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KERNEL SYSTEMS ON FINITE GROUPS

PAUL LESCOT

Abstract. We introduce a notion of kernel systems on finite groups: roughly
speaking, a kernel system on the finite group G consists in the data of a pseudo-
Frobenius kernel in each maximal solvable subgroup of G, subject to certain
natural conditions. In particular, each finite CA-group can be equipped with
a canonical kernel system. We succeed in determining all finite groups with
kernel system that also possess a Hall p′-subgroup for some prime factor p

of their order ; this generalizes a previous result of ours (Communications in
Algebra 18(3), 1990, pp. 833–838). Remarkable is the fact that we make no a
priori abelianness hypothesis on the Sylow subgroups.

§0. Introduction

In this paper, we shall define a new class of finite groups, that contains

the class of CA-groups, and shall derive (§1) its basic properties. Then,

CN∗-groups will be defined via an extra hypothesis, and studied(§2). In

the case (§3) that there also exists a solvable p ′-Hall subgroup of the CN∗-

group G (for some prime p ∈ π(G)), we shall obtain a generalization of the

main Theorem of [4].

This work was inspired by the conditions stated in p. ix of [1]. I am also

much indebted to John Thompson for many enlightening comments on [4],

in particular those contained in [6].

The notations are mostly standard ; for G a group and A ⊆ G, we

denote

A] = A ∩ (G \ {1}) ;

for (x, y) ∈ G × G

yx = x−1yx ;

and, for A ⊆ G and x ∈ G:

Ax = {yx|y ∈ A} .
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MS(G) denotes the set of maximal solvable subgroups of G. A finite group

G will be termed CA (resp. CN , CS) if, for each x ∈ G], the centralizer

CG(x) is abelian (resp. nilpotent, solvable).

§1. Definition and first properties of kernel systems

Definition 1.1. By a kernel system on the finite group G we shall

mean an application

F : M 7→ M0 = F(M)

from MS(G) to P(G) such that, for each M ∈ MS(G):

(1) M0 is a normal subgroup of M ,

(2) ∀a ∈ M \ M0 CM0
(a) = {1}, and

(3) ∀g ∈ G \ M M0 ∩ Mg
0 = {1}.

On every finite group can be defined a trivial kernel system by :

∀M ∈ MS(G) M0 = {1}.

More interesting is :

Lemma 1.2. If G is a CA-group, then G possesses a canonical kernel

system.

Proof. Let G be a CA-group ; if G is solvable then MS(G) = {G}, and

(see for example Theorem 1.3 of [4]) G is either abelian or a Frobenius group

with an abelian kernel (let it be A) that is also a maximal abelian subgroup

of G, and a cyclic complement. In the first case, G0 = G is suitable ; in the

second case, G0 = A works, thanks to Lemma 1.2 of [4].

We may therefore assume that G is not solvable ; hence it is (non-

abelian) simple by the result of [7], p.416. It now follows from Theorem 1.4

of [4] that the elements of MS(G) are exactly the NG(A), for A a maximal

abelian subgroup of G ; setting (NG(A))0 = A for all such A yields the

result, again thanks to Lemma 1.2 of [4].

By a KS-group we shall mean a pair (G,F), with G a finite group and

F a kernel system on G. If F is clear from (or fixed in) the context, we

shall term G itself a KS-group. In particular, if G is a CA-group, it will

be considered as a KS-group via the canonical kernel system defined in the

proof of Lemma 1.2.

In the following three lemmas, let G be a KS-group.
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Lemma 1.3. Let M ∈ MS(G), and let x ∈ M ]
0 ; then CG(x) ⊆ M0.

Proof. If a ∈ CG(x), then 1 6= x = xa ∈ M0 ∩ Ma
0 , whence a ∈ M by

(3). If a would belong to M \ M0, then (2) would yield x ∈ CM0
(a) = {1},

a contradiction. Therefore a ∈ M0.

Corollary 1.4. For each M ∈ MS(G), M0 is a Hall subgroup of G

(and hence of M).

Proof. This follows immediately from Lemma 1.3 by using Lemma 1.1

of [4].

Proposition 1.5. ([1], p.x) If M ∈ MS(G) and M0 6= M , then M0

is nilpotent.

Proof. Assume M0 6= M , and let q ∈ π(
M

M0
); then Corollary 1.4 yields

that M0 is a q
′

-group. Let x ∈ M have order q ; then x /∈ M0, whence

CM0
(x) = {1} by (2). Therefore M0 has a fixed-point-free automorphism of

order 1 or q (induced by conjugation by x), hence is nilpotent by [5], 12.6.13,

p.354 (we do not need Thompson’s Theorem here because we already know

that M0 ⊆ M is solvable).

§2. CN∗-groups

Definition 2.1. A KS-group will be termed a CN∗-group if it satis-

fies:

(4) G =
⋃

M∈MS(G) M0, and :

(5) For all M ∈ MS(G) ,
M

M0
is a nonidentity cyclic group.

Proposition 2.2. ([1], p.x) Let G be a KS-group such that (5) holds

and either :

(i) (4) holds (i.e. G is a CN∗-group)

or

(ii) G is a CS-group.

Then G is a CN -group.
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Proof. Let x ∈ G].

In case (i) x belongs to M ]
0 for some M ∈ MS(G), by (4). By Lemma

1.3, CG(x) ⊆ M0. But M0 is nilpotent according to Proposition 1.5 and (5),

hence so is CG(x).

In case (ii), CG(x) is solvable, hence CG(x) ⊆ M for some M ∈ MS(G).

Clearly x ∈ M ] ; if x ∈ M ]
0, then CG(x) ⊆ M0 is nilpotent, as above. If

x ∈ M \ M0 then

CG(x) ∩ M0 = CM0
(x) = {1}

because of (2), thus CG(x) is isomorphic to a subgroup of
M

M0
, hence is

cyclic and a fortiori nilpotent.

Lemma 2.3. Let G be a CN∗-group,let q ∈ π(G), and let Q ∈ Sylq(G);

then NG(Q) ∈ MS(G) and Q is the unique Sylow q-subgroup of NG(Q)0.

Proof. Q 6= {1}, therefore by (4) one can find M ∈ MS(G) such that

Q ∩ M0 6= {1} ;

let x ∈ Q ∩ M0, x 6= 1. Then, for any y ∈ Z(Q), one has 1 6= x = xy ∈
M0∩My

0 , whence y ∈ M by (3), that is Z(Q) ⊆ Q∩M . Let then u ∈ Z(Q),

u 6= 1 be fixed ; if u ∈ M \ M0, then x ∈ Q ∩ M0 ⊆ CM0
(u) = {1}, a

contradiction. Therefore u ∈ M ]
0, whence Q ⊆ CG(u) ⊆ M0 by Lemma

1.3. Hence Q is a Sylow q-subgroup of M0 ; according to Proposition 1.5,

Q = Oq(M0) C M , whence M ⊆ NG(Q).

Let now y ∈ NG(Q) ; then 1 6= Q = Qy ⊆ M0 ∩ My
0 , whence y ∈ M

by(3). Therefore NG(Q) ⊆ M , and NG(Q) = M ∈ MS(G). The last part

of the statement has already been proved.

Proposition 2.4. Let G be a CN∗-group, and let M and N be two

nonconjugate maximal solvable subgroups of G ; then (|M0|, |N0|) = 1.

Proof. If not, let q ∈ π(G) divide both |M0| and |N0|, and let Q1 and

Q2 be Sylow q-subgroups of, respectively, M0 and N0. Q1 is contained in a

Sylow q-subgroup Q of G, and Q2 in a conjugate Qx of Q ; obviously :

{1} 6= Q1 = Q ∩ M0, and :

{1} 6= Q2 = Qx ∩ N0.

By the reasoning in the proof of Lemma 2.3, M = NG(Q) and N = NG(Qx),

whence N = Mx.
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Lemma 2.5. Let G be a CN∗-group, and let M ∈ MS(G) with M0 6=
1; then :

(i) M = NG(M0), and :

(ii) For each x ∈ G with (Mx)0 6= {1}, one has :

(Mx)0 = Mx
0 .

Proof.

(i) By (1), M ⊆ NG(M0) ; let g ∈ NG(M0). Then

{1} 6= M0 = Mg
0 = M0 ∩ Mg

0

whence g ∈ M by (3) and NG(M0) ⊆ M : we have shown that M =

NG(M0).

(ii) Let Q be a Sylow q-subgroup of Mx
0 , Q 6= 1; then, according to Lemma

2.3 and its proof,

(∗) M = NG(Qx−1

) = (NG(Q))x
−1

.

If Q * (Mx)0, let u ∈ Q \ (Mx)0; then:

Z(Q) ∩ (Q ∩ (Mx)0) = Z(Q) ∩ (Mx)0 ⊆ C(Mx)0(u) = {1}

by (2). But Q ∩ (Mx)0 C Q ∩ Mx = Q, hence Q ∩ (Mx)0 = {1}.

Therefore Q and (Mx)0 are both, according to (∗), normal subgroups

of Mx, thus they centralize one another ; let 1 6= y ∈ Q. Then

(Mx)0 = C(Mx)0(y) = {1}

by (2), a contradiction. Therefore Q ⊆ (Mx)0 ; it follows that Mx
0 ⊆

(Mx)0. Applying the same reasoning to Mx and x−1 in place of M

and x yields ((Mx)0)
x−1

⊆ ((Mx)x
−1

)0 = M0, i.e. (Mx)0 ⊆ Mx
0 and

(Mx)0 = Mx
0 .

Important is :

Proposition 2.6. Let G be a nonsolvable CA-group ; then G is a

CN∗-group.

Proof. This follows, again, from Theorem 1.4 in [4].
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§3. The factorizability hypothesis and the main theorem

In this paragraph, we shall assume the following hypothesis:

(H). G is a nonsolvable CN∗-group, p ∈ π(G),and H is a solvable

Hall p ′-subgroup of G.

Let P be a Sylow p-subgroup of G, and let pn = |P |.

Lemma 3.1. CG(P ) = Z(P )

Proof. By a well-known consequence of Burnside’s p-nilpotence crite-

rion,

CG(P ) = Z(P ) × D

where D is a p ′-group. Therefore

PCG(P ) = PZ(P )D = PD = P × D

(because D ⊆ CG(P )), and

P × D = (P × D) ∩ G

= (P × D) ∩ PH

= P [(P × D) ∩ H]

= P (D ∩ H) (because H is a p ′-group)

= P × (D ∩ H)

whence D = D ∩ H:

D ⊆ H .

The same reasoning applies to each P x(x ∈ G), D being replaced by Dx;

therefore

N =< Dx|x ∈ G >⊆ H.

Let us assume D 6= {1} ; then N is a nonidentity solvable normal p ′-

subgroup of G. Let N1 be a minimal normal subgroup of G contained in

N ; then N1 is an elementary abelian q-group for some prime q 6= p. Let

Q be a Sylow q-subgroup of G that contains N1 ; then Q ⊆ M0 for some

M ∈ MS(G), by Lemma 2.3 (in fact M = NG(Q)). It follows that, for each

x ∈ G :

{1} 6= N1 = Nx
1 ⊆ Q ∩ Qx ⊆ M0 ∩ Mx

0

whence x ∈ M . Therefore G = M is solvable, a contradiction. Thus D = {1}
and CG(P ) = Z(P ) × D = Z(P ).
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Corollary 3.2. NG(P ) ∈ MS(G) and P = NG(P )0.

Proof. By Lemma 2.3, NG(P ) ∈ MS(G) and P is the unique Sylow

p-subgroup of the nilpotent group (NG(P ))0; therefore P ⊆ NG(P )0 ⊆

PCG(P ) = P , whence P = (NG(P ))0.

Lemma 3.3. H is not nilpotent and H0 6= {1}.

Proof. If H were nilpotent, G = PH would be the product of two finite

nilpotent groups, hence solvable by a result of Kegel ([3],Satz 2), which is

not the case. Therefore H is not nilpotent ; but
H

H0
is cyclic, hence nilpotent.

Thus H and
H

H0
are not isomorphic, thence H0 6= {1}.

Proposition 3.4. H ∈ MS(G) ; H and NG(P ) are not conjugate in

G.

Proof. Let M ∈ MS(G) contain H ; if p would divide |M0|, then for

some x ∈ G one would have P x ∩ M0 6= {1}, whence M = NG(P x) by the

proof of Lemma 2.3. But then M would contain P xH = G, contradicting

the nonsolvability of G. Therefore M0 is a p ′-group. Let x ∈ M be such

that xM0 generate
M

M0
; if p would divide the order of x, then some power

xk 6= 1 of x would be a p-element, hence belong to some conjugate P y of

P , and one would have :

x ∈ CG(xk) ⊆ NG(P y)0 = P y

by Lemma 1.3 applied to xk and NG(P y), and Corollary 3.2 applied to P y.

Therefore x would be a p-element and
M

M0
a p-group. But

HM0

M0
'

H

H ∩ M0

is a p ′-subgroup of
M

M0
, therefore it would be trivial and H ⊆ M0 would

be nilpotent, in contradiction with Lemma 3.3. We have shown that x is

a p ′-element, hence that
M

M0
is a p ′-group ; therefore so is M , whence |M |

divides |G|p ′ = |H| and

H = M ∈ MS(G).
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The second assertion is obvious (and has, in fact, been incidentally proved

above).

Remark. This reasoning is adapted from the proof of Step 4 of [4] in

an unpublished preliminary version of that paper.

Proposition 3.4 and (5) yield that
H

H0
is cyclic ; let h ∈ H be such that

hH0 generate
H

H0
. By (5), h 6= 1 ; (4) implies the existence of N ∈ MS(G)

such that h ∈ N ]
0.

Lemma 3.5. N is not conjugate to either H or NG(P ).

Proof. If N = NG(P )x = NG(P x), then N0 = P x by Corollary 3.2

applied to P x, whence 1 6= h ∈ P x ∩H, a patent contradiction. If N = Hx,

then H0 6= {1} by Lemma 3.3 and (Hx)0 = N0 3 h 6= 1, and Lemma 2.5

yields Hx
0 = (Hx)0 = N0, whence 1 6= h ∈ Hx

0 , i.e. hx−1

∈ H0. Therefore

ω(h) = ω(hx−1

)| |H0|, and

|
H

H0
| = ω(hH0) | (|

H

H0
|, |H0|)

which is 1 by Corollary 1.4, thus
H

H0
= {1}, again contradicting Lemma

3.3.

Proposition 3.6. Let M ∈ MS(G) with M0 6= {1} ; then M is con-

jugate to N , H or NG(P ).

Proof. Let q be a prime divisor of |M0| ; if q = p, then, for some

y ∈ G, P y ∩ M0 6= {1}, and it appears from the proof of Lemma 2.3 that

M = NG(P y) = (NG(P ))y. If q 6= p, then

q | |G|p ′ = |H| = |
H

H0
||H0| .

If now q | |H0|, then (|H0|, |M0|) 6= 1, therefore M is conjugate to H by

Proposition 2.4. We are left with the case q | |
H

H0
|, that is q | ω(hH0) ; but

then q | ω(h) | |N0|, whence (|N0|, |M0|) 6= 1, and now M is conjugate to

N .
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Corollary 3.7.

|G| ≤ 1 + |G : NG(P )|(|P | − 1) + |G : H|(|H0| − 1) + |G : N |(|N0| − 1).

Proof. By (4), one has

G] =
⋃

M∈MS(G)

M ]
0 ;

if M ∈ MS(G) is such that M ]
0 6= ∅, then, by Proposition 3.6, M = Ax for

some x ∈ G and some A ∈ {NG(P ),H, N}. Thus A0 6= {1} and M0 6= {1};

Lemma 2.5 now shows that M0 = Ax
0 , whence |M ]

0| = |A0| − 1. But the

total number of conjugates of A0 is |G : NG(A0)| = |G : A|, also by Lemma

2.5.

From now on, we shall follow very closely the reasoning of [4], pages

836–837.

Lemma 3.8. |G : NG(P )| = 1 + λpn, for some λ ≥ 1.

Proof. Let Q = P y 6= P be a conjugate of P , and let M = NG(P ) (∈
MS(G)). If P ∩ Q 6= {1} then

{1} 6= P ∩ P y ⊆ M0 ∩ My
0

whence, by (3), y ∈ M = NG(P ) and Q = P y = P , a contradiction.

Therefore P ∩ Q = {1} for any Sylow p-subgroup Q of G distinct from P .

The congruence

|G : NG(P )| ≡ 1[pn]

now follows by a well-known refinement of Sylow’s Theorem (see [5], 6.5.3,

p.147). If λ were equal to 0, then G would equal NG(P ) and hence be

solvable, an absurdity.

Lemma 3.9. |N0| = |H : H0|.

Proof. |N0| divides

|G| = |P ||H|

= |P ||H0||H : H0|

= |(NG(P ))0||H0||H : H0| .
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By Proposition 2.4 and Lemma 3.5, |N0| is prime to |(NG(P ))0| and to |H0|,

therefore it divides |H : H0|.

Conversely |H : H0| = ω(hH0) divides ω(h) = | < h > |, that divides

|N0|; thus |H : H0| = |N0|.

Let us write k = |H0|, a = |N0| = |
H

H0
| = ω(hH0), δ = |NG(P ) : P | =

|NH(P )|, α = |N : N0| ; by (5), α ≥ 2 and δ ≥ 2. Corollary 3.7 gives us :

pnka ≤ 1 + (1 + λpn)(pn − 1) + pn(k − 1) +
pnk

α
(a − 1)

= pn(1 + λ(pn − 1) + k − 1 +
k

α
(a − 1)),

i.e. :

ka(1 −
1

α
) ≤ k + λ(pn − 1) −

k

α
,

whence :

k(a − 1)(1 −
1

α
) ≤ λ(pn − 1) .

But

1 + λpn = |G : NG(P )| =
pnka

pnδ
=

ka

δ
,

thus :

(∗∗)
ka

δ
− k(a − 1)(1 −

1

α
) ≥ 1 + λpn − λ(pn − 1) = 1 + λ ≥ 2 .

Lemma 3.10. δ = 2.

Proof. If δ ≥ 3 then (∗∗) yields :

ka

3
− k(a − 1)(1 −

1

α
) ≥ 2 ,

whence :
ka

3
− k(

a − 1

2
) ≥ 2 , i.e. :

k

6
(3 − a) ≥ 2 ,
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whence a < 3. But then a = 2 and |N0| = 2. Let N0 = {1, y} ; it follows

from Lemma 1.3 that :

N = NG(N0) ⊆ CG(y) ⊆ N0,

whence N = N0, contradicting (5).

Lemma 3.11. α = 2.

Proof. If α ≥ 3, then :

ka

2
=

ka

δ

≥ 2 + k(a − 1)(1 −
1

α
)

≥ 2 + k(a − 1)(1 −
1

3
)

>
2

3
k(a − 1) ,

whence :

4(a − 1) < 3a ,

i.e. :

a < 4,

that is :

a ∈ {1, 2, 3} .

But then |N0| ≤ 3 ; let N0 =< y >. Again CG(N0) = CG(y) ⊆ N0, and :

α = |N : N0| ≤ |NG(N0) : CG(N0)| ≤ |Aut(N0)| ≤ 2 ,

a contradiction. Therefore α = 2.

Proposition 3.12. If (M,M
′

) ∈ MS(G)2 and M ]
0 ∩ M

′]
0 6= ∅, then

M = M
′

.

Proof. From M0∩M
′

0 6= {1} follows (|M0|, |M
′

0|) 6= 1, therefore Propo-

sition 2.4 implies that M and M
′

are conjugate. Let M
′

= Mx; as M ]
0 6= ∅

and M
′]
0 6= ∅, M

′

0 = Mx
0 by Lemma 2.5. Then

M0 ∩ Mx
0 = M0 ∩ M

′

0 6= {1}

whence x ∈ M by (3) and M
′

= Mx = M .
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Lemma 3.13.

|G| = 1 + |G : NG(P )|(|P | − 1) + |G : H|(|H0| − 1) + |G : N |(|N0| − 1).

Proof. One applies the same reasoning as for Corollary 3.7, using

Proposition 3.12 and (4).

Proposition 3.14.
k

2
= 1 + λ, p is odd and pn − a divides pn − 1.

Proof. By Lemma 3.10, δ = 2, whence

1 + λpn =
ka

δ
=

ka

2
.

Lemma 3.13 now gives,by using the equality α = 2 (Lemma 3.11):

pnka = 1 +
ka

2
(pn − 1) + pn(k − 1) +

1

2
pnk(a − 1)

i.e. :

0 = 1 −
ka

2
+ pn(k − 1) −

1

2
pnk

or

(∗ ∗ ∗)
k

2
(pn − a) = pn − 1 .

Thus :
k

2
pn −

ka

2
= pn − 1.

As

1 + λpn =
ka

2
,

one has :

(1 + λ)pn = pn − 1 + 1 + λpn

=
k

2
pn −

ka

2
+

ka

2

=
k

2
pn,

i.e. :
k

2
= 1 + λ ;

in particular, k is even, therefore p 6= 2 because p - k. (∗ ∗ ∗) now becomes:

pn − 1 = (1 + λ)(pn − a) ,

whence pn − a | pn − 1.
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Corollary 3.15. a = pn − 2 and k = pn − 1.

Proof. N acts on the set Ω of the conjugates of N0. If Nx
0 ∈ Ω and

N0∩NG(Nx
0 ) 6= {1}, then (cf. Lemma 2.5) N0∩Nx 6= {1}. But N0 is a Hall

subgroup of N (Corollary 1.4), whence N0 ∩ Nx
0 6= {1} ; therefore (by (3))

x ∈ N and Nx
0 = N0.

Any orbit of N0 on Ω , other than {N0}, has therefore length |N0|,
whence

|Ω| ≡ 1[|N0|],

that is :

|G : N | ≡ 1[|N0|]

(we have used the fact that

|Ω| = |G : NG(N0)| = |G : N | ).

Thus:

a |
pnk

α
− 1 =

pnk

2
− 1 = pn(1 + λ) − 1.

But pn −1 = (1+λ)(pn −a) (see the proof of Proposition 3.14), therefore a

divides 1+λpn, hence a divides pn−2. If a 6= pn−2, then a ≤ 1
2 (pn−2), that

is pn−a ≥ 1
2(pn +2) > 1

2(pn−1) and Proposition 3.14 gives pn−a = pn−1,

i.e. a = 1, a contradiction. Thus a = pn − 2 ; but now :

k

2
(pn − 2) =

ka

2
= 1 + λpn = 1 + (

k

2
− 1)pn

whence k = pn − 1.

Theorem 3.16. Under hypothesis (H), one of the following holds:

(i) p is a Fermat prime (p = 22m

+1) for some m ≥ 1, and G ' SL2(F22m )

(ii) p = 3 and G ' SL2(F8).

In both cases, H is the normalizer of a Sylow 2-subgroup of G.

Proof. |H0| = k is even (Proposition 3.14), therefore H0 contains an

element t of order 2 ; by Lemma 1.3, CG(t) ⊆ H0, therefore the number of

conjugates of t under H is :

|H : CH(t)| = |H : CG(t)| ≥ |H : H0| = a = pn − 2 = k − 1 = |H0| − 1 .
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Therefore H0 = {1} ∪ {tx|x ∈ H} only has elements of order 1 or 2, i.e. is

a nontrivial elementary abelian 2-group ; by Lemma 1.3 it is the centralizer

of each of its nonidentity elements, and by Corollary 1.4 it is a Sylow 2-

subgroup of G. It follows readily that every element of G has order 2 or

an odd number ; as in [4], p.837, one finishes the proof using [2] and the

fact that G is not solvable (the case of the Brauer-Suzuki-Wall that we

use should actually be called Burnside’s Theorem, a fact of which I was

unfortunately unaware while writing [4]). The last assertion follows from

Lemma 2.5 : H = NG(H0).

§4. Corollaries and remarks

Corollary 4.1. Let G be a (non-abelian) simple CA-group contain-

ing a solvable Hall p ′-subgroup for some prime p dividing its orderi,; then

either p = 3 and G is isomorphic to SL2(F8), or p is a Fermat prime other

than 3 and G is isomorphic to SL2(Fp−1).

Remark. This is the main Theorem of [4].

Proof. By Proposition 2.6, G satisfies hypothesis (H), and one may

therefore apply Theorem 3.16.

The original motivation for this paper was :

Corollary 4.2. If G is a minimal counterexample to the Feit-

Thompson Theorem that satisfies the conditions listed on p.ix of [1], then

there is no prime p ∈ π(G) such that G possess a p ′-Hall subgroup.

Proof. Our conditions (1) to (5) clearly follow from the conditions

listed on p.ix of [1] ; if G would have a Hall p ′-subgroup H, then H would

be solvable(by the minimality of G), and hypothesis (H) would be satisfied :

Theorem 3.16 would apply. But all the groups that appear in the conclusion

of this Theorem have even order.
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