P. LescotNagoya Math. J.Vol. 163 (2001), 71–85

KERNEL SYSTEMS ON FINITE GROUPS

PAUL LESCOT

Abstract. We introduce a notion of kernel systems on finite groups: roughly speaking, a kernel system on the finite group G consists in the data of a pseudo-Frobenius kernel in each maximal solvable subgroup of G, subject to certain natural conditions. In particular, each finite CA-group can be equipped with a canonical kernel system. We succeed in determining all finite groups with kernel system that also possess a Hall p'-subgroup for some prime factor p of their order; this generalizes a previous result of ours (Communications in Algebra 18(3), 1990, pp. 833–838). Remarkable is the fact that we make no a priori abelianness hypothesis on the Sylow subgroups.

§0. Introduction

In this paper, we shall define a new class of finite groups, that contains the class of CA-groups, and shall derive (§1) its basic properties. Then, CN^* -groups will be defined *via* an extra hypothesis, and studied(§2). In the case (§3) that there also exists a solvable p'-Hall subgroup of the CN^* group G (for some prime $p \in \pi(G)$), we shall obtain a generalization of the main Theorem of [4].

This work was inspired by the conditions stated in p. ix of [1]. I am also much indebted to John Thompson for many enlightening comments on [4], in particular those contained in [6].

The notations are mostly standard; for G a group and $A \subseteq G$, we denote

$$A^{\sharp} = A \cap (G \setminus \{1\});$$

for $(x, y) \in G \times G$

$$y^x = x^{-1}yx;$$

and, for $A \subseteq G$ and $x \in G$:

$$A^x = \left\{ y^x | y \in A \right\}.$$

Received April 10, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 20E25.

 $\mathcal{MS}(G)$ denotes the set of maximal solvable subgroups of G. A finite group G will be termed CA (resp. CN, CS) if, for each $x \in G^{\sharp}$, the centralizer $C_G(x)$ is abelian (resp. nilpotent, solvable).

$\S1$. Definition and first properties of kernel systems

DEFINITION 1.1. By a kernel system on the finite group G we shall mean an application

$$\mathcal{F}: M \mapsto M_0 = \mathcal{F}(M)$$

from $\mathcal{MS}(G)$ to $\mathcal{P}(G)$ such that, for each $M \in \mathcal{MS}(G)$:

(1) M_0 is a normal subgroup of M,

(2) $\forall a \in M \setminus M_0 \quad C_{M_0}(a) = \{1\}, \text{ and }$

(3)
$$\forall g \in G \setminus M \quad M_0 \cap M_0^g = \{1\}.$$

On every finite group can be defined a trivial kernel system by:

$$\forall M \in \mathcal{MS}(G) \ M_0 = \{1\}.$$

More interesting is:

LEMMA 1.2. If G is a CA-group, then G possesses a canonical kernel system.

Proof. Let G be a CA-group; if G is solvable then $\mathcal{MS}(G) = \{G\}$, and (see for example Theorem 1.3 of [4]) G is either abelian or a Frobenius group with an abelian kernel (let it be A) that is also a maximal abelian subgroup of G, and a cyclic complement. In the first case, $G_0 = G$ is suitable; in the second case, $G_0 = A$ works, thanks to Lemma 1.2 of [4].

We may therefore assume that G is not solvable; hence it is (nonabelian) simple by the result of [7], p.416. It now follows from Theorem 1.4 of [4] that the elements of $\mathcal{MS}(G)$ are exactly the $N_G(A)$, for A a maximal abelian subgroup of G; setting $(N_G(A))_0 = A$ for all such A yields the result, again thanks to Lemma 1.2 of [4].

By a KS-group we shall mean a pair (G, \mathcal{F}) , with G a finite group and \mathcal{F} a kernel system on G. If \mathcal{F} is clear from (or fixed in) the context, we shall term G itself a KS-group. In particular, if G is a CA-group, it will be considered as a KS-group via the canonical kernel system defined in the proof of Lemma 1.2.

In the following three lemmas, let G be a KS-group.

LEMMA 1.3. Let $M \in \mathcal{MS}(G)$, and let $x \in M_0^{\sharp}$; then $C_G(x) \subseteq M_0$.

Proof. If $a \in C_G(x)$, then $1 \neq x = x^a \in M_0 \cap M_0^a$, whence $a \in M$ by (3). If a would belong to $M \setminus M_0$, then (2) would yield $x \in C_{M_0}(a) = \{1\}$, a contradiction. Therefore $a \in M_0$.

COROLLARY 1.4. For each $M \in \mathcal{MS}(G)$, M_0 is a Hall subgroup of G (and hence of M).

Proof. This follows immediately from Lemma 1.3 by using Lemma 1.1 of [4]. \Box

PROPOSITION 1.5. ([1], p.x) If $M \in \mathcal{MS}(G)$ and $M_0 \neq M$, then M_0 is nilpotent.

Proof. Assume $M_0 \neq M$, and let $q \in \pi(\frac{M}{M_0})$; then Corollary 1.4 yields that M_0 is a q'-group. Let $x \in M$ have order q; then $x \notin M_0$, whence $C_{M_0}(x) = \{1\}$ by (2). Therefore M_0 has a fixed-point-free automorphism of order 1 or q (induced by conjugation by x), hence is nilpotent by [5], 12.6.13, p.354 (we do not need Thompson's Theorem here because we already know that $M_0 \subseteq M$ is solvable).

$\S 2. CN^*$ -groups

DEFINITION 2.1. A KS-group will be termed a CN^* -group if it satisfies:

(4) $G = \bigcup_{M \in \mathcal{MS}(G)} M_0$, and:

(5) For all $M \in \mathcal{MS}(G)$, $\frac{M}{M_0}$ is a nonidentity cyclic group.

PROPOSITION 2.2. ([1], p.x) Let G be a KS-group such that (5) holds and either:

(i) (4) holds (i.e. G is a CN*-group) or
(ii) G is a CS-group. Then G is a CN-group. *Proof.* Let $x \in G^{\sharp}$.

In case (i) x belongs to M_0^{\sharp} for some $M \in \mathcal{MS}(G)$, by (4). By Lemma 1.3, $C_G(x) \subseteq M_0$. But M_0 is nilpotent according to Proposition 1.5 and (5), hence so is $C_G(x)$.

In case (ii), $C_G(x)$ is solvable, hence $C_G(x) \subseteq M$ for some $M \in \mathcal{MS}(G)$. Clearly $x \in M^{\sharp}$; if $x \in M_0^{\sharp}$, then $C_G(x) \subseteq M_0$ is nilpotent, as above. If $x \in M \setminus M_0$ then

$$C_G(x) \cap M_0 = C_{M_0}(x) = \{1\}$$

because of (2), thus $C_G(x)$ is isomorphic to a subgroup of $\frac{M}{M_0}$, hence is cyclic and *a fortiori* nilpotent.

LEMMA 2.3. Let G be a CN^* -group, let $q \in \pi(G)$, and let $Q \in Syl_q(G)$; then $N_G(Q) \in \mathcal{MS}(G)$ and Q is the unique Sylow q-subgroup of $N_G(Q)_0$.

Proof. $Q \neq \{1\}$, therefore by (4) one can find $M \in \mathcal{MS}(G)$ such that

$$Q \cap M_0 \neq \{1\} ;$$

let $x \in Q \cap M_0$, $x \neq 1$. Then, for any $y \in Z(Q)$, one has $1 \neq x = x^y \in M_0 \cap M_0^y$, whence $y \in M$ by (3), that is $Z(Q) \subseteq Q \cap M$. Let then $u \in Z(Q)$, $u \neq 1$ be fixed; if $u \in M \setminus M_0$, then $x \in Q \cap M_0 \subseteq C_{M_0}(u) = \{1\}$, a contradiction. Therefore $u \in M_0^{\sharp}$, whence $Q \subseteq C_G(u) \subseteq M_0$ by Lemma 1.3. Hence Q is a Sylow q-subgroup of M_0 ; according to Proposition 1.5, $Q = O_q(M_0) \triangleleft M$, whence $M \subseteq N_G(Q)$.

Let now $y \in N_G(Q)$; then $1 \neq Q = Q^y \subseteq M_0 \cap M_0^y$, whence $y \in M$ by(3). Therefore $N_G(Q) \subseteq M$, and $N_G(Q) = M \in \mathcal{MS}(G)$. The last part of the statement has already been proved.

PROPOSITION 2.4. Let G be a CN^* -group, and let M and N be two nonconjugate maximal solvable subgroups of G; then $(|M_0|, |N_0|) = 1$.

Proof. If not, let $q \in \pi(G)$ divide both $|M_0|$ and $|N_0|$, and let Q_1 and Q_2 be Sylow q-subgroups of, respectively, M_0 and N_0 . Q_1 is contained in a Sylow q-subgroup Q of G, and Q_2 in a conjugate Q^x of Q; obviously:

$$\{1\} \neq Q_1 = Q \cap M_0, \text{ and }:$$

 $\{1\} \neq Q_2 = Q^x \cap N_0.$

By the reasoning in the proof of Lemma 2.3, $M = N_G(Q)$ and $N = N_G(Q^x)$, whence $N = M^x$.

LEMMA 2.5. Let G be a CN^* -group, and let $M \in \mathcal{MS}(G)$ with $M_0 \neq 1$; then:

- (i) $M = N_G(M_0)$, and:
- (ii) For each $x \in G$ with $(M^x)_0 \neq \{1\}$, one has:

$$(M^x)_0 = M_0^x.$$

Proof.

(i) By (1), $M \subseteq N_G(M_0)$; let $g \in N_G(M_0)$. Then

$$\{1\} \neq M_0 = M_0^g = M_0 \cap M_0^g$$

whence $g \in M$ by (3) and $N_G(M_0) \subseteq M$: we have shown that $M = N_G(M_0)$.

(ii) Let Q be a Sylow q-subgroup of M_0^x , $Q \neq 1$; then, according to Lemma 2.3 and its proof,

(*) $M = N_G(Q^{x^{-1}}) = (N_G(Q))^{x^{-1}}.$

If $Q \nsubseteq (M^x)_0$, let $u \in Q \setminus (M^x)_0$; then:

$$Z(Q) \cap (Q \cap (M^x)_0) = Z(Q) \cap (M^x)_0 \subseteq C_{(M^x)_0}(u) = \{1\}$$

by (2). But $Q \cap (M^x)_0 \triangleleft Q \cap M^x = Q$, hence $Q \cap (M^x)_0 = \{1\}$. Therefore Q and $(M^x)_0$ are both, according to (*), normal subgroups of M^x , thus they centralize one another; let $1 \neq y \in Q$. Then

$$(M^x)_0 = C_{(M^x)_0}(y) = \{1\}$$

by (2), a contradiction. Therefore $Q \subseteq (M^x)_0$; it follows that $M_0^x \subseteq (M^x)_0$. Applying the same reasoning to M^x and x^{-1} in place of M and x yields $((M^x)_0)^{x^{-1}} \subseteq ((M^x)^{x^{-1}})_0 = M_0$, *i.e.* $(M^x)_0 \subseteq M_0^x$ and $(M^x)_0 = M_0^x$.

Important is:

PROPOSITION 2.6. Let G be a nonsolvable CA-group; then G is a CN^* -group.

Proof. This follows, again, from Theorem 1.4 in [4].

75

$\S3$. The factorizability hypothesis and the main theorem

In this paragraph, we shall assume the following hypothesis:

(*H*). G is a nonsolvable CN^* -group, $p \in \pi(G)$, and H is a solvable Hall p'-subgroup of G.

Let P be a Sylow p-subgroup of G, and let $p^n = |P|$.

LEMMA 3.1. $C_G(P) = Z(P)$

Proof. By a well-known consequence of Burnside's p-nilpotence criterion,

$$C_G(P) = Z(P) \times D$$

where D is a p'-group. Therefore

$$PC_G(P) = PZ(P)D = PD = P \times D$$

(because $D \subseteq C_G(P)$), and

$$P \times D = (P \times D) \cap G$$

= $(P \times D) \cap PH$
= $P[(P \times D) \cap H]$
= $P(D \cap H)$ (because *H* is a *p'*-group)
= $P \times (D \cap H)$

whence $D = D \cap H$:

 $D \subseteq H$.

The same reasoning applies to each $P^x(x \in G)$, D being replaced by D^x ; therefore

$$N =$$

Let us assume $D \neq \{1\}$; then N is a nonidentity solvable normal p'subgroup of G. Let N_1 be a minimal normal subgroup of G contained in N; then N_1 is an elementary abelian q-group for some prime $q \neq p$. Let Q be a Sylow q-subgroup of G that contains N_1 ; then $Q \subseteq M_0$ for some $M \in \mathcal{MS}(G)$, by Lemma 2.3 (in fact $M = N_G(Q)$). It follows that, for each $x \in G$:

$$\{1\} \neq N_1 = N_1^x \subseteq Q \cap Q^x \subseteq M_0 \cap M_0^x$$

whence $x \in M$. Therefore G = M is solvable, a contradiction. Thus $D = \{1\}$ and $C_G(P) = Z(P) \times D = Z(P)$.

COROLLARY 3.2. $N_G(P) \in \mathcal{MS}(G)$ and $P = N_G(P)_0$.

Proof. By Lemma 2.3, $N_G(P) \in \mathcal{MS}(G)$ and P is the unique Sylow p-subgroup of the nilpotent group $(N_G(P))_0$; therefore $P \subseteq N_G(P)_0 \subseteq PC_G(P) = P$, whence $P = (N_G(P))_0$.

LEMMA 3.3. *H* is not nilpotent and $H_0 \neq \{1\}$.

Proof. If H were nilpotent, G = PH would be the product of two finite nilpotent groups, hence solvable by a result of Kegel ([3],Satz 2), which is not the case. Therefore H is not nilpotent; but $\frac{H}{H_0}$ is cyclic, hence nilpotent. Thus H and $\frac{H}{H_0}$ are not isomorphic, thence $H_0 \neq \{1\}$.

PROPOSITION 3.4. $H \in \mathcal{MS}(G)$; H and $N_G(P)$ are not conjugate in G.

Proof. Let $M \in \mathcal{MS}(G)$ contain H; if p would divide $|M_0|$, then for some $x \in G$ one would have $P^x \cap M_0 \neq \{1\}$, whence $M = N_G(P^x)$ by the proof of Lemma 2.3. But then M would contain $P^xH = G$, contradicting the nonsolvability of G. Therefore M_0 is a p'-group. Let $x \in M$ be such that xM_0 generate $\frac{M}{M_0}$; if p would divide the order of x, then some power $x^k \neq 1$ of x would be a p-element, hence belong to some conjugate P^y of P, and one would have :

$$x \in C_G(x^k) \subseteq N_G(P^y)_0 = P^y$$

by Lemma 1.3 applied to x^k and $N_G(P^y)$, and Corollary 3.2 applied to P^y . Therefore x would be a p-element and $\frac{M}{M_0}$ a p-group. But

$$\frac{HM_0}{M_0} \simeq \frac{H}{H \cap M_0}$$

is a p'-subgroup of $\frac{M}{M_0}$, therefore it would be trivial and $H \subseteq M_0$ would be nilpotent, in contradiction with Lemma 3.3. We have shown that x is a p'-element, hence that $\frac{M}{M_0}$ is a p'-group; therefore so is M, whence |M|divides $|G|_{p'} = |H|$ and

$$H = M \in \mathcal{MS}(G).$$

The second assertion is obvious (and has, in fact, been incidentally proved above).

Remark. This reasoning is adapted from the proof of Step 4 of [4] in an unpublished preliminary version of that paper.

Proposition 3.4 and (5) yield that $\frac{H}{H_0}$ is cyclic; let $h \in H$ be such that hH_0 generate $\frac{H}{H_0}$. By (5), $h \neq 1$; (4) implies the existence of $N \in \mathcal{MS}(G)$ such that $h \in N_0^{\sharp}$.

LEMMA 3.5. N is not conjugate to either H or $N_G(P)$.

Proof. If $N = N_G(P)^x = N_G(P^x)$, then $N_0 = P^x$ by Corollary 3.2 applied to P^x , whence $1 \neq h \in P^x \cap H$, a patent contradiction. If $N = H^x$, then $H_0 \neq \{1\}$ by Lemma 3.3 and $(H^x)_0 = N_0 \ni h \neq 1$, and Lemma 2.5 yields $H_0^x = (H^x)_0 = N_0$, whence $1 \neq h \in H_0^x$, i.e. $h^{x^{-1}} \in H_0$. Therefore $\omega(h) = \omega(h^{x^{-1}})||H_0|$, and

$$|\frac{H}{H_0}| = \omega(hH_0) | (|\frac{H}{H_0}|, |H_0|)$$

which is 1 by Corollary 1.4, thus $\frac{H}{H_0} = \{1\}$, again contradicting Lemma 3.3.

PROPOSITION 3.6. Let $M \in \mathcal{MS}(G)$ with $M_0 \neq \{1\}$; then M is conjugate to N, H or $N_G(P)$.

Proof. Let q be a prime divisor of $|M_0|$; if q = p, then, for some $y \in G$, $P^y \cap M_0 \neq \{1\}$, and it appears from the proof of Lemma 2.3 that $M = N_G(P^y) = (N_G(P))^y$. If $q \neq p$, then

$$q \mid |G|_{p'} = |H| = |\frac{H}{H_0}||H_0|.$$

If now $q \mid |H_0|$, then $(|H_0|, |M_0|) \neq 1$, therefore M is conjugate to H by Proposition 2.4. We are left with the case $q \mid |\frac{H}{H_0}|$, that is $q \mid \omega(hH_0)$; but then $q \mid \omega(h) \mid |N_0|$, whence $(|N_0|, |M_0|) \neq 1$, and now M is conjugate to N.

COROLLARY 3.7.

 $|G| \le 1 + |G: N_G(P)|(|P| - 1) + |G: H|(|H_0| - 1) + |G: N|(|N_0| - 1).$

Proof. By (4), one has

$$G^{\sharp} = \bigcup_{M \in \mathcal{MS}(G)} M_0^{\sharp} ;$$

if $M \in \mathcal{MS}(G)$ is such that $M_0^{\sharp} \neq \emptyset$, then, by Proposition 3.6, $M = A^x$ for some $x \in G$ and some $A \in \{N_G(P), H, N\}$. Thus $A_0 \neq \{1\}$ and $M_0 \neq \{1\}$; Lemma 2.5 now shows that $M_0 = A_0^x$, whence $|M_0^{\sharp}| = |A_0| - 1$. But the *total* number of conjugates of A_0 is $|G: N_G(A_0)| = |G: A|$, also by Lemma 2.5.

From now on, we shall follow very closely the reasoning of [4], pages 836–837.

LEMMA 3.8. $|G: N_G(P)| = 1 + \lambda p^n$, for some $\lambda \ge 1$.

Proof. Let $Q = P^y \neq P$ be a conjugate of P, and let $M = N_G(P)$ ($\in \mathcal{MS}(G)$). If $P \cap Q \neq \{1\}$ then

$$\{1\} \neq P \cap P^y \subseteq M_0 \cap M_0^y$$

whence, by (3), $y \in M = N_G(P)$ and $Q = P^y = P$, a contradiction. Therefore $P \cap Q = \{1\}$ for any Sylow *p*-subgroup Q of G distinct from P. The congruence

$$|G: N_G(P)| \equiv 1[p^n]$$

now follows by a well-known refinement of Sylow's Theorem (see [5], 6.5.3, p.147). If λ were equal to 0, then G would equal $N_G(P)$ and hence be solvable, an absurdity.

LEMMA 3.9. $|N_0| = |H: H_0|$.

Proof. $|N_0|$ divides

$$|G| = |P||H|$$

= |P||H₀||H : H₀|
= |(N_G(P))₀||H₀||H : H₀|.

By Proposition 2.4 and Lemma 3.5, $|N_0|$ is prime to $|(N_G(P))_0|$ and to $|H_0|$, therefore it divides $|H:H_0|$.

Conversely $|H:H_0| = \omega(hH_0)$ divides $\omega(h) = | < h > |$, that divides $|N_0|$; thus $|H:H_0| = |N_0|$.

Let us write $k = |H_0|, a = |N_0| = |\frac{H}{H_0}| = \omega(hH_0), \delta = |N_G(P) : P| = |N_H(P)|, \alpha = |N : N_0|$; by (5), $\alpha \ge 2$ and $\delta \ge 2$. Corollary 3.7 gives us:

$$p^{n}ka \leq 1 + (1 + \lambda p^{n})(p^{n} - 1) + p^{n}(k - 1) + \frac{p^{n}k}{\alpha}(a - 1)$$
$$= p^{n}(1 + \lambda(p^{n} - 1) + k - 1 + \frac{k}{\alpha}(a - 1)),$$

i.e.:

$$ka(1-\frac{1}{\alpha}) \le k + \lambda(p^n-1) - \frac{k}{\alpha},$$

whence :

$$k(a-1)(1-\frac{1}{\alpha}) \le \lambda(p^n-1).$$

But

$$1 + \lambda p^n = |G: N_G(P)| = \frac{p^n ka}{p^n \delta} = \frac{ka}{\delta},$$

thus :

(**)
$$\frac{ka}{\delta} - k(a-1)(1-\frac{1}{\alpha}) \ge 1 + \lambda p^n - \lambda (p^n-1) = 1 + \lambda \ge 2.$$

Lemma 3.10. $\delta = 2$.

Proof. If $\delta \geq 3$ then (**) yields:

$$\frac{ka}{3} - k(a-1)(1-\frac{1}{\alpha}) \ge 2,$$

whence:

$$\frac{ka}{3} - k(\frac{a-1}{2}) \ge 2, \ i.e. :$$
$$\frac{k}{6}(3-a) \ge 2,$$

whence a < 3. But then a = 2 and $|N_0| = 2$. Let $N_0 = \{1, y\}$; it follows from Lemma 1.3 that:

$$N = N_G(N_0) \subseteq C_G(y) \subseteq N_0,$$

whence $N = N_0$, contradicting (5).

LEMMA 3.11. $\alpha = 2$.

Proof. If $\alpha \geq 3$, then:

$$\begin{split} \frac{ka}{2} &= \frac{ka}{\delta} \\ &\geq 2 + k(a-1)(1-\frac{1}{\alpha}) \\ &\geq 2 + k(a-1)(1-\frac{1}{3}) \\ &> \frac{2}{3}k(a-1) \,, \end{split}$$

whence:

$$4(a-1) < 3a\,,$$

i.e.:

a < 4,

that is:

 $a \in \{1, 2, 3\}.$

But then $|N_0| \leq 3$; let $N_0 = \langle y \rangle$. Again $C_G(N_0) = C_G(y) \subseteq N_0$, and:

$$\alpha = |N: N_0| \le |N_G(N_0): C_G(N_0)| \le |Aut(N_0)| \le 2$$

a contradiction. Therefore $\alpha = 2$.

PROPOSITION 3.12. If $(M, M') \in \mathcal{MS}(G)^2$ and $M_0^{\sharp} \cap M_0^{\sharp} \neq \emptyset$, then M = M'.

Proof. From $M_0 \cap M'_0 \neq \{1\}$ follows $(|M_0|, |M'_0|) \neq 1$, therefore Proposition 2.4 implies that M and M' are conjugate. Let $M' = M^x$; as $M_0^{\sharp} \neq \emptyset$ and $M'_0^{\sharp} \neq \emptyset$, $M'_0 = M_0^x$ by Lemma 2.5. Then

$$M_0 \cap M_0^x = M_0 \cap M_0' \neq \{1\}$$

whence $x \in M$ by (3) and $M' = M^x = M$.

81

Lemma 3.13.

$$|G| = 1 + |G: N_G(P)|(|P| - 1) + |G: H|(|H_0| - 1) + |G: N|(|N_0| - 1).$$

Proof. One applies the same reasoning as for Corollary 3.7, using Proposition 3.12 and (4). $\hfill \Box$

PROPOSITION 3.14. $\frac{k}{2} = 1 + \lambda$, p is odd and $p^n - a$ divides $p^n - 1$.

Proof. By Lemma 3.10, $\delta = 2$, whence

$$1 + \lambda p^n = \frac{ka}{\delta} = \frac{ka}{2} \; .$$

Lemma 3.13 now gives, by using the equality $\alpha = 2$ (Lemma 3.11):

$$p^{n}ka = 1 + \frac{ka}{2}(p^{n} - 1) + p^{n}(k - 1) + \frac{1}{2}p^{n}k(a - 1)$$

i.e.:

$$0 = 1 - \frac{ka}{2} + p^n(k-1) - \frac{1}{2}p^nk$$

or

(***)
$$\frac{k}{2}(p^n - a) = p^n - 1.$$

Thus:

$$\frac{k}{2}p^n - \frac{ka}{2} = p^n - 1.$$

 \mathbf{As}

$$1 + \lambda p^n = \frac{ka}{2},$$

one has:

$$\begin{split} (1+\lambda)p^n &= p^n - 1 + 1 + \lambda p^n \\ &= \frac{k}{2}p^n - \frac{ka}{2} + \frac{ka}{2} \\ &= \frac{k}{2}p^n, \end{split}$$

i.e.:

$$\frac{k}{2} = 1 + \lambda \,;$$

in particular, k is even, therefore $p\neq 2$ because $p\nmid k.$ (***) now becomes:

$$p^n - 1 = (1 + \lambda)(p^n - a)$$
,

whence $p^n - a \mid p^n - 1$.

82

COROLLARY 3.15. $a = p^n - 2$ and $k = p^n - 1$.

Proof. N acts on the set Ω of the conjugates of N_0 . If $N_0^x \in \Omega$ and $N_0 \cap N_G(N_0^x) \neq \{1\}$, then (cf. Lemma 2.5) $N_0 \cap N^x \neq \{1\}$. But N_0 is a Hall subgroup of N (Corollary 1.4), whence $N_0 \cap N_0^x \neq \{1\}$; therefore (by (3)) $x \in N$ and $N_0^x = N_0$.

Any orbit of N_0 on Ω , other than $\{N_0\},$ has therefore length $|N_0|,$ whence

$$|\Omega| \equiv 1[|N_0|],$$

that is:

$$|G:N| \equiv 1[|N_0|]$$

(we have used the fact that

$$|\Omega| = |G: N_G(N_0)| = |G: N|).$$

Thus:

$$a \mid \frac{p^n k}{\alpha} - 1 = \frac{p^n k}{2} - 1 = p^n (1 + \lambda) - 1.$$

But $p^n - 1 = (1 + \lambda)(p^n - a)$ (see the proof of Proposition 3.14), therefore a divides $1 + \lambda p^n$, hence a divides $p^n - 2$. If $a \neq p^n - 2$, then $a \leq \frac{1}{2}(p^n - 2)$, that is $p^n - a \geq \frac{1}{2}(p^n + 2) > \frac{1}{2}(p^n - 1)$ and Proposition 3.14 gives $p^n - a = p^n - 1$, *i.e.* a = 1, a contradiction. Thus $a = p^n - 2$; but now:

$$\frac{k}{2}(p^n - 2) = \frac{ka}{2} = 1 + \lambda p^n = 1 + (\frac{k}{2} - 1)p^n$$

whence $k = p^n - 1$.

THEOREM 3.16. Under hypothesis (\mathcal{H}) , one of the following holds:

(i) p is a Fermat prime
$$(p = 2^{2^m} + 1)$$
 for some $m \ge 1$, and $G \simeq SL_2(\mathbf{F}_{2^{2^m}})$

(ii)
$$p = 3$$
 and $G \simeq SL_2(\mathbf{F}_8)$.

In both cases, H is the normalizer of a Sylow 2-subgroup of G.

Proof. $|H_0| = k$ is even (Proposition 3.14), therefore H_0 contains an element t of order 2; by Lemma 1.3, $C_G(t) \subseteq H_0$, therefore the number of conjugates of t under H is:

$$|H: C_H(t)| = |H: C_G(t)| \ge |H: H_0| = a = p^n - 2 = k - 1 = |H_0| - 1$$
.

Therefore $H_0 = \{1\} \cup \{t^x | x \in H\}$ only has elements of order 1 or 2, *i.e.* is a nontrivial elementary abelian 2-group; by Lemma 1.3 it is the centralizer of each of its nonidentity elements, and by Corollary 1.4 it is a Sylow 2subgroup of G. It follows readily that every element of G has order 2 or an odd number; as in [4], p.837, one finishes the proof using [2] and the fact that G is not solvable (the case of the Brauer-Suzuki-Wall that we use should actually be called *Burnside's* Theorem, a fact of which I was unfortunately unaware while writing [4]). The last assertion follows from Lemma 2.5: $H = N_G(H_0)$.

$\S4.$ Corollaries and remarks

COROLLARY 4.1. Let G be a (non-abelian) simple CA-group containing a solvable Hall p'-subgroup for some prime p dividing its orderi,; then either p = 3 and G is isomorphic to $SL_2(\mathbf{F}_8)$, or p is a Fermat prime other than 3 and G is isomorphic to $SL_2(\mathbf{F}_{p-1})$.

Remark. This is the main Theorem of [4].

Proof. By Proposition 2.6, G satisfies hypothesis (\mathcal{H}) , and one may therefore apply Theorem 3.16.

The original motivation for this paper was:

COROLLARY 4.2. If G is a minimal counterexample to the Feit-Thompson Theorem that satisfies the conditions listed on p.ix of [1], then there is no prime $p \in \pi(G)$ such that G possess a p'-Hall subgroup.

Proof. Our conditions (1) to (5) clearly follow from the conditions listed on p.ix of [1]; if G would have a Hall p'-subgroup H, then H would be solvable(by the minimality of G), and hypothesis (\mathcal{H}) would be satisfied: Theorem 3.16 would apply. But all the groups that appear in the conclusion of this Theorem have even order.

References

- H.Bender and G.Glauberman, Local analysis for the Odd Order Theorem, Cambridge University Press, Cambridge, 1994.
- [2] W. Burnside, On a class of groups of finite order, Trans. Camb. Phil. Soc., 18 (1900), 269–276.

- [3] O. H. Kegel, Produkte nilpotenter Gruppen, Arch. Math., 12 (1961), 90–93.
- [4] P. Lescot, A note on CA-groups, Communications in Algebra, 18 (1990), no. 3, 833–838.
- [5] W. R. Scott, Group Theory, Dover, New York, 1987.
- [6] J. G. Thompson, Letter (August 31st, 1990).
- [7] L. Weisner, Groups in which the normalizer of every element except identity is abelian, Bull. Amer. Math. Soc., 33 (1925), 413–416.

INSSET, Université de Picardie 48 Rue Raspail 02100 Saint-Quentin France paul.lescot@insset.u-picardie.fr