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PASSAGE-TIME MOMENTS FOR POSITIVELY

RECURRENT MARKOV CHAINS

TOKUZO SHIGA1, AKINOBU SHIMIZU2 and

TAKAHIRO SOSHI

Abstract. Fractional moments of the passage-times are considered for posi-
tively recurrent Markov chains with countable state spaces. A criterion of the
finiteness of the fractional moments is obtained in terms of the convergence rate
of the transition probability to the stationary distribution. As an application it
is proved that the passage time of a direct product process of Markov chains has
the same order of the fractional moments as that of the single Markov chain.

§1. Problems and results

In this paper we are concerned with the fractional moments of the

passage-time for continuous time Markov chains. The problem of finding

criteria for the finiteness and infiniteness of the passage-time moments has

been studied by many authors in various situations both for Markov or non-

Markov processes. (eg. [AI], [L], [TT], [CK], [MW] etc.) However most of

these results give only sufficient conditions for the finiteness and infiniteness

of the passage-time moments.

It has been well-recognized that the finiteness of the fractional mo-

ments is closely related to convergence rate of the transition probability to

the stationary distribution for positively recurrent Markov processes and to

its decay rate for null recurrent Markov processes, but it seems not straight-

forward to describe their relations.

Let S be a countable set, and let (Xt, Px)t≥0,x∈S be a continuous time

Markov chain with state space S. The transition probabilities of the Markov

chain are denoted by pt(x, y), x, y ∈ S. Throughout this paper we assume

that (Xt, Px)t≥0,x∈S is irreducible and positively recurrent. Then the in-
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finitesimal matrix {qx,y}x,y∈S of the transition probability satisfies

qx,y ≥ 0 (x 6= y),
∑

y∈S

qx,y = 0 (y ∈ S),

and

0 < qx = −qx,x <∞ (x ∈ S).

For x ∈ S let Tx be the passage-time to x, and denote by T the first

returning time, namely

Tx = inf{t ≥ 0;Xt = x}

and

T = inf{t > 0;Xt = X0 and Xs 6= X0 for some s < t}.

Under the present assumption it is known that Ex(T ) <∞ holds for every

x ∈ S and there exists a unique stationary distribution ν = (νx) which is

given by

νx =
1

qxEx(T )
(x ∈ S).(1.1)

As seen in Lemma 2.1, to investigate the fractional moments of the passage-

times it suffices to consider the fractional moments of the first returning time

to any fixed starting point.

In the present paper we give a complete criterion for the finiteness

and infiniteness of the first returning time fractional moments in terms of

convergence rate of the transition probability to the stationary distribution

as t→ ∞.

One of our motivations comes from a problem arising in population

genetics. In [SS] was obtained a limit theorem involving the mean number

of different types in n random sampling in a certain stationary interac-

tive Fleming-Viot processes under the assumption that for the n-product

process (X t,P
(n)
x ) of the Markov chain (Xt, Px)t≥0,x∈S , E

(n)
x (T 2) < ∞ is

fulfilled, where T stands for the first returning time of (Xt,P
(n)
x ), so that

the following problem arises naturally:

Let α be a real number with α ≥ 1 and n be an integer with n ≥ 2.

Then does it hold that Ex(Tα) <∞ implies E
(n)
x (T α) <∞ ?
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In the case α = 1, the problem is trivial, because the n-product process

is also positively recurrent and its stationary distribution ν(n) = (ν(n)(x))

is given by

ν(n)(x) = Πn
j=1νxj

, for x = (x1, x2, · · ·, xn) ∈ Sn.

However if α > 1, the problem is highly non-trivial. In this paper we present

two theorems which give criteria for the finiteness and infiniteness of the

fractional moments, and applying these results we solve the above problem

in Theorem 1.3.

Our result are the following.

Theorem 1.1. Let α > 1. Then Ex(Tα) <∞ if and only if

sup
λ>0

∫ ∞

0
e−λttα−2(pt(x, x) − νx)dt <∞.(1.2)

For β > −1, let

r
(β)
λ (0) =

∫ ∞

0
e−λttβ(pt(x, x) − νx)dt.(1.3)

It should be noted that r
(β)
λ (0) ≥ 0 does not hold in general, (see Remark

2.1). However if (1.2) is fulfilled, then

lim
λ↘0

r
(α−2)
λ (0)

exists as seen in the proof of Theorem 1.1.

Next we state another version of the fractional moment criterion. Let

((Xt, Yt), Px ⊗ Py) be the direct product process of (Xt, Px), and we denote

by T and T ′ the first returning times of Xt and Yt.

Theorem 1.2. (i) For β > −1,

Ex ⊗ Ex

(

TT ′(T ∧ T ′)β+1
)

<∞,(1.4)

holds if and only if

∫ ∞

1
tβ(pt(x, x) − νx)2dt <∞.(1.5)
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(ii) For β = −1,

Ex ⊗ Ex

(

TT ′ log+(T ∧ T ′)
)

<∞,(1.6)

holds if and only if

∫ +∞

1
t−1(pt(x, x) − νx)2dt <∞.(1.7)

We remark that if E(T (β+3)/2) < ∞, (1.4) does hold, but the converse

is not true in general. If (1.4) is fulfilled, it holds that E(T γ) < ∞ for any

0 < γ < (β + 3)/2, (see Lemma 4.1).

Let (X1
t , P

1
x1

) and (X2
t , P

2
x2

) be two positively recurrent and irreducible

Markov chains with state spaces S1 and S2, and let T 1 and T 2 the first

returning times of (X1
t , P

1
x1

) and (X2
t , P

2
x2

), respectively. We denote by T

the first returning time of the product process
(

(X1
t , X

2
t ), P 1

x1
⊗ P 2

x2
)
)

.

Theorem 1.3. Let α > 1, and x1 ∈ S1, x2 ∈ S2. Suppose that

E1
x1

((T 1)α) <∞ and E2
x2

((T 2)α) <∞, then it holds E1
x1

⊗ E2
x2

(T α) <∞.

Theorem 1.3 follows from Theorem 1.1 and Theorem 1.2. In fact, denot-

ing p1
t (x1, y1), p

2
t (x2, y2), ν

1 = (ν1
x1

) and ν2 = (ν2
x2

) the transition probabili-

ties and the stationary distributions of (X1
t , P

1
x1

) and (X2
t , P

2
x2

) respectively,

by Theorem 1.1 it suffices to show that

sup
λ>0

∫ ∞

0
e−λttα−2

(

p1
t (x1, x1)p

2
t (x2, x2) − ν1

x1
ν2

x2

)

dt <∞.(1.8)

However from the assumption and Theorem 1.1 it holds

sup
λ>0

∫ ∞

0
e−λttα−2(pi

t(xi, xi) − νi
xi

)dt <∞ (i = 1, 2)(1.9)

and by Theorem 1.2 with β = 2α − 3 it holds

∫ ∞

1
tβ(pi

t(x, x) − νi
xi

)2dt <∞ (i = 1, 2),(1.10)
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so that (1.10) is valid for β = α− 2 because of α > 1. Now note that

p1
t (x1, x1)p

2
t (x2, x2) − ν1

x1
ν2

x2

≤ (p1
t (x1, x1) − ν1

x1
)ν2

x2
+ (p2

t (x2, x2) − ν2
x2

)ν1
x1

+
1

2
(p1

t (x1, x1) − ν1
x1

)2 +
1

2
(p2

t (x2, x2) − ν2
x2

)2.

Combining this with (1.9) and (1.10) with β = α−2 we obtain (1.8), which

completes the proof of Theorem 1.3.

§2. Preliminary lemmas

Lemma 2.1. Suppose that the Markov chain (Xt, Px) is irreducible.

Then for α > 0, the following three are equivalent.

(i) Ex(Tα) <∞ for some x ∈ S.

(ii) Ex(Tα) <∞ for every x ∈ S.

(iii) Ex(Tα
y ) <∞ for every x 6= y ∈ S.

Proof. Obviously (i) and irreducibility imply Ey(T
α
x ) < ∞ for every

y ∈ S. Next we claim that

Ex(Tα
y ) <∞ for every y ∈ S.(2.1)

Using the following inequality; for any ε > 0 there exists a C(ε) > 0 such

that

(a+ b)α ≤ (1 + ε)aα + C(ε)bα (a > 0, b > 0),

and the strong Markov property, we see that for every M > 0

Ex(Tα
y ∧M) = Ex(Tα

y ∧M : Ty < T ) + Ex(Tα
y ∧M : Ty > T )(2.2)

≤ Ex(Tα) + Ex((T + θT · Ty)
α ∧M : Ty > T )

≤ (1 + C(ε))Ex(Tα) + (1 + ε)Px(Ty > T )Ex(Tα
y ∧M).

Noting that Px(Ty > T ) < 1 due to the irreducibility, choose ε > 0 so that

(1 + ε)Px(Ty > T ) < 1, then (2.1) is immediate from (2.2).

The rest is trivial since for x, y ∈ S, Ex(Tα
y ) < ∞ and Ey(T

α
x ) < ∞

imply Ex(Tα) <∞ and Ey(T
α) <∞.
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Let x ∈ S be fixed. For λ > 0 and α > −1, let us introduce the following

functions of z ∈ R:

r
(α)
λ (z) =

∫ ∞

0
e−(λ+iz)ttα(pt(x, x) − νx)dt,(2.3)

ϕ
(α)
λ (z) = Ex

(
∫ T

0
e−(λ+iz)ttαdt

)

,(2.4)

G
(α)
λ (z) =

∫ ∞

0
e−(λ+iz)uuαg(u)du,(2.5)

where

g(u) = νx

(

(1 − e−qxu)Ex(T ) − Ex(T ∧ u)
)

.(2.6)

In particular we denote rλ(z) = r
(0)
λ (z) and ϕλ(z) = ϕ

(0)
λ (z). Notice that

r
(α)
λ , ϕ

(α)
λ , and G

(α)
λ are complex-valued functions, but r

(α)
λ (0), ϕ

(α)
λ (0) and

ψ
(α)
λ (0) are real.

The proofs of Theorems 1.1 and 1.2 are based on the following relations.

Lemma 2.2.

(i)

rλ(z)ϕλ(z) = Gλ(z).(2.7)

(ii) For integer n ≥ 1

n
∑

k=0

(

n

k

)

r
(k)
λ (z)ϕ

(n−k)
λ (z) = G

(n)
λ (z),(2.8)

(iii) For integer n ≥ 0 and 0 < γ < 1,

n
∑

k=0

(

n

k

)

(

r
(k+γ)
λ (z)ϕ

(n−k)
λ (z) +Bn,k,γ

λ (z)
)

= G
(n+γ)
λ (z),(2.9)

where for 0 ≤ k ≤ n and 0 < γ < 1

Bn,k,γ
λ (z) =

γ

Γ(1 − γ)

∫ ∞

0

r
(k)
λ+y(z)

(

ϕ
(n−k)
λ (z) − ϕ

(n−k)
λ+y (z)

)

yγ+1
dy.(2.10)
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Proof. Let T (n) be the n-th returning time, and ζ be the first jump

time. Since the distribution of ζ under Px be the exponential distribution

with parameter qx, by using the strong Markov property we have

Ex

(

∫ T (n+1)

T (n)
e−(λ+iz)tI(X(t) = x)dt

)

= Ex

(

e−(λ+iz)T (n)
) 1

λ+ qx + iz

=

(

Ex

(

e−(λ+iz)T
))n

λ+ qx + iz
,

which implies

∫ ∞

0
e−(λ+iz)tpt(x, x)dt =

1

ϕλ(z)(λ+ iz)(λ + qx + iz)
.(2.11)

Using (1.1), we have

rλ(z)ϕλ(z) =
νx

λ+ iz

(

qxEx(T )

λ+ qx + iz
− ϕλ(z)

)

,

and the r.h.s. is easily identified with Gλ(z), which proves (2.7). To see (2.8)

take n times differentiations in λ > 0 for both hand sides of (2.7). (2.9) is

easily checked using (2.8) and the equality

γ

Γ(1 − γ)

∫ ∞

0

1 − e−yu

yγ+1
dy = uγ .

Lemma 2.3. (i) There exist constants c1 > 0 and c2 > 0 such that

c1
1 + λ+ |z|

≤ |ϕλ(z)| ≤
c2

1 + λ+ |z|
(λ > 0, z ∈ R).(2.12)

In particular,
c1

1 + λ
≤ ϕλ(0) ≤

c2
1 + λ

(λ > 0).(2.13)

(ii) If Ex(Tα+1) < +∞ for α > 0,
ϕ

(α)
λ (z)

ϕλ(z)
is bounded in λ > 0 and

z ∈ R.
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Proof. Note that by the strong Markov property

ϕλ(z) =
1

λ+ iz
Ex

(

1 − EXζ

(

e−(λ+iz)Tx

) qx
λ+ qx + iz

)

,(2.14)

which implies that

lim
λ+|z|→∞

|1 + λ+ iz||ϕλ(z)| = 1,

and

inf
λ>0,z∈R

|1 + λ+ iz||ϕλ(z)| > 0,

yielding (2.12).

Next, note that

ϕ
(α)
λ (z) =

−1

λ+ iz
Ex

(

e−(λ+iz)TTα
)

+
1

λ+ iz
Ex

(
∫ T

0
e−(λ+iz)uαuα−1du

)

,

from which it follows

|ϕ
(α)
λ (z)| ≤

2

|λ+ iz|
Ex (Tα) .

Noting that

lim
λ+|z|→0

ϕ
(α)
λ (z)

ϕλ(z)
=
Ex(Tα+1)

Ex(T )
,

which yields (ii) by (2.12).

Lemma 2.4. Let −1 < β < α.

(i) If sup
λ>0

r
(α)
λ (0) <∞, then sup

λ>0
r
(β)
λ (0) <∞.

(ii) If −1 < α ≤ 0, then r
(α)
λ (0) > 0 for λ > 0.

Proof. Note that

∫ 1

0
yα−β−1r

(α)
λ+y(0)dy = Γ(α− β)r

(β)
λ (0)

−

∫ ∞

0
e−λttβ

(

∫ ∞

t
uα−β−1e−u du

)

(pt(x, x) − νx)dt.

Since the l.h.s. is bonded in λ > 0 by the assumption and so is the last term

of the r.h.s., (i) holds.
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For (ii) use (1.1) and the strong Markov property, then

rλ(0) =
qxEx

(

EXζ

(

e−λTx − 1 + λTx

))

λqx(λ+ qx)Ex(1 − e−λT )Ex(T )
.

Since e−x − 1 + x > 0 (x > 0), we have rλ(0) > 0. Moreover,

r
(α)
λ (0) = Γ(−α)−1

∫ ∞

0
y−α−1rλ+y(0)dy

implies r
(α)
λ (0) > 0.

Remark 2.1. r
(n)
λ (0) ≥ 0 holds for every integer n ≥ 0 and every

λ > 0 if and only if pt(x, x) ≥ νx for every t ≥ 0, that is true if pt(x, y) have

a reversible measure, but it is not true in general.

§3. Proof of Theorem 1.1

We prepare the following lemma.

Lemma 3.1. Let α > −1. Ex(Tα+2) <∞ if and only if

sup
λ>0

G
(α)
λ (0) <∞.

Proof. As easily seen,

sup
λ>0

∫ ∞

0
e−λuEx

(

(T − u)+ − Te−qxu
)

uαdu <∞

is equivalent to
∫ ∞

0
Ex ((T − u)+) uαdu <∞,

which turns to Ex(Tα+2) <∞.

We divide the proof of Theorem 1.1 into 3 cases.

Case 1: α = n+ 2 (n ∈ Z+).

By Lemma 2.2 (i)

rλ(0)ϕλ(0) = Gλ(0),

which yields that sup0<λ<1 rλ(0) <∞ is equivalent to sup0<λ<1Gλ(0) <∞,

since 0 < inf0<λ<1 ϕλ(0) < ∞. Moreover by Lemma 3.1 this condition is

equivalent to Ex(T 2) <∞. Then it is obvious that

lim
λ↘0

rλ(0) =
limλ↘0Gλ(0)

Ex(T )
exists.
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Next for 0 ≤ k < n, suppose that supλ>0 r
(k)
λ (0) < ∞ is equivalent to

Ex(T k+2) <∞ for 0 ≤ k < n, and that

lim
λ↘0

r
(k)
λ (0) exists. (0 ≤ k < n)

By Lemma 2.2 (ii)

r
(n)
λ (0)ϕλ(0) +

n−1
∑

k=0

(

n

k

)

r
(k)
λ (0)ϕ

(n−k)
λ (0) = G

(n)
λ (0).(3.1)

If supλ>0 r
(n)
λ (0) <∞, by Lemma 2.4 supλ>0 r

(k)
λ (0) <∞ for 0 ≤ k ≤ n,

so that by the inductive assumption we know Ex(Tn+1) < ∞. Hence the

l.h.s. of (3.1) is bounded in λ > 0, so that supλ>0G
(n)
λ (0) < ∞, which is

equivalent to Ex(Tn+2) < ∞. The rest of the statement is also proved by

the same induction argument, so we skip it.

Case 2: α = n+ 2 + γ (n ∈ Z+, 0 < γ < 1).

By Lemma 2.2

r
(n+γ)
λ (0)ϕλ(0) +

n−1
∑

k=0

(

n

k

)

r
(k+γ)
λ (0)ϕ

(n−k)
λ +

n
∑

k=0

(

n

k

)

Bn,k,γ
λ (0)(3.2)

= G
(n+γ)
λ (0).

If supλ>0 r
(n+γ)
λ (0) < ∞, by Lemma 2.4, supλ>0 r

(n)
λ (0) < ∞ and

supλ>0 r
(k+γ)
λ (0) < ∞ (0 ≤ k < n) holds, so it follows from the result

of case 1 that Ex(Tn+2) <∞, hence the second term of the l.h.s of (3.2) is

upper bounded in λ > 0. For the third term

Bn,k,γ
λ (0) =

γ

Γ(1 − γ)

∫ ∞

0

r
(k)
λ+y(0)(ϕ

(n−k)
λ (0) − ϕ

(n−k)
λ+y (0))

yγ+1
dy

≤ sup
λ>0

r
(k)
λ (0)ϕ

(n−k+γ)
λ (0).

Hence supλ>0G
(n+γ)
λ (0) < ∞, which is equivalent to Ex(Tn+2+γ) < ∞ by

Lemma 3.1.

Conversely supposing that Ex(Tn+2+γ) <∞ we claim that r
(n+γ)
λ (0) is

bounded in λ > 0. By the result of Case 1, we know that r
(n)
λ (0) is upper

bounded in λ > 0. So by Lemma 2.4, it holds that supλ>0 r
(k+γ)
λ (0) <
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∞ (0 ≤ k < n). Hence the second and third terms of the l.h.s. in (3.2) are

upper bounded in λ > 0, which yields supλ>0 r
(n+γ)
λ (0) <∞.

Finally using the inductive argument to (3.2) again, we can conclude

that

lim
λ↘0

r
(n+γ)
λ (0)

exists.

Case 3: α = 2 − γ (0 < γ < 1).

Using Lemma 2.2 (i) we have

G
(−γ)
λ (0) =

1

Γ(γ)

∫ ∞

0
yγ−1rλ+y(0)ϕλ+y(0)dy.

Note that Ex(T 2−γ) <∞ is equivalent to the existence of limλ↘0G
(−γ)
λ (0),

which turns to
∫ ∞

0
yγ−1ry(0)ϕy(0)dy <∞,(3.3)

since rλ(0) > 0 (λ > 0) holds by Lemma 2.4, and (3.3) is equivalent to

lim
λ↘0

r
(−γ)
λ (0) =

1

Γ(γ)

∫ ∞

0
yγ−1ry(0)dy <∞.

§4. Proof of Theorem 1.2

The main tool for the proof of Theorem 1.2 is Fourier analysis. For

instance, applying Plancherel’s identity to the function r
(α)
λ defined by (2.3),

we have

‖ r
(α)
λ ‖2

2= 2π

∫ ∞

0
e−2λtt2α(pt(x, x) − νx)2dt <∞,(4.1)

so that it holds

sup
λ>0

‖ r
(α)
λ ‖2

2= 2π

∫ ∞

0
t2α(pt(x, x) − νx)

2dt ≤ ∞,(4.2)

where ‖ · ‖2 stands for the L2(R)-norm, i.e.

‖ f ‖2
2=

∫

R
|f(z)|2dz.

Let us begin the following simple lemma.
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Lemma 4.1. Let X,Y be independent identically distributed positive

random variables. If E((X ∧ Y )α) < +∞ for α > 0, then E(Xβ) < +∞

holds for any β ∈ (0, α
2 ).

Proof. From the assumption it follows
∫ ∞

1
xα−1P (X ∧ Y ≥ x)dx =

∫ ∞

1
xα−1P (X ≥ x)2dx <∞.(4.3)

For 0 < β < α/2, use the Schwarz inequality to get

(
∫ ∞

1
xβ−1P (X ≥ x)dx

)2

≤

∫ ∞

1
xα−1P (X ≥ x)2dx

∫ ∞

1
x2β−α−1dx <∞

which yields E(Xβ) <∞.

Lemma 4.2. Let α > −1/2. Suppose that

sup
λ>0

‖ r
(α)
λ ‖2<∞(4.4)

Then

Ex(T β) <∞ for every 0 < β < α+ 3/2.(4.5)

Proof. Applying the Schwarz inequality we have

(
∫ ∞

1
tβ−2|pt(x, x) − νx|dt

)2

≤ sup
λ>0

‖ r
(α)
λ ‖2

2

∫ ∞

1
t2(β−α−2)dt <∞,

so that supλ>0 r
(β−2)
λ (0) <∞ holds for β > 1. Hence by virtue of Theorem

1.1 we get (4.5).

Lemma 4.3. Let G
(β)
λ (z) be the function defined by (2.5).

(i) Let β ≥ 0.

sup
λ>0

‖ G
(β)
λ /ϕλ ‖2<∞

holds if and only if

Ex ⊗ Ex

(

TT ′(T ∧ T ′)2β+1
)

<∞.(4.6)

(ii) Let −1/2 < β < 0.
∫ ∞

0
λ−2β−1 ‖ Gλ/ϕλ ‖2

2 dλ <∞(4.7)
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holds if and only if

Ex ⊗ Ex

(

TT ′(T ∧ T ′)2β+1
)

<∞.(4.8)

(iii) Let β = −1/2.
∫ 1

0
‖ Gλ/ϕλ ‖2

2 dλ <∞

holds if and only if

Ex ⊗ Ex

(

TT ′ log+(T ∧ T ′)
)

<∞,

where log+ x = max{log x, 0}.

Proof. Note that if β > −1/2, g(u)uβ is extended to an absolutely

continuous function on R with value 0 on (−∞, 0] and e−λug(u)uβ and

(e−λug(u)uβ)′ are L2-function. Then Plancherel’s identity and Lemma 2.3

(i) implies that for some c1 > 0

c1 ‖ G
(β)
λ /ϕλ ‖2≤‖ e−λug(u)uβ ‖2 + ‖ e−λu(g(u)uβ)′ ‖2(4.9)

for 0 < λ ≤ 1, and that for some c2 > 0

‖ e−λug(u)uβ ‖2≤ c2 ‖ G
(β)
λ /ϕλ ‖2 .(4.10)

As easily seen, if β ≥ 0, then supλ>0 ‖ e−λug(u)uβ ‖2<∞ turns to

Ex ⊗ Ex

(

∫ T∧T ′

0
(T − u)(T ′ − u)u2βdu

)

<∞,

which is equivalent to (4.6). Observing that Ex ⊗ Ex

(

(T ∧ T ′)2β+1
)

< ∞

implies ‖ e−λu(g(u)uβ)′ ‖2<∞, we obtain the conclusion of (i).

If −1/2 < β < 0, by (4.9) and (4.10), (4.7) turns to

∫ ∞

0
λ−2β−1

∫ ∞

0
e−2λu

(

g(u)2 + g′(u)2
)

dudλ <∞,

which is equivalent to
∫ ∞

0
u2βg(u)2du <∞

and further to (4.8). The case β = −1/2 is essentially the same as the

previous case −1/2 < β < 0, so the proof is omitted.
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Lemma 4.4. For 0 ≤ k ≤ n and 0 < γ < 1, let Bn,k,γ
λ (z) be the

function defined by (2.10). Suppose that

Ex(Tn−k+1+γ) <∞ and sup
λ>0

‖ r
(k)
λ ‖2<∞,

then it holds

sup
λ>0

‖ Bn,k,γ
λ /ϕλ ‖2<∞.(4.11)

Proof. Note that

‖ Bn,k,γ
λ /ϕλ ‖2≤

γ

Γ(1 − γ)

∫ ∞

0

‖ r
(k)
λ+y ‖2

yγ+1
‖
ϕ

(n−k)
λ − ϕ

(n−k)
λ+y

ϕλ
‖∞ dy.(4.12)

Let

fλ(y) =‖ (ϕ
(n−k)
λ − ϕ

(n−k)
λ+y )/ϕλ ‖∞ .

Using Lemma 2.3 and integral by parts we see that for some constant C > 0

fλ(y) ≤ C sup
z∈R

|Ex(

∫ T

0
(1 + λ+ iz)e−(λ+iz)t(1 − e−yt))tn−kdt|

≤ C
(

Ex

(
∫ T

0
(1 − e−yt)tn−kdt

)

+Ex

(

(1 − e−yT )Tn−k
)

+Ex

(
∫ T

0
ye−yttn−kdt

)

+ (n− k)Ex

(
∫ T

0
(1 − e−yt)tn−k−1dt

)

)

,

so that for some C1 > 0
∫ ∞

0

fλ(y)

yγ+1
dy ≤ C1

(

E(Tn−k+γ+1) + E(Tn−k+γ)
)

.(4.13)

Hence (4.11) follows from (4.12), (4.13) and supλ>0 ‖ r
(k)
λ ‖2< ∞ by the

assumption.

Proof of Theorem 1.2.

Case 1 : β = 2n (n ∈ Z+)

Note that by Lemma 2.2

r
(n)
λ = G

(n)
λ /ϕλ −

n−1
∑

k=0

(

n

k

)

r
(k)
λ ϕ

(n−k)
λ /ϕλ.(4.14)
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First we assume (1.5) with β = 2n. The it holds that

sup
λ>0

‖ r
(k)
λ ‖2<∞ (0 ≤ k ≤ n),

so by Lemma 4.2 we have

Ex(Tn+1) <∞,

from which and Lemma 2.3

sup
λ>0

‖ ϕ
(n−k)
λ /ϕλ ‖∞<∞ (0 ≤ k ≤ n− 1).

Hence the second term of the r.h.s. of (4.14) is L2-bounded in λ > 0, so

that

sup
λ>0

‖ G
(n)
λ /ϕλ ‖2<∞,

yielding (1.4) by Lemma 4.3. Conversely, assuming (1.4) with β = 2n, by

Lemma 4.3 we see that the first term of the r.h.s. of (4.14) is L2-bounded

in λ > 0. Also, by Lemma 4.1 it holds

Ex(Tn+1) <∞.

Accordingly using Lemma 2.3 and induction we get

sup
λ>0

‖ r
(n)
λ ‖2<∞,

which yields (1.5).

Case 2 : β = 2(n+ γ) (n ∈ Z+, 0 < γ < 1)

By Lemma 2.2

r
(n+γ)
λ = G

(n+γ)
λ /ϕλ −

n−1
∑

k=0

(

n

k

)

r
(k+γ)
λ ϕ

(n−k)
λ /ϕλ(4.15)

−

n
∑

k=0

(

n

k

)

Bn,k,γ
λ /ϕλ.

Assume (1.5) with β = 2(n+ γ). Then it holds that

sup
λ>0

‖ r
(k+γ)
λ ‖2<∞ (0 ≤ k ≤ n),
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so by Lemma 4.2

Ex(Tn+1+γ) <∞,

from which and Lemma 2.3

sup
λ>0

‖ ϕ
(n−k+γ)
λ /ϕλ ‖∞<∞ (0 ≤ k ≤ n− 1).

Hence the second term of the r.h.s. of (4.15) is L2-bounded in λ > 0.

Furthermore, by Lemma 4.4 the last term of the r.h.s. of (4.15) is bounded

in λ > 0, so that

sup
λ>0

‖ G
(n+γ)
λ /ϕλ ‖2<∞,

yielding (1.4). Conversely, assuming (1.4) with β = 2(n+γ), by Lemma 4.3

we see that the first term of the r.h.s. of (4.15) is bounded in λ > 0. Also,

by Lemma 4.1 it holds

Ex(Tn+1+γ) <∞.

Hence by Lemma 4.4 and Case 1 the last term of the r.h.s. of (4.15) is L2-

bounded in λ > 0. Accordingly using Lemma 2.3 and induction we get

sup
λ>0

‖ r
(n+γ)
λ ‖2<∞,

which yields (1.5).

Case 3 : β = −γ (0 < γ < 1)

Note that
∫ ∞

0
λγ−1 ‖ rλ ‖2

2 dλ = Γ(γ)2−γ ‖ r
(−γ/2)
0+ ‖2

2 .

So by Lemma 2.2

sup
λ>0

‖ r
(−γ/2)
λ ‖2<∞

is equivalent to
∫ ∞

0
λγ−1 ‖ Gλ/ϕλ ‖2

2 dλ <∞.

Accordingly the desired conclusion follows from Lemma 4.3.

Case 4 : β = −1

Note that

∫ 1

0
‖ rλ ‖2

2 dλ = 2π

∫ ∞

0

1 − e−2t

2t
(pt(x, x) − νx)2dt.(4.16)
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and the finiteness of (4.16) is equivalent to (1.7). It is also equivalent to

∫ 1

0
‖ Gλ/ϕλ ‖2

2 dλ <∞,

which turns to (1.6) by Lemma 4.3. Thus the proof of Theorem 1.2 is

completed.
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