon > 0$ there exists an open set $E \subset \Omega$ such that $\operatorname{cap}_{p,\mu}(E;\Omega) < \varepsilon$ and u is continuous as a function on $\Omega \setminus E$. Further we say that a function u is (p,μ) -quasicontinuous in \mathbf{R}^n if u is (p,μ) -quasicontinuous in Ω for all bounded open set Ω .

The following lemma can be obtained by an elementary calculation and our assumption on α .

LEMMA 2.1. Let
$$x = (x', 0) \in \mathbf{R}^n$$
 and $r > 0$. Then
$$\mu(B(x, r)) = c_1 r^{n+\alpha}.$$

where $c_1 = \mu(B(0,1)) < \infty$.

LEMMA 2.2. Let $x = (x', 0) \in \mathbf{R}^n$ and r > 0. Then

$$cap_{p,\mu}(B(x,r);B(x,2r)) = c_2 r^{n+\alpha-p},$$

where $c_2 = \text{cap}_{p,\mu}(B(0,1); B(0,2)) < \infty$.

Proof. For a > 0, let $u \in W(\overline{B}(0,a), B(0,2a))$ where $\overline{B}(x,r)$ denotes the closure of B(x,r). If we set v(y) = u((y-x)/r) for r > 0, then $v \in W(\overline{B}(x,ra), B(x,2ra))$ and it follows from the definition of the capacity that

$$\begin{split} \operatorname{cap}_{p,\mu}(\overline{B}(x,ra);B(x,2ra)) &\leq \int_{B(x,2ra)} |\nabla v(y)|^p d\mu(y) \\ &= r^{-p+n+\alpha} \int_{B(0,2a)} |\nabla u(y)|^p d\mu(y), \end{split}$$

which gives

$$\operatorname{cap}_{n,n}(\overline{B}(x,ra);B(x,2ra)) \le c(a)r^{n+\alpha-p},$$

where $c(a) = \operatorname{cap}_{p,\mu}(\overline{B}(0,a); B(0,2a))$. Hence we obtain

$$c(a) \le c(ra)r^{-(n+\alpha-p)} \le c(a),$$

and thus

$$cap_{p,\mu}(\overline{B}(x,r);B(x,2r)) = c_2 r^{n+\alpha-p},$$

where $c_2 = c(1) < \infty$, by Lemma 2.1. It is also clear from the above equality that

$$\operatorname{cap}_{p,\mu}(B(x,r);B(x,2r)) = \operatorname{cap}_{p,\mu}(\overline{B}(x,r);B(x,2r)).$$

In the same way as in [5, Theorem 22], we have the following result (see also [3, Theorem 2.32]).

COROLLARY 2.1. If $E \subset \mathbf{R}^{n-1}$ and $\operatorname{cap}_{p,\mu}(E) = 0$, then E has Hausdorff dimension at most $n - p + \alpha$.

LEMMA 2.3. (cf. [3, Theorems 4.4, 4.12] and [7])

- (1) For each $u \in W^{1,p}(\mathbf{R}^n; \mu)$, there exists a (p, μ) -quasicontinuous representative u^* which is equal to u a.e. on \mathbf{R}^n .
- (2) If u^* and v^* are (p,μ) -quasicontinuous and $u^*=v^*$ a.e. on \mathbf{R}^n , then $u^*=v^*$ (p,μ) -q.e. on \mathbf{R}^n .

A set A is called (p, μ) -thin at a point x if

$$\int_0^1 \left(\frac{\text{cap}_{p,\mu}(A \cap B(x,r); B(x,2r))}{\text{cap}_{p,\mu}(B(x,r); B(x,2r))} \right)^{1/(p-1)} r^{-1} dr < \infty;$$

A is (p, μ) -thick at x if A is not (p, μ) -thin at x. We say that a function u is (p, μ) -finely continuous at x if there exists a set A which is (p, μ) -thin at x such that

$$u(x) = \lim_{\substack{y \to x \\ y \notin A}} u(y).$$

LEMMA 2.4. (cf. Meyers [6] and [3, Section 12]) Let $u \in W^{1,p}(\mathbf{R}^n; \mu)$. If u is (p, μ) -quasicontinuous on \mathbf{R}^n , then it is (p, μ) -finely continuous (p, μ) -q.e. on \mathbf{R}^n .

LEMMA 2.5. (cf. [3, Section 12] and [9]) Let $p > n + \alpha$.

- (1) $E \subset \mathbf{R}^{n-1}$ has capacity zero if and only if E is empty.
- (2) If $u \in W^{1,p}(\mathbf{R}^n; \mu)$ is (p, μ) -quasicontinuous on \mathbf{R}^n , then $u|_{\mathbf{R}^{n-1}}$ is continuous on \mathbf{R}^{n-1} .

Proof. In this proof, we identify $x' \in \mathbf{R}^{n-1}$ with $(x',0) \in \mathbf{R}^{n-1} \times \mathbf{R}^1$. First we show that if $x' \in \mathbf{R}^{n-1} \cap B(0,N)$, N > 0, then

(2.1)
$$\int_{B(0,N)} |x' - y|^{1-n} f(y) dy \le C N^{(p-n-\alpha)/p} ||f||_{L^p(\mathbf{R}^n;\mu)}$$

for every nonnegative measurable function f on \mathbf{R}^n . In fact, we have by Hölder's inequality

$$\int_{B(0,N)} |x' - y|^{1-n} f(y) dy$$

$$\leq \left(\int_{B(0,N)} |x' - y|^{(1-n)p'} |y_n|^{-\alpha p'/p} dy \right)^{1/p'} \left(\int_{B(0,N)} f(y)^p |y_n|^{\alpha} dy \right)^{1/p}$$

$$\leq C(N + |x'|)^{(p-n-\alpha)/p} ||f||_{L^p(\mathbf{R}^n;\mu)},$$

where 1/p + 1/p' = 1.

In view of (2.1), we see easily that

$$cap_{p,\mu}(\{x'\}; B(0,N)) \ge CN^{-(p-n-\alpha)}$$

so that $cap_{p,\mu}(\{x'\}) > 0$, which proves (1).

As another application of (2.1), we show that the potential

$$u(x') = \int_{B(0,N)} |x' - y|^{1-n} f(y) dy \qquad (x' \in \mathbf{R}^{n-1})$$

is continuous on $\mathbf{R}^{n-1} \cap B(0,N)$ for every $f \in L^p(\mathbf{R}^n;\mu)$. To show this, we note that if $z' \in \mathbf{R}^{n-1} \cap B(0,N)$ and 0 < s < N - |z'|, then

$$\int_{B(0,N)-B(z',s)} |x'-y|^{1-n} f(y) dy$$

is continuous at z'. Further, in view of (2.1), if $x' \in \mathbf{R}^{n-1} \cap B(z', s)$, then

$$\int_{B(z',s)} |x' - y|^{1-n} f(y) dy \le \int_{B(x',2s)} |x' - y|^{1-n} f(y) dy$$

is small enough when s is small. Hence u(x') is continuous at z'. With the aid of Sobolev's integral representation of $u \in W^{1,p}(\mathbf{R}^n; \mu)$ (cf. [9]), we see that $u|_{\mathbf{R}^{n-1}}$ is continuous, so that (2) follows.

$\S 3.$ The main lemma

Here we prepare the following technical lemma needed for the proof of Theorem 1.1.

LEMMA 3.1. Let Ω be a bounded open set in \mathbf{R}^n . If A is a Borel set with its closure in Ω and $\mathcal{H}^n(A) > 0$, then

$$\iint_{A \times (\Omega \setminus A)} |x - y|^{-n-1} \ dx dy = \infty.$$

Proof. Set

$$\tilde{A} = \left\{ x \in A : \lim_{r \to 0} \frac{\mathcal{H}^n(A \cap B(x,r))}{\mathcal{H}^n(B(x,r))} = 1 \right\}.$$

Then $\mathcal{H}^n(A \setminus \tilde{A}) = 0$ (cf. [2]), so that we may assume that $A = \tilde{A}$, that is, every point of A is the Lebesgue point of A. Further we may assume without loss of generality that the origin $0 \in A$. By our assumption, there exists $r_0 > 0$ such that $\mathcal{H}^n(A \setminus B(0, r_0)) > 0$ and $B(x, r) \subset \Omega$ whenever $B(x, r) \cap A \neq \emptyset$ and $0 < r < r_0$. Set $P(x) = \{tx : t \geq r_0\}$ for each $x \in \mathbb{R}^n$ and $S = \{x \in \mathbb{R}^n : |x| = 1 \text{ and } P(x) \cap A \neq \emptyset\}$. Then we see from Fubini's theorem that $\mathcal{H}^{n-1}(S) > 0$.

Take r_1 such that $0 < r_1 < r_0$. By the intermediate value theorem, for each $x \in S$ we can find $B(x^{(1)}, r_x^{(1)})$ such that $x^{(1)} \in P(x)$, $0 < r_x^{(1)} < r_1$ and

$$\frac{\mathcal{H}^n(A \cap B(x^{(1)}, r_x^{(1)}))}{\mathcal{H}^n(B(x^{(1)}, r_x^{(1)}))} = \frac{3}{4}.$$

Now we denote by $B^*(x,r)$ the projection of B(x,r) to $\partial B(0,1)$. By the covering lemma, we can find a countable family $\{B_{1j}\}$, where $B_{1j} = B(z_j^{(1)}, r_j^{(1)})$, such that $|z_j^{(1)}| \ge r_0$, $r_j^{(1)} < r_1$, $\{B_{1j}^*\}$ is disjoint and

$$\bigcup_{x \in S} B^*(x^{(1)}, r_x^{(1)}) \subset \bigcup_j B^*(z_j^{(1)}, 5r_j^{(1)}).$$

Since $\mathcal{H}^{n-1}(B^*(x,r)) \leq c_3 r^{n-1}$ for $|x| \geq r_0$ with a constant $c_3 > 0$, depending only on r_0 , we have

$$c_{3} \sum_{j} (5r_{j}^{(1)})^{n-1} \ge \sum_{j} \mathcal{H}^{n-1}(B^{*}(z_{j}^{(1)}, 5r_{j}^{(1)}))$$
$$\ge \mathcal{H}^{n-1}(\bigcup_{x \in S} B^{*}(x^{(1)}, r_{x}^{(1)}))$$
$$\ge \mathcal{H}^{n-1}(S).$$

Hence we can find a positive integer N_1 such that

(3.1)
$$\sum_{i=1}^{N_1} (r_j^{(1)})^{n-1} \ge c_4,$$

where $c_4 = (2c_35^{n-1})^{-1}\mathcal{H}^{n-1}(S) > 0$. Since $\{B_{1j}\}_{j=1}^{N_1}$ is disjoint, we have

$$\iint_{A \times (\Omega \setminus A)} |x - y|^{-n-1} dx dy$$

$$\geq \int_{(\bigcup_{j=1}^{N_1} B_{1j}) \cap A} \left(\int_{\Omega \setminus A} |x - y|^{-n-1} dx \right) dy$$

$$\geq \sum_{j=1}^{N_1} \int_{B_{1j} \cap A} \left(\int_{B_{1j} \setminus A} |x - y|^{-n-1} dx \right) dy$$

$$\geq \sum_{j=1}^{N_1} (2r_j^{(1)})^{-n-1} \mathcal{H}^n(B_{1j} \setminus A) \mathcal{H}^n(B_{1j} \cap A)$$

$$= \sum_{j=1}^{N_1} (2r_j^{(1)})^{-n-1} \frac{1}{4} \mathcal{H}^n(B_{1j}) \frac{3}{4} \mathcal{H}^n(B_{1j})$$

$$\geq 2^{-n-4} \sigma_n^2 \sum_{j=1}^{N_1} (r_j^{(1)})^{n-1} > c_5,$$

in view of (3.1), where $c_5 = 2^{-n-5}\sigma_n^2 c_4$. The above inequalities also imply that

$$(3.2) \qquad \sum_{j=1}^{N_1} \int_{(B_{1j} \cap A) \setminus G} \left(\int_{B_{1j} \setminus A} |x - y|^{-n-1} dx \right) dy \ge c_5$$

whenever $G \subset \mathbf{R}^n$ satisfies $\mathcal{H}^n(B_{1j} \cap A \setminus G) \geq \mathcal{H}^n(B_{1j})/2$ for $1 \leq j \leq N_1$.

For $\gamma_1 = \min_{1 \leq j \leq N_1} r_j^{(1)}$ and $\varepsilon_1 > 0$, take r_2 such that $0 < r_2 < \varepsilon_1 \gamma_1$. Next, for each $x \in S$, find $B(x^{(2)}, r_x^{(2)})$ such that $x^{(2)} \in P(x)$, $0 < r_x^{(2)} < r_2$ and

$$\frac{\mathcal{H}^n(A \cap B(x^{(2)}, r_x^{(2)}))}{\mathcal{H}^n(B(x^{(2)}, r_x^{(2)}))} = \frac{3}{4}.$$

By the same considerations as above, we can take a family $\{B_{2j}\}_{j=1}^{N_2}$, where $B_{2j} = B(z_j^{(2)}, r_j^{(2)})$, such that $|z_j^{(2)}| \ge r_0$, $r_j^{(2)} < r_2$, $\{B_{2j}^*\}_{j=1}^{N_2}$ is disjoint and

(3.3)
$$\sum_{j=1}^{N_2} \int_{(B_{2j} \cap A) \setminus G} \left(\int_{B_{2j} \setminus A} |x - y|^{-n-1} dx \right) dy \ge c_5$$

whenever $G \subset \mathbf{R}^n$ satisfies $\mathcal{H}^n(B_{2j} \cap A \setminus G) \geq \mathcal{H}^n(B_{2j})/2$ for $1 \leq j \leq N_2$. Since $\{B_{2j}^*\}_{j=1}^{N_2}$ is disjoint, we see from Fubini's theorem that

$$\mathcal{H}^{n}(B_{1j_{1}} \cap \bigcup_{j_{2}=1}^{N_{2}} B_{2j_{2}}) \leq (\max_{j_{2}} 2r_{j_{2}}^{(2)})c_{6}\mathcal{H}^{n-1}(B_{1j_{1}}^{*}) \leq 2c_{3}c_{6}(r_{j_{1}}^{(1)})^{n-1}r_{2},$$

so that

$$\mathcal{H}^{n}(B_{1j_{1}} \cap A \setminus \bigcup_{j_{2}=1}^{N_{2}} B_{2j_{2}}) \geq \mathcal{H}^{n}(B_{1j_{1}} \cap A) - \mathcal{H}^{n}(B_{1j_{1}} \cap \bigcup_{j_{2}=1}^{N_{2}} B_{2j_{2}})$$

$$\geq 3\mathcal{H}^{n}(B_{1j_{1}})/4 - 2c_{3}c_{6}(r_{j_{1}}^{(1)})^{n-1}r_{2}$$

$$\geq (3/4 - c_{7}\varepsilon_{1})\mathcal{H}^{n}(B_{1j_{1}}),$$

where c_6 and c_7 are positive constants. Taking $\varepsilon_1 = 2^{-3}/c_7$, we have by (3.2) and (3.3)

$$\iint_{A \times (\Omega \setminus A)} |x - y|^{-n-1} dxdy$$

$$\geq \int_{\bigcup_{j_1=1}^{N_1} B_{1j_1} \cap A \setminus \bigcup_{j_2=1}^{N_2} B_{2j_2}} \left(\int_{\Omega \setminus A} |x - y|^{-n-1} dx \right) dy$$

$$+ \int_{\bigcup_{j_2=1}^{N_2} B_{2j_2} \cap A} \left(\int_{\Omega \setminus A} |x - y|^{-n-1} dx \right) dy \geq 2c_5.$$

Setting $\varepsilon_i = 2^{-i-2}/c_7$ for each nonnegative integer i, we apply the above arguments repeatedly, and obtain $\{B_{ij}\}_{j=1}^{N_i}$, where $B_{ij} = B(z_j^{(i)}, r_j^{(i)})$, such that $\{B_{ij}^*\}_{j=1}^{N_i}$ is disjoint, $|z_j^{(i)}| \ge r_0$, $r_j^{(i)} < \varepsilon_{i-1} \min\{r_j^{(i-1)} : 1 \le j \le N_{i-1}\}$, $\mathcal{H}^n(A \cap B_{ij}) = 3\mathcal{H}^n(B_{ij})/4$ and

(3.4)
$$\sum_{j=1}^{N_i} \int_{B_{ij} \cap A \setminus G} \left(\int_{B_{ij} \setminus A} |x - y|^{-n-1} dx \right) dy \ge c_5$$

whenever $G \subset \mathbf{R}^n$ satisfies $\mathcal{H}^n(B_{ij} \cap A \setminus G) \geq \mathcal{H}^n(B_{ij})/2$ for $1 \leq j \leq N_i$. For $1 \leq i \leq k-1$ and $1 \leq j_i \leq N_i$, we have

$$\mathcal{H}^n(B_{ij_i} \cap A \setminus G_i) \ge (3/4 - c_7 \sum_{l=i}^{k-1} \varepsilon_l) \mathcal{H}^n(B_{ij_i}) \ge \mathcal{H}^n(B_{ij_i})/2,$$

where $G_i = \bigcup_{l=i+1}^k \bigcup_{j_l=1}^{N_l} B_{lj_l}$. Thus we have by (3.4)

$$\iint_{A \times (\Omega \setminus A)} |x - y|^{-n-1} dxdy$$

$$\geq \sum_{i=1}^{k} \int_{\bigcup_{j_i=1}^{N_i} B_{ij_i} \cap A \setminus G_i} \left(\int_{\Omega \setminus A} |x - y|^{-n-1} dx \right) dy$$

$$\geq \sum_{i=1}^{k} \sum_{j_i=1}^{N_i} \int_{B_{ij_i} \cap A \setminus G_i} \left(\int_{B_{ij} \setminus A} |x - y|^{-n-1} dx \right) dy$$

$$\geq kc_5,$$

which proves the present lemma by the arbitrariness of k.

§4. Proof of Theorem 1.1

We are now ready to prove Theorem 1.1.

Proof of (a). In case $p > n + \alpha$, Lemma 2.5 shows that $W_E^{1,p}(\mathbf{R}^n; \mu)$ is empty for every bounded nonempty set $E \subset \mathbf{R}^{n-1}$.

Proof of (b). Assume that $2 + \alpha \le p \le n + \alpha$ and $W_E^{1,p}(\mathbf{R}^n; \mu) \ne \emptyset$. If $u \in W^{1,p}(\mathbf{R}^n; \mu)$ is (p, μ) -quasicontinuous on \mathbf{R}^n , then, in view of [9, 13]

$$\iint_{\Omega \times \Omega} \frac{|u(x',0) - u(y',0)|^p}{|x' - y'|^{n+p-(2+\alpha)}} dx' dy' < \infty$$

whenever Ω is a bounded open set in \mathbb{R}^{n-1} , so that

$$\iint_{E\times(\Omega\setminus E)} |x'-y'|^{-n-p+2+\alpha} dx'dy' < \infty,$$

which together with Lemma 3.1 implies that E is of measure zero. Thus (b) holds.

Proof of (c). We claim that if $\mathcal{H}^{n-1}(E) = 0$, then $F = \mathbf{R}^{n-1} \setminus E$ is (p, μ) -thick at each point of E. Fix $x \in E$ and r > 0. Let $K \subset F \cap B(x, r)$ be compact and $v \in W(K, B(x, 2r))$. Then we have

$$\int \left| \frac{\partial v(y', y_n)}{\partial y_n} \right| dy_n \ge 2 \quad \text{for all } y' \in K.$$

Hence it follows from Hölder's inequality and Fubini's theorem that

$$\int |\nabla v|^p d\mu \ge cr^{-p+1+\alpha} \mathcal{H}^{n-1}(K)$$

for a positive constant c. Consequently, we have

$$\operatorname{cap}_{p,\mu}(F \cap B(x,r); B(x,2r)) \ge cr^{-p+1+\alpha} \mathcal{H}^{n-1}(F \cap B(x,r)).$$

In view of the assumption $\mathcal{H}^{n-1}(E) = 0$ and Lemma 2.2, we see that

$$\frac{\operatorname{cap}_{p,\mu}(F \cap B(x,r); B(x,2r))}{\operatorname{cap}_{p,\mu}(B(x,r); B(x,2r))} \ge c'$$

for a positive constant c'. Now our claim is proved.

Fix $u \in W_E^{1,p}(\mathbf{R}^n;\mu)$ such that u is (p,μ) -quasicontinuous on \mathbf{R}^n and $u|_{\mathbf{R}^{n-1}} = \chi_E$ on $\mathbf{R}^{n-1} \setminus A_1$, where A_1 has (p,μ) -capacity zero. By Lemma 2.4, u is (p,μ) -finely continuous on $\mathbf{R}^n \setminus A_2$, where A_2 has (p,μ) -capacity zero. Since F is (p,μ) -thick at each point of E as was shown above,

$$u = 0$$
 on $E \setminus A$,

where $A = A_1 \cup A_2$. On the other hand, u = 1 on $E \setminus A$, so that $E \setminus A$ is empty. Thus it follows that $\text{cap}_{p,\mu}(E) = 0$.

§5. Proof of Corollary 1.1

Let ν denote the Borel measure on \mathbf{R}^n defined by

$$d\nu(y) = |1 - |y||^{\alpha} dy.$$

Proof of (1). Suppose that w is a (p,ν) -Dirichlet finite (p,ν) -harmonic measure on \mathbf{B} . Then $w(1-w)\in W^{1,p}(\mathbf{B};\nu)$ since $0\leq w\leq 1$. By using [3, Theorem 3.17], there exists a solution $u\in W^{1,p}(\mathbf{B};\nu)$ of (1.1) in \mathbf{B} with $u-w(1-w)\in W_0^{1,p}(\mathbf{B};\nu)$. Since $0\leq w\leq 1$, it follows from [3, Lemma 7.37] that u is a (p,ν) -harmonic minorant of both w and 1-w. By the definition of harmonic measures, we see that $u\leq 0$ in \mathbf{B} . Hence Theorem 1.1 implies that either $\operatorname{cap}_{p,\nu}\left(\{\zeta\in\partial\mathbf{B}:w(\zeta)=0\}\right)=0$ or $\operatorname{cap}_{p,\nu}\left(\{\zeta\in\partial\mathbf{B}:w(\zeta)=1\}\right)=0$, so that w is constant by [3, Lemma 7.37].

Proof of (2). Let E be a domain in $\partial \mathbf{B}$ with (nonempty) smooth boundary and take $u \in W_E^{1,p}(\mathbf{R}^n;\nu)$ as in Proposition 6.1 given in the next section. By [3, Theorem 3.17] we find $w \in W^{1,p}(\mathbf{B};\nu)$ which is the solution of (1.1) in \mathbf{B} with $w - u \in W_0^{1,p}(\mathbf{B};\nu)$. Clearly, u and hence w is not constant. Set $\hat{w} = \min\{w, 1 - w\}$ and let v be any (p, ν) -harmonic minorant of \hat{w} . Since the boundary values of w(1 - w) are zero (p, ν) -q.e, \hat{w} has boundary values zero (p, ν) -q.e. Hence [3, Lemma 7.37] implies that $v \leq 0$. It follows that w is a (p, ν) -harmonic measure on \mathbf{B} , which proves (2).

§6. Further results

First we note the following result.

Lemma 6.1. If $0 < \delta < 1$ and Ω is a bounded domain with C^1 boundary, then

$$\iint_{\Omega \times (\mathbf{R}^n \setminus \Omega)} |x - y|^{-n - \delta} \, dx dy < \infty.$$

In fact, it suffices to note that

$$\int_{\mathbf{R}^n \setminus \Omega} |x - y|^{-n - \delta} dy \le \int_{\mathbf{R}^n \setminus B(x, d(x))} |x - y|^{-n - \delta} dy \le c d(x)^{-\delta},$$

for $x \in \Omega$, where c is a positive constant and $d(x) = \operatorname{dist}(x, \partial \Omega)$ denotes the distance of x from the boundary $\partial \Omega$.

PROPOSITION 6.1. If $1 and <math>\Omega$ is a bounded domain on \mathbf{R}^{n-1} with C^1 boundary, then $W^{1,p}_{\Omega}(\mathbf{R}^n;\mu) \neq \emptyset$.

Proof. In view of Lemma 6.1, we see that χ_{Ω} satisfies

$$\iint_{\mathbf{R}^{n-1}\times\mathbf{R}^{n-1}} \frac{|\chi_{\Omega}(x') - \chi_{\Omega}(y')|^p}{|x' - y'|^{n+p-(2+\alpha)}} dx'dy' < \infty.$$

Hence χ_{Ω} belongs to the Lipschitz space $\Lambda_{\beta}^{p,p}(\mathbf{R}^{n-1})$ with $\beta = 1 - (\alpha + 1)/p$, so that the Poisson integral $u(x) = P_{x_n} * \chi_{\Omega}(x')$ satisfies

$$\int_{\mathbf{D}} |\nabla u(x)|^p x_n^{\alpha} dx < \infty,$$

where $\mathbf{D} = \{x = (x', x_n) : x_n > 0\}$; see Stein [13] or the second author [9]. Then we can extend u to a function in $W^{1,p}_{\Omega}(\mathbf{R}^n; \mu)$, so that $W^{1,p}_{\Omega}(\mathbf{R}^n; \mu)$ is not empty.

For $K \subset \mathbf{R}^{n-1}$, let $\Lambda_{\beta}^{p,p}(K)$ be the space of all functions $u \in \Lambda_{\beta}^{p,p}(\mathbf{R}^{n-1})$ such that u = 0 outside K. Finally we discuss whether $\Lambda_{\beta}^{p,p}(K)$ with $\beta = 1 - (\alpha + 1)/p$ is trivial, or not. For this purpose we consider a capacity inequality introduced by Carleson [1, Theorem 2 in Section 4] (see also [8]).

PROPOSITION 6.2. Let K be a compact set in \mathbf{R}^{n-1} . Let G_1 and G_2 be bounded open sets in \mathbf{R}^n such that $K \subset G_1 \subset \overline{G_1} \subset G_2$. Set $\omega_1 = G_1 \cap \mathbf{R}^{n-1}$. If $\beta = 1 - (1 + \alpha)/p$ and

(6.1)
$$\operatorname{cap}_{p,\mu}(\omega_1 \setminus K; G_2) < \operatorname{cap}_{p,\mu}(\omega_1; G_2),$$

then $\Lambda_{\beta}^{p,p}(K)$ has non-zero element.

Proof. We can find a (p, μ) -quasicontinuous function $u_1 \in W^{1,p}(\mathbf{R}^n; \mu)$ such that

- (i) $u_1 = 0 \ (p, \mu)$ -q.e. outside G_2 ;
- (ii) $u_1 = 1 \ (p, \mu)$ -q.e. $\omega_1 \setminus K$;
- (iii) $\int_{G_2} |\nabla u_1|^p d\mu = \operatorname{cap}_{p,\mu}(\omega_1 \setminus K; G_2) ;$
- (iv) $\int_{G_2} |\nabla u_1|^{p-2} \nabla u_1 \cdot \nabla \varphi d\mu = 0$ for all $\varphi \in C_c^{\infty}(G_2)$ such that $\varphi = 0$ on $\omega_1 \setminus K$.

Similarly, we find a (p, μ) -quasicontinuous function $u_2 \in W^{1,p}(\mathbf{R}^n; \mu)$ such that

- (v) $u_2 = 0$ (p, μ) -q.e. outside G_2 ;
- (vi) $u_2 = 1 \ (p, \mu)$ -q.e. ω_1 ;
- (vii) $\int_{G_2} |\nabla u_2|^p d\mu = \text{cap}_{p,\mu}(\omega_1; G_2)$;
- (viii) $\int_{G_2} |\nabla u_2|^{p-2} \nabla u_2 \cdot \nabla \varphi d\mu = 0$ for all $\varphi \in C_c^{\infty}(G_2)$ such that $\varphi = 0$ on ω_1 .

Then we see from (6.1) that $u_1 \neq u_2$. Consequently, for $\varphi \in C_c^{\infty}(G_1)$, $[\varphi(u_2 - u_1)]|_{\mathbf{R}^{n-1}}$ is shown to be a non-zero element of $\Lambda_{\beta}^{p,p}(K)$.

References

- [1] L. Carleson, Selected problems on exceptional sets, Van Nostrand, Princeton, 1967.
- [2] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, 1992.
- [3] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Univ. Press, 1993.
- [4] D. A. Herron and P. Koskela, Continuity of Sobolev functions and Dirichlet finite harmonic measures, Potential Analysis, 6 (1997), 347–353.
- [5] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand., 26 (1970), 255–292.
- [6] ______, Continuity properties of potentials, Duke Math. J., 42 (1975), 157–166.
- [7] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J., 4 (1974), 375–396.
- [9] ______, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996.
- [10] M. Nakai, Dirichlet finite harmonic measures on Riemann surfaces, Complex Variables, 17 (1991), 123–131.
- [11] ______, Existence of Dirichlet finite harmonic measures in non-linear potential theory, Complex Variables, 21 (1993), 107–114.
- [12] ______, Existence of Dirichlet finite harmonic measures on the Euclidean balls, Nagoya Math. J., 133 (1994), 85–125.
- [13] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.

Toshihide Futamura
Department of Mathematics
Faculty of Science
Hiroshima University
Higashi-Hiroshima 739-8526, Japan

Yoshihiro Mizuta
The Division of Mathematical and Information Sciences
Faculty of Integrated Arts and Sciences
Hiroshima University
Higashi-Hiroshima 739-8521, Japan